Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchQuercetinQuercetin (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

In silico identification of SARS-CoV-2 cell entry inhibitors from selected natural antivirals

Şimşek et al., Journal of Molecular Graphics and Modelling, doi:10.1016/j.jmgm.2021.108038
Sep 2021  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Quercetin for COVID-19
24th treatment shown to reduce risk in July 2021, now with p = 0.002 from 12 studies.
No treatment is 100% effective. Protocols combine treatments.
5,100+ studies for 112 treatments. c19early.org
In Silico study identifying quercetin derivatives as SARS-CoV-2 spike protein, ACE2, and neuropilin inhibitors.
73 preclinical studies support the efficacy of quercetin for COVID-19:
In Silico studies predict inhibition of SARS-CoV-2, or minimization of side effects, with quercetin or metabolites via binding to the spikeA,3,9,10,22,24,25,30,38,39,41,42,62-64, MproB,3,7,9,11,13,15,17,18,20,23,24,30,34,36-38,42,43,45,63-65, RNA-dependent RNA polymeraseC,1,3,9,32,64, PLproD,3,37,45, ACE2E,22,23,28,37,41,63, TMPRSS2F,22, nucleocapsidG,3, helicaseH,3,29,34, endoribonucleaseI,39, NSP16/10J,6, cathepsin LK,26, Wnt-3L,22, FZDM,22, LRP6N,22, ezrinO,40, ADRPP,38, NRP1Q,41, EP300R,16, PTGS2S,23, HSP90AA1T,16,23, matrix metalloproteinase 9U,31, IL-6V,21,35, IL-10W,21, VEGFAX,35, and RELAY,35 proteins. In Vitro studies demonstrate inhibition of the MproB,15,46,51,59 protein, and inhibition of spike-ACE2 interactionZ,47. In Vitro studies demonstrate efficacy in Calu-3AA,50, A549AB,21, HEK293-ACE2+AC,58, Huh-7AD,25, Caco-2AE,49, Vero E6AF,19,42,49, mTECAG,52, and RAW264.7AH,52 cells. Animal studies demonstrate efficacy in K18-hACE2 miceAI,55, db/db miceAJ,52,61, BALB/c miceAK,60, and rats66. Quercetin reduced proinflammatory cytokines and protected lung and kidney tissue against LPS-induced damage in mice60, inhibits LPS-induced cytokine storm by modulating key inflammatory and antioxidant pathways in macrophages5, and inhibits SARS-CoV-2 ORF3a ion channel activity, which contributes to viral pathogenicity and cytotoxicity54.
a. The trimeric spike (S) protein is a glycoprotein that mediates viral entry by binding to the host ACE2 receptor, is critical for SARS-CoV-2's ability to infect host cells, and is a target of neutralizing antibodies. Inhibition of the spike protein prevents viral attachment, halting infection at the earliest stage.
b. The main protease or Mpro, also known as 3CLpro or nsp5, is a cysteine protease that cleaves viral polyproteins into functional units needed for replication. Inhibiting Mpro disrupts the SARS-CoV-2 lifecycle within the host cell, preventing the creation of new copies.
c. RNA-dependent RNA polymerase (RdRp), also called nsp12, is the core enzyme of the viral replicase-transcriptase complex that copies the positive-sense viral RNA genome into negative-sense templates for progeny RNA synthesis. Inhibiting RdRp blocks viral genome replication and transcription.
d. The papain-like protease (PLpro) has multiple functions including cleaving viral polyproteins and suppressing the host immune response by deubiquitination and deISGylation of host proteins. Inhibiting PLpro may block viral replication and help restore normal immune responses.
e. The angiotensin converting enzyme 2 (ACE2) protein is a host cell transmembrane protein that serves as the cellular receptor for the SARS-CoV-2 spike protein. ACE2 is expressed on many cell types, including epithelial cells in the lungs, and allows the virus to enter and infect host cells. Inhibition may affect ACE2's physiological function in blood pressure control.
f. Transmembrane protease serine 2 (TMPRSS2) is a host cell protease that primes the spike protein, facilitating cellular entry. TMPRSS2 activity helps enable cleavage of the spike protein required for membrane fusion and virus entry. Inhibition may especially protect respiratory epithelial cells, buy may have physiological effects.
g. The nucleocapsid (N) protein binds and encapsulates the viral genome by coating the viral RNA. N enables formation and release of infectious virions and plays additional roles in viral replication and pathogenesis. N is also an immunodominant antigen used in diagnostic assays.
h. The helicase, or nsp13, protein unwinds the double-stranded viral RNA, a crucial step in replication and transcription. Inhibition may prevent viral genome replication and the creation of new virus components.
i. The endoribonuclease, also known as NendoU or nsp15, cleaves specific sequences in viral RNA which may help the virus evade detection by the host immune system. Inhibition may hinder the virus's ability to mask itself from the immune system, facilitating a stronger immune response.
j. The NSP16/10 complex consists of non-structural proteins 16 and 10, forming a 2'-O-methyltransferase that modifies the viral RNA cap structure. This modification helps the virus evade host immune detection by mimicking host mRNA, making NSP16/10 a promising antiviral target.
k. Cathepsin L is a host lysosomal cysteine protease that can prime the spike protein through an alternative pathway when TMPRSS2 is unavailable. Dual targeting of cathepsin L and TMPRSS2 may maximize disruption of alternative pathways for virus entry.
l. Wingless-related integration site (Wnt) ligand 3 is a host signaling molecule that activates the Wnt signaling pathway, which is important in development, cell growth, and tissue repair. Some studies suggest that SARS-CoV-2 infection may interfere with the Wnt signaling pathway, and that Wnt3a is involved in SARS-CoV-2 entry.
m. The frizzled (FZD) receptor is a host transmembrane receptor that binds Wnt ligands, initiating the Wnt signaling cascade. FZD serves as a co-receptor, along with ACE2, in some proposed mechanisms of SARS-CoV-2 infection. The virus may take advantage of this pathway as an alternative entry route.
n. Low-density lipoprotein receptor-related protein 6 is a cell surface co-receptor essential for Wnt signaling. LRP6 acts in tandem with FZD for signal transduction and has been discussed as a potential co-receptor for SARS-CoV-2 entry.
o. The ezrin protein links the cell membrane to the cytoskeleton (the cell's internal support structure) and plays a role in cell shape, movement, adhesion, and signaling. Drugs that occupy the same spot on ezrin where the viral spike protein would bind may hindering viral attachment, and drug binding could further stabilize ezrin, strengthening its potential natural capacity to impede viral fusion and entry.
p. The Adipocyte Differentiation-Related Protein (ADRP, also known as Perilipin 2 or PLIN2) is a lipid droplet protein regulating the storage and breakdown of fats in cells. SARS-CoV-2 may hijack the lipid handling machinery of host cells and ADRP may play a role in this process. Disrupting ADRP's interaction with the virus may hinder the virus's ability to use lipids for replication and assembly.
q. Neuropilin-1 (NRP1) is a cell surface receptor with roles in blood vessel development, nerve cell guidance, and immune responses. NRP1 may function as a co-receptor for SARS-CoV-2, facilitating viral entry into cells. Blocking NRP1 may disrupt an alternative route of viral entry.
r. EP300 (E1A Binding Protein P300) is a transcriptional coactivator involved in several cellular processes, including growth, differentiation, and apoptosis, through its acetyltransferase activity that modifies histones and non-histone proteins. EP300 facilitates viral entry into cells and upregulates inflammatory cytokine production.
s. Prostaglandin G/H synthase 2 (PTGS2, also known as COX-2) is an enzyme crucial for the production of inflammatory molecules called prostaglandins. PTGS2 plays a role in the inflammatory response that can become severe in COVID-19 and inhibitors (like some NSAIDs) may have benefits in dampening harmful inflammation, but note that prostaglandins have diverse physiological functions.
t. Heat Shock Protein 90 Alpha Family Class A Member 1 (HSP90AA1) is a chaperone protein that helps other proteins fold correctly and maintains their stability. HSP90AA1 plays roles in cell signaling, survival, and immune responses. HSP90AA1 may interact with numerous viral proteins, but note that it has diverse physiological functions.
u. Matrix metalloproteinase 9 (MMP9), also called gelatinase B, is a zinc-dependent enzyme that breaks down collagen and other components of the extracellular matrix. MMP9 levels increase in severe COVID-19. Overactive MMP9 can damage lung tissue and worsen inflammation. Inhibition of MMP9 may prevent excessive tissue damage and help regulate the inflammatory response.
v. The interleukin-6 (IL-6) pro-inflammatory cytokine (signaling molecule) has a complex role in the immune response and may trigger and perpetuate inflammation. Elevated IL-6 levels are associated with severe COVID-19 cases and cytokine storm. Anti-IL-6 therapies may be beneficial in reducing excessive inflammation in severe COVID-19 cases.
w. The interleukin-10 (IL-10) anti-inflammatory cytokine helps regulate and dampen immune responses, preventing excessive inflammation. IL-10 levels can also be elevated in severe COVID-19. IL-10 could either help control harmful inflammation or potentially contribute to immune suppression.
x. Vascular Endothelial Growth Factor A (VEGFA) promotes the growth of new blood vessels (angiogenesis) and has roles in inflammation and immune responses. VEGFA may contribute to blood vessel leakiness and excessive inflammation associated with severe COVID-19.
y. RELA is a transcription factor subunit of NF-kB and is a key regulator of inflammation, driving pro-inflammatory gene expression. SARS-CoV-2 may hijack and modulate NF-kB pathways.
z. The interaction between the SARS-CoV-2 spike protein and the human ACE2 receptor is a primary method of viral entry, inhibiting this interaction can prevent the virus from attaching to and entering host cells, halting infection at an early stage.
aa. Calu-3 is a human lung adenocarcinoma cell line with moderate ACE2 and TMPRSS2 expression and SARS-CoV-2 susceptibility. It provides a model of the human respiratory epithelium, but many not be ideal for modeling early stages of infection due to the moderate expression levels of ACE2 and TMPRSS2.
ab. A549 is a human lung carcinoma cell line with low ACE2 expression and SARS-CoV-2 susceptibility. Viral entry/replication can be studied but the cells may not replicate all aspects of lung infection.
ac. HEK293-ACE2+ is a human embryonic kidney cell line engineered for high ACE2 expression and SARS-CoV-2 susceptibility.
ad. Huh-7 cells were derived from a liver tumor (hepatoma).
ae. Caco-2 cells come from a colorectal adenocarcinoma (cancer). They are valued for their ability to form a polarized cell layer with properties similar to the intestinal lining.
af. Vero E6 is an African green monkey kidney cell line with low/no ACE2 expression and high SARS-CoV-2 susceptibility. The cell line is easy to maintain and supports robust viral replication, however the monkey origin may not accurately represent human responses.
ag. mTEC is a mouse tubular epithelial cell line.
ah. RAW264.7 is a mouse macrophage cell line.
ai. A mouse model expressing the human ACE2 receptor under the control of the K18 promoter.
aj. A mouse model of obesity and severe insulin resistance leading to type 2 diabetes due to a mutation in the leptin receptor gene that impairs satiety signaling.
ak. A mouse model commonly used in infectious disease and cancer research due to higher immune response and susceptibility to infection.
