Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchQuercetinQuercetin (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

Exploring potential therapeutic candidates against COVID-19: a molecular docking study

Haque et al., Discover Molecules, doi:10.1007/s44345-024-00005-5
Nov 2024  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Quercetin for COVID-19
24th treatment shown to reduce risk in July 2021, now with p = 0.002 from 12 studies.
No treatment is 100% effective. Protocols combine treatments.
5,100+ studies for 111 treatments. c19early.org
In Silico study showing potential inhibition of SARS-CoV-2 proteins by various compounds including dactinomycin, itraconazole, ivermectin, vitamin D, quercetin, curcumin, montelukast, bromhexine, hesperidin, EGCG and raloxifene. Authors performed molecular docking of 31 compounds against 6 SARS-CoV-2 proteins: spike protein, main protease, RNA-dependent RNA polymerase, papain-like protease, helicase, and nucleocapsid protein. Dactinomycin and itraconazole showed the highest binding affinity for the spike protein, while EGCG, hesperidin, ivermectin and raloxifene showed strong binding to other viral proteins.
73 preclinical studies support the efficacy of quercetin for COVID-19:
In Silico studies predict inhibition of SARS-CoV-2, or minimization of side effects, with quercetin or metabolites via binding to the spikeA,3,9,10,22,24,25,30,38,39,41,42,62-64, MproB,3,7,9,11,13,15,17,18,20,23,24,30,34,36-38,42,43,45,63-65, RNA-dependent RNA polymeraseC,1,3,9,32,64, PLproD,3,37,45, ACE2E,22,23,28,37,41,63, TMPRSS2F,22, nucleocapsidG,3, helicaseH,3,29,34, endoribonucleaseI,39, NSP16/10J,6, cathepsin LK,26, Wnt-3L,22, FZDM,22, LRP6N,22, ezrinO,40, ADRPP,38, NRP1Q,41, EP300R,16, PTGS2S,23, HSP90AA1T,16,23, matrix metalloproteinase 9U,31, IL-6V,21,35, IL-10W,21, VEGFAX,35, and RELAY,35 proteins. In Vitro studies demonstrate inhibition of the MproB,15,46,51,59 protein, and inhibition of spike-ACE2 interactionZ,47. In Vitro studies demonstrate efficacy in Calu-3AA,50, A549AB,21, HEK293-ACE2+AC,58, Huh-7AD,25, Caco-2AE,49, Vero E6AF,19,42,49, mTECAG,52, and RAW264.7AH,52 cells. Animal studies demonstrate efficacy in K18-hACE2 miceAI,55, db/db miceAJ,52,61, BALB/c miceAK,60, and rats66. Quercetin reduced proinflammatory cytokines and protected lung and kidney tissue against LPS-induced damage in mice60, inhibits LPS-induced cytokine storm by modulating key inflammatory and antioxidant pathways in macrophages5, and inhibits SARS-CoV-2 ORF3a ion channel activity, which contributes to viral pathogenicity and cytotoxicity54.
Study covers bromhexine, vitamin D, ivermectin, quercetin, curcumin, montelukast, and niclosamide.
a. The trimeric spike (S) protein is a glycoprotein that mediates viral entry by binding to the host ACE2 receptor, is critical for SARS-CoV-2's ability to infect host cells, and is a target of neutralizing antibodies. Inhibition of the spike protein prevents viral attachment, halting infection at the earliest stage.
b. The main protease or Mpro, also known as 3CLpro or nsp5, is a cysteine protease that cleaves viral polyproteins into functional units needed for replication. Inhibiting Mpro disrupts the SARS-CoV-2 lifecycle within the host cell, preventing the creation of new copies.
c. RNA-dependent RNA polymerase (RdRp), also called nsp12, is the core enzyme of the viral replicase-transcriptase complex that copies the positive-sense viral RNA genome into negative-sense templates for progeny RNA synthesis. Inhibiting RdRp blocks viral genome replication and transcription.
d. The papain-like protease (PLpro) has multiple functions including cleaving viral polyproteins and suppressing the host immune response by deubiquitination and deISGylation of host proteins. Inhibiting PLpro may block viral replication and help restore normal immune responses.
e. The angiotensin converting enzyme 2 (ACE2) protein is a host cell transmembrane protein that serves as the cellular receptor for the SARS-CoV-2 spike protein. ACE2 is expressed on many cell types, including epithelial cells in the lungs, and allows the virus to enter and infect host cells. Inhibition may affect ACE2's physiological function in blood pressure control.
f. Transmembrane protease serine 2 (TMPRSS2) is a host cell protease that primes the spike protein, facilitating cellular entry. TMPRSS2 activity helps enable cleavage of the spike protein required for membrane fusion and virus entry. Inhibition may especially protect respiratory epithelial cells, buy may have physiological effects.
g. The nucleocapsid (N) protein binds and encapsulates the viral genome by coating the viral RNA. N enables formation and release of infectious virions and plays additional roles in viral replication and pathogenesis. N is also an immunodominant antigen used in diagnostic assays.
h. The helicase, or nsp13, protein unwinds the double-stranded viral RNA, a crucial step in replication and transcription. Inhibition may prevent viral genome replication and the creation of new virus components.
i. The endoribonuclease, also known as NendoU or nsp15, cleaves specific sequences in viral RNA which may help the virus evade detection by the host immune system. Inhibition may hinder the virus's ability to mask itself from the immune system, facilitating a stronger immune response.
j. The NSP16/10 complex consists of non-structural proteins 16 and 10, forming a 2'-O-methyltransferase that modifies the viral RNA cap structure. This modification helps the virus evade host immune detection by mimicking host mRNA, making NSP16/10 a promising antiviral target.
k. Cathepsin L is a host lysosomal cysteine protease that can prime the spike protein through an alternative pathway when TMPRSS2 is unavailable. Dual targeting of cathepsin L and TMPRSS2 may maximize disruption of alternative pathways for virus entry.
l. Wingless-related integration site (Wnt) ligand 3 is a host signaling molecule that activates the Wnt signaling pathway, which is important in development, cell growth, and tissue repair. Some studies suggest that SARS-CoV-2 infection may interfere with the Wnt signaling pathway, and that Wnt3a is involved in SARS-CoV-2 entry.
m. The frizzled (FZD) receptor is a host transmembrane receptor that binds Wnt ligands, initiating the Wnt signaling cascade. FZD serves as a co-receptor, along with ACE2, in some proposed mechanisms of SARS-CoV-2 infection. The virus may take advantage of this pathway as an alternative entry route.
n. Low-density lipoprotein receptor-related protein 6 is a cell surface co-receptor essential for Wnt signaling. LRP6 acts in tandem with FZD for signal transduction and has been discussed as a potential co-receptor for SARS-CoV-2 entry.
o. The ezrin protein links the cell membrane to the cytoskeleton (the cell's internal support structure) and plays a role in cell shape, movement, adhesion, and signaling. Drugs that occupy the same spot on ezrin where the viral spike protein would bind may hindering viral attachment, and drug binding could further stabilize ezrin, strengthening its potential natural capacity to impede viral fusion and entry.
p. The Adipocyte Differentiation-Related Protein (ADRP, also known as Perilipin 2 or PLIN2) is a lipid droplet protein regulating the storage and breakdown of fats in cells. SARS-CoV-2 may hijack the lipid handling machinery of host cells and ADRP may play a role in this process. Disrupting ADRP's interaction with the virus may hinder the virus's ability to use lipids for replication and assembly.
q. Neuropilin-1 (NRP1) is a cell surface receptor with roles in blood vessel development, nerve cell guidance, and immune responses. NRP1 may function as a co-receptor for SARS-CoV-2, facilitating viral entry into cells. Blocking NRP1 may disrupt an alternative route of viral entry.
r. EP300 (E1A Binding Protein P300) is a transcriptional coactivator involved in several cellular processes, including growth, differentiation, and apoptosis, through its acetyltransferase activity that modifies histones and non-histone proteins. EP300 facilitates viral entry into cells and upregulates inflammatory cytokine production.
s. Prostaglandin G/H synthase 2 (PTGS2, also known as COX-2) is an enzyme crucial for the production of inflammatory molecules called prostaglandins. PTGS2 plays a role in the inflammatory response that can become severe in COVID-19 and inhibitors (like some NSAIDs) may have benefits in dampening harmful inflammation, but note that prostaglandins have diverse physiological functions.
t. Heat Shock Protein 90 Alpha Family Class A Member 1 (HSP90AA1) is a chaperone protein that helps other proteins fold correctly and maintains their stability. HSP90AA1 plays roles in cell signaling, survival, and immune responses. HSP90AA1 may interact with numerous viral proteins, but note that it has diverse physiological functions.
u. Matrix metalloproteinase 9 (MMP9), also called gelatinase B, is a zinc-dependent enzyme that breaks down collagen and other components of the extracellular matrix. MMP9 levels increase in severe COVID-19. Overactive MMP9 can damage lung tissue and worsen inflammation. Inhibition of MMP9 may prevent excessive tissue damage and help regulate the inflammatory response.
v. The interleukin-6 (IL-6) pro-inflammatory cytokine (signaling molecule) has a complex role in the immune response and may trigger and perpetuate inflammation. Elevated IL-6 levels are associated with severe COVID-19 cases and cytokine storm. Anti-IL-6 therapies may be beneficial in reducing excessive inflammation in severe COVID-19 cases.
w. The interleukin-10 (IL-10) anti-inflammatory cytokine helps regulate and dampen immune responses, preventing excessive inflammation. IL-10 levels can also be elevated in severe COVID-19. IL-10 could either help control harmful inflammation or potentially contribute to immune suppression.
x. Vascular Endothelial Growth Factor A (VEGFA) promotes the growth of new blood vessels (angiogenesis) and has roles in inflammation and immune responses. VEGFA may contribute to blood vessel leakiness and excessive inflammation associated with severe COVID-19.
y. RELA is a transcription factor subunit of NF-kB and is a key regulator of inflammation, driving pro-inflammatory gene expression. SARS-CoV-2 may hijack and modulate NF-kB pathways.
z. The interaction between the SARS-CoV-2 spike protein and the human ACE2 receptor is a primary method of viral entry, inhibiting this interaction can prevent the virus from attaching to and entering host cells, halting infection at an early stage.
aa. Calu-3 is a human lung adenocarcinoma cell line with moderate ACE2 and TMPRSS2 expression and SARS-CoV-2 susceptibility. It provides a model of the human respiratory epithelium, but many not be ideal for modeling early stages of infection due to the moderate expression levels of ACE2 and TMPRSS2.
ab. A549 is a human lung carcinoma cell line with low ACE2 expression and SARS-CoV-2 susceptibility. Viral entry/replication can be studied but the cells may not replicate all aspects of lung infection.
ac. HEK293-ACE2+ is a human embryonic kidney cell line engineered for high ACE2 expression and SARS-CoV-2 susceptibility.
ad. Huh-7 cells were derived from a liver tumor (hepatoma).
ae. Caco-2 cells come from a colorectal adenocarcinoma (cancer). They are valued for their ability to form a polarized cell layer with properties similar to the intestinal lining.
af. Vero E6 is an African green monkey kidney cell line with low/no ACE2 expression and high SARS-CoV-2 susceptibility. The cell line is easy to maintain and supports robust viral replication, however the monkey origin may not accurately represent human responses.
ag. mTEC is a mouse tubular epithelial cell line.
ah. RAW264.7 is a mouse macrophage cell line.
ai. A mouse model expressing the human ACE2 receptor under the control of the K18 promoter.
aj. A mouse model of obesity and severe insulin resistance leading to type 2 diabetes due to a mutation in the leptin receptor gene that impairs satiety signaling.
ak. A mouse model commonly used in infectious disease and cancer research due to higher immune response and susceptibility to infection.
Haque et al., 21 Nov 2024, peer-reviewed, 3 authors. Contact: sukanta999bhadra@gmail.com.
In Silico studies are an important part of preclinical research, however results may be very different in vivo.
This PaperQuercetinAll
Exploring potential therapeutic candidates against COVID-19: a molecular docking study
S K Erfanul Haque, Sukanta Bhadra, Nishith Kumar Pal
Discover Molecules, doi:10.1007/s44345-024-00005-5
The COVID-19 pandemic, caused by SARS-CoV-2, has made it urgently necessary to develop effective therapeutic options, and in recent years, computational biological tool assisted to achieve this goal. We conducted MD simulations using six SARS-CoV-2 proteins and 31 ligands to identify possible inhibitors as well as evaluate the binding efficiency of them. Post simulation study showed that 6VSB-Dactinomycin complex reveals the most stable binding, protein flexibility, and robust structural integrity, making it a promising model for therapeutic studies. Our study assessed the therapeutic potential of antiviral candidates against covid-19 virus using computational and experimental method, including the flexibility and stability of twelve docked protein-ligand complexes using normal mode analysis (NMA) and molecular dynamics (MD) simulations. After MD simulation, Dactinomycin and Ivermectin showed significant deformability and high binding affinities for Spike protein and RNA-dependent RNA polymerase, respectively. Remarkably, Dactinomycin showed greater binding to the Helicase protein, but Hesperidin and Epigallocatechin gallate (EGCG) exhibited encouraging interactions with the Nucleocapsid protein and Main protease. Analysis of docking experiments and ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) showed the toxicity profiles and binding affinity of various drugs with key viral proteins. Toxicity of major drugs exhibited low to moderate although Dactinomycin, Ivermectin and vitamin-D exhibited higher degree of toxicity. Carcinogenicity observed in Quercetin, Baricitinib, Luteolin, Berberine, and Favipiravir while hepatotoxicity was not found in most case. Although EGCG and Hesperidin exhibit potential, more studies are required to evaluate effectiveness against approved drugs such as Remdesivir. This integrated approach shows that an integration of computational predictions with experimental data can help to support the development of antiviral drugs by adding novel perspectives in the safety profiles and efficiency of potential drugs.
Author contributions E.H. wrote the main manuscript text and prepared all figures. S. B. prepared figures, revised and supervised and N.K conceptualized the work. All authors reviewed the manuscript. Declarations Competing Interests The authors declare no competing interests. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by-nc-nd/4. 0/. Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
Angkasekwinai, Rattanaumpawan, Chayakulkeeree, Phoompoung, Koomanachai et al., Safety and efficacy of ivermectin for the prevention and treatment of covid-19: a double-blinded randomized placebocontrolled study, Antibiotics, doi:10.3390/antibiotics11060796
Arévalo, Pagotto, Pórfido, Daghero, Segovia et al., Ivermectin reduces in vivo coronavirus infection in a mouse experimental model, Sci Rep, doi:10.1038/s41598-021-86679-0
Baldi, Computational approaches for drug design and discovery: an overview, Syst Rev Pharm, doi:10.4103/0975-8453.59519
Banerjee, Perera, Tillekeratne, Potential SARS-CoV-2 main protease inhibitors, Drug Discov Today, doi:10.1016/j.drudis.2020.12.005
Batalha, Forezi, Lima, Pauli, Boechat et al., Drug repurposing for the treatment of COVID-19: pharmacological aspects and synthetic approaches, Bioorg Chem, doi:10.1016/j.bioorg.2020.104488
Bellavite, Reappraisal of dietary phytochemicals for coronavirus infection focus on hesperidin and quercetin
Bioviads, Discovery Studio
Caly, Druce, Catton, Jans, Wagstaff, The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro, Antiviral Res, doi:10.1016/j.antiviral.2020.104787
Chen, Jia, Chen, Wang, Hu, The pharmacokinetics of raloxifene and its interaction with apigenin in rat, Molecules, doi:10.3390/molecules15118478
Cheng, Huynh, Yang, Hu, Shen et al., Hesperidin Is a Potential Inhibitor against SARS-CoV-2 Infection, Nutrients, doi:10.3390/nu13082800
Ciotti, Ciccozzi, Terrinoni, Jiang, Wang et al., The COVID-19 pandemic, Crit Rev Clin Lab Sci, doi:10.1080/10408363.2020.1783198
Costa, Vale, A review of repurposed cancer drugs in clinical trials for potential treatment of COVID-19, Pharmaceutics, doi:10.3390/pharmaceutics13060815
Das, Sarmah, Lyndem, Roy, An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study, J Biomol Struct Dyn, doi:10.1080/07391102.2020.1763201
Dearden, In silico prediction of drug toxicity, J Comput-Aided Mol Design, doi:10.1023/A:1025361621494
Drwal, Banerjee, Dunkel, Wettig, Preissner, ProTox: a web server for the in silico prediction of rodent oral toxicity, Nucleic Acids Res, doi:10.1093/nar/gku401
Dutta, Mazumdar, Gordy, The nucleocapsid protein of SARS-CoV-2: a target for vaccine development, J Virol, doi:10.1128/jvi.00647-20
Gaurav, Agrawal, Al-Nema, Gautam, Computational approaches in the discovery and development of therapeutic and prophylactic agents for viral diseases, Curr Top Med Chem, doi:10.2174/1568026623666221019110334
Gelderblom, Snyman, Abel, Lebepe-Mazur, Smuts et al., Hepatotoxicity and-carcinogenicity of the fumonisins in rats: a review regarding mechanistic implications for establishing risk in humans, Fumonisins Food, doi:10.1007/978-1-4899-1379-1_24
Ghazwani, Bakheit, Hakami, Alkahtani, Almehizia, Virtual screening and molecular docking studies for discovery of potential RNA-dependent RNA polymerase inhibitors, Crystals, doi:10.3390/cryst11050471
Gupta, Savytskyi, Coban, Venugopal, Pleqi et al., Protein structure-based in-silico approaches to drug discovery: guide to COVID-19 therapeutics, Mol Aspects Med, doi:10.1016/j.mam.2022.101151
Gupta, Singh, Kushwaha, Prajapati, Shuaib et al., Identification of potential natural inhibitors of SARS-CoV2 main protease by molecular docking and simulation studies, J Biomol Struct Dyn, doi:10.1080/07391102.2020.1776157
Habtemariam, Nabavi, Banach, Berindan-Neagoe, Sarkar et al., Should we try SARS-CoV-2 helicase inhibitors for COVID-19 therapy?, Arch Med Res, doi:10.1016/j.arcmed.2020.05.024
Huff, Kummetha, Tiwari, Huante, Clark et al., Discovery and mechanism of SARS-CoV-2 main protease inhibitors, J Med Chem, doi:10.1021/acs.jmedchem.1c00566
Humeau, Sauvat, Cerrato, Xie, Loos et al., Inhibition of transcription by dactinomycin reveals a new characteristic of immunogenic cell stress, EMBO Mol Med, doi:10.1525/emmm.201911622
Hurst, Dickinson, Hsu, Epigallocatechin-3-gallate (EGCG) Inhibits SARS-CoV-2 infection in primate epithelial cells: (a short communication), Microbiol Infect Dis, doi:10.3342/2639-9458.1116
Iaconis, Bordi, Matusali, Talarico, Manelfi et al., Characterization of raloxifene as a potential pharmacological agent against SARS-CoV-2 and its variants, Cell Death Dis, doi:10.1038/s41419-022-04961-z
Jean, Lee, Hsueh, Treatment options for COVID-19: the reality and challenges, J Microbiol Immunol Infect, doi:10.1016/j.jmii.2020.03.034v
Jia, Yan, Ren, Wu, Wang et al., Delicate structural coordination of the Severe Acute Respiratory Syndrome coronavirus Nsp13 upon ATP hydrolysis, Nucleic Acids Res, doi:10.1093/nar/gkz409
Jiang, Yin, Xu, RNA-dependent RNA polymerase: Structure, mechanism, and drug discovery for COVID-19, Biochem Biophys Res Commun, doi:10.1016/j.bbrc.2020.08.116
Kang, Yang, Hong, Zhang, Huang et al., Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites, Acta PharmaceuticaSinica B, doi:10.1016/j.apsb.2020.04.009
Kennedy, Cm, Inhibition of coronavirus 229E replication by actinomycin D, J Virol, doi:10.1128/JVI.29.1.401-404.1979
Klemm, Ebert, Calleja, Allison, Richardson et al., Mechanism and inhibition of the papain-like protease PLpro of SARS-CoV-2, EMBO J, doi:10.1525/embj.2020106275
Kowalczyk, Hesperidin, a potential antiviral agent against SARS-CoV-2: the influence of citrus consumption on COVID-19 incidence and severity in China, Medicina, doi:10.3390/medicina60060892
Langholz, Skolnik, Barrett, Renbarger, Seibel et al., Dactinomycin and vincristine toxicity in the treatment of childhood cancer: a retrospective study from the children's oncology group, Pediatr Blood Cancer, doi:10.1002/pbc.22882
Lestner, Hope, Itraconazole: an update on pharmacology and clinical use for treatment of invasive and allergic fungal infections, Expert Opin Drug Metab Toxicol, doi:10.1517/17425255.2013.794785
Li, Hilgenfeld, Whitley, Clercq, Therapeutic strategies for COVID-19: progress and lessons learned, Nat Rev Drug Discov
Li, Li, Li, Du, Zhang et al., In vivo pharmacokinetics of hesperidin are affected by treatment with glucosidase-like BglA protein isolated from yeasts, J Agric Food Chem, doi:10.1021/jf800105c
Li, Luan, Zhang, Molecular docking of potential SARS-CoV-2 papain-like protease inhibitors, Biochem Biophys Res Commun, doi:10.1016/j.bbrc.2020.11.083
Liesenborghs, Spriet, Jochmans, Belmans, Gyselinck et al., Itraconazole for COVID-19: preclinical studies and a proof-of-concept randomized clinical trial, EBioMedicine, doi:10.1016/j.ebiom.2021.103288
Liu, Bodnar, Meng, Khan, Wang et al., Epigallocatechingallate from green tea effectively blocks infection of SARS-CoV-2 and new variants by inhibiting spike binding to ACE2 receptor, Cell Biosci, doi:10.1186/s13578-021-00680-8
Madabhavi, Sarkar, Kadakol, COVID-19: a review, Monaldi Arch Chest Dis
Madhavisastry, Adzhigirey, Day, Annabhimoju, Sherman, Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments, J Comput-Aided Mol Design, doi:10.1007/s10822-013-9644-8
Mongia, Saha, Chouzenoux, Majumdar, A computational approach to aid clinicians in selecting anti-viral drugs for COVID-19 trials, Sci Rep, doi:10.1038/s41598-021-88153-3
Morris, Huey, Lindstrom, Sanner, Belew et al., Autodock4 and AutoDockTools4: automated docking with selective receptor flexiblity, J Comput Chem
Nicastri, Marinangeli, Pivetta, Reggiani, Fiorentino et al., A phase 2 randomized, double-blinded, placebo-controlled, multicenter trial evaluating the efficacy and safety of raloxifene for patients with mild to moderate COVID-19, EClinicalMedicine, doi:10.1016/j.eclinm.2022.101450
Noga, Michalska, Jurowski, Application of toxicology in silico methods for prediction of acute toxicity (LD50) for Novichoks, Arch Toxic, doi:10.1007/s00204-023-03507-2
Park, Park, Jang, Park, Therapeutic potential of EGCG, a green tea polyphenol, for treatment of coronavirus diseases, Life, doi:10.3390/life11030197
Parvez, Karim, Hasan, Jaman, Karim et al., Prediction of potential inhibitors for RNA-dependent RNA polymerase of SARS-CoV-2 using comprehensive drug repurposing and molecular docking approach, Int J Biol Macromol, doi:10.1016/j.ijbiomac.2020.09.098
Peng, Du, Lei, Dorje, Qi et al., Structures of the SARS-CoV-2 nucleocapsid and their perspectives for drug design, EMBO J, doi:10.3390/v13061115
Pitsillou, Liang, Ververis, Hung, Karagiannis, Interaction of small molecules with the SARS-CoV-2 papain-like protease: In silico studies and in vitro validation of protease activity inhibition using an enzymatic inhibition assay, J Mol Graph Model, doi:10.1016/j.jmgm.2021.107851
Pitsillou, Liang, Ververis, Lim, Hung et al., Identification of small molecule inhibitors of the deubiquitinating activity of the SARS-CoV-2 papain-like protease: in silico molecular docking studies and in vitro enzymatic activity assay, Front Chem, doi:10.3389/fchem.2020.623971
Ravi, Kannabiran, A handbook on protein-ligand docking tool AutoDock 4, Innovare J Med Sci
Schlede, Mischke, Diener, Kayser, The international validation study of the acute toxic class method (oral), Arch Toxic, doi:10.1007/s002040050229
Schrödinger, Delano, None, PyMOL
Shi, Wang, Cai, Deng, Zheng et al., An overview of COVID-19, J Zhejiang Univ Sci B, doi:10.1631/jzus.B2000083
Skariyachan, Gopal, Chakrabarti, Kempanna, Uttarkar et al., Structural and molecular basis of the interaction mechanism of selected drugs towards multiple targets of SARS-CoV-2 by molecular docking and dynamic simulation studiesdeciphering the scope of repurposed drugs, Comput Biol Med, doi:10.1016/j.compbiomed.2020.104054
Soussi, Gargouri, Magné, Ben-Nasr, Kausar et al., -)-Epigallocatechingallate (EGCG) pharmacokinetics and molecular interactions towards amelioration of hyperglycemia, hyperlipidemia associated hepatorenal oxidative injury in alloxan induced diabetic mice, Chem Biol Interact, doi:10.1016/j.cbi.2022.110230
Sternberg, Naujokat, Structural features of coronavirus SARS-CoV-2 spike protein: targets for vaccination, Life Sci, doi:10.1016/j.lfs.2020.118056
Tzenios, Chahine, Tazanios, Better strategies for coronavirus (COVID-19) vaccination, Special J Med Acad Life Sci, doi:10.5867/sjmas.v1i1.11
Van Damme, Meyer, Bojkova, Ciesek, Cinatl et al., In vitro activity of itraconazole against SARS-CoV-2, J Med Virol, doi:10.1002/jmv.26917
Vivek-Ananth, Krishnaswamy, Samal, Potential phytochemical inhibitors of SARS-CoV-2 helicase Nsp13: a molecular docking and dynamic simulation study, Mol Divers, doi:10.1007/s11030-021-10251-1
White, Cheng, Discovery of COVID-19 inhibitors targeting the SARS-CoV-2 Nsp13 helicase, J Phys Chem Lett, doi:10.1021/acs.jpclett.0c02421
Xia, Domains and functions of spike protein in Sars-Cov-2 in the context of vaccine design, Viruses, doi:10.3390/v13010109
Yadav, Parihar, Dhiman, Dhamija, Upadhyay et al., Docking of fda approved drugs targeting nsp-16, n-protein and main protease of sars-cov-2 as dual inhibitors, Biointerface Res Appl Chem, doi:10.3326/BRIAC113.98489861
Yin, Mao, Luan, Shen, Shen et al., Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir, Science, doi:10.1126/science.abc1560
Yuki, Fujiogi, Koutsogiannaki, COVID-19 pathophysiology: a review, Clin Immunol, doi:10.1016/j.clim.2020.108427
Zhang, Xiao, Cai, Chen, Structure of SARS-CoV-2 spike protein, Curr Opin Virol, doi:10.1016/j.coviro.2021.08.010
Zhu, Chen, Gorshkov, Xu, Lo et al., RNA-dependent RNA polymerase as a target for COVID-19 drug discovery, SLAS Disco, doi:10.1177/2472555220942123
{ 'indexed': { 'date-parts': [[2024, 11, 22]], 'date-time': '2024-11-22T05:25:14Z', 'timestamp': 1732253114569, 'version': '3.28.0'}, 'reference-count': 68, 'publisher': 'Springer Science and Business Media LLC', 'issue': '1', 'license': [ { 'start': { 'date-parts': [[2024, 11, 21]], 'date-time': '2024-11-21T00:00:00Z', 'timestamp': 1732147200000}, 'content-version': 'tdm', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by-nc-nd/4.0'}, { 'start': { 'date-parts': [[2024, 11, 21]], 'date-time': '2024-11-21T00:00:00Z', 'timestamp': 1732147200000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by-nc-nd/4.0'}], 'content-domain': {'domain': ['link.springer.com'], 'crossmark-restriction': False}, 'DOI': '10.1007/s44345-024-00005-5', 'type': 'journal-article', 'created': { 'date-parts': [[2024, 11, 21]], 'date-time': '2024-11-21T15:59:41Z', 'timestamp': 1732204781000}, 'update-policy': 'http://dx.doi.org/10.1007/springer_crossmark_policy', 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': 'Exploring potential therapeutic candidates against COVID-19: a molecular docking study', 'prefix': '10.1007', 'volume': '1', 'author': [ {'given': 'S. k. Erfanul', 'family': 'Haque', 'sequence': 'first', 'affiliation': []}, {'given': 'Sukanta', 'family': 'Bhadra', 'sequence': 'additional', 'affiliation': []}, {'given': 'Nishith Kumar', 'family': 'Pal', 'sequence': 'additional', 'affiliation': []}], 'member': '297', 'published-online': {'date-parts': [[2024, 11, 21]]}, 'reference': [ { 'key': '5_CR1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.clim.2020.108427', 'volume': '215', 'author': 'K Yuki', 'year': '2020', 'unstructured': 'Yuki K, Fujiogi M, Koutsogiannaki S. COVID-19 pathophysiology: a review. ' 'Clin Immunol. 2020;215: 108427. ' 'https://doi.org/10.1016/j.clim.2020.108427.', 'journal-title': 'Clin Immunol'}, { 'issue': '6', 'key': '5_CR2', 'doi-asserted-by': 'publisher', 'first-page': '365', 'DOI': '10.1080/10408363.2020.1783198', 'volume': '57', 'author': 'M Ciotti', 'year': '2020', 'unstructured': 'Ciotti M, Ciccozzi M, Terrinoni A, Jiang WC, Wang CB, Bernardini S. The ' 'COVID-19 pandemic. Crit Rev Clin Lab Sci. 2020;57(6):365–88. ' 'https://doi.org/10.1080/10408363.2020.1783198.', 'journal-title': 'Crit Rev Clin Lab Sci'}, { 'key': '5_CR3', 'doi-asserted-by': 'publisher', 'first-page': '2', 'DOI': '10.4081/monaldi.2020.1298', 'volume': '90', 'author': 'I Madabhavi', 'year': '2020', 'unstructured': 'Madabhavi I, Sarkar M, Kadakol N. COVID-19: a review. Monaldi Arch Chest ' 'Dis. 2020;90:2.', 'journal-title': 'Monaldi Arch Chest Dis'}, { 'issue': '5', 'key': '5_CR4', 'doi-asserted-by': 'publisher', 'first-page': '343', 'DOI': '10.1631/jzus.B2000083', 'volume': '21', 'author': 'Y Shi', 'year': '2020', 'unstructured': 'Shi Y, Wang G, Cai XP, Deng JW, Zheng L, Zhu HH, Zheng M, Yang B, Chen ' 'Z. An overview of COVID-19. J Zhejiang Univ Sci B. 2020;21(5):343. ' 'https://doi.org/10.1631/jzus.B2000083.', 'journal-title': 'J Zhejiang Univ Sci B'}, { 'issue': '3', 'key': '5_CR5', 'doi-asserted-by': 'publisher', 'first-page': '436', 'DOI': '10.1016/j.jmii.2020.03.034v', 'volume': '53', 'author': 'SS Jean', 'year': '2020', 'unstructured': 'Jean SS, Lee PI, Hsueh PR. Treatment options for COVID-19: the reality ' 'and challenges. J Microbiol Immunol Infect. 2020;53(3):436–43. ' 'https://doi.org/10.1016/j.jmii.2020.03.034v.', 'journal-title': 'J Microbiol Immunol Infect'}, { 'key': '5_CR6', 'doi-asserted-by': 'publisher', 'DOI': '10.5867/sjmas.v1i1.11', 'author': 'N Tzenios', 'year': '2023', 'unstructured': 'Tzenios N, Chahine M, Tazanios M. Better strategies for coronavirus ' '(COVID-19) vaccination. Special J Med Acad Life Sci. 2023. ' 'https://doi.org/10.5867/sjmas.v1i1.11.', 'journal-title': 'Special J Med Acad Life Sci'}, { 'key': '5_CR7', 'doi-asserted-by': 'publisher', 'first-page': '6', 'DOI': '10.1038/s41573-023-00672-y', 'volume': '22', 'author': 'G Li', 'year': '2023', 'unstructured': 'Li G, Hilgenfeld R, Whitley R, De Clercq E. Therapeutic strategies for ' 'COVID-19: progress and lessons learned. Nat Rev Drug Discov. 2023;22:6.', 'journal-title': 'Nat Rev Drug Discov'}, { 'key': '5_CR8', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.mam.2022.101151', 'volume': '91', 'author': 'Y Gupta', 'year': '2023', 'unstructured': 'Gupta Y, Savytskyi OV, Coban M, Venugopal A, Pleqi V, Weber CA, Chitale ' 'R, Durvasula R, Hopkins C, Kempaiah P, Caulfield TR. Protein ' 'structure-based in-silico approaches to drug discovery: guide to ' 'COVID-19 therapeutics. Mol Aspects Med. 2023;91: 101151. ' 'https://doi.org/10.1016/j.mam.2022.101151.', 'journal-title': 'Mol Aspects Med'}, { 'issue': '26', 'key': '5_CR9', 'doi-asserted-by': 'publisher', 'first-page': '2190', 'DOI': '10.2174/1568026623666221019110334', 'volume': '22', 'author': 'A Gaurav', 'year': '2022', 'unstructured': 'Gaurav A, Agrawal N, Al-Nema M, Gautam V. Computational approaches in ' 'the discovery and development of therapeutic and prophylactic agents for ' 'viral diseases. Curr Top Med Chem. 2022;22(26):2190–206. ' 'https://doi.org/10.2174/1568026623666221019110334.', 'journal-title': 'Curr Top Med Chem'}, { 'key': '5_CR10', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41598-021-88153-3', 'author': 'A Mongia', 'year': '2021', 'unstructured': 'Mongia A, Saha SK, Chouzenoux E, Majumdar A. A computational approach to ' 'aid clinicians in selecting anti-viral drugs for COVID-19 trials. Sci ' 'Rep. 2021. https://doi.org/10.1038/s41598-021-88153-3.', 'journal-title': 'Sci Rep'}, { 'key': '5_CR11', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.lfs.2020.118056', 'volume': '257', 'author': 'A Sternberg', 'year': '2020', 'unstructured': 'Sternberg A, Naujokat C. Structural features of coronavirus SARS-CoV-2 ' 'spike protein: targets for vaccination. Life Sci. 2020;257: 118056. ' 'https://doi.org/10.1016/j.lfs.2020.118056.', 'journal-title': 'Life Sci'}, { 'issue': '1', 'key': '5_CR12', 'doi-asserted-by': 'publisher', 'first-page': '109', 'DOI': '10.3390/v13010109', 'volume': '13', 'author': 'X Xia', 'year': '2021', 'unstructured': 'Xia X. Domains and functions of spike protein in Sars-Cov-2 in the ' 'context of vaccine design. Viruses. 2021;13(1):109. ' 'https://doi.org/10.3390/v13010109.', 'journal-title': 'Viruses'}, { 'key': '5_CR13', 'doi-asserted-by': 'publisher', 'first-page': '173', 'DOI': '10.1016/j.coviro.2021.08.010', 'volume': '50', 'author': 'J Zhang', 'year': '2021', 'unstructured': 'Zhang J, Xiao T, Cai Y, Chen B. Structure of SARS-CoV-2 spike protein. ' 'Curr Opin Virol. 2021;50:173–82. ' 'https://doi.org/10.1016/j.coviro.2021.08.010.', 'journal-title': 'Curr Opin Virol'}, { 'issue': '3', 'key': '5_CR14', 'doi-asserted-by': 'publisher', 'first-page': '804', 'DOI': '10.1016/j.drudis.2020.12.005', 'volume': '26', 'author': 'R Banerjee', 'year': '2021', 'unstructured': 'Banerjee R, Perera L, Tillekeratne LV. Potential SARS-CoV-2 main ' 'protease inhibitors. Drug Discov Today. 2021;26(3):804–16. ' 'https://doi.org/10.1016/j.drudis.2020.12.005.', 'journal-title': 'Drug Discov Today'}, { 'issue': '4', 'key': '5_CR15', 'doi-asserted-by': 'publisher', 'first-page': '2866', 'DOI': '10.1021/acs.jmedchem.1c00566', 'volume': '65', 'author': 'S Huff', 'year': '2021', 'unstructured': 'Huff S, Kummetha IR, Tiwari SK, Huante MB, Clark AE, Wang S, Bray W, ' 'Smith D, Carlin AF, Endsley M, Rana TM. Discovery and mechanism of ' 'SARS-CoV-2 main protease inhibitors. J Med Chem. 2021;65(4):2866–79. ' 'https://doi.org/10.1021/acs.jmedchem.1c00566.', 'journal-title': 'J Med Chem'}, { 'key': '5_CR16', 'doi-asserted-by': 'publisher', 'DOI': '10.1525/embj.2020106275', 'author': 'T Klemm', 'year': '2020', 'unstructured': 'Klemm T, Ebert G, Calleja DJ, Allison CC, Richardson LW, Bernardini JP, ' 'Lu BG, Kuchel NW, Grohmann C, Shibata Y, Gan ZY. Mechanism and ' 'inhibition of the papain-like protease PLpro of SARS-CoV-2. EMBO J. ' '2020. https://doi.org/10.1525/embj.2020106275.', 'journal-title': 'EMBO J'}, { 'key': '5_CR17', 'doi-asserted-by': 'publisher', 'first-page': '47', 'DOI': '10.1016/j.bbrc.2020.08.116', 'volume': '538', 'author': 'Y Jiang', 'year': '2021', 'unstructured': 'Jiang Y, Yin W, Xu HE. RNA-dependent RNA polymerase: Structure, ' 'mechanism, and drug discovery for COVID-19. Biochem Biophys Res Commun. ' '2021;538:47–53. https://doi.org/10.1016/j.bbrc.2020.08.116.', 'journal-title': 'Biochem Biophys Res Commun'}, { 'issue': '10', 'key': '5_CR18', 'doi-asserted-by': 'publisher', 'first-page': '1141', 'DOI': '10.1177/2472555220942123', 'volume': '25', 'author': 'W Zhu', 'year': '2020', 'unstructured': 'Zhu W, Chen CZ, Gorshkov K, Xu M, Lo DC, Zheng W. RNA-dependent RNA ' 'polymerase as a target for COVID-19 drug discovery. SLAS Disco. ' '2020;25(10):1141–51. https://doi.org/10.1177/2472555220942123.', 'journal-title': 'SLAS Disco'}, { 'issue': '6498', 'key': '5_CR19', 'doi-asserted-by': 'publisher', 'first-page': '1499', 'DOI': '10.1126/science.abc1560', 'volume': '368', 'author': 'W Yin', 'year': '2020', 'unstructured': 'Yin W, Mao C, Luan X, Shen DD, Shen Q, Su H, Wang X, Zhou F, Zhao W, Gao ' 'M, Chang S. Structural basis for inhibition of the RNA-dependent RNA ' 'polymerase from SARS-CoV-2 by remdesivir. Science. ' '2020;368(6498):1499–504. https://doi.org/10.1126/science.abc1560.', 'journal-title': 'Science'}, { 'issue': '21', 'key': '5_CR20', 'doi-asserted-by': 'publisher', 'first-page': '9144', 'DOI': '10.1021/acs.jpclett.0c02421', 'volume': '11', 'author': 'MA White', 'year': '2020', 'unstructured': 'White MA, Lin W, Cheng X. Discovery of COVID-19 inhibitors targeting the ' 'SARS-CoV-2 Nsp13 helicase. J Phys Chem Lett. 2020;11(21):9144–51. ' 'https://doi.org/10.1021/acs.jpclett.0c02421.', 'journal-title': 'J Phys Chem Lett'}, { 'issue': '7', 'key': '5_CR21', 'doi-asserted-by': 'publisher', 'first-page': '733', 'DOI': '10.1016/j.arcmed.2020.05.024', 'volume': '51', 'author': 'S Habtemariam', 'year': '2020', 'unstructured': 'Habtemariam S, Nabavi SF, Banach M, Berindan-Neagoe I, Sarkar K, Sil PC, ' 'Nabavi SM. Should we try SARS-CoV-2 helicase inhibitors for COVID-19 ' 'therapy? Arch Med Res. 2020;51(7):733–5. ' 'https://doi.org/10.1016/j.arcmed.2020.05.024.', 'journal-title': 'Arch Med Res'}, { 'issue': '20', 'key': '5_CR22', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/v13061115', 'volume': '39', 'author': 'Y Peng', 'year': '2020', 'unstructured': 'Peng Y, Du N, Lei Y, Dorje S, Qi J, Luo T, Gao GF, Song H. Structures of ' 'the SARS-CoV-2 nucleocapsid and their perspectives for drug design. EMBO ' 'J. 2020;39(20): e105938. https://doi.org/10.3390/v13061115.', 'journal-title': 'EMBO J'}, { 'issue': '13', 'key': '5_CR23', 'doi-asserted-by': 'publisher', 'first-page': '10', 'DOI': '10.1128/jvi.00647-20', 'volume': '94', 'author': 'NK Dutta', 'year': '2020', 'unstructured': 'Dutta NK, Mazumdar K, Gordy JT. The nucleocapsid protein of SARS–CoV-2: ' 'a target for vaccine development. J Virol. 2020;94(13):10–1128. ' 'https://doi.org/10.1128/jvi.00647-20.', 'journal-title': 'J Virol'}, { 'issue': '7', 'key': '5_CR24', 'doi-asserted-by': 'publisher', 'first-page': '1228', 'DOI': '10.1016/j.apsb.2020.04.009', 'volume': '10', 'author': 'S Kang', 'year': '2020', 'unstructured': 'Kang S, Yang M, Hong Z, Zhang L, Huang Z, Chen X, He S, Zhou Z, Zhou Z, ' 'Chen Q, Yan Y. Crystal structure of SARS-CoV-2 nucleocapsid protein RNA ' 'binding domain reveals potential unique drug targeting sites. Acta ' 'PharmaceuticaSinica B. 2020;10(7):1228–38. ' 'https://doi.org/10.1016/j.apsb.2020.04.009.', 'journal-title': 'Acta PharmaceuticaSinica B'}, { 'issue': 'W1', 'key': '5_CR25', 'doi-asserted-by': 'publisher', 'first-page': 'W53', 'DOI': '10.1093/nar/gku401', 'volume': '42', 'author': 'MN Drwal', 'year': '2014', 'unstructured': 'Drwal MN, Banerjee P, Dunkel M, Wettig MR, Preissner R. ProTox: a web ' 'server for the in silico prediction of rodent oral toxicity. Nucleic ' 'Acids Res. 2014;42(W1):W53–8. https://doi.org/10.1093/nar/gku401.', 'journal-title': 'Nucleic Acids Res'}, { 'issue': '2', 'key': '5_CR26', 'doi-asserted-by': 'publisher', 'first-page': '119', 'DOI': '10.1023/A:1025361621494', 'volume': '17', 'author': 'JC Dearden', 'year': '2003', 'unstructured': 'Dearden JC. In silico prediction of drug toxicity. J Comput-Aided Mol ' 'Design. 2003;17(2):119–27. https://doi.org/10.1023/A:1025361621494.', 'journal-title': 'J Comput-Aided Mol Design'}, { 'key': '5_CR27', 'doi-asserted-by': 'crossref', 'first-page': '28', 'DOI': '10.35693/2500-1388-2016-0-3-28-32', 'volume': '1', 'author': 'L Ravi', 'year': '2016', 'unstructured': 'Ravi L, Kannabiran K. A handbook on protein-ligand docking tool AutoDock ' '4. Innovare J Med Sci. 2016;1:28–33.', 'journal-title': 'Innovare J Med Sci'}, { 'issue': '1', 'key': '5_CR28', 'doi-asserted-by': 'publisher', 'first-page': '99', 'DOI': '10.4103/0975-8453.59519', 'volume': '1', 'author': 'A Baldi', 'year': '2010', 'unstructured': 'Baldi A. Computational approaches for drug design and discovery: an ' 'overview. Syst Rev Pharm. 2010;1(1):99. ' 'https://doi.org/10.4103/0975-8453.59519.', 'journal-title': 'Syst Rev Pharm'}, { 'key': '5_CR29', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/s10822-013-9644-8', 'author': 'G MadhaviSastry', 'year': '2013', 'unstructured': 'MadhaviSastry G, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein ' 'and ligand preparation: parameters, protocols, and influence on virtual ' 'screening enrichments. J Comput-Aided Mol Design. 2013. ' 'https://doi.org/10.1007/s10822-013-9644-8.', 'journal-title': 'J Comput-Aided Mol Design'}, { 'key': '5_CR30', 'doi-asserted-by': 'publisher', 'first-page': '2785', 'DOI': '10.1002/jcc.21256', 'volume': '16', 'author': 'GM Morris', 'year': '2009', 'unstructured': 'Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson ' 'AJ. Autodock4 and AutoDockTools4: automated docking with selective ' 'receptor flexiblity. J Comput Chem. 2009;16:2785–91.', 'journal-title': 'J Comput Chem'}, { 'key': '5_CR31', 'unstructured': 'Schrödinger L, DeLano W. PyMOL 2020. http://www.pymol.org/pymol'}, { 'key': '5_CR32', 'unstructured': 'BioviaDS.[Discovery Studio. San Diego: DassaultSystemes: 2021.'}, { 'key': '5_CR33', 'doi-asserted-by': 'publisher', 'first-page': '659', 'DOI': '10.1007/s002040050229', 'volume': '69', 'author': 'E Schlede', 'year': '1995', 'unstructured': 'Schlede E, Mischke U, Diener W, Kayser D. The international validation ' 'study of the acute toxic class method (oral). Arch Toxic. ' '1995;69:659–70. https://doi.org/10.1007/s002040050229.', 'journal-title': 'Arch Toxic'}, { 'issue': '6', 'key': '5_CR34', 'doi-asserted-by': 'publisher', 'first-page': '1691', 'DOI': '10.1007/s00204-023-03507-2', 'volume': '97', 'author': 'M Noga', 'year': '2023', 'unstructured': 'Noga M, Michalska A, Jurowski K. Application of toxicology in silico ' 'methods for prediction of acute toxicity (LD50) for Novichoks. Arch ' 'Toxic. 2023;97(6):1691–700. https://doi.org/10.1007/s00204-023-03507-2.', 'journal-title': 'Arch Toxic'}, { 'key': '5_CR35', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/978-1-4899-1379-1_24', 'author': 'WCA Gelderblom', 'year': '1996', 'unstructured': 'Gelderblom WCA, Snyman SD, Abel S, Lebepe-Mazur S, Smuts CM, Van der ' 'Westhuizen L, Marasas WF, Victor TC, Knasmüller S, Huber W. ' 'Hepatotoxicity and-carcinogenicity of the fumonisins in rats: a review ' 'regarding mechanistic implications for establishing risk in humans. ' 'Fumonisins Food. 1996. https://doi.org/10.1007/978-1-4899-1379-1_24.', 'journal-title': 'Fumonisins Food'}, { 'key': '5_CR36', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.compbiomed.2020.104054', 'volume': '126', 'author': 'S Skariyachan', 'year': '2020', 'unstructured': 'Skariyachan S, Gopal D, Chakrabarti S, Kempanna P, Uttarkar A, ' 'Muddebihalkar AG, Niranjan V. Structural and molecular basis of the ' 'interaction mechanism of selected drugs towards multiple targets of ' 'SARS-CoV-2 by molecular docking and dynamic simulation ' 'studies-deciphering the scope of repurposed drugs. Comput Biol Med. ' '2020;126: 104054. https://doi.org/10.1016/j.compbiomed.2020.104054.', 'journal-title': 'Comput Biol Med'}, { 'issue': '12', 'key': '5_CR37', 'doi-asserted-by': 'publisher', 'first-page': '4334', 'DOI': '10.1080/07391102.2020.1776157', 'volume': '39', 'author': 'S Gupta', 'year': '2021', 'unstructured': 'Gupta S, Singh AK, Kushwaha PP, Prajapati KS, Shuaib M, Senapati S, ' 'Kumar S. Identification of potential natural inhibitors of SARS-CoV2 ' 'main protease by molecular docking and simulation studies. J Biomol ' 'Struct Dyn. 2021;39(12):4334–45. ' 'https://doi.org/10.1080/07391102.2020.1776157.', 'journal-title': 'J Biomol Struct Dyn'}, { 'issue': '9', 'key': '5_CR38', 'doi-asserted-by': 'publisher', 'first-page': '3347', 'DOI': '10.1080/07391102.2020.1763201', 'volume': '39', 'author': 'S Das', 'year': '2021', 'unstructured': 'Das S, Sarmah S, Lyndem S, Singha Roy A. An investigation into the ' 'identification of potential inhibitors of SARS-CoV-2 main protease using ' 'molecular docking study. J Biomol Struct Dyn. 2021;39(9):3347–57. ' 'https://doi.org/10.1080/07391102.2020.1763201.', 'journal-title': 'J Biomol Struct Dyn'}, { 'issue': '5', 'key': '5_CR39', 'doi-asserted-by': 'publisher', 'first-page': '471', 'DOI': '10.3390/cryst11050471', 'volume': '11', 'author': 'MY Ghazwani', 'year': '2021', 'unstructured': 'Ghazwani MY, Bakheit AH, Hakami AR, Alkahtani HM, Almehizia AA. Virtual ' 'screening and molecular docking studies for discovery of potential ' 'RNA-dependent RNA polymerase inhibitors. Crystals. 2021;11(5):471. ' 'https://doi.org/10.3390/cryst11050471.', 'journal-title': 'Crystals'}, { 'key': '5_CR40', 'doi-asserted-by': 'publisher', 'first-page': '1787', 'DOI': '10.1016/j.ijbiomac.2020.09.098', 'volume': '163', 'author': 'MSA Parvez', 'year': '2020', 'unstructured': 'Parvez MSA, Karim MA, Hasan M, Jaman J, Karim Z, Tahsin T, Hasan MN, ' 'Hosen MJ. Prediction of potential inhibitors for RNA-dependent RNA ' 'polymerase of SARS-CoV-2 using comprehensive drug repurposing and ' 'molecular docking approach. Int J Biol Macromol. 2020;163:1787–97. ' 'https://doi.org/10.1016/j.ijbiomac.2020.09.098.', 'journal-title': 'Int J Biol Macromol'}, { 'key': '5_CR41', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.jmgm.2021.107851', 'volume': '104', 'author': 'E Pitsillou', 'year': '2021', 'unstructured': 'Pitsillou E, Liang J, Ververis K, Hung A, Karagiannis TC. Interaction of ' 'small molecules with the SARS-CoV-2 papain-like protease: In silico ' 'studies and in vitro validation of protease activity inhibition using an ' 'enzymatic inhibition assay. J Mol Graph Model. 2021;104: 107851. ' 'https://doi.org/10.1016/j.jmgm.2021.107851.', 'journal-title': 'J Mol Graph Model'}, { 'key': '5_CR42', 'doi-asserted-by': 'publisher', 'DOI': '10.3389/fchem.2020.623971', 'volume': '8', 'author': 'E Pitsillou', 'year': '2020', 'unstructured': 'Pitsillou E, Liang J, Ververis K, Lim KW, Hung A, Karagiannis TC. ' 'Identification of small molecule inhibitors of the deubiquitinating ' 'activity of the SARS-CoV-2 papain-like protease: in silico molecular ' 'docking studies and in vitro enzymatic activity assay. Front Chem. ' '2020;8: 623971. https://doi.org/10.3389/fchem.2020.623971.', 'journal-title': 'Front Chem'}, { 'key': '5_CR43', 'doi-asserted-by': 'publisher', 'first-page': '72', 'DOI': '10.1016/j.bbrc.2020.11.083', 'volume': '538', 'author': 'D Li', 'year': '2021', 'unstructured': 'Li D, Luan J, Zhang L. Molecular docking of potential SARS-CoV-2 ' 'papain-like protease inhibitors. Biochem Biophys Res Commun. ' '2021;538:72–9. https://doi.org/10.1016/j.bbrc.2020.11.083.', 'journal-title': 'Biochem Biophys Res Commun'}, { 'issue': '1', 'key': '5_CR44', 'doi-asserted-by': 'publisher', 'first-page': '429', 'DOI': '10.1007/s11030-021-10251-1', 'volume': '26', 'author': 'RP Vivek-Ananth', 'year': '2022', 'unstructured': 'Vivek-Ananth RP, Krishnaswamy S, Samal A. Potential phytochemical ' 'inhibitors of SARS-CoV-2 helicase Nsp13: a molecular docking and dynamic ' 'simulation study. Mol Divers. 2022;26(1):429–42. ' 'https://doi.org/10.1007/s11030-021-10251-1.', 'journal-title': 'Mol Divers'}, { 'issue': '12', 'key': '5_CR45', 'doi-asserted-by': 'publisher', 'first-page': '6538', 'DOI': '10.1093/nar/gkz409', 'volume': '47', 'author': 'Z Jia', 'year': '2019', 'unstructured': 'Jia Z, Yan L, Ren Z, Wu L, Wang J, Guo J, Zheng L, Ming Z, Zhang L, Lou ' 'Z, Rao Z. Delicate structural coordination of the Severe Acute ' 'Respiratory Syndrome coronavirus Nsp13 upon ATP hydrolysis. Nucleic ' 'Acids Res. 2019;47(12):6538–50. https://doi.org/10.1093/nar/gkz409.', 'journal-title': 'Nucleic Acids Res'}, { 'key': '5_CR46', 'doi-asserted-by': 'publisher', 'DOI': '10.3326/BRIAC113.98489861', 'author': 'R Yadav', 'year': '2020', 'unstructured': 'Yadav R, Parihar RD, Dhiman U, Dhamija P, Upadhyay SK, Imran M, Behera ' 'SK, Prasad TK. Docking of fda approved drugs targeting nsp-16, n-protein ' 'and main protease of sars-cov-2 as dual inhibitors. Biointerface Res ' 'Appl Chem. 2020. https://doi.org/10.3326/BRIAC113.98489861.', 'journal-title': 'Biointerface Res Appl Chem'}, { 'issue': '2', 'key': '5_CR47', 'doi-asserted-by': 'publisher', 'first-page': '252', 'DOI': '10.1002/pbc.22882', 'volume': '57', 'author': 'B Langholz', 'year': '2011', 'unstructured': 'Langholz B, Skolnik JM, Barrett JS, Renbarger J, Seibel NL, Zajicek A, ' 'Arndt CA. Dactinomycin and vincristine toxicity in the treatment of ' 'childhood cancer: a retrospective study from the children’s oncology ' 'group. Pediatr Blood Cancer. 2011;57(2):252–7. ' 'https://doi.org/10.1002/pbc.22882.', 'journal-title': 'Pediatr Blood Cancer'}, { 'key': '5_CR48', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.ebiom.2021.103288', 'author': 'L Liesenborghs', 'year': '2021', 'unstructured': 'Liesenborghs L, Spriet I, Jochmans D, Belmans A, Gyselinck I, Teuwen LA, ' 'Ter Horst S, Dreesen E, Geukens T, Engelen MM, Landeloos E, Geldhof V, ' 'Ceunen H, Debaveye B, Vandenberk B, Van der Linden L, Jacobs S, ' 'Langendries L, Boudewijns R, Do TND, Verhamme P. Itraconazole for ' 'COVID-19: preclinical studies and a proof-of-concept randomized clinical ' 'trial. EBioMedicine. 2021. https://doi.org/10.1016/j.ebiom.2021.103288.', 'journal-title': 'EBioMedicine'}, { 'issue': '7', 'key': '5_CR49', 'doi-asserted-by': 'publisher', 'first-page': '4454', 'DOI': '10.1002/jmv.26917', 'volume': '93', 'author': 'E Van Damme', 'year': '2021', 'unstructured': 'Van Damme E, De Meyer S, Bojkova D, Ciesek S, Cinatl J, De Jonghe S, ' 'Jochmans D, Leyssen P, Buyck C, Neyts J, Van Loock M. In vitro activity ' 'of itraconazole against SARS-CoV-2. J Med Virol. 2021;93(7):4454–60. ' 'https://doi.org/10.1002/jmv.26917.', 'journal-title': 'J Med Virol'}, { 'key': '5_CR50', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.antiviral.2020.104787', 'volume': '178', 'author': 'L Caly', 'year': '2020', 'unstructured': 'Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ' 'ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral ' 'Res. 2020;178: 104787. https://doi.org/10.1016/j.antiviral.2020.104787.', 'journal-title': 'Antiviral Res'}, { 'issue': '1', 'key': '5_CR51', 'doi-asserted-by': 'publisher', 'first-page': '7132', 'DOI': '10.1038/s41598-021-86679-0', 'volume': '11', 'author': 'AP Arévalo', 'year': '2021', 'unstructured': 'Arévalo AP, Pagotto R, Pórfido JL, Daghero H, Segovia M, Yamasaki K, ' 'Varela B, Hill M, Verdes JM, Duhalde Vega M, Bollati-Fogolín M, Crispo ' 'M. Ivermectin reduces in vivo coronavirus infection in a mouse ' 'experimental model. Sci Rep. 2021;11(1):7132. ' 'https://doi.org/10.1038/s41598-021-86679-0.', 'journal-title': 'Sci Rep'}, { 'issue': '6', 'key': '5_CR52', 'doi-asserted-by': 'publisher', 'first-page': '892', 'DOI': '10.3390/medicina60060892', 'volume': '60', 'author': 'A Kowalczyk', 'year': '2024', 'unstructured': 'Kowalczyk A. Hesperidin, a potential antiviral agent against SARS-CoV-2: ' 'the influence of citrus consumption on COVID-19 incidence and severity ' 'in China. Medicina. 2024;60(6):892. ' 'https://doi.org/10.3390/medicina60060892.', 'journal-title': 'Medicina'}, { 'issue': '8', 'key': '5_CR53', 'doi-asserted-by': 'publisher', 'first-page': '2800', 'DOI': '10.3390/nu13082800', 'volume': '13', 'author': 'FJ Cheng', 'year': '2021', 'unstructured': 'Cheng FJ, Huynh TK, Yang CS, Hu DW, Shen YC, Tu CY, Wu YC, Tang CH, ' 'Huang WC, Chen Y, Ho CY. Hesperidin Is a Potential Inhibitor against ' 'SARS-CoV-2 Infection. Nutrients. 2021;13(8):2800. ' 'https://doi.org/10.3390/nu13082800.', 'journal-title': 'Nutrients'}, { 'key': '5_CR54', 'volume-title': 'Antioxidants', 'author': 'P Bellavite', 'year': '2021', 'unstructured': 'Bellavite P. Reappraisal of dietary phytochemicals for coronavirus ' 'infection focus on hesperidin and quercetin. In: Waisundara Viduranga, ' 'editor. Antioxidants. London: IntechOpen; 2021.'}, { 'issue': '1', 'key': '5_CR55', 'doi-asserted-by': 'publisher', 'first-page': '168', 'DOI': '10.1186/s13578-021-00680-8', 'volume': '11', 'author': 'J Liu', 'year': '2021', 'unstructured': 'Liu J, Bodnar BH, Meng F, Khan AI, Wang X, Saribas S, Wang T, Lohani SC, ' 'Wang P, Wei Z, Luo J, Zhou L, Wu J, Luo G, Li Q, Hu W, Ho W. ' 'Epigallocatechingallate from green tea effectively blocks infection of ' 'SARS-CoV-2 and new variants by inhibiting spike binding to ACE2 ' 'receptor. Cell Biosci. 2021;11(1):168. ' 'https://doi.org/10.1186/s13578-021-00680-8.', 'journal-title': 'Cell Biosci'}, { 'key': '5_CR56', 'doi-asserted-by': 'publisher', 'DOI': '10.3342/2639-9458.1116', 'author': 'BL Hurst', 'year': '2021', 'unstructured': 'Hurst BL, Dickinson D, Hsu S. Epigallocatechin-3-gallate (EGCG) Inhibits ' 'SARS-CoV-2 infection in primate epithelial cells: (a short ' 'communication). Microbiol Infect Dis. 2021. ' 'https://doi.org/10.3342/2639-9458.1116.', 'journal-title': 'Microbiol Infect Dis'}, { 'issue': '3', 'key': '5_CR57', 'doi-asserted-by': 'publisher', 'first-page': '197', 'DOI': '10.3390/life11030197', 'volume': '11', 'author': 'J Park', 'year': '2021', 'unstructured': 'Park J, Park R, Jang M, Park Y-I. Therapeutic potential of EGCG, a green ' 'tea polyphenol, for treatment of coronavirus diseases. Life. ' '2021;11(3):197. https://doi.org/10.3390/life11030197.', 'journal-title': 'Life'}, { 'issue': '5', 'key': '5_CR58', 'doi-asserted-by': 'publisher', 'first-page': '498', 'DOI': '10.1038/s41419-022-04961-z', 'volume': '13', 'author': 'D Iaconis', 'year': '2022', 'unstructured': 'Iaconis D, Bordi L, Matusali G, Talarico C, Manelfi C, Cesta MC, Zippoli ' 'M, Caccuri F, Bugatti A, Zani A, Filippini F, Scorzolini L, Gobbi M, ' 'Beeg M, Piotti A, Montopoli M, Cocetta V, Bressan S, Bucci EM, Caruso A, ' 'Beccari AR. Characterization of raloxifene as a potential ' 'pharmacological agent against SARS-CoV-2 and its variants. Cell Death ' 'Dis. 2022;13(5):498. https://doi.org/10.1038/s41419-022-04961-z.', 'journal-title': 'Cell Death Dis'}, { 'key': '5_CR59', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.eclinm.2022.101450', 'author': 'E Nicastri', 'year': '2022', 'unstructured': 'Nicastri E, Marinangeli F, Pivetta E, Torri E, Reggiani F, Fiorentino G, ' 'Scorzolini L, Vettori S, Marsiglia C, Gavioli EM, Beccari AR, Terpolilli ' 'G, De Pizzol M, Goisis G, Mantelli F, Vaia F, Allegretti M. A phase 2 ' 'randomized, double-blinded, placebo-controlled, multicenter trial ' 'evaluating the efficacy and safety of raloxifene for patients with mild ' 'to moderate COVID-19. EClinicalMedicine. 2022. ' 'https://doi.org/10.1016/j.eclinm.2022.101450.', 'journal-title': 'EClinicalMedicine'}, { 'key': '5_CR60', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.cbi.2022.110230', 'volume': '368', 'author': 'A Soussi', 'year': '2022', 'unstructured': 'Soussi A, Gargouri M, Magné C, Ben-Nasr H, Kausar MA, Siddiqui AJ, Saeed ' 'M, Snoussi M, Adnan M, El-Feki A, Chappard D, Badraoui R. ' '(-)-Epigallocatechingallate (EGCG) pharmacokinetics and molecular ' 'interactions towards amelioration of hyperglycemia, hyperlipidemia ' 'associated hepatorenal oxidative injury in alloxan induced diabetic ' 'mice. Chem Biol Interact. 2022;368: 110230. ' 'https://doi.org/10.1016/j.cbi.2022.110230.', 'journal-title': 'Chem Biol Interact'}, { 'key': '5_CR61', 'doi-asserted-by': 'publisher', 'DOI': '10.1525/emmm.201911622', 'author': 'J Humeau', 'year': '2020', 'unstructured': 'Humeau J, Sauvat A, Cerrato G, Xie W, Loos F, Iannantuoni F, Bezu L, ' 'Lévesque S, Paillet J, Pol J, Leduc M, Zitvogel L, de Thé H, Kepp O, ' 'Kroemer G. Inhibition of transcription by dactinomycin reveals a new ' 'characteristic of immunogenic cell stress. EMBO Mol Med. 2020. ' 'https://doi.org/10.1525/emmm.201911622.', 'journal-title': 'EMBO Mol Med'}, { 'issue': '6', 'key': '5_CR62', 'doi-asserted-by': 'publisher', 'first-page': '796', 'DOI': '10.3390/antibiotics11060796', 'volume': '11', 'author': 'N Angkasekwinai', 'year': '2022', 'unstructured': 'Angkasekwinai N, Rattanaumpawan P, Chayakulkeeree M, Phoompoung P, ' 'Koomanachai P, Chantarasut S, Wangchinda W, Srinonprasert V, ' 'Thamlikitkul V. Safety and efficacy of ivermectin for the prevention and ' 'treatment of covid-19: a double-blinded randomized placebo-controlled ' 'study. Antibiotics. 2022;11(6):796. ' 'https://doi.org/10.3390/antibiotics11060796.', 'journal-title': 'Antibiotics'}, { 'issue': '11', 'key': '5_CR63', 'doi-asserted-by': 'publisher', 'first-page': '8478', 'DOI': '10.3390/molecules15118478', 'volume': '15', 'author': 'Y Chen', 'year': '2010', 'unstructured': 'Chen Y, Jia X, Chen J, Wang J, Hu M. The pharmacokinetics of raloxifene ' 'and its interaction with apigenin in rat. Molecules. ' '2010;15(11):8478–87. https://doi.org/10.3390/molecules15118478.', 'journal-title': 'Molecules'}, { 'issue': '14', 'key': '5_CR64', 'doi-asserted-by': 'publisher', 'first-page': '5550', 'DOI': '10.1021/jf800105c', 'volume': '56', 'author': 'YM Li', 'year': '2008', 'unstructured': 'Li YM, Li XM, Li GM, Du WC, Zhang J, Li WX, Xu J, Hu M, Zhu Z. In vivo ' 'pharmacokinetics of hesperidin are affected by treatment with ' 'glucosidase-like BglA protein isolated from yeasts. J Agric Food Chem. ' '2008;56(14):5550–7. https://doi.org/10.1021/jf800105c.', 'journal-title': 'J Agric Food Chem'}, { 'issue': '7', 'key': '5_CR65', 'doi-asserted-by': 'publisher', 'first-page': '911', 'DOI': '10.1517/17425255.2013.794785', 'volume': '9', 'author': 'J Lestner', 'year': '2013', 'unstructured': 'Lestner J, Hope WW. Itraconazole: an update on pharmacology and clinical ' 'use for treatment of invasive and allergic fungal infections. Expert ' 'Opin Drug Metab Toxicol. 2013;9(7):911–26. ' 'https://doi.org/10.1517/17425255.2013.794785.', 'journal-title': 'Expert Opin Drug Metab Toxicol'}, { 'issue': '6', 'key': '5_CR66', 'doi-asserted-by': 'publisher', 'first-page': '815', 'DOI': '10.3390/pharmaceutics13060815', 'volume': '13', 'author': 'B Costa', 'year': '2021', 'unstructured': 'Costa B, Vale N. A review of repurposed cancer drugs in clinical trials ' 'for potential treatment of COVID-19. Pharmaceutics. 2021;13(6):815. ' 'https://doi.org/10.3390/pharmaceutics13060815.', 'journal-title': 'Pharmaceutics'}, { 'issue': '1', 'key': '5_CR67', 'doi-asserted-by': 'publisher', 'first-page': '401', 'DOI': '10.1128/JVI.29.1.401-404.1979', 'volume': '29', 'author': 'DA Kennedy', 'year': '1979', 'unstructured': 'Kennedy DA, Johnson-Lussenburg CM. Inhibition of coronavirus 229E ' 'replication by actinomycin D. J Virol. 1979;29(1):401–4. ' 'https://doi.org/10.1128/JVI.29.1.401-404.1979.', 'journal-title': 'J Virol'}, { 'key': '5_CR68', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.bioorg.2020.104488', 'volume': '106', 'author': 'PN Batalha', 'year': '2021', 'unstructured': 'Batalha PN, Forezi LSM, Lima CGS, Pauli FP, Boechat FCS, de Souza MCBV, ' 'Cunha AC, Ferreira VF, da Silva FC. Drug repurposing for the treatment ' 'of COVID-19: pharmacological aspects and synthetic approaches. Bioorg ' 'Chem. 2021;106: 104488. https://doi.org/10.1016/j.bioorg.2020.104488.', 'journal-title': 'Bioorg Chem'}], 'container-title': 'Discover Molecules', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://link.springer.com/content/pdf/10.1007/s44345-024-00005-5.pdf', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://link.springer.com/article/10.1007/s44345-024-00005-5/fulltext.html', 'content-type': 'text/html', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://link.springer.com/content/pdf/10.1007/s44345-024-00005-5.pdf', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2024, 11, 21]], 'date-time': '2024-11-21T16:14:53Z', 'timestamp': 1732205693000}, 'score': 1, 'resource': {'primary': {'URL': 'https://link.springer.com/10.1007/s44345-024-00005-5'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2024, 11, 21]]}, 'references-count': 68, 'journal-issue': {'issue': '1', 'published-online': {'date-parts': [[2024, 12]]}}, 'alternative-id': ['5'], 'URL': 'http://dx.doi.org/10.1007/s44345-024-00005-5', 'relation': {}, 'ISSN': ['3004-9350'], 'subject': [], 'container-title-short': 'Discov Mol', 'published': {'date-parts': [[2024, 11, 21]]}, 'assertion': [ { 'value': '9 May 2024', 'order': 1, 'name': 'received', 'label': 'Received', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': '11 November 2024', 'order': 2, 'name': 'accepted', 'label': 'Accepted', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': '21 November 2024', 'order': 3, 'name': 'first_online', 'label': 'First Online', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, {'order': 1, 'name': 'Ethics', 'group': {'name': 'EthicsHeading', 'label': 'Declarations'}}, { 'value': 'The authors declare no competing interests.', 'order': 2, 'name': 'Ethics', 'group': {'name': 'EthicsHeading', 'label': 'Competing Interests'}}], 'article-number': '5'}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit