Biochemical Screening of Phytochemicals and Identification of Scopoletin as a Potential Inhibitor of SARS-CoV-2 Mpro, Revealing Its Biophysical Impact on Structural Stability
Sarika Bano, Jyotishna Singh, Zainy Zehra, Md Nayab Sulaimani, Taj Mohammad, Seemasundari Yumlembam, Md Imtaiyaz Hassan, Asimul Islam, Sanjay Kumar Dey
Viruses, doi:10.3390/v17030402
The main protease (M pro or 3CL pro or nsp5) of SARS-CoV-2 is crucial to the life cycle and pathogenesis of SARS-CoV-2, making it an attractive drug target to develop antivirals. This study employed the virtual screening of a few phytochemicals, and the resultant best compound, Scopoletin, was further investigated by a FRET-based enzymatic assay, revealing an experimental IC 50 of 15.75 µM. The impact of Scopoletin on M pro was further investigated by biophysical and MD simulation studies. Fluorescence spectroscopy identified a strong binding constant of 3.17 × 10 4 M -1 for Scopoletin binding to M pro , as demonstrated by its effective fluorescence quenching of M pro . Additionally, CD spectroscopy showed a significant reduction in the helical content of M pro upon interaction with Scopoletin. The findings of thermodynamic measurements using isothermal titration calorimetry (ITC) supported the spectroscopic data, indicating a tight binding of Scopoletin to M pro with a K A of 2.36 × 10 3 M -1 . Similarly, interaction studies have also revealed that Scopoletin forms hydrogen bonds with the amino acids nearest to the active site, and this has been further supported by molecular dynamics simulation studies. These findings indicate that Scopoletin may be developed as a potential antiviral treatment for SARS-CoV-2 by targeting M pro .
Supplementary Materials: The following supporting information can be downloaded at: www.mdpi.com/xxx/s1, Figure S1 : UV-vis absorption spectrum of SARS-CoV-2 M pro . Figure S2 : Fluorescence emission spectrum of SARS-CoV-2 M pro , recorded at an excitation of 292 nm.
Supplementary Materials: The following supporting information can be downloaded at: https: //www.mdpi.com/article/10.3390/v17030402/s1 , Figure S1 : UV-vis absorption spectrum of SARS-CoV-2 M pro . Figure S2 : Fluorescence emission spectrum of SARS-CoV-2 M pro , recorded at an excitation of 292 nm.
Conflicts of Interest: The authors declare no conflicts of interest.
References
Abdelrahman, Li, Wang, Comparative Review of SARS-CoV-2, SARS-CoV, MERS-CoV, and Influenza A Respiratory Viruses, Front. Immunol,
doi:10.3389/fimmu.2020.552909
Abian, Ortega-Alarcon, Jimenez-Alesanco, Ceballos-Laita, Vega et al., Structural stability of SARS-CoV-2 3CLpro and identification of quercetin as an inhibitor by experimental screening, Int. J. Biol. Macromol,
doi:10.1016/j.ijbiomac.2020.07.235
Adegbola, Fadahunsi, Ogunjinmi, Adegbola, Ojeniyi et al., Potential inhibitory properties of structurally modified quercetin/isohamnetin glucosides against SARS-CoV-2 Mpro; molecular docking and dynamics simulation strategies, Inform. Med. Unlocked,
doi:10.1016/j.imu.2023.101167
Alarabei, Aziz, Ab Razak, Abas, Bahari et al., Immunomodulating Phytochemicals: An Insight Into Their Potential Use in Cytokine Storm Situations, Adv. Pharm. Bull,
doi:10.34172/apb.2024.001
Antonopoulou, Sapountzaki, Rova, Christakopoulos, Inhibition of the main protease of SARS-CoV-2 (M(pro)) by repurposing/designing drug-like substances and utilizing nature's toolbox of bioactive compounds, Comput. Struct. Biotechnol. J,
doi:10.1016/j.csbj.2022.03.009
Baggieri, Gioacchini, Borgonovo, Catinella, Marchi et al., Antiviral, virucidal and antioxidant properties of Artemisia annua against SARS-CoV-2, Biomed. Pharmacother,
doi:10.1016/j.biopha.2023.115682
Bano, Ahmedi, Manzoor, Dey, Advances in Antifungal Drug Development: Natural Products with Antifungal Potential
Behera, Singh, Subba, Mc, Sahu et al., Effectiveness of COVID-19 vaccine (Covaxin) against breakthrough SARS-CoV-2 infection in India, Hum. Vaccines Immunother,
doi:10.1080/21645515.2022.2034456
Chen, Ding, Guan, Zhou, He et al., The Pharmacological Effects and Potential Applications of Limonene from Citrus Plants: A Review, Nat. Prod. Commun,
doi:10.1177/1934578X241254229
Chhetri, Chettri, Rai, Mishra, Sinha et al., characterization and computational study on potential inhibitory action of novel azo imidazole derivatives against COVID-19 main protease (M(pro): 6LU7), J. Mol. Struct,
doi:10.1016/j.molstruc.2020.129230
Courouble, Dey, Yadav, Timm, Harrison et al., Revealing the Structural Plasticity of SARS-CoV-2 nsp7 and nsp8 Using Structural Proteomics, J. Am. Soc. Mass Spectrom,
doi:10.1021/jasms.1c00086
Das, Nath, Shahjahan; Dey, Plausible mechanism of drug resistance and side-effects of COVID-19 therapeutics: A bottleneck for its eradication, DARU J. Pharm. Sci,
doi:10.1007/s40199-024-00524-z
Dey, Dey, SARS-CoV-2 pandemic, COVID-19 case fatality rates and deaths per million population in India, J. Bioinform. Comput. Syst. Biol
Dey, Saini, Dhembla, Bhatt, Rajesh et al., penciclovir, and anidulafungin exhibit potential in the treatment of COVID-19 via binding to nsp12 of SARS-CoV-2, J. Biomol. Struct. Dyn,
doi:10.1080/07391102.2021.2000498
Faddis, Du, Stewart, Hasan, Lewit et al., Molecular Modelling, Synthesis, and In-Vitro Assay to Identify Potential Antiviral Peptides Targeting the 3-Chymotrypsin-Like Protease of SARS-CoV-2, Int. J. Pept. Res. Ther,
doi:10.1007/s10989-023-10563-w
Faksova, Walsh, Jiang, Griffin, Phillips et al., COVID-19 vaccines and adverse events of special interest: A multinational Global Vaccine Data Network (GVDN) cohort study of 99 million vaccinated individuals, Vaccine,
doi:10.1016/j.vaccine.2024.01.100
Farasati Far, Bokov, Widjaja, Setia Budi, Kamal Abdelbasset et al., acyclovir and tetrahydrobiopterin may be promising to treat COVID-19 patients, through interaction with interleukin-12, J. Biomol. Struct. Dyn,
doi:10.1080/07391102.2022.2064917
Gao, Du, Qin, Wang, Du et al., Natural Small Molecule Drugs from Plants
García-Montero, Fraile-Martínez, Bravo, Torres-Carranza, Sanchez-Trujillo et al., An Updated Review of SARS-CoV-2 Vaccines and the Importance of Effective Vaccination Programs in Pandemic Times, Vaccines,
doi:10.3390/vaccines9050433
Gasmi, Mujawdiya, Lysiuk, Shanaida, Peana et al., Quercetin in the Prevention and Treatment of Coronavirus Infections: A Focus on SARS-CoV-2, Pharmaceuticals,
doi:10.3390/ph15091049
Gehlen, The centenary of the Stern-Volmer equation of fluorescence quenching: From the single line plot to the SV quenching map, J. Photochem. Photobiol. C Photochem. Rev,
doi:10.1016/j.jphotochemrev.2019.100338
Ihssen, Faccio, Yao, Sirec, Spitz, Fluorogenic in vitro activity assay for the main protease Mpro from SARS-CoV-2 and its adaptation to the identification of inhibitors, STAR Protoc,
doi:10.1016/j.xpro.2021.100793
Ikanovic, Šeherčehajić, Saric Medic, Tomic, Hadžiselimović, In Silico Analysis of Scopoletin Interaction with Potential SARS-CoV-2 Target
Jangir, Dey, Kundu, Mehrotra, Assessment of amsacrine binding with DNA using UV-visible, circular dichroism and Raman spectroscopic techniques, J. Photochem. Photobiol. B Biol,
doi:10.1016/j.jphotobiol.2012.05.005
Kaul, Paul, Kumar, Büsselberg, Dwivedi et al., Promising Antiviral Activities of Natural Flavonoids against SARS-CoV-2 Targets: Systematic Review, Int. J. Mol. Sci,
doi:10.3390/ijms222011069
Khan, Kang, Ali, Lai, Remdesivir Strongly Binds to RNA-Dependent RNA Polymerase, Membrane Protein, and Main Protease of SARS-CoV-2: Indication From Molecular Modeling and Simulations, Front. Pharmacol,
doi:10.3389/fphar.2021.710778
Lemos, Florêncio, Pinto, Campos, Silva et al., Antifungal Activity of the Natural Coumarin Scopoletin Against Planktonic Cells and Biofilms From a Multidrug-Resistant Candida tropicalis Strain, Front. Microbiol,
doi:10.3389/fmicb.2020.01525
Li, Liu, Li, Li, Li et al., Efficacy, immunogenicity and safety of COVID-19 vaccines in older adults: A systematic review and meta-analysis, Front. Immunol,
doi:10.3389/fimmu.2022.965971
Loizzo, Saab, Tundis, Statti, Menichini et al., Phytochemical analysis and in vitro antiviral activities of the essential oils of seven Lebanon species, Chem. Biodivers,
doi:10.1002/cbdv.200890045
Majchrzak, Madej, Łysek-Gładysi Ńska, Zarębska-Michaluk, Zegadło et al., The RdRp genotyping of SARS-CoV-2 isolated from patients with different clinical spectrum of COVID-19, BMC Infect. Dis,
doi:10.1186/s12879-024-09146-x
Mbaveng, Zhao, Kuete, 20-Harmful and Protective Effects of Phenolic Compounds from African Medicinal Plants
Mohammad, Mathur, Hassan, InstaDock: A single-click graphical user interface for molecular docking-based virtual high-throughput screening, Brief. Bioinform,
doi:10.1093/bib/bbaa279
Mátyus, Szöllősi, Jenei, Steady-state fluorescence quenching applications for studying protein structure and dynamics, J. Photochem. Photobiol. B Biol,
doi:10.1016/j.jphotobiol.2005.12.017
Nanishi, Levy, Ozonoff, Waning effectiveness of SARS-CoV-2 mRNA vaccines in older adults: A rapid review, Hum. Vaccines Immunother,
doi:10.1080/21645515.2022.2045857
Ng, Correia, Seagal, Degoey, Schrimpf et al., Antiviral Drug Discovery for the Treatment of COVID-19 Infections, Viruses,
doi:10.3390/v14050961
Panikar, Shoba, Arun, Sahayarayan, Usha Raja Nanthini et al., Essential oils as an effective alternative for the treatment of COVID-19: Molecular interaction analysis of protease (Mpro) with pharmacokinetics and toxicological properties, J. Infect. Public Health,
doi:10.1016/j.jiph.2020.12.037
Parmar, Thumar, Patel, Athar, Jha et al., Structural differences in 3C-like protease (Mpro) from SARS-CoV and SARS-CoV-2: Molecular insights revealed by Molecular Dynamics Simulations, Struct. Chem,
doi:10.1007/s11224-022-02089-6
Pascetta, Investigating the Main Protease (MPro) of SARS-CoV-2 as a Potential Drug Target
Riveiro, Kimpe, Moglioni, Vazquez, Monczor et al., Coumarins: Old Compounds with Novel Promising Therapeutic Perspectives, Curr. Med. Chem,
doi:10.2174/092986710790936284
Rizwan, Kothidar, Meghwani, Sharma, Shobhawat et al., Comparative analysis of SARS-CoV-2 envelope viroporin mutations from COVID-19 deceased and surviving patients revealed implications on its ion-channel activities and correlation with patient mortality, J. Biomol. Struct. Dyn,
doi:10.1080/07391102.2021.1944319
Rut, Groborz, Zhang, Sun, Zmudzinski et al., SARS-CoV-2 Mpro inhibitors and activity-based probes for patient-sample imaging, Nat. Chem. Biol,
doi:10.1038/s41589-020-00689-z
Rut, Groborz, Zhang, Sun, Zmudzinski et al., Substrate specificity profiling of SARS-CoV-2 Mpro protease provides basis for anti-COVID-19 drug design, BioRxiv,
doi:10.1101/2020.03.07.981928
Salehi, Upadhyay, Erdogan Orhan, Kumar Jugran, Jayaweera et al., Therapeutic Potential of αand β-Pinene: A Miracle Gift of Nature, Biomolecules,
doi:10.3390/biom9110738
Shamsi, Al Shahwan, Ahamad, Hassan, Ahmad et al., Spectroscopic, calorimetric and molecular docking insight into the interaction of Alzheimer's drug donepezil with human transferrin: Implications of Alzheimer's drug, J. Biomol. Struct. Dyn,
doi:10.1080/07391102.2019.1595728
Singh, Singhal, Pandey, Amit; Mallik, Dubey, Phytochemical Investigation on Tinospora cordifolia and Alstonia scholaris, Res. J. Pharm. Technol,
doi:10.52711/0974-360X.2024.00421
Surendran, Qassadi, Surendran, Lilley, Heinrich, Myrcene-What Are the Potential Health Benefits of This Flavouring and Aroma Agent?, Front. Nutr,
doi:10.3389/fnut.2021.699666
Tao, Zhang, Du, Liao, Cai et al., Allosteric inhibition of SARS-CoV-2 3CL protease by colloidal bismuth subcitrate, Chem. Sci,
doi:10.1039/D1SC03526F
Teli, Balar, Patel, Sharma, Chavda et al., Molnupiravir: A Versatile Prodrug against SARS-CoV-2 Variants, Metabolites,
doi:10.3390/metabo13020309
Torres Neto, Monteiro, Fernández-Romero, Teleshova, Sailer et al., Essential oils block cellular entry of SARS-CoV-2 delta variant, Sci. Rep,
doi:10.1038/s41598-022-25342-8
Waseem, Anwar, Khan, Shamsi, Hassan et al., MAP/Microtubule Affinity Regulating Kinase 4 Inhibitory Potential of Irisin: A New Therapeutic Strategy to Combat Cancer and Alzheimer's Disease, Int. J. Mol. Sci,
doi:10.3390/ijms222010986
Waseem, Shamsi, Khan, Hassan, Kazim et al., Unraveling the Binding Mechanism of Alzheimer's Drugs with Irisin: Spectroscopic, Calorimetric, and Computational Approaches, Int. J. Mol. Sci,
doi:10.3390/ijms23115965
Wilkinson, Joffrin, Lebarbenchon, Mavingui, Partial RdRp sequences offer a robust method for Coronavirus subgenus classification, bioRxiv,
doi:10.1101/2020.03.02.974311
Xu, Zhong, Yang, Fu, Shi et al., Quercetin possesses a fluorescence quenching effect but is a weak inhibitor against SARS-CoV-2 main protease, Proc. Natl. Acad. Sci,
doi:10.1073/pnas.2309870120
Yadav, Courouble, Dey, Harrison, Timm et al., Biochemical and structural insights into SARS-CoV-2 polyprotein processing by Mpro, Sci. Adv,
doi:10.1126/sciadv.add2191
Yadav, Mahalvar, Pradhan, Yadav, Kumar Sahu et al., Exploring the potential of phytochemicals and nanomaterial: A boon to antimicrobial treatment, Med. Drug Discov,
doi:10.1016/j.medidd.2023.100151
Yammine, Gao, Kwan, Tryptophan Fluorescence Quenching Assays for Measuring Protein-ligand Binding Affinities: Principles and a Practical Guide, Bio-Protoc,
doi:10.21769/BioProtoc.3253
Yan, Zhang, Liu, Wang, Chen, Reframing quercetin as a promiscuous inhibitor against SARS-CoV-2 main protease, Proc. Natl. Acad. Sci,
doi:10.1073/pnas.2309289120
Yuan, Wang, Wang, Chen, Ke et al., Network pharmacology and molecular docking reveal the mechanism of Scopoletin against non-small cell lung cancer, Life Sci,
doi:10.1016/j.lfs.2021.119105
Zagórska, Czopek, Fryc, Jo Ńczyk, Inhibitors of SARS-CoV-2 Main Protease (Mpro) as Anti-Coronavirus Agents, Biomolecules,
doi:10.3390/biom14070797
Zhang, Lin, Sun, Curth, Drosten et al., Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors, Science,
doi:10.1126/science.abb3405
Zhang, Xiang, Huo, Zhou, Jiang et al., Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy, Signal Transduct. Target. Ther,
doi:10.1038/s41392-021-00653-w
DOI record:
{
"DOI": "10.3390/v17030402",
"ISSN": [
"1999-4915"
],
"URL": "http://dx.doi.org/10.3390/v17030402",
"abstract": "<jats:p>The main protease (Mpro or 3CLpro or nsp5) of SARS-CoV-2 is crucial to the life cycle and pathogenesis of SARS-CoV-2, making it an attractive drug target to develop antivirals. This study employed the virtual screening of a few phytochemicals, and the resultant best compound, Scopoletin, was further investigated by a FRET-based enzymatic assay, revealing an experimental IC50 of 15.75 µM. The impact of Scopoletin on Mpro was further investigated by biophysical and MD simulation studies. Fluorescence spectroscopy identified a strong binding constant of 3.17 × 104 M⁻1 for Scopoletin binding to Mpro, as demonstrated by its effective fluorescence quenching of Mpro. Additionally, CD spectroscopy showed a significant reduction in the helical content of Mpro upon interaction with Scopoletin. The findings of thermodynamic measurements using isothermal titration calorimetry (ITC) supported the spectroscopic data, indicating a tight binding of Scopoletin to Mpro with a KA of 2.36 × 103 M−1. Similarly, interaction studies have also revealed that Scopoletin forms hydrogen bonds with the amino acids nearest to the active site, and this has been further supported by molecular dynamics simulation studies. These findings indicate that Scopoletin may be developed as a potential antiviral treatment for SARS-CoV-2 by targeting Mpro.</jats:p>",
"alternative-id": [
"v17030402"
],
"author": [
{
"ORCID": "https://orcid.org/0000-0001-6990-9528",
"affiliation": [
{
"name": "Laboratory for Proteins and Structural Biology, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India"
}
],
"authenticated-orcid": false,
"family": "Bano",
"given": "Sarika",
"sequence": "first"
},
{
"ORCID": "https://orcid.org/0000-0001-9472-1922",
"affiliation": [
{
"name": "Laboratory for Proteins and Structural Biology, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India"
}
],
"authenticated-orcid": false,
"family": "Singh",
"given": "Jyotishna",
"sequence": "additional"
},
{
"ORCID": "https://orcid.org/0000-0002-5387-3863",
"affiliation": [
{
"name": "Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India"
}
],
"authenticated-orcid": false,
"family": "Zehra",
"given": "Zainy",
"sequence": "additional"
},
{
"ORCID": "https://orcid.org/0009-0004-0255-7117",
"affiliation": [
{
"name": "Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India"
}
],
"authenticated-orcid": false,
"family": "Sulaimani",
"given": "Md Nayab",
"sequence": "additional"
},
{
"ORCID": "https://orcid.org/0000-0002-0399-4835",
"affiliation": [
{
"name": "Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India"
}
],
"authenticated-orcid": false,
"family": "Mohammad",
"given": "Taj",
"sequence": "additional"
},
{
"ORCID": "https://orcid.org/0009-0005-3911-6240",
"affiliation": [
{
"name": "Laboratory for Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India"
}
],
"authenticated-orcid": false,
"family": "Yumlembam",
"given": "Seemasundari",
"sequence": "additional"
},
{
"ORCID": "https://orcid.org/0000-0002-3663-4940",
"affiliation": [
{
"name": "Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India"
}
],
"authenticated-orcid": false,
"family": "Hassan",
"given": "Md Imtaiyaz",
"sequence": "additional"
},
{
"ORCID": "https://orcid.org/0000-0001-9060-7970",
"affiliation": [
{
"name": "Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India"
}
],
"authenticated-orcid": false,
"family": "Islam",
"given": "Asimul",
"sequence": "additional"
},
{
"ORCID": "https://orcid.org/0000-0001-7062-9574",
"affiliation": [
{
"name": "Laboratory for Proteins and Structural Biology, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India"
}
],
"authenticated-orcid": false,
"family": "Dey",
"given": "Sanjay Kumar",
"sequence": "additional"
}
],
"container-title": "Viruses",
"container-title-short": "Viruses",
"content-domain": {
"crossmark-restriction": false,
"domain": []
},
"created": {
"date-parts": [
[
2025,
3,
12
]
],
"date-time": "2025-03-12T11:31:42Z",
"timestamp": 1741779102000
},
"deposited": {
"date-parts": [
[
2025,
3,
12
]
],
"date-time": "2025-03-12T11:46:16Z",
"timestamp": 1741779976000
},
"funder": [
{
"name": "Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi"
},
{
"award": [
"IoE/2021/12/FRP"
],
"name": "The Institution of Eminence"
}
],
"indexed": {
"date-parts": [
[
2025,
3,
13
]
],
"date-time": "2025-03-13T04:16:41Z",
"timestamp": 1741839401050,
"version": "3.38.0"
},
"is-referenced-by-count": 0,
"issue": "3",
"issued": {
"date-parts": [
[
2025,
3,
12
]
]
},
"journal-issue": {
"issue": "3",
"published-online": {
"date-parts": [
[
2025,
3
]
]
}
},
"language": "en",
"license": [
{
"URL": "https://creativecommons.org/licenses/by/4.0/",
"content-version": "vor",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2025,
3,
12
]
],
"date-time": "2025-03-12T00:00:00Z",
"timestamp": 1741737600000
}
}
],
"link": [
{
"URL": "https://www.mdpi.com/1999-4915/17/3/402/pdf",
"content-type": "unspecified",
"content-version": "vor",
"intended-application": "similarity-checking"
}
],
"member": "1968",
"original-title": [],
"page": "402",
"prefix": "10.3390",
"published": {
"date-parts": [
[
2025,
3,
12
]
]
},
"published-online": {
"date-parts": [
[
2025,
3,
12
]
]
},
"publisher": "MDPI AG",
"reference": [
{
"DOI": "10.1016/j.ejmech.2023.115491",
"article-title": "The research progress of SARS-CoV-2 main protease inhibitors from 2020 to 2022",
"author": "Pang",
"doi-asserted-by": "crossref",
"first-page": "115491",
"journal-title": "Eur. J. Med. Chem.",
"key": "ref_1",
"volume": "257",
"year": "2023"
},
{
"DOI": "10.3389/fimmu.2020.552909",
"doi-asserted-by": "crossref",
"key": "ref_2",
"unstructured": "Abdelrahman, Z., Li, M., and Wang, X. (2020). Comparative Review of SARS-CoV-2, SARS-CoV, MERS-CoV, and Influenza A Respiratory Viruses. Front. Immunol., 11."
},
{
"key": "ref_3",
"unstructured": "Dey, J.K., and Dey, S.K. (2020). SARS-CoV-2 pandemic, COVID-19 case fatality rates and deaths per million population in India. J. Bioinform. Comput. Syst. Biol., 2."
},
{
"DOI": "10.1038/s41579-021-00630-8",
"article-title": "Structural biology of SARS-CoV-2 and implications for therapeutic development",
"author": "Yang",
"doi-asserted-by": "crossref",
"first-page": "685",
"journal-title": "Nat. Rev. Microbiol.",
"key": "ref_4",
"volume": "19",
"year": "2021"
},
{
"DOI": "10.1039/D1SC03526F",
"article-title": "Allosteric inhibition of SARS-CoV-2 3CL protease by colloidal bismuth subcitrate",
"author": "Tao",
"doi-asserted-by": "crossref",
"first-page": "14098",
"journal-title": "Chem. Sci.",
"key": "ref_5",
"volume": "12",
"year": "2021"
},
{
"DOI": "10.1126/sciadv.add2191",
"article-title": "Biochemical and structural insights into SARS-CoV-2 polyprotein processing by Mpro",
"author": "Yadav",
"doi-asserted-by": "crossref",
"first-page": "eadd2191",
"journal-title": "Sci. Adv.",
"key": "ref_6",
"volume": "8",
"year": "2022"
},
{
"DOI": "10.1021/jasms.1c00086",
"article-title": "Revealing the Structural Plasticity of SARS-CoV-2 nsp7 and nsp8 Using Structural Proteomics",
"author": "Courouble",
"doi-asserted-by": "crossref",
"first-page": "1618",
"journal-title": "J. Am. Soc. Mass Spectrom.",
"key": "ref_7",
"volume": "32",
"year": "2021"
},
{
"DOI": "10.1016/j.molstruc.2020.129230",
"article-title": "Synthesis, characterization and computational study on potential inhibitory action of novel azo imidazole derivatives against COVID-19 main protease (M(pro): 6LU7)",
"author": "Chhetri",
"doi-asserted-by": "crossref",
"first-page": "129230",
"journal-title": "J. Mol. Struct.",
"key": "ref_8",
"volume": "1225",
"year": "2021"
},
{
"DOI": "10.1038/s41392-021-00653-w",
"article-title": "Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy",
"author": "Zhang",
"doi-asserted-by": "crossref",
"first-page": "233",
"journal-title": "Signal Transduct. Target. Ther.",
"key": "ref_9",
"volume": "6",
"year": "2021"
},
{
"DOI": "10.1007/s10989-023-10563-w",
"article-title": "Molecular Modelling, Synthesis, and In-Vitro Assay to Identify Potential Antiviral Peptides Targeting the 3-Chymotrypsin-Like Protease of SARS-CoV-2",
"author": "Faddis",
"doi-asserted-by": "crossref",
"first-page": "89",
"journal-title": "Int. J. Pept. Res. Ther.",
"key": "ref_10",
"volume": "29",
"year": "2023"
},
{
"DOI": "10.1038/s41586-020-2223-y",
"article-title": "Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors",
"author": "Jin",
"doi-asserted-by": "crossref",
"first-page": "289",
"journal-title": "Nature",
"key": "ref_11",
"volume": "582",
"year": "2020"
},
{
"DOI": "10.3389/fchem.2021.622898",
"doi-asserted-by": "crossref",
"key": "ref_12",
"unstructured": "Mengist, H.M., Dilnessa, T., and Jin, T. (2021). Structural Basis of Potential Inhibitors Targeting SARS-CoV-2 Main Protease. Front. Chem., 9."
},
{
"DOI": "10.3390/vaccines9050433",
"doi-asserted-by": "crossref",
"key": "ref_13",
"unstructured": "García-Montero, C., Fraile-Martínez, O., Bravo, C., Torres-Carranza, D., Sanchez-Trujillo, L., Gómez-Lahoz, A.M., Guijarro, L.G., García-Honduvilla, N., Asúnsolo, A., and Bujan, J. (2021). An Updated Review of SARS-CoV-2 Vaccines and the Importance of Effective Vaccination Programs in Pandemic Times. Vaccines, 9."
},
{
"DOI": "10.1016/j.vaccine.2024.01.100",
"article-title": "COVID-19 vaccines and adverse events of special interest: A multinational Global Vaccine Data Network (GVDN) cohort study of 99 million vaccinated individuals",
"author": "Faksova",
"doi-asserted-by": "crossref",
"first-page": "2200",
"journal-title": "Vaccine",
"key": "ref_14",
"volume": "42",
"year": "2024"
},
{
"DOI": "10.1080/21645515.2022.2034456",
"article-title": "Effectiveness of COVID-19 vaccine (Covaxin) against breakthrough SARS-CoV-2 infection in India",
"author": "Behera",
"doi-asserted-by": "crossref",
"first-page": "2034456",
"journal-title": "Hum. Vaccines Immunother.",
"key": "ref_15",
"volume": "18",
"year": "2022"
},
{
"DOI": "10.1007/s40199-024-00524-z",
"article-title": "Plausible mechanism of drug resistance and side-effects of COVID-19 therapeutics: A bottleneck for its eradication",
"author": "Das",
"doi-asserted-by": "crossref",
"first-page": "801",
"journal-title": "DARU J. Pharm. Sci.",
"key": "ref_16",
"volume": "32",
"year": "2024"
},
{
"DOI": "10.3389/fimmu.2022.965971",
"article-title": "Efficacy, immunogenicity and safety of COVID-19 vaccines in older adults: A systematic review and meta-analysis",
"author": "Li",
"doi-asserted-by": "crossref",
"first-page": "965971",
"journal-title": "Front. Immunol.",
"key": "ref_17",
"volume": "13",
"year": "2022"
},
{
"DOI": "10.4235/agmr.21.0011",
"article-title": "Review of COVID-19 Vaccines and Their Evidence in Older Adults",
"author": "Teo",
"doi-asserted-by": "crossref",
"first-page": "4",
"journal-title": "Ann. Geriatr. Med. Res.",
"key": "ref_18",
"volume": "25",
"year": "2021"
},
{
"DOI": "10.1080/21645515.2022.2045857",
"article-title": "Waning effectiveness of SARS-CoV-2 mRNA vaccines in older adults: A rapid review",
"author": "Nanishi",
"doi-asserted-by": "crossref",
"first-page": "2045857",
"journal-title": "Hum. Vaccines Immunother.",
"key": "ref_19",
"volume": "18",
"year": "2022"
},
{
"DOI": "10.3390/v14050961",
"doi-asserted-by": "crossref",
"key": "ref_20",
"unstructured": "Ng, T.I., Correia, I., Seagal, J., DeGoey, D.A., Schrimpf, M.R., Hardee, D.J., Noey, E.L., and Kati, W.M. (2022). Antiviral Drug Discovery for the Treatment of COVID-19 Infections. Viruses, 14."
},
{
"DOI": "10.1016/j.mam.2022.101159",
"article-title": "Viral proteases as therapeutic targets",
"author": "Konvalinka",
"doi-asserted-by": "crossref",
"first-page": "101159",
"journal-title": "Mol. Asp. Med.",
"key": "ref_21",
"volume": "88",
"year": "2022"
},
{
"DOI": "10.3390/metabo13020309",
"doi-asserted-by": "crossref",
"key": "ref_22",
"unstructured": "Teli, D., Balar, P., Patel, K., Sharma, A., Chavda, V., and Vora, L. (2023). Molnupiravir: A Versatile Prodrug against SARS-CoV-2 Variants. Metabolites, 13."
},
{
"DOI": "10.3389/fphar.2021.710778",
"doi-asserted-by": "crossref",
"key": "ref_23",
"unstructured": "Khan, F.I., Kang, T., Ali, H., and Lai, D. (2021). Remdesivir Strongly Binds to RNA-Dependent RNA Polymerase, Membrane Protein, and Main Protease of SARS-CoV-2: Indication From Molecular Modeling and Simulations. Front. Pharmacol., 12."
},
{
"DOI": "10.1126/science.abb3405",
"article-title": "Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors",
"author": "Zhang",
"doi-asserted-by": "crossref",
"first-page": "409",
"journal-title": "Science",
"key": "ref_24",
"volume": "368",
"year": "2020"
},
{
"DOI": "10.1101/2020.03.02.974311",
"doi-asserted-by": "crossref",
"key": "ref_25",
"unstructured": "Wilkinson, D.A., Joffrin, L., Lebarbenchon, C., and Mavingui, P. (2020). Partial RdRp sequences offer a robust method for Coronavirus subgenus classification. bioRxiv."
},
{
"DOI": "10.1186/s12879-024-09146-x",
"doi-asserted-by": "crossref",
"key": "ref_26",
"unstructured": "Majchrzak, M., Madej, Ł., Łysek-Gładysińska, M., Zarębska-Michaluk, D., Zegadło, K., Dziuba, A., Nogal-Nowak, K., Kondziołka, W., Sufin, I., and Myszona-Tarnowska, M. (2024). The RdRp genotyping of SARS-CoV-2 isolated from patients with different clinical spectrum of COVID-19. BMC Infect. Dis., 24."
},
{
"DOI": "10.1007/978-981-97-5165-5",
"doi-asserted-by": "crossref",
"key": "ref_27",
"unstructured": "Manzoor, N. (2024). Toxicology of Antifungal and Antiviral Drugs. Advances in Antifungal Drug Development: Natural Products with Antifungal Potential, Springer Nature Singapore."
},
{
"DOI": "10.3390/biom14070797",
"doi-asserted-by": "crossref",
"key": "ref_28",
"unstructured": "Zagórska, A., Czopek, A., Fryc, M., and Jończyk, J. (2024). Inhibitors of SARS-CoV-2 Main Protease (Mpro) as Anti-Coronavirus Agents. Biomolecules, 14."
},
{
"DOI": "10.52711/0974-360X.2024.00421",
"article-title": "Phytochemical Investigation on Tinospora cordifolia and Alstonia scholaris",
"author": "Singh",
"doi-asserted-by": "crossref",
"first-page": "2689",
"journal-title": "Res. J. Pharm. Technol.",
"key": "ref_29",
"volume": "17",
"year": "2024"
},
{
"DOI": "10.1007/978-981-10-8022-7_55",
"doi-asserted-by": "crossref",
"key": "ref_30",
"unstructured": "Gao, L., Du, L.D., Qin, X.M., Wang, J.H., and Du, G.H. (2018). Strychnine. Natural Small Molecule Drugs from Plants, Springer."
},
{
"DOI": "10.1016/j.focha.2022.100043",
"article-title": "[6]-Gingerol: A narrative review of its beneficial effect on human health",
"author": "Promdam",
"doi-asserted-by": "crossref",
"first-page": "100043",
"journal-title": "Food Chem. Adv.",
"key": "ref_31",
"volume": "1",
"year": "2022"
},
{
"DOI": "10.3390/biom9110738",
"doi-asserted-by": "crossref",
"key": "ref_32",
"unstructured": "Salehi, B., Upadhyay, S., Erdogan Orhan, I., Kumar Jugran, A., Jayaweera, S.L.D., Dias, D.A., Sharopov, F., Taheri, Y., Martins, N., and Baghalpour, N. (2019). Therapeutic Potential of α- and β-Pinene: A Miracle Gift of Nature. Biomolecules, 9."
},
{
"article-title": "The Pharmacological Effects and Potential Applications of Limonene from Citrus Plants: A Review",
"author": "Chen",
"first-page": "1",
"journal-title": "Nat. Prod. Commun.",
"key": "ref_33",
"volume": "19",
"year": "2024"
},
{
"DOI": "10.1038/s41598-022-25342-8",
"doi-asserted-by": "crossref",
"key": "ref_34",
"unstructured": "Torres Neto, L., Monteiro, M.L.G., Fernández-Romero, J., Teleshova, N., Sailer, J., and Conte Junior, C.A. (2022). Essential oils block cellular entry of SARS-CoV-2 delta variant. Sci. Rep., 12."
},
{
"DOI": "10.1002/cbdv.200890045",
"article-title": "Phytochemical analysis and in vitro antiviral activities of the essential oils of seven Lebanon species",
"author": "Loizzo",
"doi-asserted-by": "crossref",
"first-page": "461",
"journal-title": "Chem. Biodivers.",
"key": "ref_35",
"volume": "5",
"year": "2008"
},
{
"DOI": "10.3389/fnut.2021.699666",
"doi-asserted-by": "crossref",
"key": "ref_36",
"unstructured": "Surendran, S., Qassadi, F., Surendran, G., Lilley, D., and Heinrich, M. (2021). Myrcene-What Are the Potential Health Benefits of This Flavouring and Aroma Agent?. Front. Nutr., 8."
},
{
"DOI": "10.1007/978-3-030-75275-0_99",
"doi-asserted-by": "crossref",
"key": "ref_37",
"unstructured": "Ikanovic, T., Šeherčehajić, E., Saric Medic, B., Tomic, N., and Hadžiselimović, R. (2021). In Silico Analysis of Scopoletin Interaction with Potential SARS-CoV-2 Target. International Conference “New Technologies, Development and Applications”, Springer International Publishing."
},
{
"DOI": "10.1016/j.biopha.2023.115682",
"doi-asserted-by": "crossref",
"key": "ref_38",
"unstructured": "Baggieri, M., Gioacchini, S., Borgonovo, G., Catinella, G., Marchi, A., Picone, P., Vasto, S., Fioravanti, R., Bucci, P., and Kojouri, M. (2023). Antiviral, virucidal and antioxidant properties of Artemisia annua against SARS-CoV-2. Biomed. Pharmacother., 168."
},
{
"article-title": "Immunomodulating Phytochemicals: An Insight Into Their Potential Use in Cytokine Storm Situations",
"author": "Alarabei",
"first-page": "105",
"journal-title": "Adv. Pharm. Bull.",
"key": "ref_39",
"volume": "14",
"year": "2024"
},
{
"DOI": "10.1016/j.medidd.2023.100151",
"article-title": "Exploring the potential of phytochemicals and nanomaterial: A boon to antimicrobial treatment",
"author": "Yadav",
"doi-asserted-by": "crossref",
"first-page": "100151",
"journal-title": "Med. Drug Discov.",
"key": "ref_40",
"volume": "17",
"year": "2023"
},
{
"DOI": "10.3389/fphar.2024.1268464",
"doi-asserted-by": "crossref",
"key": "ref_41",
"unstructured": "Gao, X.Y., Li, X.Y., Zhang, C.Y., and Bai, C.Y. (2024). Scopoletin: A review of its pharmacology, pharmacokinetics, and toxicity. Front. Pharmacol., 15."
},
{
"DOI": "10.1016/j.jiph.2020.12.037",
"article-title": "Essential oils as an effective alternative for the treatment of COVID-19: Molecular interaction analysis of protease (Mpro) with pharmacokinetics and toxicological properties",
"author": "Panikar",
"doi-asserted-by": "crossref",
"first-page": "601",
"journal-title": "J. Infect. Public Health",
"key": "ref_42",
"volume": "14",
"year": "2021"
},
{
"DOI": "10.3390/molecules27227893",
"doi-asserted-by": "crossref",
"key": "ref_43",
"unstructured": "Elsebai, M.F., and Albalawi, M.A. (2022). Essential Oils and COVID-19. Molecules, 27."
},
{
"DOI": "10.1016/j.imu.2023.101167",
"article-title": "Potential inhibitory properties of structurally modified quercetin/isohamnetin glucosides against SARS-CoV-2 Mpro; molecular docking and dynamics simulation strategies",
"author": "Adegbola",
"doi-asserted-by": "crossref",
"first-page": "101167",
"journal-title": "Inform. Med. Unlocked",
"key": "ref_44",
"volume": "37",
"year": "2023"
},
{
"DOI": "10.3390/ph15091049",
"doi-asserted-by": "crossref",
"key": "ref_45",
"unstructured": "Gasmi, A., Mujawdiya, P.K., Lysiuk, R., Shanaida, M., Peana, M., Gasmi Benahmed, A., Beley, N., Kovalska, N., and Bjørklund, G. (2022). Quercetin in the Prevention and Treatment of Coronavirus Infections: A Focus on SARS-CoV-2. Pharmaceuticals, 15."
},
{
"DOI": "10.1016/j.ijbiomac.2020.07.235",
"article-title": "Structural stability of SARS-CoV-2 3CLpro and identification of quercetin as an inhibitor by experimental screening",
"author": "Abian",
"doi-asserted-by": "crossref",
"first-page": "1693",
"journal-title": "Int. J. Biol. Macromol.",
"key": "ref_46",
"volume": "164",
"year": "2020"
},
{
"DOI": "10.1093/bib/bbaa279",
"doi-asserted-by": "crossref",
"key": "ref_47",
"unstructured": "Mohammad, T., Mathur, Y., and Hassan, M.I. (2021). InstaDock: A single-click graphical user interface for molecular docking-based virtual high-throughput screening. Brief. Bioinform., 22."
},
{
"key": "ref_48",
"unstructured": "Rut, W., Groborz, K., Zhang, L., Sun, X., Zmudzinski, M., Hilgenfeld, R., and Drag, M. (2020). Substrate specificity profiling of SARS-CoV-2 Mpro protease provides basis for anti-COVID-19 drug design. BioRxiv."
},
{
"DOI": "10.1038/s41589-020-00689-z",
"article-title": "SARS-CoV-2 Mpro inhibitors and activity-based probes for patient-sample imaging",
"author": "Rut",
"doi-asserted-by": "crossref",
"first-page": "222",
"journal-title": "Nat. Chem. Biol.",
"key": "ref_49",
"volume": "17",
"year": "2021"
},
{
"DOI": "10.1016/j.xpro.2021.100793",
"article-title": "Fluorogenic in vitro activity assay for the main protease Mpro from SARS-CoV-2 and its adaptation to the identification of inhibitors",
"author": "Ihssen",
"doi-asserted-by": "crossref",
"first-page": "100793",
"journal-title": "STAR Protoc.",
"key": "ref_50",
"volume": "2",
"year": "2021"
},
{
"DOI": "10.1073/pnas.2309870120",
"article-title": "Reply to Yan et al.: Quercetin possesses a fluorescence quenching effect but is a weak inhibitor against SARS-CoV-2 main protease",
"author": "Xu",
"doi-asserted-by": "crossref",
"first-page": "e2309870120",
"journal-title": "Proc. Natl. Acad. Sci. USA",
"key": "ref_51",
"volume": "120",
"year": "2023"
},
{
"DOI": "10.1073/pnas.2309289120",
"article-title": "Reframing quercetin as a promiscuous inhibitor against SARS-CoV-2 main protease",
"author": "Yan",
"doi-asserted-by": "crossref",
"first-page": "e2309289120",
"journal-title": "Proc. Natl. Acad. Sci. USA",
"key": "ref_52",
"volume": "120",
"year": "2023"
},
{
"DOI": "10.3390/ijms222011069",
"doi-asserted-by": "crossref",
"key": "ref_53",
"unstructured": "Kaul, R., Paul, P., Kumar, S., Büsselberg, D., Dwivedi, V.D., and Chaari, A. (2021). Promising Antiviral Activities of Natural Flavonoids against SARS-CoV-2 Targets: Systematic Review. Int. J. Mol. Sci., 22."
},
{
"DOI": "10.1080/07391102.2021.1944319",
"article-title": "Comparative analysis of SARS-CoV-2 envelope viroporin mutations from COVID-19 deceased and surviving patients revealed implications on its ion-channel activities and correlation with patient mortality",
"author": "Rizwan",
"doi-asserted-by": "crossref",
"first-page": "10454",
"journal-title": "J. Biomol. Struct. Dyn.",
"key": "ref_54",
"volume": "40",
"year": "2022"
},
{
"DOI": "10.1080/07391102.2022.2064917",
"article-title": "Metronidazole, acyclovir and tetrahydrobiopterin may be promising to treat COVID-19 patients, through interaction with interleukin-12",
"author": "Bokov",
"doi-asserted-by": "crossref",
"first-page": "4253",
"journal-title": "J. Biomol. Struct. Dyn.",
"key": "ref_55",
"volume": "41",
"year": "2023"
},
{
"DOI": "10.1080/07391102.2021.2000498",
"article-title": "Suramin, penciclovir, and anidulafungin exhibit potential in the treatment of COVID-19 via binding to nsp12 of SARS-CoV-2",
"author": "Dey",
"doi-asserted-by": "crossref",
"first-page": "14067",
"journal-title": "J. Biomol. Struct. Dyn.",
"key": "ref_56",
"volume": "40",
"year": "2022"
},
{
"DOI": "10.3390/ijms23115965",
"doi-asserted-by": "crossref",
"key": "ref_57",
"unstructured": "Waseem, R., Shamsi, A., Khan, T., Hassan, M.I., Kazim, S.N., Shahid, M., and Islam, A. (2022). Unraveling the Binding Mechanism of Alzheimer’s Drugs with Irisin: Spectroscopic, Calorimetric, and Computational Approaches. Int. J. Mol. Sci., 23."
},
{
"DOI": "10.3390/ijms222010986",
"doi-asserted-by": "crossref",
"key": "ref_58",
"unstructured": "Waseem, R., Anwar, S., Khan, S., Shamsi, A., Hassan, M.I., Anjum, F., Shafie, A., Islam, A., and Yadav, D.K. (2021). MAP/Microtubule Affinity Regulating Kinase 4 Inhibitory Potential of Irisin: A New Therapeutic Strategy to Combat Cancer and Alzheimer’s Disease. Int. J. Mol. Sci., 22."
},
{
"DOI": "10.1016/j.jphotochemrev.2019.100338",
"doi-asserted-by": "crossref",
"key": "ref_59",
"unstructured": "Gehlen, M.H. (2020). The centenary of the Stern-Volmer equation of fluorescence quenching: From the single line plot to the SV quenching map. J. Photochem. Photobiol. C Photochem. Rev., 42."
},
{
"DOI": "10.1080/07391102.2019.1595728",
"article-title": "Spectroscopic, calorimetric and molecular docking insight into the interaction of Alzheimer’s drug donepezil with human transferrin: Implications of Alzheimer’s drug",
"author": "Shamsi",
"doi-asserted-by": "crossref",
"first-page": "1094",
"journal-title": "J. Biomol. Struct. Dyn.",
"key": "ref_60",
"volume": "38",
"year": "2020"
},
{
"key": "ref_61",
"unstructured": "Pascetta, V.G. (2022). Investigating the Main Protease (MPro) of SARS-CoV-2 as a Potential Drug Target. [Bachelor’s Thesis, University of New Hampshire]."
},
{
"DOI": "10.21769/BioProtoc.3253",
"doi-asserted-by": "crossref",
"key": "ref_62",
"unstructured": "Yammine, A., Gao, J., and Kwan, A.H. (2019). Tryptophan Fluorescence Quenching Assays for Measuring Protein-ligand Binding Affinities: Principles and a Practical Guide. Bio-Protoc., 9."
},
{
"DOI": "10.1016/j.jphotobiol.2005.12.017",
"article-title": "Steady-state fluorescence quenching applications for studying protein structure and dynamics",
"author": "Jenei",
"doi-asserted-by": "crossref",
"first-page": "223",
"journal-title": "J. Photochem. Photobiol. B Biol.",
"key": "ref_63",
"volume": "83",
"year": "2006"
},
{
"DOI": "10.1136/bmj.303.6800.428",
"article-title": "Ames, the Ames test, and the causes of cancer",
"author": "Forman",
"doi-asserted-by": "crossref",
"first-page": "428",
"journal-title": "BMJ",
"key": "ref_64",
"volume": "303",
"year": "1991"
},
{
"DOI": "10.1016/j.jphotobiol.2012.05.005",
"article-title": "Assessment of amsacrine binding with DNA using UV–visible, circular dichroism and Raman spectroscopic techniques",
"author": "Jangir",
"doi-asserted-by": "crossref",
"first-page": "38",
"journal-title": "J. Photochem. Photobiol. B Biol.",
"key": "ref_65",
"volume": "114",
"year": "2012"
},
{
"DOI": "10.1007/s11224-022-02089-6",
"article-title": "Structural differences in 3C-like protease (Mpro) from SARS-CoV and SARS-CoV-2: Molecular insights revealed by Molecular Dynamics Simulations",
"author": "Parmar",
"doi-asserted-by": "crossref",
"first-page": "1309",
"journal-title": "Struct. Chem.",
"key": "ref_66",
"volume": "34",
"year": "2023"
},
{
"DOI": "10.1016/j.csbj.2022.03.009",
"article-title": "Inhibition of the main protease of SARS-CoV-2 (M(pro)) by repurposing/designing drug-like substances and utilizing nature’s toolbox of bioactive compounds",
"author": "Antonopoulou",
"doi-asserted-by": "crossref",
"first-page": "1306",
"journal-title": "Comput. Struct. Biotechnol. J.",
"key": "ref_67",
"volume": "20",
"year": "2022"
},
{
"DOI": "10.2174/092986710790936284",
"article-title": "Coumarins: Old Compounds with Novel Promising Therapeutic Perspectives",
"author": "Riveiro",
"doi-asserted-by": "crossref",
"first-page": "1325",
"journal-title": "Curr. Med. Chem.",
"key": "ref_68",
"volume": "17",
"year": "2010"
},
{
"DOI": "10.1016/j.lfs.2021.119105",
"article-title": "Network pharmacology and molecular docking reveal the mechanism of Scopoletin against non-small cell lung cancer",
"author": "Yuan",
"doi-asserted-by": "crossref",
"first-page": "119105",
"journal-title": "Life Sci.",
"key": "ref_69",
"volume": "270",
"year": "2021"
},
{
"DOI": "10.1016/B978-0-12-800018-2.00021-2",
"doi-asserted-by": "crossref",
"key": "ref_70",
"unstructured": "Kuete, V. (2014). 20-Harmful and Protective Effects of Phenolic Compounds from African Medicinal Plants. Toxicological Survey of African Medicinal Plants, Elsevier."
},
{
"DOI": "10.3389/fmicb.2020.01525",
"doi-asserted-by": "crossref",
"key": "ref_71",
"unstructured": "Lemos, A.S.O., Florêncio, J.R., Pinto, N.C.C., Campos, L.M., Silva, T.P., Grazul, R.M., Pinto, P.F., Tavares, G.D., Scio, E., and Apolônio, A.C.M. (2020). Antifungal Activity of the Natural Coumarin Scopoletin Against Planktonic Cells and Biofilms From a Multidrug-Resistant Candida tropicalis Strain. Front. Microbiol., 11."
}
],
"reference-count": 71,
"references-count": 71,
"relation": {},
"resource": {
"primary": {
"URL": "https://www.mdpi.com/1999-4915/17/3/402"
}
},
"score": 1,
"short-title": [],
"source": "Crossref",
"subject": [],
"subtitle": [],
"title": "Biochemical Screening of Phytochemicals and Identification of Scopoletin as a Potential Inhibitor of SARS-CoV-2 Mpro, Revealing Its Biophysical Impact on Structural Stability",
"type": "journal-article",
"volume": "17"
}