Şimşek et al., 29 Sep 2021, peer-reviewed, 3 authors.
In Silico studies are an important part of preclinical research, however results may be very different in vivo.
This PaperQuercetinAll
In silico identification of SARS-CoV-2 cell entry inhibitors from selected natural antivirals
Yusuf Şimşek, Sahra Setenay Baran, Belma Aslım
Journal of Molecular Graphics and Modelling, doi:10.1016/j.jmgm.2021.108038
The aim of this study is to identify potential drug-like molecules against SARS-CoV-2 virus among the natural antiviral compounds published in the Encyclopedia of Traditional Chinese Medicine. To test inhibition capability of these compounds first, we docked them with Spike protein, angiotensin-converting enzyme 2 (ACE2) (PDB ID: 6M0J) and neuropilin 1 (NRP1) (PDB ID: 7JJC) receptors, and found significant docking scores with extra precision up to -11 kcal/mol. Then, their stability in the binding pockets were further evaluated with molecular dynamics simulation. Eight natural antiviral compounds were identified as potential inhibitors against SARS-CoV-2 cell entry after 200 ns molecular dynamics simulations. We found CMP-3, CMP-4, CMP-5, CMP-6 and CMP-8 are strong binders for the spike protein, CMP-1, CMP-2, CMP-4, CMP-5 and CMP-7 are strong binders for the neuropilin receptor, and CMP-5 is a strong binder for the ACE2. Quercetin derivatives (CMP-4, CMP-5, CMP-6 and CMP-7) were found highly stable in the active domain of NRP1, ACE2 and Spike protein. Especially, CMP-5 showed an inhibitory activity for all targets. These natural antivirals may be potential drug candidates for the prevention of SARS-CoV-2 infection.
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Appendix A. Supplementary data Supplementary data to this article can be found online at https://doi. org/10.1016/j.jmgm.2021.108038.
References
Abian, Ortega-Alarcon, Jimenez-Alesanco, Ceballos-Laita, Vega et al., Structural stability of SARS-CoV-2 3clpro and identification of quercetin as an inhibitor by experimental screening, Int. J. Biol. Macromol, doi:10.1016/j.ijbiomac.2020.07.235
Agrawal, Raju, Udwadia, Favipiravir: a new and emerging antiviral option in covid-19, Med. J. Armed Forces India, doi:10.1016/j.mjafi.2020.08.004
Al-Tawfiq, Momattin, Dib, Memish, Ribavirin and interferon therapy in patients infected with the middle east respiratory syndrome coronavirus: an observational study, Int. J. Infect. Dis, doi:10.1016/j.ijid.2013.12.003
Aucoin, Cooley, Saunders, Cardozo, Remy et al., The effect of quercetin on the prevention or treatment of COVID-19 and other respiratory tract infections in humans: a rapid review, Advances in Integrative Medicine, doi:10.1016/j.aimed.2020.07.007
Beigel, Tomashek, Dodd, Mehta, Zingman et al., Remdesivir for the treatment of covid-19 -final report, N. Engl. J. Med, doi:10.1056/NEJMoa2007764
Berendsen, Grigera, Straatsma, The missing term in effective pair potentials, J. Phys. Chem, doi:10.1021/j100308a038
Berendsen, Postma, Van Gunsteren, Dinola, Haak, Molecular dynamics with coupling to an external bath, J. Chem. Phys, doi:10.1063/1.448118
Berendsen, Postma, Van Gunsteren, Hermans, Interaction models for water in relation to protein hydration, doi:10.1007/978-94-015-7658-1_21
Bessière, Roccia, Delinière, Charrière, Chevalier et al., Assessment of QT intervals in a case series of patients with coronavirus disease 2019 (COVID-19) infection treated with hydroxychloroquine alone or in combination with azithromycin in an intensive care unit, JAMA Cardiology, doi:10.1001/jamacardio.2020.1787
Bhatnagar, Murhekar, Soneja, Gupta, Giri et al., Lopinavir/ritonavir combination therapy amongst symptomatic coronavirus disease 2019 patients in India: protocol for restricted public health emergency use, Indian J. Med. Res, doi:10.4103/ijmr.IJMR_502_20
Booth, Matukas, Tomlinson, Rachlis, Rose et al., Clinical features and short-term outcomes of 144 patients with SARS in the greater toronto area, JAMA, doi:10.1001/jama.289.21.JOC30885
Borba, Val, Sampaio, Alexandre, Melo et al., Effect of high vs low doses of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, JAMA Network Open, doi:10.1001/jamanetworkopen.2020.8857
Boretti, Favipiravir use for sars cov-2 infection, Pharmacol. Rep. : PR, doi:10.1007/s43440-020-00175-2
Bowers, Chow, Xu, Dror, Eastwood et al., Scalable algorithms for molecular dynamics simulations on commodity clusters, doi:10.1109/sc.2006.54
Brown, Won, Graham, Dinnon, Sims et al., Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent rna dependent rna polymerase, Antivir. Res, doi:10.1016/j.antiviral.2019.104541
Cai, Yang, Liu, Chen, Shu et al., Experimental treatment with favipiravir for covid-19: an open-label control study, Engineering, doi:10.1016/j.eng.2020.03.007
Cantuti-Castelvetri, Ojha, Pedro, Djannatian, Franz et al., Neuropilin-1 facilitates sars-cov-2 cell entry and infectivity, Science, doi:10.1126/science.abd2985
Cao, Wang, Wen, Liu, Wang et al., A trial of lopinavir-ritonavir in adults hospitalized with severe covid-19, N. Engl. J. Med, doi:10.1056/NEJMoa2001282
Cattaneo, Cattaneo, Gervasoni, Corbellino, Galli et al., Does lopinavir really inhibit sars-cov-2?, Pharmacol. Res, doi:10.1016/j.phrs.2020.104898
Chen, Liu, Liu, Liu, Xu et al., A pilot study of hydroxychloroquine in treatment of patients with moderate covid-19, Zhejiang da xue xue bao, Yi xue ban = Journal of Zhejiang University. Medical sciences
Chen, Oezguen, Urvil, Ferguson, Dann et al., Regulation of protein-ligand binding affinity by hydrogen bond pairing, Science Advances, doi:10.1126/sciadv.1501240
Chikhale, Gurav, Patil, Sinha, Prasad et al., Sars-cov-2 host entry and replication inhibitors from indian ginseng: an in-silico approach, 0 (0), J. Biomol. Struct. Dyn, doi:10.1080/07391102.2020.1778539
Chong, Song, Seo, Choi, Shin, Antiviral treatment guidelines for middle east respiratory syndrome, Infection & Chemotherapy, doi:10.3947/ic.2015.47.3.212
Choudhary, Malik, Tomar, Identification of sars-cov-2 cell entry inhibitors by drug repurposing using in silico structure-based virtual screening approach, Front. Immunol, doi:10.3389/fimmu.2020.01664
Chu, Cheng, Hung, Wong, Chan et al., Role of lopinavir/ritonavir in the treatment of sars: initial virological and clinical findings, Thorax, doi:10.1136/thorax.2003.012658
Daly, Simonetti, Klein, Chen, Williamson et al., Neuropilin-1 is a host factor for sars-cov-2 infection, Science, doi:10.1126/science.abd3072
Di Pierro, Khan, Bertuccioli, Maffioli, Derosa et al., Quercetin phytosome® as a potential drug for covid-19, Minerva Gastroenterol. Dietol, doi:10.23736/S1121-421X.20.02771-3
Doi, Ikeda, Hayase, Moriya, Morimura et al., the COVID-UTH Study Group, Nafamostat mesylate treatment in combination with favipiravir for patients critically ill with covid-19: a case series, Crit. Care, doi:10.1186/s13054-020-03078-z
Evans, Holian, The nose-hoover thermostat, J. Chem. Phys, doi:10.1063/1.449071
Fanunza, Iampietro, Distinto, Corona, Quartu et al., Quercetin blocks ebola virus infection by counteracting the VP24 interferon-inhibitory function, Antimicrob. Agents Chemother, doi:10.1128/aac.00530-20
Friesner, Banks, Murphy, Halgren, Klicic et al., Glide: a new approach for rapid, accurate docking and scoring. 1. method and assessment of docking accuracy, J. Med. Chem, doi:10.1021/jm0306430
Friesner, Murphy, Repasky, Frye, Greenwood et al., Extra precision glide:docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes, J. Med. Chem, doi:10.1021/jm051256o
Gautret, Lagier, Parola, Hoang, Meddeb et al., Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label nonrandomized clinical trial, Int. J. Antimicrob. Agents, doi:10.1016/j.ijantimicag.2020.105949
Gordon, Jang, Bouhaddou, Xu, Obernier et al., None, doi:10.1038/s41586-020-2286-9
Greenwood, Calkins, Sullivan, Shelley, Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution, J. Comput. Aided Mol. Des, doi:10.1007/s10822-010-9349-1
Halgren, Murphy, Friesner, Beard, Frye et al., Glide: a new approach for rapid, accurate docking and scoring. 2. enrichment factors in database screening, J. Med. Chem, doi:10.1021/jm030644s
Hall, Ji, A search for medications to treat covid-19 via in silico molecular docking models of the sars-cov-2 spike glycoprotein and 3cl protease, Trav. Med. Infect. Dis, doi:10.1016/j.tmaid.2020.101646
Harder, Damm, Maple, Wu, Reboul et al., OPLS3: a force field providing broad coverage of drug-like small molecules and proteins, J. Chem. Theor. Comput, doi:10.1021/acs.jctc.5b00864
Holshue, Debolt, Lindquist, Lofy, Wiesman et al., First case of 2019 novel coronavirus in the United States, N. Engl. J. Med, doi:10.1056/NEJMoa2001191
Horby, Mafham, Bell, Linsell, Staplin et al., Lopinavir-ritonavir in patients admitted to hospital with covid-19 (recovery): a randomised, controlled, open-label, platform trial, Lancet, doi:10.1016/S0140-6736(20)32013-4
Huang, Li, Leung, Liu, Liu et al., A review of therapeutic agents and Chinese herbal medicines against SARS-COV-2 (COVID-19), Pharmacol. Res, doi:10.1016/j.phrs.2020.104929
Huang, Pearce, Zhang, De novo design of protein peptides to block association of the sars-cov-2 spike protein with human ace2, Aging
Jacobson, Friesner, Xiang, Honig, On the role of the crystal environment in determining protein side-chain conformations, J. Mol. Biol, doi:10.1016/s0022-2836(02)00470-9
Jacobson, Pincus, Rapp, Day, Honig et al., A hierarchical approach to all-atom protein loop prediction, Proteins: Structure, Function, and Bioinformatics, doi:10.1002/prot.10613
Jo, Kim, Kim, Shin, Kim, Characteristics of flavonoids as potent MERS-CoV 3c-like protease inhibitors, Chem. Biol. Drug Des, doi:10.1111/cbdd.13604
Jomah, Asdaq, Al-Yamani, Clinical efficacy of antivirals against novel coronavirus (covid-19): a review, J. Infect.Public Health, doi:10.1016/j.jiph.2020.07.013
Khalili, Zhu, Mak, Yan, Zhu, Novel coronavirus treatment with ribavirin: groundwork for an evaluation concerning covid-19, J. Med. Virol, doi:10.1002/jmv.25798
Ko, Rolain, Lee, Chen, Huang et al., Arguments in favour of remdesivir for treating sars-cov-2 infections, Int. J. Antimicrob. Agents, doi:10.1016/j.ijantimicag.2020.105933
Koren, King, Knowles, Phillips, Ribavirin in the treatment of sars: a new trick for an old drug? CMAJ, Can. Med. Assoc. J.) : Canadian Medical Association journal = journal de l'Association medicale canadienne
Krafcikova, Silhan, Nencka, Boura, Structural analysis of the sars-cov-2 methyltransferase complex involved in rna cap creation bound to sinefungin, Nat. Commun, doi:10.1038/s41467-020-17495-9
Krautler, Van Gunsteren, Hünenberger, A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations, J. Comput. Chem, doi:10.1002/1096-987x(20010415)22:5<501::aid-jcc1021>3.0.co;2-v
Lan, Ge, Yu, Shan, Zhou et al., Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor, Nature, doi:10.1038/s41586-020-2180-5
Li, Xie, Lin, Cai, Wen et al., Efficacy and safety of lopinavir/ritonavir or arbidol in adult patients with mild/ moderate covid-19: an exploratory randomized controlled trial, Med, doi:10.1016/j.medj.2020.04.001
Luan, Lu, Jin, Zhang, Spike protein recognition of mammalian ace2 predicts the host range and an optimized ace2 for sars-cov-2 infection, Biochem. Biophys. Res. Commun, doi:10.1016/j.bbrc.2020.03.047
Mahévas, Tran, Roumier, Chabrol, Paule et al., Clinical efficacy of hydroxychloroquine in patients with covid-19 pneumonia who require oxygen: observational comparative study using routine care data, BMJ, doi:10.1136/bmj.m1844
Mangum, Graham, Lopinavir-ritonavir: a new protease inhibitor, Pharmacotherapy, J.Hum. Pharmacol.Drug Ther, doi:10.1592/phco.21.17.1352.34419
Martinot, Jary, Fafi-Kremer, Leducq, Delagreverie et al., Remdesivir failure with SARS-CoV-2 RNA-dependent RNA-polymerase mutation in a B-cell immunodeficient patient with protracted Covid-19, Clin. Infect. Dis, doi:10.1093/cid/ciaa1474
Mccreary, Angus, Efficacy of remdesivir in COVID-19, JAMA, doi:10.1001/jama.2020.16337
Mehrbod, Hudy, Shyntum, Markowski, Łos et al., Quercetin as a natural therapeutic candidate for the treatment of influenza virus, Biomolecules, doi:10.3390/biom11010010
Morgenstern, Michaelis, Baer, Doerr, Cinatl, Ribavirin and interferon-beta synergistically inhibit sars-associated coronavirus replication in animal and human cell lines, Biochem. Biophys. Res. Commun, doi:10.1016/j.bbrc.2004.11.128
Morra, Van Thanh, Kamel, Ghazy, Altibi et al., Clinical outcomes of current medical approaches for middle east respiratory syndrome: a systematic review and meta-analysis, Rev. Med. Virol, doi:10.1002/rmv.1977
Mu, Sheng, Wang, Amin, Li et al., Potential compound from herbal food of rhizoma polygonati for treatment of covid-19 analyzed by network pharmacology: viral and cancer signaling mechanisms, J.Funct. Foods, doi:10.1016/j.jff.2020.104149
Mu, Sheng, Wang, Amin, Li et al., Potential compound from herbal food of rhizoma polygonati for treatment of covid-19 analyzed by network pharmacology: viral and cancer signaling mechanisms, Journal of Functional Foods, doi:10.1016/j.jff.2020.104149
Nair, The flavonoid, quercetin, inhibits HIV-1 infection in normal peripheral blood mononuclear cells, Am. J. Infect. Dis, doi:10.3844/ajidsp.2009.135.141
Nguyen, Woo, Kang, Nguyen, Kim et al., Flavonoid-mediated inhibition of SARS coronavirus 3c-like protease expressed in pichia pastoris, Biotechnol. Lett, doi:10.1007/s10529-011-0845-8
Nutho, Mahalapbutr, Hengphasatporn, Pattaranggoon, Simanon et al., Why are lopinavir and ritonavir effective against the newly emerged coronavirus 2019? atomistic insights into the inhibitory mechanisms, Biochemistry, doi:10.1021/acs.biochem.0c00160
Pasquau, Hidalgo-Tenorio, Montes, Romero-Palacios, Vergas et al., On behalf of the QoLKAMON STUDY GROUP, High quality of life, treatment tolerability, safety and efficacy in hiv patients switching from triple therapy to lopinavir/ ritonavir monotherapy: a randomized clinical trial, PloS One, doi:10.1371/journal.pone.0195068
Pruijssers, George, Schäfer, Leist, Gralinksi et al., Remdesivir inhibits sars-cov-2 in human lung cells and chimeric sars-cov expressing the sars-cov-2 rna polymerase in mice, Cell Rep, doi:10.1016/j.celrep.2020.107940
Rameshkumar, Indu, Arunagirinathan, Venkatadri, El-Serehy et al., Computational selection of flavonoid compounds as inhibitors against sars-cov-2 main protease, rna-dependent rna polymerase and spike proteins: a molecular docking study, Saudi J. Biol. Sci
Riva, Ronchi, Petrangolini, Bosisio, Allegrini, Improved oral absorption of quercetin from quercetin phytosome®, a new delivery system based on food grade lecithin, Eur. J. Drug Metab. Pharmacokinet, doi:10.1007/s13318-018-0517-3
Rynes, Bernstein, Ophthalmologic safety profile of antimalarial drugs, Lupus, doi:10.1177/0961203393002001051
Ryu, Jeong, Kim, Kim, Park et al., Biflavonoids from torreya nucifera displaying SARS-CoV 3clpro inhibition, Bioorg. Med. Chem, doi:10.1016/j.bmc.2010.09.035
Sachdeva, Wadhwa, Kumari, Hussain, Jha et al., In silico potential of approved antimalarial drugs for repurposing against covid-19, OMICS, doi:10.1089/omi.2020.0071
Saleh, Gabriels, Chang, Kim, Mansoor et al., Effect of chloroquine, hydroxychloroquine, and azithromycin on the corrected qt interval in patients with sars-cov-2 infection, Circulation: Arrhythmia and Electrophysiology, doi:10.1161/CIRCEP.120.008662
Sanders, Monogue, Jodlowski, Cutrell, Pharmacologic treatments for coronavirus disease 2019 (COVID-19), doi:10.1001/jama.2020.6019
Sastry, Adzhigirey, Day, Annabhimoju, Sherman, Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments, J. Comput. Aided Mol. Des, doi:10.1007/s10822-013-9644-8
Schrezenmeier, Dörner, Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology, Nat. Rev. Rheumatol, doi:10.1038/s41584-020-0372-x
Shan, Klepeis, Eastwood, Dror, Shaw, Gaussian split ewald: a fast ewald mesh method for molecular simulation, J. Chem. Phys, doi:10.1063/1.1839571
Sheahan, Sims, Graham, Menachery, Gralinski et al., Broad-spectrum antiviral gs-5734 inhibits both epidemic and zoonotic coronaviruses, Sci. Transl. Med, doi:10.1126/scitranslmed.aal3653
Shelley, Cholleti, Frye, Greenwood, Timlin et al., Epik: a software program for pK a prediction and protonation state generation for drug-like molecules, J. Comput. Aided Mol. Des, doi:10.1007/s10822-007-9133-z
Sinha, Prasad, Islam, Gurav, Patil et al., Identification of bioactive compounds from glycyrrhiza glabra as possible inhibitor of sars-cov-2 spike glycoprotein and non-structural protein-15: a pharmacoinformatics study, 0 (0), J. Biomol. Struct. Dyn, doi:10.1080/07391102.2020.1779132
Sinha, Shakya, Prasad, Singh, Gurav et al., An in-silico evaluation of different saikosaponins for their potency against sarscov-2 using nsp15 and fusion spike glycoprotein as targets, J. Biomol. Struct. Dyn, doi:10.1080/07391102.2020.1762741
Smith, Smith, Repurposing Therapeutics for Covid-19: Supercomputer-Based Docking to the Sars-Cov-2 Viral Spike Protein and Viral Spike, Protein-Human Ace, doi:10.26434/chemrxiv.11871402.v3
Takahashi, Iwasaki, Watanabe, Ichinose, Okada et al., Case studies of SARS-CoV-2 treated with favipiravir among patients in critical or severe condition, Int. J. Infect. Dis, doi:10.1016/j.ijid.2020.08.047
Takemura, Kitao, Water model tuning for improved reproduction of rotational diffusion and NMR spectral density, J. Phys. Chem. B, doi:10.1021/jp301100g
Unni, Aouti, Thiyagarajan, Padmanabhan, Identification of a repurposed drug as an inhibitor of spike protein of human coronavirus sars-cov-2 by computational methods, J. Biosci
Vargas, Servillo, Einav, Lopinavir/ritonavir for the treatment of sars, mers and covid-19: a systematic review, Eur. Rev. Med. Pharmacol. Sci, doi:10.26355/eurrev_202008_22659
Walls, Park, Tortorici, Wall, Mcguire et al., Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein, Cell, doi:10.1016/j.cell.2020.02.058
Wang, Li, Jiang, Xi, Zhu, Assessment of the efficacy and safety of ribavirin in treatment of coronavirus-related pneumonia (SARS, MERS and COVID-19), Medicine, doi:10.1097/md.0000000000022379
Wang, Li, Li, Zhang, Wang et al., The genetic sequence, origin, and diagnosis of SARS-CoV-2, Eur. J. Clin. Microbiol. Infect. Dis, doi:10.1007/s10096-020-03899-4
Wang, Zhang, Du, Du, Zhao et al., Remdesivir in adults with severe covid-19: a randomised, double-blind, placebo-controlled, multicentre trial, Lancet, doi:10.1016/S0140-6736(20)31022-9
Williamson, Kerimi, Testing of natural products in clinical trials targeting the SARS-CoV-2 (covid-19) viral spike protein-angiotensin converting enzyme-2 (ACE2) interaction, Biochem. Pharmacol, doi:10.1016/j.bcp.2020.114123
Wu, Li, Li, He, Jiang et al., Quercetin as an antiviral agent inhibits influenza a virus (IAV) entry, Viruses, doi:10.3390/v8010006
Xia, Zhu, Liu, Lan, Xu et al., Fusion mechanism of 2019-ncov and fusion inhibitors targeting hr1 domain in spike protein, Cell. Mol. Immunol, doi:10.1038/s41423-020-0374-2
Yang, Islam, Wang, Li, Chen, Traditional Chinese medicine in the treatment of patients infected with 2019-new coronavirus (sars-cov-2): a review and perspective, Int. J. Biol. Sci
Yao, Qian, Zhu, Wang, Wang, A systematic review of lopinavir therapy for sars coronavirus and mers coronavirus-a possible reference for coronavirus disease-19 treatment option, J. Med. Virol, doi:10.1002/jmv.25729
Yao, Qian, Zhu, Wang, Wang, A systematic review of lopinavir therapy for sars coronavirus and mers coronavirus-a possible reference for coronavirus disease-19 treatment option, J. Med. Virol, doi:10.1002/jmv.25729
Ye, Luo, Ye, She, Sun et al., Network pharmacology, molecular docking integrated surface plasmon resonance technology reveals the mechanism of toujie quwen granules against coronavirus disease 2019 pneumonia, Phytomedicine, doi:10.1016/j.phymed.2020.153401
Yin, Mao, Luan, Shen, Shen et al., Structural basis for inhibition of the rna-dependent rna polymerase from sars-cov-2 by remdesivir, Science, doi:10.1126/science.abc1560
Yu, Li, Chen, Zhou, Wang et al., Low dose of hydroxychloroquine reduces fatality of critically ill patients with COVID-19, Sci. China Life Sci, doi:10.1007/s11427-020-1732-2
Yu, Zhu, Xu, Yao, Zhang et al., Glycyrrhizic acid exerts inhibitory activity against the spike protein of sars-cov-2, Phytomedicine, doi:10.1016/j.phymed.2020.153364
Zhang, Wu, Zhang, Deng, Peng, In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus, J. Integr. Med, doi:10.1016/j.joim.2020.02.005
Zhou, Xie, Yan, Encyclopedia of Traditional Chinese Medicines -Molecular Structures, Pharmacological Activities, Natural Sources and Applications, doi:10.1007/978-3-642-16744-7
{ 'indexed': {'date-parts': [[2024, 5, 14]], 'date-time': '2024-05-14T05:13:21Z', 'timestamp': 1715663601101}, 'reference-count': 113, 'publisher': 'Elsevier BV', 'license': [ { 'start': { 'date-parts': [[2021, 12, 1]], 'date-time': '2021-12-01T00:00:00Z', 'timestamp': 1638316800000}, 'content-version': 'tdm', 'delay-in-days': 0, 'URL': 'https://www.elsevier.com/tdm/userlicense/1.0/'}, { 'start': { 'date-parts': [[2021, 12, 1]], 'date-time': '2021-12-01T00:00:00Z', 'timestamp': 1638316800000}, 'content-version': 'stm-asf', 'delay-in-days': 0, 'URL': 'https://doi.org/10.15223/policy-017'}, { 'start': { 'date-parts': [[2021, 12, 1]], 'date-time': '2021-12-01T00:00:00Z', 'timestamp': 1638316800000}, 'content-version': 'stm-asf', 'delay-in-days': 0, 'URL': 'https://doi.org/10.15223/policy-037'}, { 'start': { 'date-parts': [[2021, 12, 1]], 'date-time': '2021-12-01T00:00:00Z', 'timestamp': 1638316800000}, 'content-version': 'stm-asf', 'delay-in-days': 0, 'URL': 'https://doi.org/10.15223/policy-012'}, { 'start': { 'date-parts': [[2021, 12, 1]], 'date-time': '2021-12-01T00:00:00Z', 'timestamp': 1638316800000}, 'content-version': 'stm-asf', 'delay-in-days': 0, 'URL': 'https://doi.org/10.15223/policy-029'}, { 'start': { 'date-parts': [[2021, 12, 1]], 'date-time': '2021-12-01T00:00:00Z', 'timestamp': 1638316800000}, 'content-version': 'stm-asf', 'delay-in-days': 0, 'URL': 'https://doi.org/10.15223/policy-004'}], 'content-domain': {'domain': ['elsevier.com', 'sciencedirect.com'], 'crossmark-restriction': True}, 'published-print': {'date-parts': [[2021, 12]]}, 'DOI': '10.1016/j.jmgm.2021.108038', 'type': 'journal-article', 'created': {'date-parts': [[2021, 9, 29]], 'date-time': '2021-09-29T14:50:33Z', 'timestamp': 1632927033000}, 'page': '108038', 'update-policy': 'http://dx.doi.org/10.1016/elsevier_cm_policy', 'source': 'Crossref', 'is-referenced-by-count': 10, 'title': 'In silico identification of SARS-CoV-2 cell entry inhibitors from selected natural antivirals', 'prefix': '10.1016', 'volume': '109', 'author': [ { 'ORCID': 'http://orcid.org/0000-0002-5963-2550', 'authenticated-orcid': False, 'given': 'Yusuf', 'family': 'Şimşek', 'sequence': 'first', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0001-8329-446X', 'authenticated-orcid': False, 'given': 'Sahra Setenay', 'family': 'Baran', 'sequence': 'additional', 'affiliation': []}, {'given': 'Belma', 'family': 'Aslım', 'sequence': 'additional', 'affiliation': []}], 'member': '78', 'reference': [ { 'key': '10.1016/j.jmgm.2021.108038_bib1', 'unstructured': 'Pneumonia of unknown cause china-2021. World Health Organization, ' 'https://www.who.int/csr/don/05-january-2020-pneumonia-of-unkown-cause-china/en/(accessed ' 'Sep 10, 2021).'}, { 'key': '10.1016/j.jmgm.2021.108038_bib2', 'doi-asserted-by': 'crossref', 'unstructured': 'WHO Coronavirus Disease (COVID-19) Dashboard. World Health Organization, ' 'https://covid19.who.int (accessed Sep 10, 2021).', 'DOI': '10.46945/bpj.10.1.03.01'}, { 'issue': '9', 'key': '10.1016/j.jmgm.2021.108038_bib3', 'doi-asserted-by': 'crossref', 'first-page': '1629', 'DOI': '10.1007/s10096-020-03899-4', 'article-title': 'The genetic sequence, origin, and diagnosis of SARS-CoV-2', 'volume': '39', 'author': 'Wang', 'year': '2020', 'journal-title': 'Eur. J. Clin. Microbiol. Infect. Dis.'}, { 'issue': '11', 'key': '10.1016/j.jmgm.2021.108038_bib4', 'doi-asserted-by': 'crossref', 'first-page': '1352', 'DOI': '10.1592/phco.21.17.1352.34419', 'article-title': 'Lopinavir-ritonavir: a new protease inhibitor, Pharmacotherapy', 'volume': '21', 'author': 'Mangum', 'year': '2001', 'journal-title': 'J.Hum. Pharmacol.Drug Ther.'}, { 'issue': '4', 'key': '10.1016/j.jmgm.2021.108038_bib5', 'doi-asserted-by': 'crossref', 'first-page': '1', 'DOI': '10.1371/journal.pone.0195068', 'article-title': 'On behalf of the QoLKAMON STUDY GROUP, High quality of life, treatment ' 'tolerability, safety and efficacy in hiv patients switching from triple ' 'therapy to lopinavir/ritonavir monotherapy: a randomized clinical trial', 'volume': '13', 'author': 'Pasquau', 'year': '2018', 'journal-title': 'PloS One'}, { 'issue': '3', 'key': '10.1016/j.jmgm.2021.108038_bib6', 'doi-asserted-by': 'crossref', 'first-page': '252', 'DOI': '10.1136/thorax.2003.012658', 'article-title': 'Role of lopinavir/ritonavir in the treatment of sars: initial ' 'virological and clinical findings', 'volume': '59', 'author': 'Chu', 'year': '2004', 'journal-title': 'Thorax'}, { 'issue': '3', 'key': '10.1016/j.jmgm.2021.108038_bib7', 'doi-asserted-by': 'crossref', 'DOI': '10.1002/rmv.1977', 'article-title': 'Clinical outcomes of current medical approaches for middle east ' 'respiratory syndrome: a systematic review and meta-analysis', 'volume': '28', 'author': 'Morra', 'year': '2018', 'journal-title': 'Rev. Med. Virol.'}, { 'key': '10.1016/j.jmgm.2021.108038_bib8', 'doi-asserted-by': 'crossref', 'first-page': '104898', 'DOI': '10.1016/j.phrs.2020.104898', 'article-title': 'Does lopinavir really inhibit sars-cov-2?', 'volume': '158', 'author': 'Cattaneo', 'year': '2020', 'journal-title': 'Pharmacol. Res.'}, { 'issue': '18', 'key': '10.1016/j.jmgm.2021.108038_bib9', 'doi-asserted-by': 'crossref', 'first-page': '1769', 'DOI': '10.1021/acs.biochem.0c00160', 'article-title': 'Why are lopinavir and ritonavir effective against the newly emerged ' 'coronavirus 2019? atomistic insights into the inhibitory mechanisms', 'volume': '59', 'author': 'Nutho', 'year': '2020', 'journal-title': 'Biochemistry'}, { 'issue': '16', 'key': '10.1016/j.jmgm.2021.108038_bib10', 'first-page': '8592', 'article-title': 'Lopinavir/ritonavir for the treatment of sars, mers and covid-19: a ' 'systematic review', 'volume': '24', 'author': 'Vargas', 'year': '2020', 'journal-title': 'Eur. Rev. Med. Pharmacol. Sci.'}, { 'issue': '6', 'key': '10.1016/j.jmgm.2021.108038_bib11', 'doi-asserted-by': 'crossref', 'first-page': '556', 'DOI': '10.1002/jmv.25729', 'article-title': 'A systematic review of lopinavir therapy for sars coronavirus and mers ' 'coronavirus-a possible reference for coronavirus disease-19 treatment ' 'option', 'volume': '92', 'author': 'Yao', 'year': '2020', 'journal-title': 'J. Med. Virol.'}, { 'issue': '19', 'key': '10.1016/j.jmgm.2021.108038_bib12', 'doi-asserted-by': 'crossref', 'first-page': '1787', 'DOI': '10.1056/NEJMoa2001282', 'article-title': 'A trial of lopinavir–ritonavir in adults hospitalized with severe ' 'covid-19', 'volume': '382', 'author': 'Cao', 'year': '2020', 'journal-title': 'N. Engl. J. Med.'}, { 'issue': '10259', 'key': '10.1016/j.jmgm.2021.108038_bib13', 'doi-asserted-by': 'crossref', 'first-page': '1345', 'DOI': '10.1016/S0140-6736(20)32013-4', 'article-title': 'Lopinavir-ritonavir in patients admitted to hospital with covid-19 ' '(recovery): a randomised, controlled, open-label, platform trial', 'volume': '396', 'author': 'Horby', 'year': '2020', 'journal-title': 'Lancet'}, { 'issue': '6', 'key': '10.1016/j.jmgm.2021.108038_bib14', 'doi-asserted-by': 'crossref', 'first-page': '556', 'DOI': '10.1002/jmv.25729', 'article-title': 'A systematic review of lopinavir therapy for sars coronavirus and mers ' 'coronavirus—a possible reference for coronavirus disease-19 treatment ' 'option', 'volume': '92', 'author': 'Yao', 'year': '2020', 'journal-title': 'J. Med. Virol.'}, { 'issue': '2', 'key': '10.1016/j.jmgm.2021.108038_bib15', 'doi-asserted-by': 'crossref', 'first-page': '184', 'DOI': '10.4103/ijmr.IJMR_502_20', 'article-title': 'Lopinavir/ritonavir combination therapy amongst symptomatic coronavirus ' 'disease 2019 patients in India: protocol for restricted public health ' 'emergency use', 'volume': '151', 'author': 'Bhatnagar', 'year': '2020', 'journal-title': 'Indian J. Med. Res.'}, { 'issue': '1', 'key': '10.1016/j.jmgm.2021.108038_bib16', 'doi-asserted-by': 'crossref', 'first-page': '105', 'DOI': '10.1016/j.medj.2020.04.001', 'article-title': 'Efficacy and safety of lopinavir/ritonavir or arbidol in adult patients ' 'with mild/moderate covid-19: an exploratory randomized controlled trial', 'volume': '1', 'author': 'Li', 'year': '2020', 'journal-title': 'Med'}, { 'issue': '4', 'key': '10.1016/j.jmgm.2021.108038_bib17', 'doi-asserted-by': 'crossref', 'first-page': '905', 'DOI': '10.1016/j.bbrc.2004.11.128', 'article-title': 'Ribavirin and interferon-beta synergistically inhibit sars-associated ' 'coronavirus replication in animal and human cell lines', 'volume': '326', 'author': 'Morgenstern', 'year': '2005', 'journal-title': 'Biochem. Biophys. Res. Commun.'}, { 'issue': '10', 'key': '10.1016/j.jmgm.2021.108038_bib18', 'first-page': '1289', 'article-title': 'Ribavirin in the treatment of sars: a new trick for an old drug?', 'volume': '168', 'author': 'Koren', 'year': '2003', 'journal-title': 'CMAJ (Can. Med. Assoc. J.) : Canadian Medical Association journal = ' 'journal de l’Association medicale canadienne'}, { 'key': '10.1016/j.jmgm.2021.108038_bib19', 'doi-asserted-by': 'crossref', 'first-page': '42', 'DOI': '10.1016/j.ijid.2013.12.003', 'article-title': 'Ribavirin and interferon therapy in patients infected with the middle ' 'east respiratory syndrome coronavirus: an observational study', 'volume': '20', 'author': 'Al-Tawfiq', 'year': '2014', 'journal-title': 'Int. J. Infect. Dis.'}, { 'issue': '38', 'key': '10.1016/j.jmgm.2021.108038_bib20', 'doi-asserted-by': 'crossref', 'DOI': '10.1097/MD.0000000000022379', 'article-title': 'Assessment of the efficacy and safety of ribavirin in treatment of ' 'coronavirus-related pneumonia (SARS, MERS and COVID-19)', 'volume': '99', 'author': 'Wang', 'year': '2020', 'journal-title': 'Medicine'}, { 'issue': '3', 'key': '10.1016/j.jmgm.2021.108038_bib21', 'doi-asserted-by': 'crossref', 'first-page': '212', 'DOI': '10.3947/ic.2015.47.3.212', 'article-title': 'Antiviral treatment guidelines for middle east respiratory syndrome', 'volume': '47', 'author': 'Chong', 'year': '2015', 'journal-title': 'Infection & Chemotherapy'}, { 'issue': '21', 'key': '10.1016/j.jmgm.2021.108038_bib22', 'doi-asserted-by': 'crossref', 'first-page': '2801', 'DOI': '10.1001/jama.289.21.JOC30885', 'article-title': 'Clinical features and short-term outcomes of 144 patients with SARS in ' 'the greater toronto area', 'volume': '289', 'author': 'Booth', 'year': '2003', 'journal-title': 'JAMA'}, { 'issue': '7', 'key': '10.1016/j.jmgm.2021.108038_bib23', 'doi-asserted-by': 'crossref', 'first-page': '740', 'DOI': '10.1002/jmv.25798', 'article-title': 'Novel coronavirus treatment with ribavirin: groundwork for an ' 'evaluation concerning covid-19', 'volume': '92', 'author': 'Khalili', 'year': '2020', 'journal-title': 'J. Med. Virol.'}, { 'issue': '6', 'key': '10.1016/j.jmgm.2021.108038_bib24', 'doi-asserted-by': 'crossref', 'first-page': '1542', 'DOI': '10.1007/s43440-020-00175-2', 'article-title': 'Favipiravir use for sars cov-2 infection', 'volume': '72', 'author': 'Boretti', 'year': '2020', 'journal-title': 'Pharmacol. Rep. : PR'}, { 'issue': '9', 'key': '10.1016/j.jmgm.2021.108038_bib25', 'doi-asserted-by': 'crossref', 'first-page': '1187', 'DOI': '10.1016/j.jiph.2020.07.013', 'article-title': 'Clinical efficacy of antivirals against novel coronavirus (covid-19): a ' 'review', 'volume': '13', 'author': 'Jomah', 'year': '2020', 'journal-title': 'J. Infect.Public Health'}, { 'issue': '1', 'key': '10.1016/j.jmgm.2021.108038_bib26', 'doi-asserted-by': 'crossref', 'first-page': '392', 'DOI': '10.1186/s13054-020-03078-z', 'article-title': 'Nafamostat mesylate treatment in combination with favipiravir for ' 'patients critically ill with covid-19: a case series', 'volume': '24', 'author': 'Doi', 'year': '2020', 'journal-title': 'Crit. Care'}, { 'key': '10.1016/j.jmgm.2021.108038_bib27', 'doi-asserted-by': 'crossref', 'first-page': '283', 'DOI': '10.1016/j.ijid.2020.08.047', 'article-title': 'Case studies of SARS-CoV-2 treated with favipiravir among patients in ' 'critical or severe condition', 'volume': '100', 'author': 'Takahashi', 'year': '2020', 'journal-title': 'Int. J. Infect. Dis.'}, { 'issue': '10', 'key': '10.1016/j.jmgm.2021.108038_bib28', 'doi-asserted-by': 'crossref', 'first-page': '1192', 'DOI': '10.1016/j.eng.2020.03.007', 'article-title': 'Experimental treatment with favipiravir for covid-19: an open-label ' 'control study', 'volume': '6', 'author': 'Cai', 'year': '2020', 'journal-title': 'Engineering'}, { 'issue': '4', 'key': '10.1016/j.jmgm.2021.108038_bib29', 'doi-asserted-by': 'crossref', 'first-page': '370', 'DOI': '10.1016/j.mjafi.2020.08.004', 'article-title': 'Favipiravir: a new and emerging antiviral option in covid-19', 'volume': '76', 'author': 'Agrawal', 'year': '2020', 'journal-title': 'Med. J. Armed Forces India'}, { 'key': '10.1016/j.jmgm.2021.108038_bib30', 'doi-asserted-by': 'crossref', 'unstructured': 'T. P. Sheahan, A. C. Sims, R. L. Graham, V. D. Menachery, L. E. ' 'Gralinski, J. B. Case, S. R. Leist, K. Pyrc, J. Y. Feng, I. Trantcheva, ' 'R. Bannister, Y. Park, D. Babusis, M. O. Clarke, R. L. Mackman, J. E. ' 'Spahn, C. A. Palmiotti, D. Siegel, A. S. Ray, T. Cihlar, R. Jordan, M. ' 'R. Denison, R. S. Baric, Broad-spectrum antiviral gs-5734 inhibits both ' 'epidemic and zoonotic coronaviruses, Sci. Transl. Med. 9 (396). ' 'doi:10.1126/scitranslmed.aal3653..', 'DOI': '10.1126/scitranslmed.aal3653'}, { 'issue': '6498', 'key': '10.1016/j.jmgm.2021.108038_bib31', 'doi-asserted-by': 'crossref', 'first-page': '1499', 'DOI': '10.1126/science.abc1560', 'article-title': 'Structural basis for inhibition of the rna-dependent rna polymerase ' 'from sars-cov-2 by remdesivir', 'volume': '368', 'author': 'Yin', 'year': '2020', 'journal-title': 'Science'}, { 'key': '10.1016/j.jmgm.2021.108038_bib32', 'doi-asserted-by': 'crossref', 'first-page': '104541', 'DOI': '10.1016/j.antiviral.2019.104541', 'article-title': 'Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic ' 'deltacoronaviruses with a highly divergent rna dependent rna polymerase', 'volume': '169', 'author': 'Brown', 'year': '2019', 'journal-title': 'Antivir. Res.'}, { 'issue': '19', 'key': '10.1016/j.jmgm.2021.108038_bib33', 'doi-asserted-by': 'crossref', 'first-page': '1813', 'DOI': '10.1056/NEJMoa2007764', 'article-title': 'Remdesivir for the treatment of covid-19 - final report', 'volume': '383', 'author': 'Beigel', 'year': '2020', 'journal-title': 'N. Engl. J. Med.'}, { 'issue': '10', 'key': '10.1016/j.jmgm.2021.108038_bib34', 'doi-asserted-by': 'crossref', 'first-page': '929', 'DOI': '10.1056/NEJMoa2001191', 'article-title': 'First case of 2019 novel coronavirus in the United States', 'volume': '382', 'author': 'Holshue', 'year': '2020', 'journal-title': 'N. Engl. J. Med.'}, { 'issue': '3', 'key': '10.1016/j.jmgm.2021.108038_bib35', 'doi-asserted-by': 'crossref', 'first-page': '107940', 'DOI': '10.1016/j.celrep.2020.107940', 'article-title': 'Remdesivir inhibits sars-cov-2 in human lung cells and chimeric ' 'sars-cov expressing the sars-cov-2 rna polymerase in mice', 'volume': '32', 'author': 'Pruijssers', 'year': '2020', 'journal-title': 'Cell Rep.'}, { 'issue': '10236', 'key': '10.1016/j.jmgm.2021.108038_bib36', 'doi-asserted-by': 'crossref', 'first-page': '1569', 'DOI': '10.1016/S0140-6736(20)31022-9', 'article-title': 'Remdesivir in adults with severe covid-19: a randomised, double-blind, ' 'placebo-controlled, multicentre trial', 'volume': '395', 'author': 'Wang', 'year': '2020', 'journal-title': 'Lancet'}, { 'issue': '4', 'key': '10.1016/j.jmgm.2021.108038_bib37', 'doi-asserted-by': 'crossref', 'first-page': '105933', 'DOI': '10.1016/j.ijantimicag.2020.105933', 'article-title': 'Arguments in favour of remdesivir for treating sars-cov-2 infections', 'volume': '55', 'author': 'Ko', 'year': '2020', 'journal-title': 'Int. J. Antimicrob. Agents'}, { 'key': '10.1016/j.jmgm.2021.108038_bib38', 'unstructured': 'M. Martinot, A. Jary, S. Fafi-Kremer, V. Leducq, H. Delagreverie, M. ' 'Garnier, J. Pacanowski, A. Mékinian, F. Pirenne, P. Tiberghien, V. ' 'Calvez, C. Humbrecht, A.-G. Marcelin, K. Lacombe, Remdesivir failure ' 'with SARS-CoV-2 RNA-dependent RNA-polymerase mutation in a B-cell ' 'immunodeficient patient with protracted Covid-19, Clin. Infect. ' 'Dis.doi:10.1093/cid/ciaa1474..'}, { 'issue': '11', 'key': '10.1016/j.jmgm.2021.108038_bib39', 'doi-asserted-by': 'crossref', 'first-page': '1041', 'DOI': '10.1001/jama.2020.16337', 'article-title': 'Efficacy of remdesivir in COVID-19', 'volume': '324', 'author': 'McCreary', 'year': '2020', 'journal-title': 'JAMA'}, { 'issue': '3', 'key': '10.1016/j.jmgm.2021.108038_bib40', 'doi-asserted-by': 'crossref', 'first-page': '155', 'DOI': '10.1038/s41584-020-0372-x', 'article-title': 'Mechanisms of action of hydroxychloroquine and chloroquine: ' 'implications for rheumatology', 'volume': '16', 'author': 'Schrezenmeier', 'year': '2020', 'journal-title': 'Nat. Rev. Rheumatol.'}, { 'issue': '1', 'key': '10.1016/j.jmgm.2021.108038_bib41', 'doi-asserted-by': 'crossref', 'first-page': '105949', 'DOI': '10.1016/j.ijantimicag.2020.105949', 'article-title': 'Hydroxychloroquine and azithromycin as a treatment of COVID-19: results ' 'of an open-label non-randomized clinical trial', 'volume': '56', 'author': 'Gautret', 'year': '2020', 'journal-title': 'Int. J. Antimicrob. Agents'}, { 'key': '10.1016/j.jmgm.2021.108038_bib42', 'unstructured': 'J. Chen, D. Liu, L. Liu, P. Liu, Q. Xu, L. Xia, Y. Ling, D. Huang, S. ' 'Song, D. Zhang, et al., A pilot study of hydroxychloroquine in treatment ' 'of patients with moderate covid-19, Zhejiang da xue xue bao. Yi xue ban ' '= Journal of Zhejiang University. Medical sciences 49 (2)..'}, { 'issue': '10', 'key': '10.1016/j.jmgm.2021.108038_bib43', 'doi-asserted-by': 'crossref', 'first-page': '1515', 'DOI': '10.1007/s11427-020-1732-2', 'article-title': 'Low dose of hydroxychloroquine reduces fatality of critically ill ' 'patients with COVID-19', 'volume': '63', 'author': 'Yu', 'year': '2020', 'journal-title': 'Sci. China Life Sci.'}, { 'key': '10.1016/j.jmgm.2021.108038_bib44', 'doi-asserted-by': 'crossref', 'unstructured': 'J. M. Sanders, M. L. Monogue, T. Z. Jodlowski, J. B. Cutrell, ' 'Pharmacologic treatments for coronavirus disease 2019 (COVID-19), ' 'JAMAdoi:10.1001/jama.2020.6019.', 'DOI': '10.1001/jama.2020.6019'}, { 'key': '10.1016/j.jmgm.2021.108038_bib45', 'doi-asserted-by': 'crossref', 'first-page': 'm1844', 'DOI': '10.1136/bmj.m1844', 'article-title': 'Clinical efficacy of hydroxychloroquine in patients with covid-19 ' 'pneumonia who require oxygen: observational comparative study using ' 'routine care data', 'author': 'Mahévas', 'year': '2020', 'journal-title': 'BMJ'}, { 'issue': '4', 'key': '10.1016/j.jmgm.2021.108038_bib46', 'doi-asserted-by': 'crossref', 'DOI': '10.1001/jamanetworkopen.2020.8857', 'article-title': 'Effect of high vs low doses of chloroquine diphosphate as adjunctive ' 'therapy for patients hospitalized with severe acute respiratory ' 'syndrome coronavirus 2 (SARS-CoV-2) infection', 'volume': '3', 'author': 'Borba', 'year': '2020', 'journal-title': 'JAMA Network Open'}, { 'issue': '9', 'key': '10.1016/j.jmgm.2021.108038_bib47', 'doi-asserted-by': 'crossref', 'first-page': '1067', 'DOI': '10.1001/jamacardio.2020.1787', 'article-title': 'Assessment of QT intervals in a case series of patients with ' 'coronavirus disease 2019 (COVID-19) infection treated with ' 'hydroxychloroquine alone or in combination with azithromycin in an ' 'intensive care unit', 'volume': '5', 'author': 'Bessière', 'year': '2020', 'journal-title': 'JAMA Cardiology'}, { 'issue': '6', 'key': '10.1016/j.jmgm.2021.108038_bib48', 'article-title': 'Effect of chloroquine, hydroxychloroquine, and azithromycin on the ' 'corrected qt interval in patients with sars-cov-2 infection', 'volume': '13', 'author': 'Saleh', 'year': '2020', 'journal-title': 'Circulation: Arrhythmia and Electrophysiology'}, { 'issue': '1_suppl', 'key': '10.1016/j.jmgm.2021.108038_bib49', 'doi-asserted-by': 'crossref', 'first-page': '17', 'DOI': '10.1177/0961203393002001051', 'article-title': 'Ophthalmologic safety profile of antimalarial drugs', 'volume': '2', 'author': 'Rynes', 'year': '1993', 'journal-title': 'Lupus'}, { 'issue': '7816', 'key': '10.1016/j.jmgm.2021.108038_bib50', 'doi-asserted-by': 'crossref', 'first-page': '459', 'DOI': '10.1038/s41586-020-2286-9', 'article-title': 'A sars-cov-2 protein interaction map reveals targets for drug ' 'repurposing', 'volume': '583', 'author': 'Gordon', 'year': '2020', 'journal-title': 'Nature'}, { 'issue': '1', 'key': '10.1016/j.jmgm.2021.108038_bib51', 'doi-asserted-by': 'crossref', 'first-page': '3717', 'DOI': '10.1038/s41467-020-17495-9', 'article-title': 'Structural analysis of the sars-cov-2 methyltransferase complex ' 'involved in rna cap creation bound to sinefungin', 'volume': '11', 'author': 'Krafcikova', 'year': '2020', 'journal-title': 'Nat. Commun.'}, { 'issue': '7', 'key': '10.1016/j.jmgm.2021.108038_bib52', 'doi-asserted-by': 'crossref', 'first-page': '765', 'DOI': '10.1038/s41423-020-0374-2', 'article-title': 'Fusion mechanism of 2019-ncov and fusion inhibitors targeting hr1 ' 'domain in spike protein', 'volume': '17', 'author': 'Xia', 'year': '2020', 'journal-title': 'Cell. Mol. Immunol.'}, { 'issue': '1', 'key': '10.1016/j.jmgm.2021.108038_bib53', 'doi-asserted-by': 'crossref', 'first-page': '165', 'DOI': '10.1016/j.bbrc.2020.03.047', 'article-title': 'Spike protein recognition of mammalian ace2 predicts the host range and ' 'an optimized ace2 for sars-cov-2 infection', 'volume': '526', 'author': 'Luan', 'year': '2020', 'journal-title': 'Biochem. Biophys. Res. Commun.'}, { 'issue': '7807', 'key': '10.1016/j.jmgm.2021.108038_bib54', 'doi-asserted-by': 'crossref', 'first-page': '215', 'DOI': '10.1038/s41586-020-2180-5', 'article-title': 'Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ' 'ACE2 receptor', 'volume': '581', 'author': 'Lan', 'year': '2020', 'journal-title': 'Nature'}, { 'issue': '2', 'key': '10.1016/j.jmgm.2021.108038_bib55', 'doi-asserted-by': 'crossref', 'first-page': '281', 'DOI': '10.1016/j.cell.2020.02.058', 'article-title': 'Structure, function, and antigenicity of the SARS-CoV-2 spike ' 'glycoprotein', 'volume': '181', 'author': 'Walls', 'year': '2020', 'journal-title': 'Cell'}, { 'issue': '6518', 'key': '10.1016/j.jmgm.2021.108038_bib56', 'doi-asserted-by': 'crossref', 'first-page': '861', 'DOI': '10.1126/science.abd3072', 'article-title': 'Neuropilin-1 is a host factor for sars-cov-2 infection', 'volume': '370', 'author': 'Daly', 'year': '2020', 'journal-title': 'Science'}, { 'issue': '6518', 'key': '10.1016/j.jmgm.2021.108038_bib57', 'doi-asserted-by': 'crossref', 'first-page': '856', 'DOI': '10.1126/science.abd2985', 'article-title': 'Neuropilin-1 facilitates sars-cov-2 cell entry and infectivity', 'volume': '370', 'author': 'Cantuti-Castelvetri', 'year': '2020', 'journal-title': 'Science'}, { 'key': '10.1016/j.jmgm.2021.108038_bib58', 'unstructured': 'M. Smith, J. Smith, Repurposing Therapeutics for Covid-19: ' 'Supercomputer-Based Docking to the Sars-Cov-2 Viral Spike Protein and ' 'Viral Spike Protein-Human Ace2 ' 'Interfacedoi:10.26434/chemrxiv.11871402.v3..'}, { 'key': '10.1016/j.jmgm.2021.108038_bib59', 'doi-asserted-by': 'crossref', 'DOI': '10.1016/j.jff.2020.104149', 'article-title': 'Potential compound from herbal food of rhizoma polygonati for treatment ' 'of covid-19 analyzed by network pharmacology: viral and cancer ' 'signaling mechanisms', 'volume': '77', 'author': 'Mu', 'year': '2021', 'journal-title': 'J.Funct. Foods'}, { 'key': '10.1016/j.jmgm.2021.108038_bib60', 'doi-asserted-by': 'crossref', 'first-page': '1664', 'DOI': '10.3389/fimmu.2020.01664', 'article-title': 'Identification of sars-cov-2 cell entry inhibitors by drug repurposing ' 'using in silico structure-based virtual screening approach', 'volume': '11', 'author': 'Choudhary', 'year': '2020', 'journal-title': 'Front. Immunol.'}, { 'issue': '1', 'key': '10.1016/j.jmgm.2021.108038_bib61', 'doi-asserted-by': 'crossref', 'first-page': '1', 'DOI': '10.1007/s12038-020-00102-w', 'article-title': 'Identification of a repurposed drug as an inhibitor of spike protein of ' 'human coronavirus sars-cov-2 by computational methods', 'volume': '45', 'author': 'Unni', 'year': '2020', 'journal-title': 'J. Biosci.'}, { 'issue': '1', 'key': '10.1016/j.jmgm.2021.108038_bib62', 'doi-asserted-by': 'crossref', 'first-page': '448', 'DOI': '10.1016/j.sjbs.2020.10.028', 'article-title': 'Computational selection of flavonoid compounds as inhibitors against ' 'sars-cov-2 main protease, rna-dependent rna polymerase and spike ' 'proteins: a molecular docking study', 'volume': '28', 'author': 'Rameshkumar', 'year': '2021', 'journal-title': 'Saudi J. Biol. Sci.'}, { 'issue': '10', 'key': '10.1016/j.jmgm.2021.108038_bib63', 'doi-asserted-by': 'crossref', 'first-page': '1708', 'DOI': '10.7150/ijbs.45538', 'article-title': 'Traditional Chinese medicine in the treatment of patients infected with ' '2019-new coronavirus (sars-cov-2): a review and perspective', 'volume': '16', 'author': 'Yang', 'year': '2020', 'journal-title': 'Int. J. Biol. Sci.'}, { 'issue': '2', 'key': '10.1016/j.jmgm.2021.108038_bib64', 'doi-asserted-by': 'crossref', 'first-page': '152', 'DOI': '10.1016/j.joim.2020.02.005', 'article-title': 'In silico screening of Chinese herbal medicines with the potential to ' 'directly inhibit 2019 novel coronavirus', 'volume': '18', 'author': 'hai Zhang', 'year': '2020', 'journal-title': 'J. Integr. Med.'}, { 'issue': '9', 'key': '10.1016/j.jmgm.2021.108038_bib65', 'first-page': '3244', 'article-title': 'An in-silico evaluation of different saikosaponins for their potency ' 'against sars-cov-2 using nsp15 and fusion spike glycoprotein as targets', 'volume': '39', 'author': 'Sinha', 'year': '2021', 'journal-title': 'J. Biomol. Struct. Dyn.'}, { 'key': '10.1016/j.jmgm.2021.108038_bib66', 'doi-asserted-by': 'crossref', 'first-page': '104149', 'DOI': '10.1016/j.jff.2020.104149', 'article-title': 'Potential compound from herbal food of rhizoma polygonati for treatment ' 'of covid-19 analyzed by network pharmacology: viral and cancer ' 'signaling mechanisms', 'volume': '77', 'author': 'Mu', 'year': '2021', 'journal-title': 'Journal of Functional Foods'}, { 'key': '10.1016/j.jmgm.2021.108038_bib67', 'doi-asserted-by': 'crossref', 'first-page': '1', 'DOI': '10.1080/07391102.2020.1762741', 'article-title': 'Identification of bioactive compounds from glycyrrhiza glabra as ' 'possible inhibitor of sars-cov-2 spike glycoprotein and non-structural ' 'protein-15: a pharmacoinformatics study', 'author': 'Sinha', 'year': '2020', 'journal-title': 'J. Biomol. Struct. Dyn.'}, { 'key': '10.1016/j.jmgm.2021.108038_bib68', 'doi-asserted-by': 'crossref', 'first-page': '153364', 'DOI': '10.1016/j.phymed.2020.153364', 'article-title': 'Glycyrrhizic acid exerts inhibitory activity against the spike protein ' 'of sars-cov-2', 'volume': '85', 'author': 'Yu', 'year': '2021', 'journal-title': 'Phytomedicine'}, { 'key': '10.1016/j.jmgm.2021.108038_bib69', 'doi-asserted-by': 'crossref', 'first-page': '153401', 'DOI': '10.1016/j.phymed.2020.153401', 'article-title': 'Network pharmacology, molecular docking integrated surface plasmon ' 'resonance technology reveals the mechanism of toujie quwen granules ' 'against coronavirus disease 2019 pneumonia', 'volume': '85', 'author': 'Ye', 'year': '2021', 'journal-title': 'Phytomedicine'}, { 'key': '10.1016/j.jmgm.2021.108038_bib70', 'series-title': 'Encyclopedia of Traditional Chinese Medicines - Molecular Structures, ' 'Pharmacological Activities, Natural Sources and Applications', 'author': 'Zhou', 'year': '2011'}, { 'key': '10.1016/j.jmgm.2021.108038_bib71', 'unstructured': 'Schrödinger Release 2020-4: LigPrep, Schrödinger, LLC, New York, NY.'}, { 'key': '10.1016/j.jmgm.2021.108038_bib72', 'first-page': '1', 'article-title': 'Sars-cov-2 host entry and replication inhibitors from indian ginseng: ' 'an in-silico approach', 'author': 'Chikhale', 'year': '2020', 'journal-title': 'J. Biomol. Struct. Dyn.'}, { 'key': '10.1016/j.jmgm.2021.108038_bib73', 'doi-asserted-by': 'crossref', 'first-page': '101646', 'DOI': '10.1016/j.tmaid.2020.101646', 'article-title': 'A search for medications to treat covid-19 via in silico molecular ' 'docking models of the sars-cov-2 spike glycoprotein and 3cl protease', 'volume': '35', 'author': 'Hall', 'year': '2020', 'journal-title': 'Trav. Med. Infect. Dis.'}, { 'issue': '1', 'key': '10.1016/j.jmgm.2021.108038_bib74', 'doi-asserted-by': 'crossref', 'first-page': '281', 'DOI': '10.1021/acs.jctc.5b00864', 'article-title': 'OPLS3: a force field providing broad coverage of drug-like small ' 'molecules and proteins', 'volume': '12', 'author': 'Harder', 'year': '2015', 'journal-title': 'J. Chem. Theor. Comput.'}, { 'issue': '6–7', 'key': '10.1016/j.jmgm.2021.108038_bib75', 'doi-asserted-by': 'crossref', 'first-page': '591', 'DOI': '10.1007/s10822-010-9349-1', 'article-title': 'Towards the comprehensive, rapid, and accurate prediction of the ' 'favorable tautomeric states of drug-like molecules in aqueous solution', 'volume': '24', 'author': 'Greenwood', 'year': '2010', 'journal-title': 'J. Comput. Aided Mol. Des.'}, { 'issue': '12', 'key': '10.1016/j.jmgm.2021.108038_bib76', 'doi-asserted-by': 'crossref', 'first-page': '681', 'DOI': '10.1007/s10822-007-9133-z', 'article-title': 'Epik: a software program for pK a prediction and protonation state ' 'generation for drug-like molecules', 'volume': '21', 'author': 'Shelley', 'year': '2007', 'journal-title': 'J. Comput. Aided Mol. Des.'}, { 'key': '10.1016/j.jmgm.2021.108038_bib77', 'series-title': 'Schrödinger Release 2021-1', 'year': '2021'}, { 'key': '10.1016/j.jmgm.2021.108038_bib78', 'unstructured': 'Schrödinger Release 2020-4: QikProp, Schrödinger, LLC, New York, NY.'}, { 'issue': '12', 'key': '10.1016/j.jmgm.2021.108038_bib79', 'doi-asserted-by': 'crossref', 'first-page': '11263', 'DOI': '10.18632/aging.103416', 'article-title': 'De novo design of protein peptides to block association of the ' 'sars-cov-2 spike protein with human ace2', 'volume': '12', 'author': 'Huang', 'year': '2020', 'journal-title': 'Aging'}, { 'key': '10.1016/j.jmgm.2021.108038_bib80', 'series-title': 'Schrödinger Release 2020–1: Protein Preparation Wizard', 'year': '2020'}, { 'issue': '3', 'key': '10.1016/j.jmgm.2021.108038_bib81', 'doi-asserted-by': 'crossref', 'first-page': '597', 'DOI': '10.1016/S0022-2836(02)00470-9', 'article-title': 'On the role of the crystal environment in determining protein ' 'side-chain conformations', 'volume': '320', 'author': 'Jacobson', 'year': '2002', 'journal-title': 'J. Mol. Biol.'}, { 'issue': '2', 'key': '10.1016/j.jmgm.2021.108038_bib82', 'doi-asserted-by': 'crossref', 'first-page': '351', 'DOI': '10.1002/prot.10613', 'article-title': 'A hierarchical approach to all-atom protein loop prediction', 'volume': '55', 'author': 'Jacobson', 'year': '2004', 'journal-title': 'Proteins: Structure, Function, and Bioinformatics'}, { 'key': '10.1016/j.jmgm.2021.108038_bib83', 'series-title': 'Schrödinger Release 2021-1: Prime', 'year': '2021'}, { 'issue': '3', 'key': '10.1016/j.jmgm.2021.108038_bib84', 'doi-asserted-by': 'crossref', 'first-page': '221', 'DOI': '10.1007/s10822-013-9644-8', 'article-title': 'Protein and ligand preparation: parameters, protocols, and influence on ' 'virtual screening enrichments', 'volume': '27', 'author': 'Sastry', 'year': '2013', 'journal-title': 'J. Comput. Aided Mol. Des.'}, { 'issue': '7', 'key': '10.1016/j.jmgm.2021.108038_bib85', 'doi-asserted-by': 'crossref', 'first-page': '1739', 'DOI': '10.1021/jm0306430', 'article-title': 'Glide: a new approach for rapid, accurate docking and scoring. 1. ' 'method and assessment of docking accuracy', 'volume': '47', 'author': 'Friesner', 'year': '2004', 'journal-title': 'J. Med. Chem.'}, { 'issue': '7', 'key': '10.1016/j.jmgm.2021.108038_bib86', 'doi-asserted-by': 'crossref', 'first-page': '1750', 'DOI': '10.1021/jm030644s', 'article-title': 'Glide: a new approach for rapid, accurate docking and scoring. 2. ' 'enrichment factors in database screening', 'volume': '47', 'author': 'Halgren', 'year': '2004', 'journal-title': 'J. Med. Chem.'}, { 'issue': '21', 'key': '10.1016/j.jmgm.2021.108038_bib87', 'doi-asserted-by': 'crossref', 'first-page': '6177', 'DOI': '10.1021/jm051256o', 'article-title': 'Extra precision glide:docking and scoring incorporating a model of ' 'hydrophobic enclosure for protein-ligand complexes', 'volume': '49', 'author': 'Friesner', 'year': '2006', 'journal-title': 'J. Med. Chem.'}, { 'key': '10.1016/j.jmgm.2021.108038_bib88', 'series-title': 'Schrödinger Release 2021-1: Glide', 'year': '2021'}, { 'issue': '10', 'key': '10.1016/j.jmgm.2021.108038_bib89', 'first-page': '568', 'article-title': 'In silico potential of approved antimalarial drugs for repurposing ' 'against covid-19, OMICS', 'volume': '24', 'author': 'Sachdeva', 'year': '2020'}, { 'key': '10.1016/j.jmgm.2021.108038_bib90', 'series-title': 'The Jerusalem Symposia on Quantum Chemistry and Biochemistry', 'doi-asserted-by': 'crossref', 'first-page': '331', 'DOI': '10.1007/978-94-015-7658-1_21', 'article-title': 'Interaction models for water in relation to protein hydration', 'author': 'Berendsen', 'year': '1981'}, { 'issue': '24', 'key': '10.1016/j.jmgm.2021.108038_bib91', 'doi-asserted-by': 'crossref', 'first-page': '6269', 'DOI': '10.1021/j100308a038', 'article-title': 'The missing term in effective pair potentials', 'volume': '91', 'author': 'Berendsen', 'year': '1987', 'journal-title': 'J. Phys. Chem.'}, { 'issue': '22', 'key': '10.1016/j.jmgm.2021.108038_bib92', 'doi-asserted-by': 'crossref', 'first-page': '6279', 'DOI': '10.1021/jp301100g', 'article-title': 'Water model tuning for improved reproduction of rotational diffusion ' 'and NMR spectral density', 'volume': '116', 'author': 'Takemura', 'year': '2012', 'journal-title': 'J. Phys. Chem. B'}, { 'key': '10.1016/j.jmgm.2021.108038_bib93', 'series-title': 'ACM/IEEE SC 2006 Conference (SC06)', 'article-title': 'Scalable algorithms for molecular dynamics simulations on commodity ' 'clusters', 'author': 'Bowers', 'year': '2006'}, { 'key': '10.1016/j.jmgm.2021.108038_bib94', 'series-title': 'Schrödinger Release 2020-4: Desmond Molecular Dynamics System', 'year': '2020'}, { 'issue': '5', 'key': '10.1016/j.jmgm.2021.108038_bib95', 'doi-asserted-by': 'crossref', 'first-page': '501', 'DOI': '10.1002/1096-987X(20010415)22:5<501::AID-JCC1021>3.0.CO;2-V', 'article-title': 'A fast SHAKE algorithm to solve distance constraint equations for small ' 'molecules in molecular dynamics simulations', 'volume': '22', 'author': 'Krautler', 'year': '2001', 'journal-title': 'J. Comput. Chem.'}, { 'issue': '8', 'key': '10.1016/j.jmgm.2021.108038_bib96', 'doi-asserted-by': 'crossref', 'first-page': '4069', 'DOI': '10.1063/1.449071', 'article-title': 'The nose–hoover thermostat', 'volume': '83', 'author': 'Evans', 'year': '1985', 'journal-title': 'J. Chem. Phys.'}, { 'issue': '5', 'key': '10.1016/j.jmgm.2021.108038_bib97', 'doi-asserted-by': 'crossref', 'DOI': '10.1063/1.1839571', 'article-title': 'Gaussian split ewald: a fast ewald mesh method for molecular simulation', 'volume': '122', 'author': 'Shan', 'year': '2005', 'journal-title': 'J. Chem. Phys.'}, { 'issue': '8', 'key': '10.1016/j.jmgm.2021.108038_bib98', 'doi-asserted-by': 'crossref', 'first-page': '3684', 'DOI': '10.1063/1.448118', 'article-title': 'Molecular dynamics with coupling to an external bath', 'volume': '81', 'author': 'Berendsen', 'year': '1984', 'journal-title': 'J. Chem. Phys.'}, { 'key': '10.1016/j.jmgm.2021.108038_bib99', 'unstructured': 'The PyMOL Molecular Graphics System, Version 1.8 Schrödinger LLC.'}, { 'issue': '3', 'key': '10.1016/j.jmgm.2021.108038_bib100', 'doi-asserted-by': 'crossref', 'DOI': '10.1126/sciadv.1501240', 'article-title': 'Regulation of protein-ligand binding affinity by hydrogen bond pairing', 'volume': '2', 'author': 'Chen', 'year': '2016', 'journal-title': 'Science Advances'}, { 'issue': '1', 'key': '10.1016/j.jmgm.2021.108038_bib101', 'doi-asserted-by': 'crossref', 'first-page': '6', 'DOI': '10.3390/v8010006', 'article-title': 'Quercetin as an antiviral agent inhibits influenza a virus (IAV) entry', 'volume': '8', 'author': 'Wu', 'year': '2015', 'journal-title': 'Viruses'}, { 'issue': '1', 'key': '10.1016/j.jmgm.2021.108038_bib102', 'doi-asserted-by': 'crossref', 'first-page': '10', 'DOI': '10.3390/biom11010010', 'article-title': 'Quercetin as a natural therapeutic candidate for the treatment of ' 'influenza virus', 'volume': '11', 'author': 'Mehrbod', 'year': '2020', 'journal-title': 'Biomolecules'}, { 'key': '10.1016/j.jmgm.2021.108038_bib103', 'doi-asserted-by': 'crossref', 'unstructured': 'E. Fanunza, M. Iampietro, S. Distinto, A. Corona, M. Quartu, E. ' 'Maccioni, B. Horvat, E. Tramontano, Quercetin blocks ebola virus ' 'infection by counteracting the VP24 interferon-inhibitory function, ' 'Antimicrob. Agents Chemother. 64 (7). doi:10.1128/aac.00530-20..', 'DOI': '10.1128/AAC.00530-20'}, { 'issue': '2', 'key': '10.1016/j.jmgm.2021.108038_bib104', 'doi-asserted-by': 'crossref', 'first-page': '135', 'DOI': '10.3844/ajidsp.2009.135.141', 'article-title': 'The flavonoid, quercetin, inhibits HIV-1 infection in normal peripheral ' 'blood mononuclear cells', 'volume': '5', 'author': 'Nair', 'year': '2009', 'journal-title': 'Am. J. Infect. Dis.'}, { 'issue': '6', 'key': '10.1016/j.jmgm.2021.108038_bib105', 'doi-asserted-by': 'crossref', 'first-page': '2023', 'DOI': '10.1111/cbdd.13604', 'article-title': 'Characteristics of flavonoids as potent MERS-CoV 3c-like protease ' 'inhibitors', 'volume': '94', 'author': 'Jo', 'year': '2019', 'journal-title': 'Chem. Biol. Drug Des.'}, { 'issue': '22', 'key': '10.1016/j.jmgm.2021.108038_bib106', 'doi-asserted-by': 'crossref', 'first-page': '7940', 'DOI': '10.1016/j.bmc.2010.09.035', 'article-title': 'Biflavonoids from torreya nucifera displaying SARS-CoV 3clpro ' 'inhibition', 'volume': '18', 'author': 'Ryu', 'year': '2010', 'journal-title': 'Bioorg. Med. Chem.'}, { 'issue': '5', 'key': '10.1016/j.jmgm.2021.108038_bib107', 'doi-asserted-by': 'crossref', 'first-page': '831', 'DOI': '10.1007/s10529-011-0845-8', 'article-title': 'Flavonoid-mediated inhibition of SARS coronavirus 3c-like protease ' 'expressed in pichia pastoris', 'volume': '34', 'author': 'Nguyen', 'year': '2012', 'journal-title': 'Biotechnol. Lett.'}, { 'key': '10.1016/j.jmgm.2021.108038_bib108', 'doi-asserted-by': 'crossref', 'first-page': '1693', 'DOI': '10.1016/j.ijbiomac.2020.07.235', 'article-title': 'Structural stability of SARS-CoV-2 3clpro and identification of ' 'quercetin as an inhibitor by experimental screening', 'volume': '164', 'author': 'Abian', 'year': '2020', 'journal-title': 'Int. J. Biol. Macromol.'}, { 'key': '10.1016/j.jmgm.2021.108038_bib109', 'doi-asserted-by': 'crossref', 'first-page': '104929', 'DOI': '10.1016/j.phrs.2020.104929', 'article-title': 'A review of therapeutic agents and Chinese herbal medicines against ' 'SARS-COV-2 (COVID-19)', 'volume': '158', 'author': 'Huang', 'year': '2020', 'journal-title': 'Pharmacol. Res.'}, { 'issue': '4', 'key': '10.1016/j.jmgm.2021.108038_bib110', 'doi-asserted-by': 'crossref', 'first-page': '247', 'DOI': '10.1016/j.aimed.2020.07.007', 'article-title': 'The effect of quercetin on the prevention or treatment of COVID-19 and ' 'other respiratory tract infections in humans: a rapid review', 'volume': '7', 'author': 'Aucoin', 'year': '2020', 'journal-title': 'Advances in Integrative Medicine'}, { 'issue': '2', 'key': '10.1016/j.jmgm.2021.108038_bib111', 'doi-asserted-by': 'crossref', 'first-page': '169', 'DOI': '10.1007/s13318-018-0517-3', 'article-title': 'Improved oral absorption of quercetin from quercetin phytosome®, a new ' 'delivery system based on food grade lecithin', 'volume': '44', 'author': 'Riva', 'year': '2018', 'journal-title': 'Eur. J. Drug Metab. Pharmacokinet.'}, { 'key': '10.1016/j.jmgm.2021.108038_bib112', 'doi-asserted-by': 'crossref', 'first-page': '114123', 'DOI': '10.1016/j.bcp.2020.114123', 'article-title': 'Testing of natural products in clinical trials targeting the SARS-CoV-2 ' '(covid-19) viral spike protein-angiotensin converting enzyme-2 (ACE2) ' 'interaction', 'volume': '178', 'author': 'Williamson', 'year': '2020', 'journal-title': 'Biochem. Pharmacol.'}, { 'key': '10.1016/j.jmgm.2021.108038_bib113', 'unstructured': 'F. Di Pierro, A. Khan, A. Bertuccioli, P. Maffioli, G. Derosa, S. Khan, ' 'B. A. Khan, R. Nigar, I. Ujjan, B. R. Devraian, Quercetin phytosome® as ' 'a potential drug for covid-19, Minerva Gastroenterol. ' 'Dietol.:10.23736/S1121-421X.20.02771-3.'}], 'container-title': 'Journal of Molecular Graphics and Modelling', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://api.elsevier.com/content/article/PII:S1093326321002096?httpAccept=text/xml', 'content-type': 'text/xml', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://api.elsevier.com/content/article/PII:S1093326321002096?httpAccept=text/plain', 'content-type': 'text/plain', 'content-version': 'vor', 'intended-application': 'text-mining'}], 'deposited': { 'date-parts': [[2023, 3, 27]], 'date-time': '2023-03-27T22:56:34Z', 'timestamp': 1679957794000}, 'score': 1, 'resource': {'primary': {'URL': 'https://linkinghub.elsevier.com/retrieve/pii/S1093326321002096'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2021, 12]]}, 'references-count': 113, 'alternative-id': ['S1093326321002096'], 'URL': 'http://dx.doi.org/10.1016/j.jmgm.2021.108038', 'relation': {}, 'ISSN': ['1093-3263'], 'subject': [], 'container-title-short': 'Journal of Molecular Graphics and Modelling', 'published': {'date-parts': [[2021, 12]]}, 'assertion': [ {'value': 'Elsevier', 'name': 'publisher', 'label': 'This article is maintained by'}, { 'value': 'In silico identification of SARS-CoV-2 cell entry inhibitors from selected ' 'natural antivirals', 'name': 'articletitle', 'label': 'Article Title'}, { 'value': 'Journal of Molecular Graphics and Modelling', 'name': 'journaltitle', 'label': 'Journal Title'}, { 'value': 'https://doi.org/10.1016/j.jmgm.2021.108038', 'name': 'articlelink', 'label': 'CrossRef DOI link to publisher maintained version'}, {'value': 'article', 'name': 'content_type', 'label': 'Content Type'}, { 'value': '© 2021 Elsevier Inc. All rights reserved.', 'name': 'copyright', 'label': 'Copyright'}], 'article-number': '108038'}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit