Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchQuercetinQuercetin (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

Integrated study of Quercetin as a potent SARS-CoV-2 RdRp inhibitor: Binding interactions, MD simulations, and In vitro assays

Metwaly et al., PLOS ONE, doi:10.1371/journal.pone.0312866
Dec 2024  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Quercetin for COVID-19
24th treatment shown to reduce risk in July 2021, now with p = 0.002 from 12 studies.
No treatment is 100% effective. Protocols combine treatments.
5,100+ studies for 111 treatments. c19early.org
In Silico and In Vitro study showing quercetin as a potent inhibitor of the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp). Computational analyses reveal quercetin binds similarly to remdesivir in the RdRp active site and outperforms it in binding affinity and stability. In Vitro, quercetin inhibited RdRp with an IC50 of 122.1 nM, superior to remdesivir's IC50 of 21.62 μM. Quercetin also showed higher efficacy against SARS-CoV-2 in vitro. The selectivity index suggested greater safety for quercetin with an SI of 791 vs. 6 for remdesivir.
Bioavailability. Quercetin has low bioavailability and studies typically use advanced formulations to improve bioavailability which may be required to reach therapeutic concentrations.
73 preclinical studies support the efficacy of quercetin for COVID-19:
In Silico studies predict inhibition of SARS-CoV-2, or minimization of side effects, with quercetin or metabolites via binding to the spikeA,3,9,10,22,24,25,30,38,39,41,42,62-64, MproB,3,7,9,11,13,15,17,18,20,23,24,30,34,36-38,42,43,45,63-65, RNA-dependent RNA polymeraseC,1,3,9,32,64, PLproD,3,37,45, ACE2E,22,23,28,37,41,63, TMPRSS2F,22, nucleocapsidG,3, helicaseH,3,29,34, endoribonucleaseI,39, NSP16/10J,6, cathepsin LK,26, Wnt-3L,22, FZDM,22, LRP6N,22, ezrinO,40, ADRPP,38, NRP1Q,41, EP300R,16, PTGS2S,23, HSP90AA1T,16,23, matrix metalloproteinase 9U,31, IL-6V,21,35, IL-10W,21, VEGFAX,35, and RELAY,35 proteins. In Vitro studies demonstrate inhibition of the MproB,15,46,51,59 protein, and inhibition of spike-ACE2 interactionZ,47. In Vitro studies demonstrate efficacy in Calu-3AA,50, A549AB,21, HEK293-ACE2+AC,58, Huh-7AD,25, Caco-2AE,49, Vero E6AF,19,42,49, mTECAG,52, and RAW264.7AH,52 cells. Animal studies demonstrate efficacy in K18-hACE2 miceAI,55, db/db miceAJ,52,61, BALB/c miceAK,60, and rats66. Quercetin reduced proinflammatory cytokines and protected lung and kidney tissue against LPS-induced damage in mice60, inhibits LPS-induced cytokine storm by modulating key inflammatory and antioxidant pathways in macrophages5, and inhibits SARS-CoV-2 ORF3a ion channel activity, which contributes to viral pathogenicity and cytotoxicity54.
a. The trimeric spike (S) protein is a glycoprotein that mediates viral entry by binding to the host ACE2 receptor, is critical for SARS-CoV-2's ability to infect host cells, and is a target of neutralizing antibodies. Inhibition of the spike protein prevents viral attachment, halting infection at the earliest stage.
b. The main protease or Mpro, also known as 3CLpro or nsp5, is a cysteine protease that cleaves viral polyproteins into functional units needed for replication. Inhibiting Mpro disrupts the SARS-CoV-2 lifecycle within the host cell, preventing the creation of new copies.
c. RNA-dependent RNA polymerase (RdRp), also called nsp12, is the core enzyme of the viral replicase-transcriptase complex that copies the positive-sense viral RNA genome into negative-sense templates for progeny RNA synthesis. Inhibiting RdRp blocks viral genome replication and transcription.
d. The papain-like protease (PLpro) has multiple functions including cleaving viral polyproteins and suppressing the host immune response by deubiquitination and deISGylation of host proteins. Inhibiting PLpro may block viral replication and help restore normal immune responses.
e. The angiotensin converting enzyme 2 (ACE2) protein is a host cell transmembrane protein that serves as the cellular receptor for the SARS-CoV-2 spike protein. ACE2 is expressed on many cell types, including epithelial cells in the lungs, and allows the virus to enter and infect host cells. Inhibition may affect ACE2's physiological function in blood pressure control.
f. Transmembrane protease serine 2 (TMPRSS2) is a host cell protease that primes the spike protein, facilitating cellular entry. TMPRSS2 activity helps enable cleavage of the spike protein required for membrane fusion and virus entry. Inhibition may especially protect respiratory epithelial cells, buy may have physiological effects.
g. The nucleocapsid (N) protein binds and encapsulates the viral genome by coating the viral RNA. N enables formation and release of infectious virions and plays additional roles in viral replication and pathogenesis. N is also an immunodominant antigen used in diagnostic assays.
h. The helicase, or nsp13, protein unwinds the double-stranded viral RNA, a crucial step in replication and transcription. Inhibition may prevent viral genome replication and the creation of new virus components.
i. The endoribonuclease, also known as NendoU or nsp15, cleaves specific sequences in viral RNA which may help the virus evade detection by the host immune system. Inhibition may hinder the virus's ability to mask itself from the immune system, facilitating a stronger immune response.
j. The NSP16/10 complex consists of non-structural proteins 16 and 10, forming a 2'-O-methyltransferase that modifies the viral RNA cap structure. This modification helps the virus evade host immune detection by mimicking host mRNA, making NSP16/10 a promising antiviral target.
k. Cathepsin L is a host lysosomal cysteine protease that can prime the spike protein through an alternative pathway when TMPRSS2 is unavailable. Dual targeting of cathepsin L and TMPRSS2 may maximize disruption of alternative pathways for virus entry.
l. Wingless-related integration site (Wnt) ligand 3 is a host signaling molecule that activates the Wnt signaling pathway, which is important in development, cell growth, and tissue repair. Some studies suggest that SARS-CoV-2 infection may interfere with the Wnt signaling pathway, and that Wnt3a is involved in SARS-CoV-2 entry.
m. The frizzled (FZD) receptor is a host transmembrane receptor that binds Wnt ligands, initiating the Wnt signaling cascade. FZD serves as a co-receptor, along with ACE2, in some proposed mechanisms of SARS-CoV-2 infection. The virus may take advantage of this pathway as an alternative entry route.
n. Low-density lipoprotein receptor-related protein 6 is a cell surface co-receptor essential for Wnt signaling. LRP6 acts in tandem with FZD for signal transduction and has been discussed as a potential co-receptor for SARS-CoV-2 entry.
o. The ezrin protein links the cell membrane to the cytoskeleton (the cell's internal support structure) and plays a role in cell shape, movement, adhesion, and signaling. Drugs that occupy the same spot on ezrin where the viral spike protein would bind may hindering viral attachment, and drug binding could further stabilize ezrin, strengthening its potential natural capacity to impede viral fusion and entry.
p. The Adipocyte Differentiation-Related Protein (ADRP, also known as Perilipin 2 or PLIN2) is a lipid droplet protein regulating the storage and breakdown of fats in cells. SARS-CoV-2 may hijack the lipid handling machinery of host cells and ADRP may play a role in this process. Disrupting ADRP's interaction with the virus may hinder the virus's ability to use lipids for replication and assembly.
q. Neuropilin-1 (NRP1) is a cell surface receptor with roles in blood vessel development, nerve cell guidance, and immune responses. NRP1 may function as a co-receptor for SARS-CoV-2, facilitating viral entry into cells. Blocking NRP1 may disrupt an alternative route of viral entry.
r. EP300 (E1A Binding Protein P300) is a transcriptional coactivator involved in several cellular processes, including growth, differentiation, and apoptosis, through its acetyltransferase activity that modifies histones and non-histone proteins. EP300 facilitates viral entry into cells and upregulates inflammatory cytokine production.
s. Prostaglandin G/H synthase 2 (PTGS2, also known as COX-2) is an enzyme crucial for the production of inflammatory molecules called prostaglandins. PTGS2 plays a role in the inflammatory response that can become severe in COVID-19 and inhibitors (like some NSAIDs) may have benefits in dampening harmful inflammation, but note that prostaglandins have diverse physiological functions.
t. Heat Shock Protein 90 Alpha Family Class A Member 1 (HSP90AA1) is a chaperone protein that helps other proteins fold correctly and maintains their stability. HSP90AA1 plays roles in cell signaling, survival, and immune responses. HSP90AA1 may interact with numerous viral proteins, but note that it has diverse physiological functions.
u. Matrix metalloproteinase 9 (MMP9), also called gelatinase B, is a zinc-dependent enzyme that breaks down collagen and other components of the extracellular matrix. MMP9 levels increase in severe COVID-19. Overactive MMP9 can damage lung tissue and worsen inflammation. Inhibition of MMP9 may prevent excessive tissue damage and help regulate the inflammatory response.
v. The interleukin-6 (IL-6) pro-inflammatory cytokine (signaling molecule) has a complex role in the immune response and may trigger and perpetuate inflammation. Elevated IL-6 levels are associated with severe COVID-19 cases and cytokine storm. Anti-IL-6 therapies may be beneficial in reducing excessive inflammation in severe COVID-19 cases.
w. The interleukin-10 (IL-10) anti-inflammatory cytokine helps regulate and dampen immune responses, preventing excessive inflammation. IL-10 levels can also be elevated in severe COVID-19. IL-10 could either help control harmful inflammation or potentially contribute to immune suppression.
x. Vascular Endothelial Growth Factor A (VEGFA) promotes the growth of new blood vessels (angiogenesis) and has roles in inflammation and immune responses. VEGFA may contribute to blood vessel leakiness and excessive inflammation associated with severe COVID-19.
y. RELA is a transcription factor subunit of NF-kB and is a key regulator of inflammation, driving pro-inflammatory gene expression. SARS-CoV-2 may hijack and modulate NF-kB pathways.
z. The interaction between the SARS-CoV-2 spike protein and the human ACE2 receptor is a primary method of viral entry, inhibiting this interaction can prevent the virus from attaching to and entering host cells, halting infection at an early stage.
aa. Calu-3 is a human lung adenocarcinoma cell line with moderate ACE2 and TMPRSS2 expression and SARS-CoV-2 susceptibility. It provides a model of the human respiratory epithelium, but many not be ideal for modeling early stages of infection due to the moderate expression levels of ACE2 and TMPRSS2.
ab. A549 is a human lung carcinoma cell line with low ACE2 expression and SARS-CoV-2 susceptibility. Viral entry/replication can be studied but the cells may not replicate all aspects of lung infection.
ac. HEK293-ACE2+ is a human embryonic kidney cell line engineered for high ACE2 expression and SARS-CoV-2 susceptibility.
ad. Huh-7 cells were derived from a liver tumor (hepatoma).
ae. Caco-2 cells come from a colorectal adenocarcinoma (cancer). They are valued for their ability to form a polarized cell layer with properties similar to the intestinal lining.
af. Vero E6 is an African green monkey kidney cell line with low/no ACE2 expression and high SARS-CoV-2 susceptibility. The cell line is easy to maintain and supports robust viral replication, however the monkey origin may not accurately represent human responses.
ag. mTEC is a mouse tubular epithelial cell line.
ah. RAW264.7 is a mouse macrophage cell line.
ai. A mouse model expressing the human ACE2 receptor under the control of the K18 promoter.
aj. A mouse model of obesity and severe insulin resistance leading to type 2 diabetes due to a mutation in the leptin receptor gene that impairs satiety signaling.
ak. A mouse model commonly used in infectious disease and cancer research due to higher immune response and susceptibility to infection.
Metwaly et al., 3 Dec 2024, peer-reviewed, 6 authors. Contact: ametwaly@azhar.edu.eg, ekaeed@um.edu.sa.
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
This PaperQuercetinAll
Integrated study of Quercetin as a potent SARS-CoV-2 RdRp inhibitor: Binding interactions, MD simulations, and In vitro assays
Ahmed M Metwaly, Esmail M El-Fakharany, Aisha A Alsfouk, Ibrahim M Ibrahim, Eslam B Elkaeed, Ibrahim. H Eissa
PLOS ONE, doi:10.1371/journal.pone.0312866
To find an effective inhibitor for SARS-CoV-2, Quercetin's chemical structure was compared to nine ligands associated with nine key SARS-CoV-2 proteins. It was found that Quercetin closely resembles Remdesivir, the co-crystallized ligand of RNA-dependent RNA polymerase (RdRp). This similarity was confirmed through flexible alignment experiments and molecular docking studies, which showed that both Quercetin and Remdesivir bind similarly to the active site of RdRp. Molecular dynamics (MD) simulations over a 200 ns trajectory, analyzing various factors like RMSD, RG, RMSF, SASA, and hydrogen bonding were conducted. These simulations gave detailed insights into the binding interactions of Quercetin with RdRp compared to Remdesivir. Further analyses, including MM-GBSA, Protein-Ligand Interaction Fingerprints (ProLIF) and Profile PLIP studies, confirmed the stability of Quercetin's binding. Principal component analysis of trajectories (PCAT) provided insights into the coordinated movements within the systems studied. In vitro assays showed that Quercetin is highly effective in inhibiting RdRp, with an IC 50 of 122.1 ±5.46 nM, which is better than Remdesivir's IC 50 of 21.62 ±2.81 μM. Moreover, Quercetin showed greater efficacy against SARS-CoV-2 In vitro, with an IC 50 of 1.149 μg/ml compared to Remdesivir's 9.54 μg/ml. The selectivity index (SI) values highlighted Quercetin's safety margin (SI: 791) over Remdesivir (SI: 6). In conclusion, our comprehensive study suggests that Quercetin is a promising candidate for further research as an inhibitor of SARS-CoV-2 RdRp, providing valuable insights for developing an effective anti-COVID-19 treatment.
Supporting information S1 File. The detailed methodology for the molecular similarity, the molecular docking, the MD simulations, the ProLIF, the PLIP, the MM-GBSA, the PCAT, and the In vitro studies. (PDF) Author Contributions Conceptualization: Ahmed M. Metwaly
References
Abraham, GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
Agrawal, Blunden, Quercetin: Antiviral Significance and Possible COVID-19 Integrative Considerations, Natural Product Communications
Amadei, Essential dynamics of proteins
Amin, First structure-activity relationship analysis of SARS-CoV-2 virus main protease (Mpro) inhibitors: an endeavor on COVID-19 drug discovery, Molecular diversity, doi:10.1007/s11030-020-10166-3
Badshah, Antiviral activities of flavonoids, Biomedicine & Pharmacotherapy, doi:10.1016/j.biopha.2021.111596
Bouysset, Fiorucci, ProLIF: a library to encode molecular interactions as fingerprints, Journal of Cheminformatics, doi:10.1186/s13321-021-00548-6
Brooks, CHARMM: the biomolecular simulation program
Cappello, Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease, Sci Rep, doi:10.1038/s41598-016-0001-8
Eissa, In silico exploration of potential natural inhibitors against SARS-Cov-2 nsp10, Molecules, doi:10.3390/molecules26206151
Eissa, Ligand and Structure-Based In Silico Determination of the Most Promising SARS-CoV-2 nsp16-nsp10 2′-o-Methyltransferase Complex Inhibitors among 3009, FDA Approved Drugs
Eissa, Multistaged In Silico Discovery of the Best SARS-CoV-2 Main Protease Inhibitors amongst 3009 Clinical and FDA-Approved Compounds, Journal of Chemistry
El-Fakharany, Inhibitory effect of lactoferrin-coated zinc nanoparticles on SARS-CoV-2 replication and entry along with improvement of lung fibrosis induced in adult male albino rats, Int J Biol Macromol, doi:10.1016/j.ijbiomac.2023.125552
Elkaeed, A Multistage In Silico Study of Natural Potential Inhibitors Targeting SARS-CoV-2 Main Protease, International Journal of Molecular Sciences, doi:10.3390/ijms23158407
Elkaeed, Computer-aided drug discovery of natural antiviral metabolites as potential SARS-CoV-2 helicase inhibitors, Journal of Chemical Research
Elkaeed, Computer-assisted drug discovery of potential natural inhibitors of the SARS-CoV-2 RNA-dependent RNA polymerase through a multi-phase in silico approach, Antivir Ther, doi:10.1177/13596535231199838
Elkaeed, Discovery of Potential SARS-CoV-2 Papain-like Protease Natural Inhibitors Employing a Multi-Phase In Silico Approach, Life, doi:10.3390/life12091407
Elkaeed, Multi-Phase In Silico Discovery of Potential SARS-CoV-2 RNA-Dependent RNA Polymerase Inhibitors among 3009 Clinical and FDA-Approved Related Drugs
Elkaeed, Multi-Step In Silico Discovery of Natural Drugs against COVID-19 Targeting Main Protease, Int J Mol Sci, doi:10.3390/ijms23136912
Elkaeed, The Discovery of Potential SARS-CoV-2 Natural Inhibitors among 4924 African Metabolites Targeting the Papain-like Protease: A Multi-Phase In Silico Approach, Metabolites, doi:10.3390/metabo12111122
Fu, Zhang, Progress in molecular docking
Gonza ´lez-Dı ´az, New Experimental and Computational Tools for Drug Discovery. Part-XII, Curr Top Med Chem, doi:10.2174/156802662109210526103614
Grimme, Schreiner, Computational Chemistry: The Fate of Current Methods and Future Challenges, Angew Chem Int Ed Engl, doi:10.1002/anie.201709943
Hassan, Flavonoids with Anti-Herpes Simplex Virus Properties: Deciphering Their Mechanisms in Disrupting the Viral Life Cycle
Hassell, Crystallization of protein-ligand complexes, Acta Crystallographica Section D: Biological Crystallography, doi:10.1107/S0907444906047020
Hiremath, In silico docking analysis revealed the potential of phytochemicals present in Phyllanthus amarus and Andrographis paniculata, used in Ayurveda medicine in inhibiting SARS-CoV-2, 3 Biotech, doi:10.1007/s13205-020-02578-7
Ho, Therapeutic implications of quercetin and its derived-products in COVID-19 protection and prophylactic, Heliyon, doi:10.1016/j.heliyon.2024.e30080
Hospital, Molecular dynamics simulations: advances and applications, Adv Appl Bioinform Chem, doi:10.2147/AABC.S70333
Idris, Computer-aided screening for potential TMPRSS2 inhibitors: a combination of pharmacophore modeling, molecular docking and molecular dynamics simulation approaches, J Biomol Struct Dyn, doi:10.1080/07391102.2020.1792346
Jena, Pant, Srivastava, Artificially expanded genetic information systems (AEGISs) as potent inhibitors of the RNA-dependent RNA polymerase of the SARS-CoV-2, Journal of Biomolecular Structure and Dynamics, doi:10.1080/07391102.2021.1883112
Jiang, Yin, Xu, RNA-dependent RNA polymerase: Structure, mechanism, and drug discovery for COVID-19, Biochemical and Biophysical Research Communications, doi:10.1016/j.bbrc.2020.08.116
Khachatoorian, Divergent antiviral effects of bioflavonoids on the hepatitis C virus life cycle, Virology, doi:10.1016/j.virol.2012.08.029
Lu, Li, A New Computer Model for Evaluating the Selective Binding Affinity of Phenylalkylamines to T-Type Ca(2+) Channels, Pharmaceuticals, doi:10.3390/ph14020141
Machitani, RNA-dependent RNA polymerase, RdRP, a promising therapeutic target for cancer and potentially COVID-19
Maggiora, Molecular similarity in medicinal chemistry: miniperspective, Journal of medicinal chemistry
Metwaly, Anti-virulence potential of patuletin, a natural flavone, against Staphylococcus aureus: In vitro and In silico investigations, Heliyon, doi:10.1016/j.heliyon.2024.e24075
Metwaly, Black Ginseng and Its Saponins: Preparation, Phytochemistry and Pharmacological Effects, Molecules, doi:10.3390/molecules24101856
Metwaly, Comprehensive structural and functional analysis of Patuletin as a potent inhibitor of SARS-CoV-2 targeting the RNA-dependent RNA polymerases, Journal of Molecular Structure
Metwaly, Computer-Assisted Drug Discovery of Potential African Anti-SARS-CoV-2 Natural Products Targeting the Helicase Protein, Natural Product Communications
Metwaly, In silico and in vitro evaluation of the anti-virulence potential of patuletin, a natural methoxy flavone, against Pseudomonas aeruginosa, PeerJ, doi:10.7717/peerj.16826
Metwaly, Nicotinamide Loaded Chitosan Nanocomplex Shows Improved Anticancer Potential: Molecular Docking, Synthesis, Characterization and In vitro Evaluations, Current Organic Chemistry
Metwaly, Preparation and Characterization of Patuletin-Loaded Chitosan Nanoparticles with Improved Selectivity and Safety Profiles for Anticancer Applications, Journal of Chemistry
Metwaly, Repurposing FDA-Approved Drugs as Potential Inhibitors of SARS-CoV-2 PLpro: A Comprehensive Computational Study
Metwaly, Structure-Based Virtual Screening, Docking, ADMET, Molecular Dynamics, and MM-PBSA Calculations for the Discovery of Potential Natural SARS-CoV-2 Helicase Inhibitors from the Traditional Chinese Medicine, Journal of Chemistry
Metwaly, The Computational Preventive Potential of the Rare Flavonoid, Patuletin, Isolated from Tagetes patula, against SARS-CoV-2, Plants, doi:10.3390/plants11141886
Metwaly, Traditional ancient Egyptian medicine: A review, Saudi J Biol Sci, doi:10.1016/j.sjbs.2021.06.044
Morimoto, Anti-influenza A virus activity of flavonoids in vitro: a structure-activity relationship, Journal of Natural Medicines, doi:10.1007/s11418-022-01660-z
Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J Immunol Methods, doi:10.1016/0022-1759%2883%2990303-4
Mostafa, FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2, Pharmaceuticals, doi:10.3390/ph13120443
Mouffouk, Flavonols as potential antiviral drugs targeting SARS-CoV-2 proteases (3CLpro and PLpro), spike protein, RNA-dependent RNA polymerase (RdRp) and angiotensin-converting enzyme II receptor (ACE2), European Journal of Pharmacology, doi:10.1016/j.ejphar.2020.173759
Naderi, An overview of anti-Hepatitis B virus flavonoids and their mechanisms of action
Nantasenamat, A practical overview of quantitative structure-activity relationship
Naydenova, Structure of the SARS-CoV-2 RNA-dependent RNA polymerase in the presence of favipiravir-RTP
Papaleo, Free-energy landscape, principal component analysis, and structural clustering to identify representative conformations from molecular dynamics simulations: the myoglobin case
Petrillo, Quercetin and its derivates as antiviral potentials: A comprehensive review
Ranjan, Isomorphism: 'molecular similarity to crystal structure similarity' in multicomponent forms of analgesic drugs tolfenamic and mefenamic acid, IUCrJ, doi:10.1107/S205225251901604X
Reker, Schneider, Active-learning strategies in computer-assisted drug discovery, doi:10.1016/j.drudis.2014.12.004
Roy, Quercetin inhibits SARS-CoV-2 infection and prevents syncytium formation by cells coexpressing the viral spike protein and human ACE2, Virology Journal, doi:10.1186/s12985-024-02299-w
Salentin, PLIP: fully automated protein-ligand interaction profiler, Nucleic acids research, doi:10.1093/nar/gkv315
Tubiana, TTClust: A Versatile Molecular Simulation Trajectory Clustering Program with Graphical Summaries, J Chem Inf Model, doi:10.1021/acs.jcim.8b00512
Tuccinardi, What is the current value of MM/PBSA and MM/GBSA methods in drug discovery
Valde ´s-Tresanco, gmx_MMPBSA: a new tool to perform end-state free energy calculations with GROMACS
Wang, Research Progress of the Antiviral Bioactivities of Natural Flavonoids, Natural Products and Bioprospecting, doi:10.1007/s13659-020-00257-x
Westbrook, Burley, How structural biologists and the Protein Data Bank contributed to recent FDA new drug approvals, Structure, doi:10.1016/j.str.2018.11.007
Who, None
Willems, De Cesco, Svensson, Computational Chemistry on a Budget: Supporting Drug Discovery with Limited Resources, J Med Chem, doi:10.1021/acs.jmedchem.9b02126
Yang, Concepts of artificial intelligence for computer-assisted drug discovery
Zhang, Zhou, Structural Basis of the Potential Binding Mechanism of Remdesivir to SARS-CoV-2 RNA-Dependent RNA Polymerase, The Journal of Physical Chemistry B, doi:10.1021/acs.jpcb.0c04198
{ 'indexed': { 'date-parts': [[2024, 12, 4]], 'date-time': '2024-12-04T05:27:48Z', 'timestamp': 1733290068943, 'version': '3.30.1'}, 'reference-count': 68, 'publisher': 'Public Library of Science (PLoS)', 'issue': '12', 'license': [ { 'start': { 'date-parts': [[2024, 12, 3]], 'date-time': '2024-12-03T00:00:00Z', 'timestamp': 1733184000000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'http://creativecommons.org/licenses/by/4.0/'}], 'funder': [ { 'DOI': '10.13039/501100004242', 'name': 'Princess Nourah Bint Abdulrahman University', 'doi-asserted-by': 'publisher', 'award': ['PNURSP2024R116'], 'id': [{'id': '10.13039/501100004242', 'id-type': 'DOI', 'asserted-by': 'publisher'}]}], 'content-domain': {'domain': ['www.plosone.org'], 'crossmark-restriction': False}, 'abstract': '<jats:p>To find an effective inhibitor for SARS-CoV-2, Quercetin’s chemical structure was ' 'compared to nine ligands associated with nine key SARS-CoV-2 proteins. It was found that ' 'Quercetin closely resembles Remdesivir, the co-crystallized ligand of RNA-dependent RNA ' 'polymerase (RdRp). This similarity was confirmed through flexible alignment experiments and ' 'molecular docking studies, which showed that both Quercetin and Remdesivir bind similarly to ' 'the active site of RdRp. Molecular dynamics (MD) simulations over a 200 ns trajectory, ' 'analyzing various factors like RMSD, RG, RMSF, SASA, and hydrogen bonding were conducted. ' 'These simulations gave detailed insights into the binding interactions of Quercetin with RdRp ' 'compared to Remdesivir. Further analyses, including MM-GBSA, Protein-Ligand Interaction ' 'Fingerprints (ProLIF) and Profile PLIP studies, confirmed the stability of Quercetin’s ' 'binding. Principal component analysis of trajectories (PCAT) provided insights into the ' 'coordinated movements within the systems studied. <jats:italic>In vitro</jats:italic> assays ' 'showed that Quercetin is highly effective in inhibiting RdRp, with an ' 'IC<jats:sub>50</jats:sub> of 122.1 ±5.46 nM, which is better than Remdesivir’s ' 'IC<jats:sub>50</jats:sub> of 21.62 ±2.81 μM. Moreover, Quercetin showed greater efficacy ' 'against SARS-CoV-2 <jats:italic>In vitro</jats:italic>, with an IC<jats:sub>50</jats:sub> of ' '1.149 μg/ml compared to Remdesivir’s 9.54 μg/ml. The selectivity index (SI) values ' 'highlighted Quercetin’s safety margin (SI: 791) over Remdesivir (SI: 6). In conclusion, our ' 'comprehensive study suggests that Quercetin is a promising candidate for further research as ' 'an inhibitor of SARS-CoV-2 RdRp, providing valuable insights for developing an effective ' 'anti-COVID-19 treatment.</jats:p>', 'DOI': '10.1371/journal.pone.0312866', 'type': 'journal-article', 'created': {'date-parts': [[2024, 12, 3]], 'date-time': '2024-12-03T18:22:32Z', 'timestamp': 1733250152000}, 'page': 'e0312866', 'update-policy': 'https://doi.org/10.1371/journal.pone.corrections_policy', 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': 'Integrated study of Quercetin as a potent SARS-CoV-2 RdRp inhibitor: Binding interactions, MD ' 'simulations, and In vitro assays', 'prefix': '10.1371', 'volume': '19', 'author': [ { 'ORCID': 'https://orcid.org/0000-0001-8566-1980', 'authenticated-orcid': True, 'given': 'Ahmed M.', 'family': 'Metwaly', 'sequence': 'first', 'affiliation': []}, {'given': 'Esmail M.', 'family': 'El-Fakharany', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'https://orcid.org/0000-0003-4497-5013', 'authenticated-orcid': True, 'given': 'Aisha A.', 'family': 'Alsfouk', 'sequence': 'additional', 'affiliation': []}, {'given': 'Ibrahim M.', 'family': 'Ibrahim', 'sequence': 'additional', 'affiliation': []}, {'given': 'Eslam B.', 'family': 'Elkaeed', 'sequence': 'additional', 'affiliation': []}, {'given': 'Ibrahim. H.', 'family': 'Eissa', 'sequence': 'additional', 'affiliation': []}], 'member': '340', 'published-online': {'date-parts': [[2024, 12, 3]]}, 'reference': [ { 'key': 'pone.0312866.ref001', 'unstructured': 'WHO. COVID-19 dashbord. 2024 [cited 2024 March, 2nd 2024]; ' 'https://data.who.int/dashboards/covid19/cases?n=c.'}, { 'issue': '18', 'key': 'pone.0312866.ref002', 'first-page': '10520', 'volume': '119', 'author': 'X. Yang', 'year': '2019', 'journal-title': 'Concepts of artificial intelligence for computer-assisted drug ' 'discovery'}, { 'issue': '4', 'key': 'pone.0312866.ref003', 'first-page': '458', 'article-title': 'Active-learning strategies in computer-assisted drug discovery', 'volume': '20', 'author': 'D. Reker', 'year': '2015', 'journal-title': 'J.D.d.t'}, { 'issue': '2', 'key': 'pone.0312866.ref004', 'doi-asserted-by': 'crossref', 'first-page': '211', 'DOI': '10.1016/j.str.2018.11.007', 'article-title': 'How structural biologists and the Protein Data Bank contributed to ' 'recent FDA new drug approvals', 'volume': '27', 'author': 'J.D. Westbrook', 'year': '2019', 'journal-title': 'Structure'}, { 'issue': '16', 'key': 'pone.0312866.ref005', 'doi-asserted-by': 'crossref', 'first-page': '4170', 'DOI': '10.1002/anie.201709943', 'article-title': 'Computational Chemistry: The Fate of Current Methods and Future ' 'Challenges', 'volume': '57', 'author': 'S. Grimme', 'year': '2018', 'journal-title': 'Angew Chem Int Ed Engl'}, { 'issue': '9', 'key': 'pone.0312866.ref006', 'doi-asserted-by': 'crossref', 'first-page': '789', 'DOI': '10.2174/156802662109210526103614', 'article-title': 'New Experimental and Computational Tools for Drug Discovery. Part—XII', 'volume': '21', 'author': 'H. González-Díaz', 'year': '2021', 'journal-title': 'Curr Top Med Chem'}, { 'issue': '3', 'key': 'pone.0312866.ref007', 'doi-asserted-by': 'crossref', 'first-page': '1827', 'DOI': '10.1007/s11030-020-10166-3', 'article-title': 'First structure—activity relationship analysis of SARS-CoV-2 virus main ' 'protease (Mpro) inhibitors: an endeavor on COVID-19 drug discovery', 'volume': '25', 'author': 'S. Amin', 'year': '2021', 'journal-title': 'Molecular diversity'}, { 'issue': '18', 'key': 'pone.0312866.ref008', 'doi-asserted-by': 'crossref', 'first-page': '10158', 'DOI': '10.1021/acs.jmedchem.9b02126', 'article-title': 'Computational Chemistry on a Budget: Supporting Drug Discovery with ' 'Limited Resources', 'volume': '63', 'author': 'H. Willems', 'year': '2020', 'journal-title': 'J Med Chem'}, { 'issue': '15', 'key': 'pone.0312866.ref009', 'doi-asserted-by': 'crossref', 'first-page': '5638', 'DOI': '10.1080/07391102.2020.1792346', 'article-title': 'Computer-aided screening for potential TMPRSS2 inhibitors: a ' 'combination of pharmacophore modeling, molecular docking and molecular ' 'dynamics simulation approaches', 'volume': '39', 'author': 'M.O. Idris', 'year': '2021', 'journal-title': 'J Biomol Struct Dyn'}, { 'issue': '2', 'key': 'pone.0312866.ref010', 'doi-asserted-by': 'crossref', 'first-page': '141', 'DOI': '10.3390/ph14020141', 'article-title': 'A New Computer Model for Evaluating the Selective Binding Affinity of ' 'Phenylalkylamines to T-Type Ca(2+) Channels', 'volume': '14', 'author': 'Y. Lu', 'year': '2021', 'journal-title': 'Pharmaceuticals (Basel)'}, { 'key': 'pone.0312866.ref011', 'doi-asserted-by': 'crossref', 'first-page': '6684015', 'DOI': '10.1155/2023/6684015', 'article-title': 'Preparation and Characterization of Patuletin-Loaded Chitosan ' 'Nanoparticles with Improved Selectivity and Safety Profiles for ' 'Anticancer Applications', 'volume': '2023', 'author': 'A.M. Metwaly', 'year': '2023', 'journal-title': 'Journal of Chemistry'}, { 'key': 'pone.0312866.ref012', 'doi-asserted-by': 'crossref', 'first-page': '1', 'DOI': '10.2174/0113852728283226231227061211', 'article-title': 'Nicotinamide Loaded Chitosan Nanocomplex Shows Improved Anticancer ' 'Potential: Molecular Docking, Synthesis, Characterization and In vitro ' 'Evaluations', 'volume': '28', 'author': 'M. Metwaly', 'year': '2024', 'journal-title': 'Current Organic Chemistry'}, { 'key': 'pone.0312866.ref013', 'first-page': '83', 'volume': '7', 'author': 'J. Fan', 'year': '2019', 'journal-title': 'Progress in molecular docking'}, { 'key': 'pone.0312866.ref014', 'first-page': '37', 'article-title': 'Molecular dynamics simulations: advances and applications', 'volume': '8', 'author': 'A. Hospital', 'year': '2015', 'journal-title': 'Adv Appl Bioinform Chem'}, { 'issue': 'Pt 2', 'key': 'pone.0312866.ref015', 'doi-asserted-by': 'crossref', 'first-page': '173', 'DOI': '10.1107/S205225251901604X', 'article-title': 'Isomorphism: ’molecular similarity to crystal structure similarity’ in ' 'multicomponent forms of analgesic drugs tolfenamic and mefenamic acid', 'volume': '7', 'author': 'S. Ranjan', 'year': '2020', 'journal-title': 'IUCrJ'}, { 'issue': '10', 'key': 'pone.0312866.ref016', 'doi-asserted-by': 'crossref', 'first-page': '1856', 'DOI': '10.3390/molecules24101856', 'article-title': 'Black Ginseng and Its Saponins: Preparation, Phytochemistry and ' 'Pharmacological Effects', 'volume': '24', 'author': 'A.M. Metwaly', 'year': '2019', 'journal-title': 'Molecules'}, { 'issue': '10', 'key': 'pone.0312866.ref017', 'doi-asserted-by': 'crossref', 'first-page': '5823', 'DOI': '10.1016/j.sjbs.2021.06.044', 'article-title': 'Traditional ancient Egyptian medicine: A review', 'volume': '28', 'author': 'A.M. Metwaly', 'year': '2021', 'journal-title': 'Saudi J Biol Sci'}, { 'key': 'pone.0312866.ref018', 'doi-asserted-by': 'crossref', 'first-page': '111596', 'DOI': '10.1016/j.biopha.2021.111596', 'article-title': 'Antiviral activities of flavonoids', 'volume': '140', 'author': 'S.L. Badshah', 'year': '2021', 'journal-title': 'Biomedicine & Pharmacotherapy'}, { 'issue': '5', 'key': 'pone.0312866.ref019', 'doi-asserted-by': 'crossref', 'first-page': '271', 'DOI': '10.1007/s13659-020-00257-x', 'article-title': 'Research Progress of the Antiviral Bioactivities of Natural Flavonoids', 'volume': '10', 'author': 'L. Wang', 'year': '2020', 'journal-title': 'Natural Products and Bioprospecting'}, { 'key': 'pone.0312866.ref020', 'doi-asserted-by': 'crossref', 'first-page': '173759', 'DOI': '10.1016/j.ejphar.2020.173759', 'article-title': 'Flavonols as potential antiviral drugs targeting SARS-CoV-2 proteases ' '(3CLpro and PLpro), spike protein, RNA-dependent RNA polymerase (RdRp) ' 'and angiotensin-converting enzyme II receptor (ACE2)', 'volume': '891', 'author': 'C. Mouffouk', 'year': '2021', 'journal-title': 'European Journal of Pharmacology'}, { 'key': 'pone.0312866.ref021', 'volume': '14', 'author': 'M. Naderi', 'year': '2024', 'journal-title': 'An overview of anti-Hepatitis B virus flavonoids and their mechanisms ' 'of action'}, { 'issue': '1', 'key': 'pone.0312866.ref022', 'doi-asserted-by': 'crossref', 'first-page': '219', 'DOI': '10.1007/s11418-022-01660-z', 'article-title': 'Anti-influenza A virus activity of flavonoids in vitro: a ' 'structure—activity relationship', 'volume': '77', 'author': 'R. Morimoto', 'year': '2023', 'journal-title': 'Journal of Natural Medicines'}, { 'issue': '12', 'key': 'pone.0312866.ref023', 'first-page': '2340', 'volume': '15', 'author': 'M. Šudomová', 'year': '2023', 'journal-title': 'Flavonoids with Anti-Herpes Simplex Virus Properties: Deciphering Their ' 'Mechanisms in Disrupting the Viral Life Cycle'}, { 'issue': '1', 'key': 'pone.0312866.ref024', 'first-page': '266', 'volume': '36', 'author': 'A. Di Petrillo', 'year': '2022', 'journal-title': 'Quercetin and its derivates as antiviral potentials: A comprehensive ' 'review'}, { 'issue': '1', 'key': 'pone.0312866.ref025', 'doi-asserted-by': 'crossref', 'first-page': '1', 'DOI': '10.1038/s41598-016-0001-8', 'article-title': 'Ultrastructural Characterization of the Lower Motor System in a Mouse ' 'Model of Krabbe Disease', 'volume': '6', 'author': 'V. Cappello', 'year': '2016', 'journal-title': 'Sci Rep'}, { 'issue': '2', 'key': 'pone.0312866.ref026', 'doi-asserted-by': 'crossref', 'first-page': '346', 'DOI': '10.1016/j.virol.2012.08.029', 'article-title': 'Divergent antiviral effects of bioflavonoids on the hepatitis C virus ' 'life cycle', 'volume': '433', 'author': 'R. Khachatoorian', 'year': '2012', 'journal-title': 'Virology'}, { 'issue': '12', 'key': 'pone.0312866.ref027', 'doi-asserted-by': 'crossref', 'first-page': '1934578X20976293', 'DOI': '10.1177/1934578X20976293', 'article-title': 'Quercetin: Antiviral Significance and Possible COVID-19 Integrative ' 'Considerations', 'volume': '15', 'author': 'P.K. Agrawal', 'year': '2020', 'journal-title': 'Natural Product Communications'}, { 'issue': '20', 'key': 'pone.0312866.ref028', 'doi-asserted-by': 'crossref', 'first-page': '6151', 'DOI': '10.3390/molecules26206151', 'article-title': 'In silico exploration of potential natural inhibitors against ' 'SARS-Cov-2 nsp10', 'volume': '26', 'author': 'I.H. Eissa', 'year': '2021', 'journal-title': 'Molecules'}, { 'issue': '1', 'key': 'pone.0312866.ref029', 'doi-asserted-by': 'crossref', 'first-page': '17475198231221253', 'DOI': '10.1177/17475198231221253', 'article-title': 'Computer-aided drug discovery of natural antiviral metabolites as ' 'potential SARS-CoV-2 helicase inhibitors', 'volume': '48', 'author': 'E.B. Elkaeed', 'year': '2024', 'journal-title': 'Journal of Chemical Research'}, { 'issue': '13', 'key': 'pone.0312866.ref030', 'doi-asserted-by': 'crossref', 'first-page': '6912', 'DOI': '10.3390/ijms23136912', 'article-title': 'Multi-Step In Silico Discovery of Natural Drugs against COVID-19 ' 'Targeting Main Protease', 'volume': '23', 'author': 'E.B. Elkaeed', 'year': '2022', 'journal-title': 'Int J Mol Sci'}, { 'issue': '15', 'key': 'pone.0312866.ref031', 'doi-asserted-by': 'crossref', 'first-page': '8407', 'DOI': '10.3390/ijms23158407', 'article-title': 'A Multistage In Silico Study of Natural Potential Inhibitors Targeting ' 'SARS-CoV-2 Main Protease', 'volume': '23', 'author': 'E.B. Elkaeed', 'year': '2022', 'journal-title': 'International Journal of Molecular Sciences'}, { 'issue': '9', 'key': 'pone.0312866.ref032', 'first-page': '1407', 'article-title': 'Discovery of Potential SARS-CoV-2 Papain-like Protease Natural ' 'Inhibitors Employing a Multi-Phase In Silico Approach', 'volume': '12', 'author': 'E.B. Elkaeed', 'year': '2022', 'journal-title': 'Life (Basel)'}, { 'issue': '3', 'key': 'pone.0312866.ref033', 'first-page': '530', 'volume': '10', 'author': 'E.B. Elkaeed', 'year': '2022', 'journal-title': 'Multi-Phase In Silico Discovery of Potential SARS-CoV-2 RNA-Dependent ' 'RNA Polymerase Inhibitors among 3009 Clinical and FDA-Approved Related ' 'Drugs'}, { 'issue': '0', 'key': 'pone.0312866.ref034', 'first-page': '1', 'volume': '0', 'author': 'A.M. Metwaly', 'journal-title': 'Repurposing FDA-Approved Drugs as Potential Inhibitors of SARS-CoV-2 ' 'PLpro: A Comprehensive Computational Study'}, { 'key': 'pone.0312866.ref035', 'doi-asserted-by': 'crossref', 'first-page': '5084553', 'DOI': '10.1155/2024/5084553', 'article-title': 'Multistaged In Silico Discovery of the Best SARS-CoV-2 Main Protease ' 'Inhibitors amongst 3009 Clinical and FDA-Approved Compounds', 'volume': '2024', 'author': 'I.H. Eissa', 'year': '2024', 'journal-title': 'Journal of Chemistry'}, { 'issue': '7', 'key': 'pone.0312866.ref036', 'first-page': '2287', 'volume': '27', 'author': 'I.H. Eissa', 'year': '2022', 'journal-title': 'Ligand and Structure-Based In Silico Determination of the Most ' 'Promising SARS-CoV-2 nsp16-nsp10 2&prime;-o-Methyltransferase Complex ' 'Inhibitors among 3009 FDA Approved Drugs'}, { 'issue': '5', 'key': 'pone.0312866.ref037', 'doi-asserted-by': 'crossref', 'first-page': '13596535231199838', 'DOI': '10.1177/13596535231199838', 'article-title': 'Computer-assisted drug discovery of potential natural inhibitors of the ' 'SARS-CoV-2 RNA-dependent RNA polymerase through a multi-phase in silico ' 'approach', 'volume': '28', 'author': 'E.B. Elkaeed', 'year': '2023', 'journal-title': 'Antivir Ther'}, { 'issue': '4', 'key': 'pone.0312866.ref038', 'doi-asserted-by': 'crossref', 'first-page': '1934578X241246738', 'DOI': '10.1177/1934578X241246738', 'article-title': 'Computer-Assisted Drug Discovery of Potential African Anti-SARS-CoV-2 ' 'Natural Products Targeting the Helicase Protein', 'volume': '19', 'author': 'A.M. Metwaly', 'year': '2024', 'journal-title': 'Natural Product Communications'}, { 'issue': '11', 'key': 'pone.0312866.ref039', 'doi-asserted-by': 'crossref', 'DOI': '10.3390/metabo12111122', 'article-title': 'The Discovery of Potential SARS-CoV-2 Natural Inhibitors among 4924 ' 'African Metabolites Targeting the Papain-like Protease: A Multi-Phase ' 'In Silico Approach', 'volume': '12', 'author': 'E.B. Elkaeed', 'year': '2022', 'journal-title': 'Metabolites'}, { 'key': 'pone.0312866.ref040', 'doi-asserted-by': 'crossref', 'first-page': '7270094', 'DOI': '10.1155/2022/7270094', 'article-title': 'Structure-Based Virtual Screening, Docking, ADMET, Molecular Dynamics, ' 'and MM-PBSA Calculations for the Discovery of Potential Natural ' 'SARS-CoV-2 Helicase Inhibitors from the Traditional Chinese Medicine', 'volume': '2022', 'author': 'A.M. Metwaly', 'year': '2022', 'journal-title': 'Journal of Chemistry'}, { 'key': 'pone.0312866.ref041', 'doi-asserted-by': 'crossref', 'first-page': '47', 'DOI': '10.1016/j.bbrc.2020.08.116', 'article-title': 'RNA-dependent RNA polymerase: Structure, mechanism, and drug discovery ' 'for COVID-19', 'volume': '538', 'author': 'Y. Jiang', 'year': '2021', 'journal-title': 'Biochemical and Biophysical Research Communications'}, { 'issue': '11', 'key': 'pone.0312866.ref042', 'first-page': '3976', 'volume': '111', 'author': 'M. Machitani', 'year': '2020', 'journal-title': 'RNA-dependent RNA polymerase, RdRP, a promising therapeutic target for ' 'cancer and potentially COVID-19'}, { 'issue': '1', 'key': 'pone.0312866.ref043', 'doi-asserted-by': 'crossref', 'first-page': '72', 'DOI': '10.1107/S0907444906047020', 'article-title': 'Crystallization of protein—ligand complexes', 'volume': '63', 'author': 'A.M. Hassell', 'year': '2007', 'journal-title': 'Acta Crystallographica Section D: Biological Crystallography'}, { 'key': 'pone.0312866.ref044', 'unstructured': 'Nantasenamat, C., et al., A practical overview of quantitative ' 'structure-activity relationship. 2009.'}, { 'issue': '8', 'key': 'pone.0312866.ref045', 'doi-asserted-by': 'crossref', 'first-page': '3186', 'DOI': '10.1021/jm401411z', 'article-title': 'Molecular similarity in medicinal chemistry: miniperspective', 'volume': '57', 'author': 'G. Maggiora', 'year': '2014', 'journal-title': 'Journal of medicinal chemistry'}, { 'issue': '14', 'key': 'pone.0312866.ref046', 'doi-asserted-by': 'crossref', 'first-page': '6381', 'DOI': '10.1080/07391102.2021.1883112', 'article-title': 'Artificially expanded genetic information systems (AEGISs) as potent ' 'inhibitors of the RNA-dependent RNA polymerase of the SARS-CoV-2', 'volume': '40', 'author': 'N.R. Jena', 'year': '2022', 'journal-title': 'Journal of Biomolecular Structure and Dynamics'}, { 'issue': '7', 'key': 'pone.0312866.ref047', 'first-page': 'e2021946118', 'volume': '118', 'author': 'K. Naydenova', 'year': '2021', 'journal-title': 'Structure of the SARS-CoV-2 RNA-dependent RNA polymerase in the ' 'presence of favipiravir-RTP'}, { 'issue': '1', 'key': 'pone.0312866.ref048', 'doi-asserted-by': 'crossref', 'first-page': '72', 'DOI': '10.1186/s13321-021-00548-6', 'article-title': 'ProLIF: a library to encode molecular interactions as fingerprints', 'volume': '13', 'author': 'C. Bouysset', 'year': '2021', 'journal-title': 'Journal of Cheminformatics'}, { 'issue': 'W1', 'key': 'pone.0312866.ref049', 'doi-asserted-by': 'crossref', 'first-page': 'W443', 'DOI': '10.1093/nar/gkv315', 'article-title': 'PLIP: fully automated protein—ligand interaction profiler', 'volume': '43', 'author': 'S. Salentin', 'year': '2015', 'journal-title': 'Nucleic acids research'}, { 'issue': '2', 'key': 'pone.0312866.ref050', 'doi-asserted-by': 'crossref', 'first-page': '44', 'DOI': '10.1007/s13205-020-02578-7', 'article-title': 'In silico docking analysis revealed the potential of phytochemicals ' 'present in Phyllanthus amarus and Andrographis paniculata, used in ' 'Ayurveda medicine in inhibiting SARS-CoV-2', 'volume': '11', 'author': 'S. Hiremath', 'year': '2021', 'journal-title': '3 Biotech'}, { 'issue': '9', 'key': 'pone.0312866.ref051', 'article-title': 'Therapeutic implications of quercetin and its derived-products in ' 'COVID-19 protection and prophylactic', 'volume': '10', 'author': 'W.-Y. Ho', 'year': '2024', 'journal-title': 'Heliyon'}, { 'issue': '1', 'key': 'pone.0312866.ref052', 'doi-asserted-by': 'crossref', 'first-page': '29', 'DOI': '10.1186/s12985-024-02299-w', 'article-title': 'Quercetin inhibits SARS-CoV-2 infection and prevents syncytium ' 'formation by cells co-expressing the viral spike protein and human ACE2', 'volume': '21', 'author': 'A.V. Roy', 'year': '2024', 'journal-title': 'Virology Journal'}, { 'key': 'pone.0312866.ref053', 'first-page': '12e16826', 'article-title': 'In silico and in vitro evaluation of the anti-virulence potential of ' 'patuletin, a natural methoxy flavone, against Pseudomonas aeruginosa', 'author': 'A. Metwaly', 'year': '2024', 'journal-title': 'PeerJ'}, { 'issue': '2', 'key': 'pone.0312866.ref054', 'doi-asserted-by': 'crossref', 'first-page': 'e24075', 'DOI': '10.1016/j.heliyon.2024.e24075', 'article-title': 'Anti-virulence potential of patuletin, a natural flavone, against ' 'Staphylococcus aureus: In vitro and In silico investigations', 'volume': '10', 'author': 'A.M. Metwaly', 'year': '2024', 'journal-title': 'Heliyon'}, { 'key': 'pone.0312866.ref055', 'doi-asserted-by': 'crossref', 'first-page': '138424', 'DOI': '10.1016/j.molstruc.2024.138424', 'article-title': 'Comprehensive structural and functional analysis of Patuletin as a ' 'potent inhibitor of SARS-CoV-2 targeting the RNA-dependent RNA ' 'polymerases', 'volume': '1311', 'author': 'A.M. Metwaly', 'year': '2024', 'journal-title': 'Journal of Molecular Structure'}, { 'issue': '14', 'key': 'pone.0312866.ref056', 'article-title': 'The Computational Preventive Potential of the Rare Flavonoid, ' 'Patuletin, Isolated from Tagetes patula, against SARS-CoV-2', 'volume': '11', 'author': 'A.M. Metwaly', 'year': '2022', 'journal-title': 'Plants (Basel)'}, { 'issue': '32', 'key': 'pone.0312866.ref057', 'doi-asserted-by': 'crossref', 'first-page': '6955', 'DOI': '10.1021/acs.jpcb.0c04198', 'article-title': 'Structural Basis of the Potential Binding Mechanism of Remdesivir to ' 'SARS-CoV-2 RNA-Dependent RNA Polymerase', 'volume': '124', 'author': 'L. Zhang', 'year': '2020', 'journal-title': 'The Journal of Physical Chemistry B'}, { 'key': 'pone.0312866.ref058', 'first-page': '19', 'volume': '1', 'author': 'M.J. Abraham', 'year': '2015', 'journal-title': 'GROMACS: High performance molecular simulations through multi-level ' 'parallelism from laptops to supercomputers'}, { 'issue': '10', 'key': 'pone.0312866.ref059', 'first-page': '1545', 'volume': '30', 'author': 'B.R. Brooks', 'year': '2009', 'journal-title': 'CHARMM: the biomolecular simulation program'}, { 'key': 'pone.0312866.ref060', 'first-page': '235', 'volume': '96', 'author': 'S. Jo', 'year': '2014', 'journal-title': 'CHARMM-GUI PDB manipulator for advanced modeling and simulations of ' 'proteins containing nonstandard residues'}, { 'issue': '11', 'key': 'pone.0312866.ref061', 'first-page': '1233', 'article-title': 'What is the current value of MM/PBSA and MM/GBSA methods in drug ' 'discovery?', 'volume': '16', 'author': 'T. Tuccinardi', 'year': '2021', 'journal-title': 'J.E.o.o.d.d'}, { 'issue': '10', 'key': 'pone.0312866.ref062', 'first-page': '6281', 'volume': '17', 'author': 'M.S. Valdés-Tresanco', 'year': '2021', 'journal-title': 'gmx_MMPBSA: a new tool to perform end-state free energy calculations ' 'with GROMACS'}, { 'issue': '11', 'key': 'pone.0312866.ref063', 'doi-asserted-by': 'crossref', 'first-page': '2178', 'DOI': '10.1021/acs.jcim.8b00512', 'article-title': 'TTClust: A Versatile Molecular Simulation Trajectory Clustering Program ' 'with Graphical Summaries', 'volume': '58', 'author': 'T. Tubiana', 'year': '2018', 'journal-title': 'J Chem Inf Model'}, { 'issue': '4', 'key': 'pone.0312866.ref064', 'first-page': '412', 'volume': '17', 'author': 'A. Amadei', 'year': '1993', 'journal-title': 'Essential dynamics of proteins'}, { 'issue': '8', 'key': 'pone.0312866.ref065', 'first-page': '889', 'volume': '27', 'author': 'E. Papaleo', 'year': '2009', 'journal-title': 'Free-energy landscape, principal component analysis, and structural ' 'clustering to identify representative conformations from molecular ' 'dynamics simulations: the myoglobin case'}, { 'key': 'pone.0312866.ref066', 'doi-asserted-by': 'crossref', 'first-page': '125552', 'DOI': '10.1016/j.ijbiomac.2023.125552', 'article-title': 'Inhibitory effect of lactoferrin-coated zinc nanoparticles on ' 'SARS-CoV-2 replication and entry along with improvement of lung ' 'fibrosis induced in adult male albino rats', 'volume': '245', 'author': 'E.M. El-Fakharany', 'year': '2023', 'journal-title': 'Int J Biol Macromol'}, { 'issue': '1–2', 'key': 'pone.0312866.ref067', 'doi-asserted-by': 'crossref', 'first-page': '55', 'DOI': '10.1016/0022-1759(83)90303-4', 'article-title': 'Rapid colorimetric assay for cellular growth and survival: application ' 'to proliferation and cytotoxicity assays', 'volume': '65', 'author': 'T. Mosmann', 'year': '1983', 'journal-title': 'J Immunol Methods'}, { 'issue': '12', 'key': 'pone.0312866.ref068', 'doi-asserted-by': 'crossref', 'DOI': '10.3390/ph13120443', 'article-title': 'FDA-Approved Drugs with Potent In Vitro Antiviral Activity against ' 'Severe Acute Respiratory Syndrome Coronavirus 2', 'volume': '13', 'author': 'A. Mostafa', 'year': '2020', 'journal-title': 'Pharmaceuticals (Basel)'}], 'container-title': 'PLOS ONE', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://dx.plos.org/10.1371/journal.pone.0312866', 'content-type': 'unspecified', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2024, 12, 3]], 'date-time': '2024-12-03T18:22:57Z', 'timestamp': 1733250177000}, 'score': 1, 'resource': {'primary': {'URL': 'https://dx.plos.org/10.1371/journal.pone.0312866'}}, 'subtitle': [], 'editor': [{'given': 'Chandrabose', 'family': 'Selvaraj', 'sequence': 'first', 'affiliation': []}], 'short-title': [], 'issued': {'date-parts': [[2024, 12, 3]]}, 'references-count': 68, 'journal-issue': {'issue': '12', 'published-online': {'date-parts': [[2024, 12, 3]]}}, 'URL': 'http://dx.doi.org/10.1371/journal.pone.0312866', 'relation': {}, 'ISSN': ['1932-6203'], 'subject': [], 'container-title-short': 'PLoS ONE', 'published': {'date-parts': [[2024, 12, 3]]}}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit