Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchQuercetinQuercetin (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

Targeting COVID-19 (SARS-CoV-2) main protease through phytochemicals of Albizia lebbeck: molecular docking, molecular dynamics simulation, MM–PBSA free energy calculations, and DFT analysis

Nalban et al., Journal of Proteins and Proteomics, doi:10.1007/s42485-024-00136-w
Apr 2024  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Quercetin for COVID-19
24th treatment shown to reduce risk in July 2021, now with p = 0.002 from 12 studies.
No treatment is 100% effective. Protocols combine treatments.
5,100+ studies for 112 treatments. c19early.org
In Silico study showing potential benefits of quercetin and other phytochemicals from Albizia lebbeck as SARS-CoV-2 main protease (Mpro) inhibitors. Using molecular docking, the authors identified four promising compounds: vicenin 2, myricetin, quercetin, and albigenic acid. 100ns molecular dynamics simulations demonstrated that these compounds significantly impacted the structure of Mpro, with quercetin showing a higher binding free energy than the positive control drug nelfinavir. Density functional theory studies revealed that vicenin 2 was the most reactive compound. The results suggest that vicenin 2, myricetin, and quercetin may be beneficial for COVID-19 by inhibiting the viral main protease.
73 preclinical studies support the efficacy of quercetin for COVID-19:
In Silico studies predict inhibition of SARS-CoV-2, or minimization of side effects, with quercetin or metabolites via binding to the spikeA,3,9,10,22,24,25,30,38,39,41,42,62-64, MproB,3,7,9,11,13,15,17,18,20,23,24,30,34,36-38,42,43,45,63-65, RNA-dependent RNA polymeraseC,1,3,9,32,64, PLproD,3,37,45, ACE2E,22,23,28,37,41,63, TMPRSS2F,22, nucleocapsidG,3, helicaseH,3,29,34, endoribonucleaseI,39, NSP16/10J,6, cathepsin LK,26, Wnt-3L,22, FZDM,22, LRP6N,22, ezrinO,40, ADRPP,38, NRP1Q,41, EP300R,16, PTGS2S,23, HSP90AA1T,16,23, matrix metalloproteinase 9U,31, IL-6V,21,35, IL-10W,21, VEGFAX,35, and RELAY,35 proteins. In Vitro studies demonstrate inhibition of the MproB,15,46,51,59 protein, and inhibition of spike-ACE2 interactionZ,47. In Vitro studies demonstrate efficacy in Calu-3AA,50, A549AB,21, HEK293-ACE2+AC,58, Huh-7AD,25, Caco-2AE,49, Vero E6AF,19,42,49, mTECAG,52, and RAW264.7AH,52 cells. Animal studies demonstrate efficacy in K18-hACE2 miceAI,55, db/db miceAJ,52,61, BALB/c miceAK,60, and rats66. Quercetin reduced proinflammatory cytokines and protected lung and kidney tissue against LPS-induced damage in mice60, inhibits LPS-induced cytokine storm by modulating key inflammatory and antioxidant pathways in macrophages5, and inhibits SARS-CoV-2 ORF3a ion channel activity, which contributes to viral pathogenicity and cytotoxicity54.
a. The trimeric spike (S) protein is a glycoprotein that mediates viral entry by binding to the host ACE2 receptor, is critical for SARS-CoV-2's ability to infect host cells, and is a target of neutralizing antibodies. Inhibition of the spike protein prevents viral attachment, halting infection at the earliest stage.
b. The main protease or Mpro, also known as 3CLpro or nsp5, is a cysteine protease that cleaves viral polyproteins into functional units needed for replication. Inhibiting Mpro disrupts the SARS-CoV-2 lifecycle within the host cell, preventing the creation of new copies.
c. RNA-dependent RNA polymerase (RdRp), also called nsp12, is the core enzyme of the viral replicase-transcriptase complex that copies the positive-sense viral RNA genome into negative-sense templates for progeny RNA synthesis. Inhibiting RdRp blocks viral genome replication and transcription.
d. The papain-like protease (PLpro) has multiple functions including cleaving viral polyproteins and suppressing the host immune response by deubiquitination and deISGylation of host proteins. Inhibiting PLpro may block viral replication and help restore normal immune responses.
e. The angiotensin converting enzyme 2 (ACE2) protein is a host cell transmembrane protein that serves as the cellular receptor for the SARS-CoV-2 spike protein. ACE2 is expressed on many cell types, including epithelial cells in the lungs, and allows the virus to enter and infect host cells. Inhibition may affect ACE2's physiological function in blood pressure control.
f. Transmembrane protease serine 2 (TMPRSS2) is a host cell protease that primes the spike protein, facilitating cellular entry. TMPRSS2 activity helps enable cleavage of the spike protein required for membrane fusion and virus entry. Inhibition may especially protect respiratory epithelial cells, buy may have physiological effects.
g. The nucleocapsid (N) protein binds and encapsulates the viral genome by coating the viral RNA. N enables formation and release of infectious virions and plays additional roles in viral replication and pathogenesis. N is also an immunodominant antigen used in diagnostic assays.
h. The helicase, or nsp13, protein unwinds the double-stranded viral RNA, a crucial step in replication and transcription. Inhibition may prevent viral genome replication and the creation of new virus components.
i. The endoribonuclease, also known as NendoU or nsp15, cleaves specific sequences in viral RNA which may help the virus evade detection by the host immune system. Inhibition may hinder the virus's ability to mask itself from the immune system, facilitating a stronger immune response.
j. The NSP16/10 complex consists of non-structural proteins 16 and 10, forming a 2'-O-methyltransferase that modifies the viral RNA cap structure. This modification helps the virus evade host immune detection by mimicking host mRNA, making NSP16/10 a promising antiviral target.
k. Cathepsin L is a host lysosomal cysteine protease that can prime the spike protein through an alternative pathway when TMPRSS2 is unavailable. Dual targeting of cathepsin L and TMPRSS2 may maximize disruption of alternative pathways for virus entry.
l. Wingless-related integration site (Wnt) ligand 3 is a host signaling molecule that activates the Wnt signaling pathway, which is important in development, cell growth, and tissue repair. Some studies suggest that SARS-CoV-2 infection may interfere with the Wnt signaling pathway, and that Wnt3a is involved in SARS-CoV-2 entry.
m. The frizzled (FZD) receptor is a host transmembrane receptor that binds Wnt ligands, initiating the Wnt signaling cascade. FZD serves as a co-receptor, along with ACE2, in some proposed mechanisms of SARS-CoV-2 infection. The virus may take advantage of this pathway as an alternative entry route.
n. Low-density lipoprotein receptor-related protein 6 is a cell surface co-receptor essential for Wnt signaling. LRP6 acts in tandem with FZD for signal transduction and has been discussed as a potential co-receptor for SARS-CoV-2 entry.
o. The ezrin protein links the cell membrane to the cytoskeleton (the cell's internal support structure) and plays a role in cell shape, movement, adhesion, and signaling. Drugs that occupy the same spot on ezrin where the viral spike protein would bind may hindering viral attachment, and drug binding could further stabilize ezrin, strengthening its potential natural capacity to impede viral fusion and entry.
p. The Adipocyte Differentiation-Related Protein (ADRP, also known as Perilipin 2 or PLIN2) is a lipid droplet protein regulating the storage and breakdown of fats in cells. SARS-CoV-2 may hijack the lipid handling machinery of host cells and ADRP may play a role in this process. Disrupting ADRP's interaction with the virus may hinder the virus's ability to use lipids for replication and assembly.
q. Neuropilin-1 (NRP1) is a cell surface receptor with roles in blood vessel development, nerve cell guidance, and immune responses. NRP1 may function as a co-receptor for SARS-CoV-2, facilitating viral entry into cells. Blocking NRP1 may disrupt an alternative route of viral entry.
r. EP300 (E1A Binding Protein P300) is a transcriptional coactivator involved in several cellular processes, including growth, differentiation, and apoptosis, through its acetyltransferase activity that modifies histones and non-histone proteins. EP300 facilitates viral entry into cells and upregulates inflammatory cytokine production.
s. Prostaglandin G/H synthase 2 (PTGS2, also known as COX-2) is an enzyme crucial for the production of inflammatory molecules called prostaglandins. PTGS2 plays a role in the inflammatory response that can become severe in COVID-19 and inhibitors (like some NSAIDs) may have benefits in dampening harmful inflammation, but note that prostaglandins have diverse physiological functions.
t. Heat Shock Protein 90 Alpha Family Class A Member 1 (HSP90AA1) is a chaperone protein that helps other proteins fold correctly and maintains their stability. HSP90AA1 plays roles in cell signaling, survival, and immune responses. HSP90AA1 may interact with numerous viral proteins, but note that it has diverse physiological functions.
u. Matrix metalloproteinase 9 (MMP9), also called gelatinase B, is a zinc-dependent enzyme that breaks down collagen and other components of the extracellular matrix. MMP9 levels increase in severe COVID-19. Overactive MMP9 can damage lung tissue and worsen inflammation. Inhibition of MMP9 may prevent excessive tissue damage and help regulate the inflammatory response.
v. The interleukin-6 (IL-6) pro-inflammatory cytokine (signaling molecule) has a complex role in the immune response and may trigger and perpetuate inflammation. Elevated IL-6 levels are associated with severe COVID-19 cases and cytokine storm. Anti-IL-6 therapies may be beneficial in reducing excessive inflammation in severe COVID-19 cases.
w. The interleukin-10 (IL-10) anti-inflammatory cytokine helps regulate and dampen immune responses, preventing excessive inflammation. IL-10 levels can also be elevated in severe COVID-19. IL-10 could either help control harmful inflammation or potentially contribute to immune suppression.
x. Vascular Endothelial Growth Factor A (VEGFA) promotes the growth of new blood vessels (angiogenesis) and has roles in inflammation and immune responses. VEGFA may contribute to blood vessel leakiness and excessive inflammation associated with severe COVID-19.
y. RELA is a transcription factor subunit of NF-kB and is a key regulator of inflammation, driving pro-inflammatory gene expression. SARS-CoV-2 may hijack and modulate NF-kB pathways.
z. The interaction between the SARS-CoV-2 spike protein and the human ACE2 receptor is a primary method of viral entry, inhibiting this interaction can prevent the virus from attaching to and entering host cells, halting infection at an early stage.
aa. Calu-3 is a human lung adenocarcinoma cell line with moderate ACE2 and TMPRSS2 expression and SARS-CoV-2 susceptibility. It provides a model of the human respiratory epithelium, but many not be ideal for modeling early stages of infection due to the moderate expression levels of ACE2 and TMPRSS2.
ab. A549 is a human lung carcinoma cell line with low ACE2 expression and SARS-CoV-2 susceptibility. Viral entry/replication can be studied but the cells may not replicate all aspects of lung infection.
ac. HEK293-ACE2+ is a human embryonic kidney cell line engineered for high ACE2 expression and SARS-CoV-2 susceptibility.
ad. Huh-7 cells were derived from a liver tumor (hepatoma).
ae. Caco-2 cells come from a colorectal adenocarcinoma (cancer). They are valued for their ability to form a polarized cell layer with properties similar to the intestinal lining.
af. Vero E6 is an African green monkey kidney cell line with low/no ACE2 expression and high SARS-CoV-2 susceptibility. The cell line is easy to maintain and supports robust viral replication, however the monkey origin may not accurately represent human responses.
ag. mTEC is a mouse tubular epithelial cell line.
ah. RAW264.7 is a mouse macrophage cell line.
ai. A mouse model expressing the human ACE2 receptor under the control of the K18 promoter.
aj. A mouse model of obesity and severe insulin resistance leading to type 2 diabetes due to a mutation in the leptin receptor gene that impairs satiety signaling.
ak. A mouse model commonly used in infectious disease and cancer research due to higher immune response and susceptibility to infection.
Nalban et al., 26 Apr 2024, peer-reviewed, 5 authors.
In Silico studies are an important part of preclinical research, however results may be very different in vivo.
This PaperQuercetinAll
{ 'indexed': {'date-parts': [[2024, 4, 27]], 'date-time': '2024-04-27T00:25:18Z', 'timestamp': 1714177518526}, 'reference-count': 49, 'publisher': 'Springer Science and Business Media LLC', 'license': [ { 'start': { 'date-parts': [[2024, 4, 26]], 'date-time': '2024-04-26T00:00:00Z', 'timestamp': 1714089600000}, 'content-version': 'tdm', 'delay-in-days': 0, 'URL': 'https://www.springernature.com/gp/researchers/text-and-data-mining'}, { 'start': { 'date-parts': [[2024, 4, 26]], 'date-time': '2024-04-26T00:00:00Z', 'timestamp': 1714089600000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'https://www.springernature.com/gp/researchers/text-and-data-mining'}], 'content-domain': {'domain': ['link.springer.com'], 'crossmark-restriction': False}, 'DOI': '10.1007/s42485-024-00136-w', 'type': 'journal-article', 'created': {'date-parts': [[2024, 4, 26]], 'date-time': '2024-04-26T16:01:45Z', 'timestamp': 1714147305000}, 'update-policy': 'http://dx.doi.org/10.1007/springer_crossmark_policy', 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': 'Targeting COVID-19 (SARS-CoV-2) main protease through phytochemicals of Albizia lebbeck: ' 'molecular docking, molecular dynamics simulation, MM–PBSA free energy calculations, and DFT ' 'analysis', 'prefix': '10.1007', 'author': [ {'given': 'Nasiruddin', 'family': 'Nalban', 'sequence': 'first', 'affiliation': []}, {'given': 'Manish', 'family': 'Wanjari', 'sequence': 'additional', 'affiliation': []}, {'given': 'Rasika', 'family': 'Kolhe', 'sequence': 'additional', 'affiliation': []}, {'given': 'Munaf', 'family': 'Tamboli', 'sequence': 'additional', 'affiliation': []}, {'given': 'Pallavi', 'family': 'Jamadagni', 'sequence': 'additional', 'affiliation': []}], 'member': '297', 'published-online': {'date-parts': [[2024, 4, 26]]}, 'reference': [ { 'issue': '9', 'key': '136_CR1', 'doi-asserted-by': 'publisher', 'first-page': '3263', 'DOI': '10.1080/07391102.2020.1762741', 'volume': '39', 'author': 'I Abdelli', 'year': '2021', 'unstructured': 'Abdelli I, Hassani F, Bekkel Brikci S, Ghalem S (2021) In silico study ' 'the inhibition of angiotensin converting enzyme 2 receptor of COVID-19 ' 'by Ammoides verticillata components harvested from Western Algeria. J ' 'Biomol Struct Dyn 39(9):3263–3276. ' 'https://doi.org/10.1080/07391102.2020.1762741', 'journal-title': 'J Biomol Struct Dyn'}, { 'key': '136_CR2', 'doi-asserted-by': 'publisher', 'first-page': '1693', 'DOI': '10.1016/j.ijbiomac.2020.07.235', 'volume': '164', 'author': 'O Abian', 'year': '2020', 'unstructured': 'Abian O, Ortega-Alarcon D, Jimenez-Alesanco A, Ceballos-Laita L, Vega S, ' 'Reyburn HT, Rizzuti B, Velazquez-Campoy A (2020) Structural stability of ' 'SARS-CoV-2 3CLpro and identification of quercetin as an inhibitor by ' 'experimental screening. Int J Biol Macromol 164:1693–1703. ' 'https://doi.org/10.1016/j.ijbiomac.2020.07.235', 'journal-title': 'Int J Biol Macromol'}, { 'key': '136_CR3', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.compbiomed.2022.105452', 'volume': '145', 'author': 'Ş Adem', 'year': '2022', 'unstructured': 'Adem Ş, Eyupoglu V, Ibrahim IM, Sarfraz I, Rasul A, Ali M, Elfiky AA ' '(2022) Multidimensional in silico strategy for identification of natural ' 'polyphenols-based SARS-CoV-2 main protease (Mpro) inhibitors to unveil a ' 'hope against COVID-19. Comput Biol Med 145:105452. ' 'https://doi.org/10.1016/j.compbiomed.2022.105452', 'journal-title': 'Comput Biol Med'}, { 'key': '136_CR4', 'unstructured': 'Agnivesh. 2007. Charaka Samhita with ‘Ayurveda-Deepika’ commentary of ' 'Chakrapanidatta. Chowkhamba Sanskrit Sansthana, Varanasi, India. 25/40. ' 'P.n.140'}, { 'issue': '4', 'key': '136_CR5', 'doi-asserted-by': 'publisher', 'first-page': '1934', 'DOI': '10.1177/1934578X231166283', 'volume': '18', 'author': 'PK Agrawal', 'year': '2023', 'unstructured': 'Agrawal PK, Agrawal C, Blunden G (2023) Antiviral and possible ' 'prophylactic significance of myricetin for COVID-19. Nat Prod Commun ' '18(4):1934. https://doi.org/10.1177/1934578X231166283', 'journal-title': 'Nat Prod Commun'}, { 'issue': '5', 'key': '136_CR6', 'doi-asserted-by': 'publisher', 'first-page': '13333', 'DOI': '10.33263/BRIAC115.1333313346', 'volume': '11', 'author': 'S Albayrak', 'year': '2021', 'unstructured': 'Albayrak S, Gök Y, Sari Y, Tok TT, Aktaş A (2021) Benzimidazolium salts ' 'bearing 2-methyl-1, 4-benzodioxane group: synthesis, characterization, ' 'computational studies, in vitro antioxidant and antimicrobial activity ' 'vitro antioxidant and antimicrobial activity. Biointerface Res Appl Chem ' '11(5):13333–13346. https://doi.org/10.33263/BRIAC115.1333313346', 'journal-title': 'Biointerface Res Appl Chem'}, { 'key': '136_CR7', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.biopha.2022.112658', 'volume': '147', 'author': 'S Ali', 'year': '2022', 'unstructured': 'Ali S, Alam M, Khatoon F, Fatima U, Elasbali AM, Adnan M, Islam A, ' 'Hassan MI, Snoussi M, De Feo V (2022) Natural products can be used in ' 'therapeutic management of COVID-19: Probable mechanistic insights. ' 'Biomed Pharmacother 147:112658. ' 'https://doi.org/10.1016/j.biopha.2022.112658', 'journal-title': 'Biomed Pharmacother'}, { 'issue': '5', 'key': '136_CR8', 'doi-asserted-by': 'publisher', 'first-page': '1153', 'DOI': '10.1016/j.bpj.2014.12.047', 'volume': '108', 'author': 'R Anandakrishnan', 'year': '2015', 'unstructured': 'Anandakrishnan R, Drozdetski A, Walker RC, Onufriev AV (2015) Speed of ' 'conformational change: comparing explicit and implicit solvent molecular ' 'dynamics simulations. Biophys J 108(5):1153–1164. ' 'https://doi.org/10.1016/j.bpj.2014.12.047', 'journal-title': 'Biophys J'}, { 'issue': '2', 'key': '136_CR9', 'doi-asserted-by': 'publisher', 'first-page': '356', 'DOI': '10.1016/j.jep.2009.02.041', 'volume': '125', 'author': 'NP Babu', 'year': '2009', 'unstructured': 'Babu NP, Pandikumar P, Ignacimuthu S (2009) Anti-inflammatory activity ' 'of Albizia lebbeck Benth. an ethnomedicinal plant, in acute and chronic ' 'animal models of inflammation. J Ethnopharmacol 125(2):356–360. ' 'https://doi.org/10.1016/j.jep.2009.02.041', 'journal-title': 'J Ethnopharmacol'}, { 'issue': '33', 'key': '136_CR10', 'doi-asserted-by': 'publisher', 'first-page': '11827', 'DOI': '10.1021/ja0527525', 'volume': '127', 'author': 'E Barratt', 'year': '2005', 'unstructured': 'Barratt E, Bingham RJ, Warner DJ, Laughton CA, Phillips SE, Homans SW ' '(2005) Van der Waals interactions dominate ligand− protein association ' 'in a protein binding site occluded from solvent water. J Am Chem Soc ' '127(33):11827–11834. https://doi.org/10.1021/ja0527525', 'journal-title': 'J Am Chem Soc'}, { 'issue': '11', 'key': '136_CR11', 'doi-asserted-by': 'publisher', 'first-page': '1614', 'DOI': '10.3390/antibiotics11111614', 'volume': '11', 'author': 'K Bijelić', 'year': '2022', 'unstructured': 'Bijelić K, Hitl M, Kladar N (2022) Phytochemicals in the prevention and ' 'treatment of SARS-CoV-2 clinical evidence. Antibiotics 11(11):1614. ' 'https://doi.org/10.3390/antibiotics11111614', 'journal-title': 'Antibiotics'}, { 'issue': '6', 'key': '136_CR12', 'doi-asserted-by': 'publisher', 'DOI': '10.1371/journal.pone.0248479', 'volume': '16', 'author': 'S Borse', 'year': '2021', 'unstructured': 'Borse S, Joshi M, Saggam A, Bhat V, Walia S, Marathe A, Sagar S, ' 'Chavan-Gautam P, Girme A, Hingorani L, Tillu G (2021) Ayurveda ' 'botanicals in COVID-19 management: an in silico multi-target approach. ' 'PLoS ONE 16(6):e0248479. https://doi.org/10.1371/journal.pone.0248479', 'journal-title': 'PLoS ONE'}, { 'issue': '7', 'key': '136_CR13', 'doi-asserted-by': 'publisher', 'first-page': '1458', 'DOI': '10.3390/v14071458', 'volume': '14', 'author': 'OA Chaves', 'year': '2022', 'unstructured': 'Chaves OA, Fintelman-Rodrigues N, Wang X, Sacramento CQ, Temerozo JR, ' 'Ferreira AC, Mattos M, Pereira-Dutra F, Bozza PT, Castro-Faria-Neto HC, ' 'Russo JJ (2022) Commercially available flavonols are better SARS-CoV-2 ' 'inhibitors than isoflavone and flavones. Viruses 14(7):1458. ' 'https://doi.org/10.3390/v14071458', 'journal-title': 'Viruses'}, { 'issue': '3', 'key': '136_CR14', 'doi-asserted-by': 'publisher', 'first-page': '181', 'DOI': '10.1038/s41579-018-0118-9', 'volume': '17', 'author': 'J Cui', 'year': '2019', 'unstructured': 'Cui J, Li F, Shi ZL (2019) Origin and evolution of pathogenic ' 'coronaviruses. Nat Rev Microbiol 17(3):181–192. ' 'https://doi.org/10.1038/s41579-018-0118-9', 'journal-title': 'Nat Rev Microbiol'}, { 'key': '136_CR15', 'doi-asserted-by': 'publisher', 'first-page': '494', 'DOI': '10.1016/j.jep.2018.11.004', 'volume': '231', 'author': 'TH Desai', 'year': '2019', 'unstructured': 'Desai TH, Joshi SV (2019) Anticancer activity of saponin isolated from ' 'Albizia lebbeck using various in vitro models. J Ethnopharmacol ' '231:494–502. https://doi.org/10.1016/j.jep.2018.11.004', 'journal-title': 'J Ethnopharmacol'}, { 'key': '136_CR16', 'doi-asserted-by': 'publisher', 'DOI': '10.2147/IJGM.S318720', 'author': 'F Di Pierro', 'year': '2021', 'unstructured': 'Di Pierro F, Derosa G, Maffioli P, Bertuccioli A, Togni S, Riva A, ' 'Allegrini P, Khan A, Khan S, Khan BA, Altaf N (2021) Possible ' 'therapeutic effects of adjuvant quercetin supplementation against ' 'early-stage COVID-19 infection: a prospective, randomized, controlled, ' 'and open-label study. Int J General Med. ' 'https://doi.org/10.2147/IJGM.S318720', 'journal-title': 'Int J General Med'}, { 'key': '136_CR17', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.heliyon.2023.e13952', 'author': 'HV Edwin', 'year': '2023', 'unstructured': 'Edwin HV, Antony CS (2023) An update on COVID-19: SARS-CoV-2 variants, ' 'antiviral drugs, and vaccines. Heliyon. ' 'https://doi.org/10.1016/j.heliyon.2023.e13952', 'journal-title': 'Heliyon'}, { 'issue': '9', 'key': '136_CR18', 'doi-asserted-by': 'publisher', 'first-page': '1049', 'DOI': '10.3390/ph15091049', 'volume': '15', 'author': 'A Gasmi', 'year': '2022', 'unstructured': 'Gasmi A, Mujawdiya PK, Lysiuk R, Shanaida M, Peana M, Gasmi Benahmed A, ' 'Beley N, Kovalska N, Bjørklund G (2022) Quercetin in the prevention and ' 'treatment of coronavirus infections: a focus on SARS-CoV-2. ' 'Pharmaceuticals 15(9):1049. https://doi.org/10.3390/ph15091049', 'journal-title': 'Pharmaceuticals'}, { 'issue': '3', 'key': '136_CR19', 'doi-asserted-by': 'publisher', 'first-page': '257', 'DOI': '10.5114/bta.2021.108722', 'volume': '102', 'author': 'S Ghosh', 'year': '2021', 'unstructured': 'Ghosh S, Chetia D, Gogoi N, Rudrapal M (2021) Design, molecular docking, ' 'drug-likeness, and molecular dynamics studies of 1, 2, 4-trioxane ' 'derivatives as novel Plasmodium falciparum falcipain-2 (FP-2) ' 'inhibitors. Biotechnologia 102(3):257. ' 'https://doi.org/10.5114/bta.2021.108722', 'journal-title': 'Biotechnologia'}, { 'key': '136_CR20', 'doi-asserted-by': 'publisher', 'first-page': '1963', 'DOI': '10.1007/s11030-021-10211-9', 'volume': '25', 'author': 'B Gogoi', 'year': '2021', 'unstructured': 'Gogoi B, Chowdhury P, Goswami N, Gogoi N, Naiya T, Chetia P, Mahanta S, ' 'Chetia D, Tanti B, Borah P, Handique PJ (2021) Identification of ' 'potential plant-based inhibitor against viral proteases of SARS-CoV-2 ' 'through molecular docking, MM-PBSA binding energy calculations and ' 'molecular dynamics simulation. Mol Divers 25:1963–1977. ' 'https://doi.org/10.1007/s11030-021-10211-9', 'journal-title': 'Mol Divers'}, { 'key': '136_CR21', 'doi-asserted-by': 'publisher', 'first-page': '101', 'DOI': '10.1016/B978-0-12-821038-3.00007-0', 'volume-title': 'nutraceuticals', 'author': 'K Gulati', 'year': '2021', 'unstructured': 'Gulati K, Verma P, Rai N, Ray A (2021) Role of nutraceuticals in ' 'respiratory and allied diseases. nutraceuticals. Academic Press, Cham, ' 'pp 101–115. https://doi.org/10.1016/B978-0-12-821038-3.00007-0'}, { 'issue': '11', 'key': '136_CR22', 'doi-asserted-by': 'publisher', 'first-page': '3922', 'DOI': '10.3390/ijms21113922', 'volume': '21', 'author': 'M Hagar', 'year': '2020', 'unstructured': 'Hagar M, Ahmed HA, Aljohani G, Alhaddad OA (2020) Investigation of some ' 'antiviral N-heterocycles as COVID 19 drug: molecular docking and DFT ' 'calculations. Int J Mol Sci 21(11):3922. ' 'https://doi.org/10.3390/ijms21113922', 'journal-title': 'Int J Mol Sci'}, {'key': '136_CR23', 'unstructured': 'https://www.worldometers.info/coronavirus'}, { 'issue': '3', 'key': '136_CR24', 'first-page': '67', 'volume': '27', 'author': 'M Jaiswal', 'year': '2006', 'unstructured': 'Jaiswal M, Prajapati PK, Patgiri BJ, Ravishankar B (2006) A comparative ' 'pharmaco-clinical study on anti-asthmatic effect of Shirisharishta ' 'prepared by bark, sapwood and heartwood of Albizia Lebbeck. AYU (int Q J ' 'Res Ayurveda) 27(3):67', 'journal-title': 'AYU (int Q J Res Ayurveda)'}, { 'issue': '1', 'key': '136_CR25', 'doi-asserted-by': 'publisher', 'first-page': '15', 'DOI': '10.1002/uog.22088', 'volume': '56', 'author': 'J Juan', 'year': '2020', 'unstructured': 'Juan J, Gil MM, Rong Z, Zhang Y, Yang H, Poon LC (2020) Effect of ' 'coronavirus disease 2019 (COVID-19) on maternal, perinatal and neonatal ' 'outcome: systematic review. Ultrasound Obstet Gynecol 56(1):15–27. ' 'https://doi.org/10.1002/uog.22088', 'journal-title': 'Ultrasound Obstet Gynecol'}, { 'issue': '11', 'key': '136_CR26', 'doi-asserted-by': 'publisher', 'first-page': '905', 'DOI': '10.1016/S2221-1691(12)60251-2', 'volume': '2', 'author': 'DK Kajaria', 'year': '2012', 'unstructured': 'Kajaria DK, Gangwar M, Kumar D, Sharma AK, Tilak R, Nath G, Tripathi YB, ' 'Tripathi JS, Tiwari SK (2012) Evaluation of antimicrobial activity and ' 'bronchodialator effect of a polyherbal drug–Shrishadi. Asian Pac J Trop ' 'Biomed 2(11):905–909. https://doi.org/10.1016/S2221-1691(12)60251-2', 'journal-title': 'Asian Pac J Trop Biomed'}, { 'key': '136_CR27', 'doi-asserted-by': 'publisher', 'first-page': '150', 'DOI': '10.1007/s10238-006-0114-7', 'volume': '6', 'author': 'D Kempuraj', 'year': '2006', 'unstructured': 'Kempuraj D, Castellani ML, Petrarca C, Frydas S, Conti P, Theoharides ' 'TC, Vecchiet J (2006) Inhibitory effect of quercetin on tryptase and ' 'interleukin-6 release, and histidine decarboxylase mRNA transcription by ' 'human mast cell-1 cell line. Clin Exp Med 6:150–156. ' 'https://doi.org/10.1007/s10238-006-0114-7', 'journal-title': 'Clin Exp Med'}, { 'issue': '1', 'key': '136_CR28', 'doi-asserted-by': 'publisher', 'first-page': '9470', 'DOI': '10.1038/s41598-017-09941-4', 'volume': '7', 'author': 'P Khan', 'year': '2017', 'unstructured': 'Khan P, Rahman S, Queen A, Manzoor S, Naz F, Hasan GM, Luqman S, Kim J, ' 'Islam A, Ahmad F, Hassan MI (2017) Elucidation of dietary polyphenolics ' 'as potential inhibitor of microtubule affinity regulating kinase 4: in ' 'silico and in vitro studies. Sci Rep 7(1):9470. ' 'https://doi.org/10.1038/s41598-017-09941-4', 'journal-title': 'Sci Rep'}, { 'issue': '1', 'key': '136_CR29', 'first-page': '48', 'volume': '2', 'author': 'S Kumar', 'year': '2010', 'unstructured': 'Kumar S, Bansal P, Gupta V, Sannd R, Rao M (2010) The clinical effect of ' 'Albizia lebbeck stem bark decoction on bronchial asthma. Int J Pharm Sci ' 'Drug Res 2(1):48–50', 'journal-title': 'Int J Pharm Sci Drug Res'}, { 'key': '136_CR30', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.apsusc.2020.146028', 'volume': '515', 'author': 'K Li', 'year': '2020', 'unstructured': 'Li K, Li N, Yan N, Wang T, Zhang Y, Song Q, Li H (2020) Adsorption of ' 'small hydrocarbons on pristine, N-doped and vacancy graphene by DFT ' 'study. Appl Surf Sci 515:146028. ' 'https://doi.org/10.1016/j.apsusc.2020.146028', 'journal-title': 'Appl Surf Sci'}, { 'issue': '1', 'key': '136_CR31', 'doi-asserted-by': 'publisher', 'first-page': '29', 'DOI': '10.1016/j.jpha.2021.09.009', 'volume': '12', 'author': 'SH Manjunath', 'year': '2022', 'unstructured': 'Manjunath SH, Thimmulappa RK (2022) Antiviral, immunomodulatory, and ' 'anticoagulant effects of quercetin and its derivatives: Potential role ' 'in prevention and management of COVID-19. J Pharm Anal 12(1):29–34. ' 'https://doi.org/10.1016/j.jpha.2021.09.009', 'journal-title': 'J Pharm Anal'}, { 'issue': '1', 'key': '136_CR32', 'doi-asserted-by': 'publisher', 'first-page': '29', 'DOI': '10.1039/C4NP00085D', 'volume': '32', 'author': 'JP Martinez', 'year': '2015', 'unstructured': 'Martinez JP, Sasse F, Brönstrup M, Diez J, Meyerhans A (2015) Antiviral ' 'drug discovery: broad-spectrum drugs from nature. Nat Prod Rep ' '32(1):29–48. https://doi.org/10.1039/C4NP00085D', 'journal-title': 'Nat Prod Rep'}, { 'issue': '20', 'key': '136_CR33', 'doi-asserted-by': 'publisher', 'first-page': '9885', 'DOI': '10.1080/07391102.2021.1936183', 'volume': '40', 'author': 'S Mathpal', 'year': '2022', 'unstructured': 'Mathpal S, Sharma P, Joshi T, Joshi T, Pande V, Chandra S (2022) ' 'Screening of potential bio-molecules from Moringa olifera against ' 'SARS-CoV-2 main protease using computational approaches. J Biomol Struct ' 'Dyn 40(20):9885–9896. https://doi.org/10.1080/07391102.2021.1936183', 'journal-title': 'J Biomol Struct Dyn'}, { 'issue': '3', 'key': '136_CR34', 'doi-asserted-by': 'publisher', 'first-page': '32801', 'DOI': '10.26717/BJSTR.2022.41.006618', 'volume': '41', 'author': 'P Mishra', 'year': '2022', 'unstructured': 'Mishra P, Shree P, Pandey N, Tripathi YB (2022) Bio actives from Albizia ' 'Lebbeck on acute lung injury-acute respiratory distress syndrome ' 'molecular targets-in-silico study. Biomed J Sci Tech Res. ' '41(3):32801–32807. https://doi.org/10.26717/BJSTR.2022.41.006618', 'journal-title': 'Biomed J Sci Tech Res.'}, { 'issue': '1', 'key': '136_CR35', 'doi-asserted-by': 'publisher', 'first-page': '93', 'DOI': '10.1038/s42003-020-01577-x', 'volume': '4', 'author': 'V Mody', 'year': '2021', 'unstructured': 'Mody V, Ho J, Wills S, Mawri A, Lawson L, Ebert MC, Fortin GM, Rayalam ' 'S, Taval S (2021) Identification of 3-chymotrypsin like protease ' '(3CLPro) inhibitors as potential anti-SARS-CoV-2 agents. Commun Biol ' '4(1):93. https://doi.org/10.1038/s42003-020-01577-x', 'journal-title': 'Commun Biol'}, { 'issue': '5', 'key': '136_CR36', 'doi-asserted-by': 'publisher', 'first-page': '730', 'DOI': '10.1002/cbic.202000047', 'volume': '21', 'author': 'JS Morse', 'year': '2020', 'unstructured': 'Morse JS, Lalonde T, Xu S, Liu WR (2020) Learning from the past: ' 'possible urgent prevention and treatment options for severe acute ' 'respiratory infections caused by 2019-nCoV. ChemBioChem 21(5):730–738. ' 'https://doi.org/10.1002/cbic.202000047', 'journal-title': 'ChemBioChem'}, { 'issue': '7942', 'key': '136_CR37', 'doi-asserted-by': 'publisher', 'first-page': '130', 'DOI': '10.1038/s41586-022-05522-2', 'volume': '613', 'author': 'W Msemburi', 'year': '2023', 'unstructured': 'Msemburi W, Karlinsky A, Knutson V, Aleshin-Guendel S, Chatterji S, ' 'Wakefield J (2023) The WHO estimates of excess mortality associated with ' 'the COVID-19 pandemic. Nature 613(7942):130–137. ' 'https://doi.org/10.1038/s41586-022-05522-2', 'journal-title': 'Nature'}, { 'issue': '2', 'key': '136_CR38', 'doi-asserted-by': 'publisher', 'first-page': '078', 'DOI': '10.7324/JAPS.2023.130209', 'volume': '13', 'author': 'V Nishinarizki', 'year': '2023', 'unstructured': 'Nishinarizki V, Hardianto A, Gaffar S, Muchtaridi M, Herlina T (2023) ' 'Virtual screening campaigns and ADMET evaluation to unlock the potency ' 'of flavonoids from Erythrina as 3CLpro SARS-COV-2 inhibitors. J Appl ' 'Pharm Sci 13(2):078–088. https://doi.org/10.7324/JAPS.2023.130209', 'journal-title': 'J Appl Pharm Sci'}, { 'issue': '6575', 'key': '136_CR39', 'doi-asserted-by': 'publisher', 'first-page': '1586', 'DOI': '10.1126/science.abl4784', 'volume': '374', 'author': 'DR Owen', 'year': '2021', 'unstructured': 'Owen DR, Allerton CM, Anderson AS, Aschenbrenner L, Avery M, Berritt S, ' 'Boras B, Cardin RD, Carlo A, Coffman KJ, Dantonio A (2021) An oral ' 'SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of ' 'COVID-19. Science 374(6575):1586–1593. ' 'https://doi.org/10.1126/science.abl4784', 'journal-title': 'Science'}, { 'key': '136_CR40', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.molstruc.2022.134390', 'volume': '1273', 'author': 'S Padhi', 'year': '2023', 'unstructured': 'Padhi S, Masi M, Mohanta YK, Saravanan M, Sharma S, Cimmino A, ' 'Shanmugarajan D, Evidente A, Tayung K, Rai AK (2023) In silico ' 'pharmacokinetics, molecular docking and dynamic simulation studies of ' 'endolichenic fungi secondary metabolites: an implication in identifying ' 'novel kinase inhibitors as potential anticancer agents. J Mol Struct ' '1273:134390. https://doi.org/10.1016/j.molstruc.2022.134390', 'journal-title': 'J Mol Struct'}, { 'key': '136_CR41', 'doi-asserted-by': 'publisher', 'DOI': '10.1080/07391102.2020.1757510', 'author': 'S Pant', 'year': '2020', 'unstructured': 'Pant S, Singh M, Ravichandiran V, Murty US, Srivastava HK (2020) ' 'Peptide-like and small-molecule inhibitors against Covid-19. J Biomol ' 'Struct Dyn. https://doi.org/10.1080/07391102.2020.1757510', 'journal-title': 'J Biomol Struct Dyn'}, { 'issue': '9', 'key': '136_CR42', 'doi-asserted-by': 'publisher', 'first-page': '3244', 'DOI': '10.1080/07391102.2020.1762741', 'volume': '39', 'author': 'SK Sinha', 'year': '2021', 'unstructured': 'Sinha SK, Shakya A, Prasad SK, Singh S, Gurav NS, Prasad RS, Gurav SS ' '(2021) An in-silico evaluation of different Saikosaponins for their ' 'potency against SARS-CoV-2 using NSP15 and fusion spike glycoprotein as ' 'targets. J Biomol Struct Dyn 39(9):3244–3255. ' 'https://doi.org/10.1080/07391102.2020.1762741', 'journal-title': 'J Biomol Struct Dyn'}, { 'key': '136_CR43', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.crgsc.2021.100202', 'volume': '4', 'author': 'BM Sivani', 'year': '2021', 'unstructured': 'Sivani BM, Venkatesh P, Murthy TK, Kumar SB (2021) In silico screening ' 'of antiviral compounds from Moringa oleifera for inhibition of ' 'SARS-CoV-2 main protease. Curr Res Green Sustain Chem 4:100202. ' 'https://doi.org/10.1016/j.crgsc.2021.100202', 'journal-title': 'Curr Res Green Sustain Chem'}, { 'issue': 'Suppl 2', 'key': '136_CR44', 'doi-asserted-by': 'publisher', 'first-page': 'S103', 'DOI': '10.3978/j.issn.2072-1439.2013.06.02', 'volume': '5', 'author': 'KK To', 'year': '2013', 'unstructured': 'To KK, Hung IF, Chan JF, Yuen KY (2013) From SARS coronavirus to novel ' 'animal and human coronaviruses. J Thorac Dis 5(Suppl 2):S103. ' 'https://doi.org/10.3978/j.issn.2072-1439.2013.06.02', 'journal-title': 'J Thorac Dis'}, { 'issue': '4', 'key': '136_CR45', 'doi-asserted-by': 'publisher', 'first-page': '671', 'DOI': '10.1002/jcc.21367', 'volume': '31', 'author': 'K Vanommeslaeghe', 'year': '2010', 'unstructured': 'Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian ' 'E, Guvench O, Lopes P, Vorobyov I, Mackerell AD Jr (2010) CHARMM general ' 'force field: a force field for drug-like molecules compatible with the ' 'CHARMM all-atom additive biological force fields. J Comput Chem ' '31(4):671–690. https://doi.org/10.1002/jcc.21367', 'journal-title': 'J Comput Chem'}, { 'key': '136_CR46', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.crphar.2021.100038', 'volume': '2', 'author': 'D Verma', 'year': '2021', 'unstructured': 'Verma D, Mitra D, Paul M, Chaudhary P, Kamboj A, Thatoi H, Janmeda P, ' 'Jain D, Panneerselvam P, Shrivastav R, Pant K (2021) Potential ' 'inhibitors of SARS-CoV-2 (COVID 19) proteases PLpro and Mpro/3CLpro: ' 'molecular docking and simulation studies of three pertinent medicinal ' 'plant natural components. Curr Res Pharmacol Drug Discov 2:100038. ' 'https://doi.org/10.1016/j.crphar.2021.100038', 'journal-title': 'Curr Res Pharmacol Drug Discov'}, { 'issue': '11', 'key': '136_CR47', 'doi-asserted-by': 'publisher', 'first-page': '5042', 'DOI': '10.13040/IJPSR.0975-8232.5(11).5040-49', 'volume': '5', 'author': 'M Yim', 'year': '2014', 'unstructured': 'Yim M, Sarma BP, Sinha S, Deka H, Deka H, Parida P, Ghosh A, Johari S ' '(2014) exploring the possible mechanism of Albizzia lebbeck components ' 'binding with drug targets of bronchial asthma–an insilico and clinical ' 'analysis. Int J Pharm Sci Res 5(11):5042–5051. ' 'https://doi.org/10.13040/IJPSR.0975-8232.5(11).5040-49', 'journal-title': 'Int J Pharm Sci Res'}, { 'issue': '6', 'key': '136_CR48', 'doi-asserted-by': 'publisher', 'DOI': '10.1371/journal.pone.0039546', 'volume': '7', 'author': 'JL Zhang', 'year': '2012', 'unstructured': 'Zhang JL, Zheng QC, Li ZQ, Zhang HX (2012) Molecular dynamics ' 'simulations suggest ligand’s binding to nicotinamidase/pyrazinamidase. ' 'PLoS ONE 7(6):e39546. https://doi.org/10.1371/journal.pone.0039546', 'journal-title': 'PLoS ONE'}, { 'issue': '16', 'key': '136_CR49', 'doi-asserted-by': 'publisher', 'DOI': '10.1073/pnas.2117142119', 'volume': '119', 'author': 'Y Zhao', 'year': '2022', 'unstructured': 'Zhao Y, Zhu Y, Liu X, Jin Z, Duan Y, Zhang Q, Wu C, Feng L, Du X, Zhao ' 'J, Shao M (2022) Structural basis for replicase polyprotein cleavage and ' 'substrate specificity of main protease from SARS-CoV-2. Proc Natl Acad ' 'Sci 119(16):e2117142119. https://doi.org/10.1073/pnas.2117142119', 'journal-title': 'Proc Natl Acad Sci'}], 'container-title': 'Journal of Proteins and Proteomics', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://link.springer.com/content/pdf/10.1007/s42485-024-00136-w.pdf', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://link.springer.com/article/10.1007/s42485-024-00136-w/fulltext.html', 'content-type': 'text/html', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://link.springer.com/content/pdf/10.1007/s42485-024-00136-w.pdf', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2024, 4, 26]], 'date-time': '2024-04-26T16:26:33Z', 'timestamp': 1714148793000}, 'score': 1, 'resource': {'primary': {'URL': 'https://link.springer.com/10.1007/s42485-024-00136-w'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2024, 4, 26]]}, 'references-count': 49, 'alternative-id': ['136'], 'URL': 'http://dx.doi.org/10.1007/s42485-024-00136-w', 'relation': {}, 'ISSN': ['2524-4663'], 'subject': [], 'container-title-short': 'J Proteins Proteom', 'published': {'date-parts': [[2024, 4, 26]]}, 'assertion': [ { 'value': '21 November 2023', 'order': 1, 'name': 'received', 'label': 'Received', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': '16 January 2024', 'order': 2, 'name': 'revised', 'label': 'Revised', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': '13 March 2024', 'order': 3, 'name': 'accepted', 'label': 'Accepted', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': '26 April 2024', 'order': 4, 'name': 'first_online', 'label': 'First Online', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, {'order': 1, 'name': 'Ethics', 'group': {'name': 'EthicsHeading', 'label': 'Declarations'}}, { 'value': 'Authors declare there are no financial competing interest which can impact the ' 'work in the manuscript.', 'order': 2, 'name': 'Ethics', 'group': {'name': 'EthicsHeading', 'label': 'Conflict of interest'}}]}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit