Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchQuercetinQuercetin (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

Computational analysis of the phytocompounds of Mimusops elengi against spike protein of SARS CoV2 – An Insilico model

Sai Ramesh et al., International Journal of Biological Macromolecules, doi:10.1016/j.ijbiomac.2023.125553
Jun 2023  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Quercetin for COVID-19
24th treatment shown to reduce risk in July 2021, now with p = 0.002 from 12 studies.
No treatment is 100% effective. Protocols combine treatments.
5,100+ studies for 112 treatments. c19early.org
In Silico study finding that quercetin and hederagenin showed very high binding affinities for COVID-19 associated receptors MMP9 and IL6.
73 preclinical studies support the efficacy of quercetin for COVID-19:
In Silico studies predict inhibition of SARS-CoV-2, or minimization of side effects, with quercetin or metabolites via binding to the spikeA,3,9,10,22,24,25,30,38,39,41,42,62-64, MproB,3,7,9,11,13,15,17,18,20,23,24,30,34,36-38,42,43,45,63-65, RNA-dependent RNA polymeraseC,1,3,9,32,64, PLproD,3,37,45, ACE2E,22,23,28,37,41,63, TMPRSS2F,22, nucleocapsidG,3, helicaseH,3,29,34, endoribonucleaseI,39, NSP16/10J,6, cathepsin LK,26, Wnt-3L,22, FZDM,22, LRP6N,22, ezrinO,40, ADRPP,38, NRP1Q,41, EP300R,16, PTGS2S,23, HSP90AA1T,16,23, matrix metalloproteinase 9U,31, IL-6V,21,35, IL-10W,21, VEGFAX,35, and RELAY,35 proteins. In Vitro studies demonstrate inhibition of the MproB,15,46,51,59 protein, and inhibition of spike-ACE2 interactionZ,47. In Vitro studies demonstrate efficacy in Calu-3AA,50, A549AB,21, HEK293-ACE2+AC,58, Huh-7AD,25, Caco-2AE,49, Vero E6AF,19,42,49, mTECAG,52, and RAW264.7AH,52 cells. Animal studies demonstrate efficacy in K18-hACE2 miceAI,55, db/db miceAJ,52,61, BALB/c miceAK,60, and rats66. Quercetin reduced proinflammatory cytokines and protected lung and kidney tissue against LPS-induced damage in mice60, inhibits LPS-induced cytokine storm by modulating key inflammatory and antioxidant pathways in macrophages5, and inhibits SARS-CoV-2 ORF3a ion channel activity, which contributes to viral pathogenicity and cytotoxicity54.
a. The trimeric spike (S) protein is a glycoprotein that mediates viral entry by binding to the host ACE2 receptor, is critical for SARS-CoV-2's ability to infect host cells, and is a target of neutralizing antibodies. Inhibition of the spike protein prevents viral attachment, halting infection at the earliest stage.
b. The main protease or Mpro, also known as 3CLpro or nsp5, is a cysteine protease that cleaves viral polyproteins into functional units needed for replication. Inhibiting Mpro disrupts the SARS-CoV-2 lifecycle within the host cell, preventing the creation of new copies.
c. RNA-dependent RNA polymerase (RdRp), also called nsp12, is the core enzyme of the viral replicase-transcriptase complex that copies the positive-sense viral RNA genome into negative-sense templates for progeny RNA synthesis. Inhibiting RdRp blocks viral genome replication and transcription.
d. The papain-like protease (PLpro) has multiple functions including cleaving viral polyproteins and suppressing the host immune response by deubiquitination and deISGylation of host proteins. Inhibiting PLpro may block viral replication and help restore normal immune responses.
e. The angiotensin converting enzyme 2 (ACE2) protein is a host cell transmembrane protein that serves as the cellular receptor for the SARS-CoV-2 spike protein. ACE2 is expressed on many cell types, including epithelial cells in the lungs, and allows the virus to enter and infect host cells. Inhibition may affect ACE2's physiological function in blood pressure control.
f. Transmembrane protease serine 2 (TMPRSS2) is a host cell protease that primes the spike protein, facilitating cellular entry. TMPRSS2 activity helps enable cleavage of the spike protein required for membrane fusion and virus entry. Inhibition may especially protect respiratory epithelial cells, buy may have physiological effects.
g. The nucleocapsid (N) protein binds and encapsulates the viral genome by coating the viral RNA. N enables formation and release of infectious virions and plays additional roles in viral replication and pathogenesis. N is also an immunodominant antigen used in diagnostic assays.
h. The helicase, or nsp13, protein unwinds the double-stranded viral RNA, a crucial step in replication and transcription. Inhibition may prevent viral genome replication and the creation of new virus components.
i. The endoribonuclease, also known as NendoU or nsp15, cleaves specific sequences in viral RNA which may help the virus evade detection by the host immune system. Inhibition may hinder the virus's ability to mask itself from the immune system, facilitating a stronger immune response.
j. The NSP16/10 complex consists of non-structural proteins 16 and 10, forming a 2'-O-methyltransferase that modifies the viral RNA cap structure. This modification helps the virus evade host immune detection by mimicking host mRNA, making NSP16/10 a promising antiviral target.
k. Cathepsin L is a host lysosomal cysteine protease that can prime the spike protein through an alternative pathway when TMPRSS2 is unavailable. Dual targeting of cathepsin L and TMPRSS2 may maximize disruption of alternative pathways for virus entry.
l. Wingless-related integration site (Wnt) ligand 3 is a host signaling molecule that activates the Wnt signaling pathway, which is important in development, cell growth, and tissue repair. Some studies suggest that SARS-CoV-2 infection may interfere with the Wnt signaling pathway, and that Wnt3a is involved in SARS-CoV-2 entry.
m. The frizzled (FZD) receptor is a host transmembrane receptor that binds Wnt ligands, initiating the Wnt signaling cascade. FZD serves as a co-receptor, along with ACE2, in some proposed mechanisms of SARS-CoV-2 infection. The virus may take advantage of this pathway as an alternative entry route.
n. Low-density lipoprotein receptor-related protein 6 is a cell surface co-receptor essential for Wnt signaling. LRP6 acts in tandem with FZD for signal transduction and has been discussed as a potential co-receptor for SARS-CoV-2 entry.
o. The ezrin protein links the cell membrane to the cytoskeleton (the cell's internal support structure) and plays a role in cell shape, movement, adhesion, and signaling. Drugs that occupy the same spot on ezrin where the viral spike protein would bind may hindering viral attachment, and drug binding could further stabilize ezrin, strengthening its potential natural capacity to impede viral fusion and entry.
p. The Adipocyte Differentiation-Related Protein (ADRP, also known as Perilipin 2 or PLIN2) is a lipid droplet protein regulating the storage and breakdown of fats in cells. SARS-CoV-2 may hijack the lipid handling machinery of host cells and ADRP may play a role in this process. Disrupting ADRP's interaction with the virus may hinder the virus's ability to use lipids for replication and assembly.
q. Neuropilin-1 (NRP1) is a cell surface receptor with roles in blood vessel development, nerve cell guidance, and immune responses. NRP1 may function as a co-receptor for SARS-CoV-2, facilitating viral entry into cells. Blocking NRP1 may disrupt an alternative route of viral entry.
r. EP300 (E1A Binding Protein P300) is a transcriptional coactivator involved in several cellular processes, including growth, differentiation, and apoptosis, through its acetyltransferase activity that modifies histones and non-histone proteins. EP300 facilitates viral entry into cells and upregulates inflammatory cytokine production.
s. Prostaglandin G/H synthase 2 (PTGS2, also known as COX-2) is an enzyme crucial for the production of inflammatory molecules called prostaglandins. PTGS2 plays a role in the inflammatory response that can become severe in COVID-19 and inhibitors (like some NSAIDs) may have benefits in dampening harmful inflammation, but note that prostaglandins have diverse physiological functions.
t. Heat Shock Protein 90 Alpha Family Class A Member 1 (HSP90AA1) is a chaperone protein that helps other proteins fold correctly and maintains their stability. HSP90AA1 plays roles in cell signaling, survival, and immune responses. HSP90AA1 may interact with numerous viral proteins, but note that it has diverse physiological functions.
u. Matrix metalloproteinase 9 (MMP9), also called gelatinase B, is a zinc-dependent enzyme that breaks down collagen and other components of the extracellular matrix. MMP9 levels increase in severe COVID-19. Overactive MMP9 can damage lung tissue and worsen inflammation. Inhibition of MMP9 may prevent excessive tissue damage and help regulate the inflammatory response.
v. The interleukin-6 (IL-6) pro-inflammatory cytokine (signaling molecule) has a complex role in the immune response and may trigger and perpetuate inflammation. Elevated IL-6 levels are associated with severe COVID-19 cases and cytokine storm. Anti-IL-6 therapies may be beneficial in reducing excessive inflammation in severe COVID-19 cases.
w. The interleukin-10 (IL-10) anti-inflammatory cytokine helps regulate and dampen immune responses, preventing excessive inflammation. IL-10 levels can also be elevated in severe COVID-19. IL-10 could either help control harmful inflammation or potentially contribute to immune suppression.
x. Vascular Endothelial Growth Factor A (VEGFA) promotes the growth of new blood vessels (angiogenesis) and has roles in inflammation and immune responses. VEGFA may contribute to blood vessel leakiness and excessive inflammation associated with severe COVID-19.
y. RELA is a transcription factor subunit of NF-kB and is a key regulator of inflammation, driving pro-inflammatory gene expression. SARS-CoV-2 may hijack and modulate NF-kB pathways.
z. The interaction between the SARS-CoV-2 spike protein and the human ACE2 receptor is a primary method of viral entry, inhibiting this interaction can prevent the virus from attaching to and entering host cells, halting infection at an early stage.
aa. Calu-3 is a human lung adenocarcinoma cell line with moderate ACE2 and TMPRSS2 expression and SARS-CoV-2 susceptibility. It provides a model of the human respiratory epithelium, but many not be ideal for modeling early stages of infection due to the moderate expression levels of ACE2 and TMPRSS2.
ab. A549 is a human lung carcinoma cell line with low ACE2 expression and SARS-CoV-2 susceptibility. Viral entry/replication can be studied but the cells may not replicate all aspects of lung infection.
ac. HEK293-ACE2+ is a human embryonic kidney cell line engineered for high ACE2 expression and SARS-CoV-2 susceptibility.
ad. Huh-7 cells were derived from a liver tumor (hepatoma).
ae. Caco-2 cells come from a colorectal adenocarcinoma (cancer). They are valued for their ability to form a polarized cell layer with properties similar to the intestinal lining.
af. Vero E6 is an African green monkey kidney cell line with low/no ACE2 expression and high SARS-CoV-2 susceptibility. The cell line is easy to maintain and supports robust viral replication, however the monkey origin may not accurately represent human responses.
ag. mTEC is a mouse tubular epithelial cell line.
ah. RAW264.7 is a mouse macrophage cell line.
ai. A mouse model expressing the human ACE2 receptor under the control of the K18 promoter.
aj. A mouse model of obesity and severe insulin resistance leading to type 2 diabetes due to a mutation in the leptin receptor gene that impairs satiety signaling.
ak. A mouse model commonly used in infectious disease and cancer research due to higher immune response and susceptibility to infection.
Sai Ramesh et al., 30 Jun 2023, peer-reviewed, 9 authors. Contact: yuvarajdinakarkumar@gmail.com.
In Silico studies are an important part of preclinical research, however results may be very different in vivo.
This PaperQuercetinAll
Computational analysis of the phytocompounds of Mimusops elengi against spike protein of SARS CoV2 – An Insilico model
A Sai Ramesh, S Adarshan, Hamad Lohedan, T Naveen Kumar, M R Thasleema Nasrin, G Aarthi Shree, Yuvaraj Dinakarkumar, Jothi Ramalingam Rajabathar, Muthusamy Karnan
International Journal of Biological Macromolecules, doi:10.1016/j.ijbiomac.2023.125553
The COVID-19 pandemic has been a global health crisis for over three years now, with the virus causing widespread illness and death. The urgent need for safe and effective therapeutic drugs has prompted the exploration of alternative medicine systems such as Ayurveda and Siddha. This study focuses on the potential therapeutic properties of the Ayurvedic plant, Mimusops elengi. In silico techniques were employed to analyze the bioactivity of the plant, including target prediction, gene ontology analysis, OMIM analysis, and molecular docking analysis. The results revealed 36 phytocompounds that interacted with 1431 receptors in the human body, and two compounds -hederagenin and quercetin -showed exceptionally high binding affinities toward their corresponding receptors, IL6 and MMP9. These results provide important insight into the potential therapeutic activity of M. elengi and its compounds in combating COVID-19. However, further research and clinical trials are necessary to validate these findings and develop safe and effective drugs. The study highlights the importance of combining traditional medicine with modern scientific methods to find effective treatments for global health challenges.
Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: R. Jothi Ramalingam reports financial support was provided by Researchers Supporting Project. Appendix A. Supplementary data Supplementary data to this article can be found online at https://doi. org/10.1016/j.ijbiomac.2023.125553.
References
Aanouz, Belhassan, El-Khatabi, Lakhlifi, El-Ldrissi et al., Moroccan Medicinal plants as inhibitors against SARS-CoV-2 main protease: Computational investigations, J. Biomol. Struct. Dyn, doi:10.1080/07391102.2020.1758790
Adarshan, Akassh, Avinash, Bharathkumar, Muthuramalingam et al., Transcriptomics, cheminformatics, and systems pharmacology strategies unveil the potential bioactives to combat COVID-19, Molecules, doi:10.3390/molecules27185955
Adarshan, Muthuramalingam, Jeyasri, Lakshmi, Sathishkumar et al., Vitex negundo L. derived specialized molecules unveil the multi-targeted therapeutic avenues against COPD: a systems pharmacology approach, Front. Biosci, doi:10.31083/j.fbl2703087
Aleem, Akbar Samad, Slenker, Emerging Variants of SARS-CoV-2 and Novel Therapeutics Against Coronavirus (COVID-19)
Alsamman, Zayed, The transcriptomic profiling of SARS-CoV-2 compared to SARS, MERS, EBOV, and H1N1, PLoS One, doi:10.1371/journal.pone.0243270
Azevedo, Botelho, Hollanda, Ferreira, Junqueira De Andrade et al., Covid-19 and the cardiovascular system: a comprehensive review, J. Hum. Hypertens, doi:10.1038/s41371-020-0387-4
Bianco, Modica, Drago, Azzolina, Mattina et al., Alteration of smell and taste in asymptomatic and symptomatic COVID-19 patients, Ear Nose Throat J, doi:10.1177/0145561320981447
Flower, Mediated Green Silver Nanoparticles Control Staphylococcus aureus and Acinetobacter baumannii, ApplBiochemBiotechnol, doi:10.1007/s12010-022-03882-z
Freedberg, Chang, Gastrointestinal symptoms in COVID-19: the long and the short of it, Curr. Opin. Gastroenterol, doi:10.1097/MOG.0000000000000876
Gelzo, Cacciapuoti, Pinchera, Rosa, Cernera et al., Matrix metalloproteinases (MMP) 3 and 9 as biomarkers of severity in COVID-19 patients, doi:10.1038/s41598-021-04677-8
Ghani, Medicinal Plants of Bangladesh
Jeyasri, Muthuramalingam, Suba, Ramesh, Chen, Bacopa monnieri and their bioactive compounds inferred multi-target treatment strategy for neurological diseases: a cheminformatics and system pharmacology approach, Biomolecules, doi:10.3390/biom10040536
Kar, Kumar, Bala, Dolai, Mazumder et al., Evaluation of antitumor activity of Mimusopselengi leaves on Ehrlich's ascites carcinoma-treated mice, J. Diet. Suppl, doi:10.3109/19390211.2012.708714
Kar, Kumar, Karmakar, Dolai, Bala et al., Antioxidant and in vitro anti-inflammatory activities of Mimusopselengi leaves, Asian Pac. J. Trop. Biomed
Katiyar, Gupta, Kanjilal, Katiyar, Drug discovery from plant sources: an integrated approach, Ayu, doi:10.4103/0974-8520.100295
Kirtikar, Basu, Indian Medicinal Plants, 2nd ed
Kumar, Dobos, Rampp, The significance of ayurvedic medicinal plants, J. Evid.-Based Complement. Alternat. Med, doi:10.1177/2156587216671392
Lauder, Jones, Smart, Bloom, Williams et al., Interleukin-6 limits influenza-induced inflammation and protects against fatal lung pathology, Eur. J. Immunol, doi:10.1002/eji.201243018
Leung, Niikura, Yang, Sin, COVID-19 and COPD, Eur. Respir. J, doi:10.1183/13993003.02108-2020
Long, Brady, Koyfman, Gottlieb, Cardiovascular complications in COVID-19, Am. J. Emerg. Med, doi:10.1016/j.ajem.2020.04.048
Mahavorasirikul, Viyanant, Chaijaroenkul, Itharat, Na-Bangchang, Cytotoxic activity of Thai medicinal plants against human cholangiocarcinoma, laryngeal and hepatocarcinoma cells in vitro, BMC Complement. Altern. Med
Montazersaheb, Hosseiniyan Khatibi, Hejazi, Tarhriz, Farjami et al., COVID-19 infection: an overview on cytokine storm and related interventions, Virol. J, doi:10.1186/s12985-022-01814-1
Niranjan, Sahu, Koike, Jia, Nikaido, Novel triterpenoid saponins from Mimusopselengi, Tetrahedron, doi:10.1016/0040-4020(95)00879-D
Purnima, Koti, Thippeswamy, Jaji, Swamy et al., Antiinflammatory, analgesic and antipyretic activities of Mimusopselengi Linn, Indian J. Pharm. Sci, doi:10.4103/0250-474X.73908
Rose-John, Winthrop, Calabrese, The role of IL-6 in host defence against infections: immunobiology and clinical implications, Nat. Rev. Rheumatol, doi:10.1038/nrrheum.2017.83
Rose-John, Winthrop, Calabrese, The role of IL-6 in host defence against infections: immunobiology and clinical implications, Nat. Rev. Rheumatol, doi:10.1038/nrrheum.2017.83
Salamanna, Maglio, Landini, Fini, Body localization of ACE-2: on the trail of the keyhole of SARS-CoV-2, Front. Med, doi:10.3389/fmed.2020.594495
Shaik, Khasim, Naidu, Protective activity of ethanolic leaf extract of Mimusopselengi Linn. on lipid peroxidation and antioxidant enzymes in experimental diabetic rats, Int. J. Adv. Pharm. Sci
Shannon, Markiel, Ozier, Baliga, Wang et al., Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res
Sharma, Kabra, Rao, Prajapati, Herbal and holistic solutions for neurodegenerative and depressive disorders: leads from Ayurveda, Curr. Pharm. Des, doi:10.2174/1381612824666180821165741
Simpson, Hammacher, Smith, Matthews, Ward, Interleukin-6: structure-function relationships, Protein Sci, doi:10.1002/pro.5560060501
Song, Hui, Hull, Birring, Mcgarvey et al., Confronting COVID-19-associated cough and the post-COVID syndrome: role of viral neurotropism, neuroinflammation, and neuroimmune responses, Lancet Respir. Med, doi:10.1016/S2213-2600(21)00125-9
Spudich, Nath, Nervous system consequences of COVID-19, Science, doi:10.1126/science.abm2052
Trott, Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem
Veeresham, Natural products derived from plants as a source of drugs, J. Adv. Pharm. Technol. Res, doi:10.4103/2231-4040.104709
Velazquez-Salinas, Verdugo-Rodriguez, Rodriguez, Borca, The role of interleukin 6 during viral infections, Front. Microbiol, doi:10.3389/fmicb.2019.01057
Villapol, Gastrointestinal symptoms associated with COVID-19: impact on the gut microbiome, Transl. Res, doi:10.1016/j.trsl.2020.08.004
Yabluchanskiy, Ma, Iyer, Hall, Lindsey, Matrix metalloproteinase-9: many shades of function in cardiovascular disease, Physiology (Bethesda), doi:10.1152/physiol.00029.2013
Yazdanpanah, Rezaei, Autoimmune complications of COVID-19, J. Med. Virol, doi:10.1002/jmv.27292
Ye, Wang, Mao, Cytokine storm in COVID-19 and treatment, J. Inf. Secur
Zhang, Onakpoya, Posadzki, Eddouks, The safety of herbal medicine: from prejudice to evidence, Evid. Based Complement. Alternat. Med, doi:10.1155/2015/316706
Zhou, Chi, Lv, Wang, Obesity and diabetes as high-risk factors for severe coronavirus disease 2019 (Covid-19), Diabetes Metab. Res. Rev, doi:10.1002/dmrr.3377
{ 'indexed': {'date-parts': [[2023, 6, 25]], 'date-time': '2023-06-25T04:37:19Z', 'timestamp': 1687667839525}, 'reference-count': 42, 'publisher': 'Elsevier BV', 'license': [ { 'start': { 'date-parts': [[2023, 6, 1]], 'date-time': '2023-06-01T00:00:00Z', 'timestamp': 1685577600000}, 'content-version': 'tdm', 'delay-in-days': 0, 'URL': 'https://www.elsevier.com/tdm/userlicense/1.0/'}, { 'start': { 'date-parts': [[2023, 6, 1]], 'date-time': '2023-06-01T00:00:00Z', 'timestamp': 1685577600000}, 'content-version': 'stm-asf', 'delay-in-days': 0, 'URL': 'https://doi.org/10.15223/policy-017'}, { 'start': { 'date-parts': [[2023, 6, 1]], 'date-time': '2023-06-01T00:00:00Z', 'timestamp': 1685577600000}, 'content-version': 'stm-asf', 'delay-in-days': 0, 'URL': 'https://doi.org/10.15223/policy-037'}, { 'start': { 'date-parts': [[2023, 6, 1]], 'date-time': '2023-06-01T00:00:00Z', 'timestamp': 1685577600000}, 'content-version': 'stm-asf', 'delay-in-days': 0, 'URL': 'https://doi.org/10.15223/policy-012'}, { 'start': { 'date-parts': [[2023, 6, 1]], 'date-time': '2023-06-01T00:00:00Z', 'timestamp': 1685577600000}, 'content-version': 'stm-asf', 'delay-in-days': 0, 'URL': 'https://doi.org/10.15223/policy-029'}, { 'start': { 'date-parts': [[2023, 6, 1]], 'date-time': '2023-06-01T00:00:00Z', 'timestamp': 1685577600000}, 'content-version': 'stm-asf', 'delay-in-days': 0, 'URL': 'https://doi.org/10.15223/policy-004'}], 'content-domain': {'domain': ['elsevier.com', 'sciencedirect.com'], 'crossmark-restriction': True}, 'published-print': {'date-parts': [[2023, 6]]}, 'DOI': '10.1016/j.ijbiomac.2023.125553', 'type': 'journal-article', 'created': {'date-parts': [[2023, 6, 24]], 'date-time': '2023-06-24T16:32:29Z', 'timestamp': 1687624349000}, 'page': '125553', 'update-policy': 'http://dx.doi.org/10.1016/elsevier_cm_policy', 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': 'Computational analysis of the phytocompounds of Mimusops elengi against spike protein of SARS ' 'CoV2 – An Insilico model', 'prefix': '10.1016', 'author': [ {'given': 'A.', 'family': 'Sai Ramesh', 'sequence': 'first', 'affiliation': []}, {'given': 'S.', 'family': 'Adarshan', 'sequence': 'additional', 'affiliation': []}, {'given': 'Hamad', 'family': 'Lohedan', 'sequence': 'additional', 'affiliation': []}, {'given': 'T.', 'family': 'Naveen Kumar', 'sequence': 'additional', 'affiliation': []}, {'given': 'M.R.', 'family': 'Thasleema Nasrin', 'sequence': 'additional', 'affiliation': []}, {'given': 'G.', 'family': 'Aarthi Shree', 'sequence': 'additional', 'affiliation': []}, {'given': 'Yuvaraj', 'family': 'Dinakarkumar', 'sequence': 'additional', 'affiliation': []}, {'given': 'R. Jothi', 'family': 'Ramalingam', 'sequence': 'additional', 'affiliation': []}, {'given': 'Muthusamy', 'family': 'Karnan', 'sequence': 'additional', 'affiliation': []}], 'member': '78', 'reference': [ { 'issue': '5', 'key': '10.1016/j.ijbiomac.2023.125553_bb0005', 'doi-asserted-by': 'crossref', 'first-page': '533', 'DOI': '10.1016/S2213-2600(21)00125-9', 'article-title': 'Confronting COVID-19-associated cough and the post-COVID syndrome: role ' 'of viral neurotropism, neuroinflammation, and neuroimmune responses', 'volume': '9', 'author': 'Song', 'year': '2021', 'journal-title': 'Lancet Respir. Med.'}, { 'issue': '6', 'key': '10.1016/j.ijbiomac.2023.125553_bb0010', 'doi-asserted-by': 'crossref', 'first-page': '555', 'DOI': '10.1097/MOG.0000000000000876', 'article-title': 'Gastrointestinal symptoms in COVID-19: the long and the short of it', 'volume': '38', 'author': 'Freedberg', 'year': '2022', 'journal-title': 'Curr. Opin. Gastroenterol.'}, { 'issue': '2_suppl', 'key': '10.1016/j.ijbiomac.2023.125553_bb0015', 'doi-asserted-by': 'crossref', 'first-page': '182S', 'DOI': '10.1177/0145561320981447', 'article-title': 'Alteration of smell and taste in asymptomatic and symptomatic COVID-19 ' 'patients in Sicily, Italy', 'volume': '100', 'author': 'Bianco', 'year': '2021', 'journal-title': 'Ear Nose Throat J.'}, { 'issue': '2', 'key': '10.1016/j.ijbiomac.2023.125553_bb0020', 'doi-asserted-by': 'crossref', 'DOI': '10.1002/dmrr.3377', 'article-title': 'Obesity and diabetes as high-risk factors for severe coronavirus ' 'disease 2019 (Covid-19)', 'volume': '37', 'author': 'Zhou', 'year': '2021', 'journal-title': 'Diabetes Metab. Res. Rev.'}, { 'issue': '1', 'key': '10.1016/j.ijbiomac.2023.125553_bb0025', 'doi-asserted-by': 'crossref', 'first-page': '54', 'DOI': '10.1002/jmv.27292', 'article-title': 'Autoimmune complications of COVID-19', 'volume': '94', 'author': 'Yazdanpanah', 'year': '2022', 'journal-title': 'J. Med. Virol.'}, { 'issue': '2', 'key': '10.1016/j.ijbiomac.2023.125553_bb0030', 'doi-asserted-by': 'crossref', 'first-page': '2002108', 'DOI': '10.1183/13993003.02108-2020', 'article-title': 'COVID-19 and COPD', 'volume': '56', 'author': 'Leung', 'year': '2020', 'journal-title': 'Eur. Respir. J.'}, { 'issue': '1', 'key': '10.1016/j.ijbiomac.2023.125553_bb0035', 'doi-asserted-by': 'crossref', 'first-page': '4', 'DOI': '10.1038/s41371-020-0387-4', 'article-title': 'Covid-19 and the cardiovascular system: a comprehensive review', 'volume': '35', 'author': 'Azevedo', 'year': '2021', 'journal-title': 'J. Hum. Hypertens.'}, { 'key': '10.1016/j.ijbiomac.2023.125553_bb0040', 'first-page': '607', 'article-title': 'Cytokine storm in COVID-19 and treatment', 'volume': '80', 'author': 'Ye', 'year': '2020', 'journal-title': 'J. Inf. Secur.'}, { 'key': '10.1016/j.ijbiomac.2023.125553_bb0045', 'unstructured': 'COVID-19 infection: an overview on cytokine storm and related ' 'interventions.'}, { 'issue': '22', 'key': '10.1016/j.ijbiomac.2023.125553_bb0050', 'doi-asserted-by': 'crossref', 'first-page': '2597', 'DOI': '10.2174/1381612824666180821165741', 'article-title': 'Herbal and holistic solutions for neurodegenerative and depressive ' 'disorders: leads from Ayurveda', 'volume': '24', 'author': 'Sharma', 'year': '2018', 'journal-title': 'Curr. Pharm. Des.'}, { 'issue': '4', 'key': '10.1016/j.ijbiomac.2023.125553_bb0055', 'doi-asserted-by': 'crossref', 'first-page': '200', 'DOI': '10.4103/2231-4040.104709', 'article-title': 'Natural products derived from plants as a source of drugs', 'volume': '3', 'author': 'Veeresham', 'year': '2012', 'journal-title': 'J. Adv. Pharm. Technol. Res.'}, { 'issue': '1', 'key': '10.1016/j.ijbiomac.2023.125553_bb0060', 'doi-asserted-by': 'crossref', 'first-page': '10', 'DOI': '10.4103/0974-8520.100295', 'article-title': 'Drug discovery from plant sources: an integrated approach', 'volume': '33', 'author': 'Katiyar', 'year': '2012', 'journal-title': 'Ayu'}, { 'issue': '3', 'key': '10.1016/j.ijbiomac.2023.125553_bb0065', 'doi-asserted-by': 'crossref', 'first-page': '87', 'DOI': '10.31083/j.fbl2703087', 'article-title': 'Vitex negundo L. derived specialized molecules unveil the ' 'multi-targeted therapeutic avenues against COPD: a systems pharmacology ' 'approach', 'volume': '27', 'author': 'Adarshan', 'year': '2022', 'journal-title': 'Front. Biosci.'}, { 'issue': '18', 'key': '10.1016/j.ijbiomac.2023.125553_bb0070', 'doi-asserted-by': 'crossref', 'first-page': '5955', 'DOI': '10.3390/molecules27185955', 'article-title': 'Transcriptomics, cheminformatics, and systems pharmacology strategies ' 'unveil the potential bioactives to combat COVID-19', 'volume': '27', 'author': 'Adarshan', 'year': '2022', 'journal-title': 'Molecules (Basel, Switzerland)'}, { 'issue': '48', 'key': '10.1016/j.ijbiomac.2023.125553_bb0075', 'doi-asserted-by': 'crossref', 'first-page': '13435', 'DOI': '10.1016/0040-4020(95)00879-D', 'article-title': 'Novel triterpenoid saponins from Mimusopselengi', 'volume': '51', 'author': 'Sahu', 'year': '1995', 'journal-title': 'Tetrahedron'}, { 'key': '10.1016/j.ijbiomac.2023.125553_bb0080', 'unstructured': 'Kar B, Kumar RBS, Karmakar I, Dolai N, Bala A, Mazumder UK, Haldar PK. ' 'Antioxidant and in vitro anti-inflammatory activities of Mimusopselengi ' 'leaves. Asian Pac. J. Trop. Biomed., (in press).'}, { 'key': '10.1016/j.ijbiomac.2023.125553_bb0085', 'first-page': '264', 'article-title': 'Protective activity of ethanolic leaf extract of Mimusopselengi Linn. ' 'on lipid peroxidation and antioxidant enzymes in experimental diabetic ' 'rats', 'volume': '2', 'author': 'Shaik', 'year': '2011', 'journal-title': 'Int. J. Adv. Pharm. Sci.'}, { 'key': '10.1016/j.ijbiomac.2023.125553_bb0090', 'doi-asserted-by': 'crossref', 'first-page': '55', 'DOI': '10.1186/1472-6882-10-55', 'article-title': 'Cytotoxic activity of Thai medicinal plants against human ' 'cholangiocarcinoma, laryngeal and hepatocarcinoma cells in vitro', 'volume': '10', 'author': 'Mahavorasirikul', 'year': '2010', 'journal-title': 'BMC Complement. Altern. Med.'}, { 'key': '10.1016/j.ijbiomac.2023.125553_bb0095', 'series-title': 'Mimusopselengi Flower-Mediated Green Silver Nanoparticles Control ' 'Staphylococcus aureus and Acinetobacter baumannii. ApplBiochemBiotechnol', 'first-page': '3066', 'volume': '194', 'author': 'J, C.N., S, R. & S, H', 'year': '2022'}, { 'key': '10.1016/j.ijbiomac.2023.125553_bb0100', 'series-title': 'Medicinal Plants of Bangladesh', 'first-page': '303', 'author': 'Ghani', 'year': '2003'}, { 'key': '10.1016/j.ijbiomac.2023.125553_bb0105', 'series-title': 'Indian Medicinal Plants', 'first-page': '1494', 'author': 'Kirtikar', 'year': '1988'}, { 'issue': '3', 'key': '10.1016/j.ijbiomac.2023.125553_bb0110', 'doi-asserted-by': 'crossref', 'first-page': '166', 'DOI': '10.3109/19390211.2012.708714', 'article-title': "Evaluation of antitumor activity of Mimusopselengi leaves on Ehrlich's " 'ascites carcinoma-treated mice', 'volume': '9', 'author': 'Kar', 'year': '2012', 'journal-title': 'J. Diet. Suppl.'}, { 'issue': '4', 'key': '10.1016/j.ijbiomac.2023.125553_bb0115', 'doi-asserted-by': 'crossref', 'first-page': '480', 'DOI': '10.4103/0250-474X.73908', 'article-title': 'Antiinflammatory, analgesic and antipyretic activities of ' 'Mimusopselengi Linn', 'volume': '72', 'author': 'Purnima', 'year': '2010', 'journal-title': 'Indian J. Pharm. Sci.'}, { 'key': '10.1016/j.ijbiomac.2023.125553_bb0120', 'doi-asserted-by': 'crossref', 'unstructured': 'Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, ' 'Schwikowski B, Ideker T. Cytoscape: a software environment for ' 'integrated models of biomolecular interaction networks. Genome Res., ' '13(11), 2498–504.', 'DOI': '10.1101/gr.1239303'}, { 'issue': '2', 'key': '10.1016/j.ijbiomac.2023.125553_bb0125', 'first-page': '455', 'article-title': 'AutoDock Vina: improving the speed and accuracy of docking with a new ' 'scoring function, efficient optimization, and multithreading', 'volume': '31', 'author': 'Trott', 'year': '2010', 'journal-title': 'J. Comput. Chem.'}, { 'issue': '12', 'key': '10.1016/j.ijbiomac.2023.125553_bb0130', 'doi-asserted-by': 'crossref', 'DOI': '10.1371/journal.pone.0243270', 'article-title': 'The transcriptomic profiling of SARS-CoV-2 compared to SARS, MERS, ' 'EBOV, and H1N1', 'volume': '15', 'author': 'Alsamman', 'year': '2020', 'journal-title': 'PLoS One'}, { 'issue': '7', 'key': '10.1016/j.ijbiomac.2023.125553_bb0135', 'doi-asserted-by': 'crossref', 'first-page': '1504', 'DOI': '10.1016/j.ajem.2020.04.048', 'article-title': 'Cardiovascular complications in COVID-19', 'volume': '38', 'author': 'Long', 'year': '2020', 'journal-title': 'Am. J. Emerg. Med.'}, { 'key': '10.1016/j.ijbiomac.2023.125553_bb0140', 'doi-asserted-by': 'crossref', 'first-page': '57', 'DOI': '10.1016/j.trsl.2020.08.004', 'article-title': 'Gastrointestinal symptoms associated with COVID-19: impact on the gut ' 'microbiome', 'volume': '226', 'author': 'Villapol', 'year': '2020', 'journal-title': 'Transl. Res.'}, { 'issue': '6578', 'key': '10.1016/j.ijbiomac.2023.125553_bb0145', 'doi-asserted-by': 'crossref', 'first-page': '267', 'DOI': '10.1126/science.abm2052', 'article-title': 'Nervous system consequences of COVID-19', 'volume': '375', 'author': 'Spudich', 'year': '2022', 'journal-title': 'Science'}, { 'key': '10.1016/j.ijbiomac.2023.125553_bb0150', 'doi-asserted-by': 'crossref', 'DOI': '10.3389/fmed.2020.594495', 'article-title': 'Body localization of ACE-2: on the trail of the keyhole of SARS-CoV-2', 'volume': '7', 'author': 'Salamanna', 'year': '2020', 'journal-title': 'Front. Med.'}, { 'issue': '3', 'key': '10.1016/j.ijbiomac.2023.125553_bb0155', 'doi-asserted-by': 'crossref', 'first-page': '494', 'DOI': '10.1177/2156587216671392', 'article-title': 'The significance of ayurvedic medicinal plants', 'volume': '22', 'author': 'Kumar', 'year': '2017', 'journal-title': 'J. Evid.-Based Complement. Alternat. Med.'}, { 'key': '10.1016/j.ijbiomac.2023.125553_bb0160', 'article-title': 'The safety of herbal medicine: from prejudice to evidence', 'volume': '2015', 'author': 'Zhang', 'year': '2015', 'journal-title': 'Evid. Based Complement. Alternat. Med.'}, { 'key': '10.1016/j.ijbiomac.2023.125553_bb0165', 'series-title': 'Emerging Variants of SARS-CoV-2 and Novel Therapeutics Against ' 'Coronavirus (COVID-19)', 'author': 'Aleem', 'year': '2022'}, { 'issue': '3', 'key': '10.1016/j.ijbiomac.2023.125553_bb0170', 'doi-asserted-by': 'crossref', 'first-page': '87', 'DOI': '10.31083/j.fbl2703087', 'article-title': 'Vitex negundo L. derived specialized molecules unveil the ' 'multi-targeted therapeutic avenues against COPD: a systems pharmacology ' 'approach', 'volume': '27', 'author': 'Adarshan', 'year': '2022', 'journal-title': 'Front. Biosci.'}, { 'issue': '18', 'key': '10.1016/j.ijbiomac.2023.125553_bb0175', 'doi-asserted-by': 'crossref', 'first-page': '5955', 'DOI': '10.3390/molecules27185955', 'article-title': 'Transcriptomics, cheminformatics, and systems pharmacology strategies ' 'unveil the potential bioactives to combat COVID-19', 'volume': '27', 'author': 'Adarshan', 'year': '2022', 'journal-title': 'Molecules.'}, { 'issue': '5', 'key': '10.1016/j.ijbiomac.2023.125553_bb0180', 'doi-asserted-by': 'crossref', 'first-page': '929', 'DOI': '10.1002/pro.5560060501', 'article-title': 'Interleukin-6: structure-function relationships', 'volume': '6', 'author': 'Simpson', 'year': '1997', 'journal-title': 'Protein Sci.'}, { 'issue': '7', 'key': '10.1016/j.ijbiomac.2023.125553_bb0185', 'doi-asserted-by': 'crossref', 'first-page': '399', 'DOI': '10.1038/nrrheum.2017.83', 'article-title': 'The role of IL-6 in host defence against infections: immunobiology and ' 'clinical implications', 'volume': '13', 'author': 'Rose-John', 'year': '2017', 'journal-title': 'Nat. Rev. Rheumatol.'}, { 'issue': '7', 'key': '10.1016/j.ijbiomac.2023.125553_bb0190', 'doi-asserted-by': 'crossref', 'first-page': '399', 'DOI': '10.1038/nrrheum.2017.83', 'article-title': 'The role of IL-6 in host defence against infections: immunobiology and ' 'clinical implications', 'volume': '13', 'author': 'Rose-John', 'year': '2017', 'journal-title': 'Nat. Rev. Rheumatol.'}, { 'key': '10.1016/j.ijbiomac.2023.125553_bb0195', 'doi-asserted-by': 'crossref', 'first-page': '1057', 'DOI': '10.3389/fmicb.2019.01057', 'article-title': 'The role of interleukin 6 during viral infections', 'volume': '10', 'author': 'Velazquez-Salinas', 'year': '2019', 'journal-title': 'Front. Microbiol.'}, { 'issue': '10', 'key': '10.1016/j.ijbiomac.2023.125553_bb0200', 'doi-asserted-by': 'crossref', 'first-page': '2613', 'DOI': '10.1002/eji.201243018', 'article-title': 'Interleukin-6 limits influenza-induced inflammation and protects ' 'against fatal lung pathology', 'volume': '43', 'author': 'Lauder', 'year': '2013', 'journal-title': 'Eur. J. Immunol.'}, { 'issue': '1', 'key': '10.1016/j.ijbiomac.2023.125553_bb0205', 'doi-asserted-by': 'crossref', 'first-page': '1212', 'DOI': '10.1038/s41598-021-04677-8', 'article-title': 'Matrix metalloproteinases (MMP) 3 and 9 as biomarkers of severity in ' 'COVID-19 patients', 'volume': '12', 'author': 'Gelzo', 'year': '2022', 'journal-title': 'Sci. Rep.'}, { 'issue': '6', 'key': '10.1016/j.ijbiomac.2023.125553_bb0210', 'first-page': '391', 'article-title': 'Matrix metalloproteinase-9: many shades of function in cardiovascular ' 'disease', 'volume': '28', 'author': 'Yabluchanskiy', 'year': '2013', 'journal-title': 'Physiology (Bethesda)'}], 'container-title': 'International Journal of Biological Macromolecules', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://api.elsevier.com/content/article/PII:S0141813023024479?httpAccept=text/xml', 'content-type': 'text/xml', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://api.elsevier.com/content/article/PII:S0141813023024479?httpAccept=text/plain', 'content-type': 'text/plain', 'content-version': 'vor', 'intended-application': 'text-mining'}], 'deposited': { 'date-parts': [[2023, 6, 24]], 'date-time': '2023-06-24T16:33:09Z', 'timestamp': 1687624389000}, 'score': 1, 'resource': {'primary': {'URL': 'https://linkinghub.elsevier.com/retrieve/pii/S0141813023024479'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2023, 6]]}, 'references-count': 42, 'alternative-id': ['S0141813023024479'], 'URL': 'http://dx.doi.org/10.1016/j.ijbiomac.2023.125553', 'relation': {}, 'ISSN': ['0141-8130'], 'subject': ['Molecular Biology', 'General Medicine', 'Biochemistry', 'Structural Biology'], 'container-title-short': 'International Journal of Biological Macromolecules', 'published': {'date-parts': [[2023, 6]]}, 'assertion': [ {'value': 'Elsevier', 'name': 'publisher', 'label': 'This article is maintained by'}, { 'value': 'Computational analysis of the phytocompounds of Mimusops elengi against spike ' 'protein of SARS CoV2 – An Insilico model', 'name': 'articletitle', 'label': 'Article Title'}, { 'value': 'International Journal of Biological Macromolecules', 'name': 'journaltitle', 'label': 'Journal Title'}, { 'value': 'https://doi.org/10.1016/j.ijbiomac.2023.125553', 'name': 'articlelink', 'label': 'CrossRef DOI link to publisher maintained version'}, {'value': 'article', 'name': 'content_type', 'label': 'Content Type'}, { 'value': '© 2023 Elsevier B.V. All rights reserved.', 'name': 'copyright', 'label': 'Copyright'}], 'article-number': '125553'}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit