Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchQuercetinQuercetin (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

The Potential of Ameliorating COVID-19 and Sequelae From Andrographis paniculata via Bioinformatics

Nguyen et al., Bioinformatics and Biology Insights, doi:10.1177/11779322221149622
Jan 2023  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Quercetin for COVID-19
24th treatment shown to reduce risk in July 2021, now with p = 0.002 from 12 studies.
No treatment is 100% effective. Protocols combine treatments.
5,100+ studies for 112 treatments. c19early.org
In Silico study identifying multiple compounds including andrographolide, quercetin, and hydroxychloroquine (used as a reference) as promising inhibitors of SARS-CoV-2. Authors note the potential synergistic effect of multiple compounds.
73 preclinical studies support the efficacy of quercetin for COVID-19:
In Silico studies predict inhibition of SARS-CoV-2, or minimization of side effects, with quercetin or metabolites via binding to the spikeA,3,9,10,22,24,25,30,38,39,41,42,62-64, MproB,3,7,9,11,13,15,17,18,20,23,24,30,34,36-38,42,43,45,63-65, RNA-dependent RNA polymeraseC,1,3,9,32,64, PLproD,3,37,45, ACE2E,22,23,28,37,41,63, TMPRSS2F,22, nucleocapsidG,3, helicaseH,3,29,34, endoribonucleaseI,39, NSP16/10J,6, cathepsin LK,26, Wnt-3L,22, FZDM,22, LRP6N,22, ezrinO,40, ADRPP,38, NRP1Q,41, EP300R,16, PTGS2S,23, HSP90AA1T,16,23, matrix metalloproteinase 9U,31, IL-6V,21,35, IL-10W,21, VEGFAX,35, and RELAY,35 proteins. In Vitro studies demonstrate inhibition of the MproB,15,46,51,59 protein, and inhibition of spike-ACE2 interactionZ,47. In Vitro studies demonstrate efficacy in Calu-3AA,50, A549AB,21, HEK293-ACE2+AC,58, Huh-7AD,25, Caco-2AE,49, Vero E6AF,19,42,49, mTECAG,52, and RAW264.7AH,52 cells. Animal studies demonstrate efficacy in K18-hACE2 miceAI,55, db/db miceAJ,52,61, BALB/c miceAK,60, and rats66. Quercetin reduced proinflammatory cytokines and protected lung and kidney tissue against LPS-induced damage in mice60, inhibits LPS-induced cytokine storm by modulating key inflammatory and antioxidant pathways in macrophages5, and inhibits SARS-CoV-2 ORF3a ion channel activity, which contributes to viral pathogenicity and cytotoxicity54.
Study covers quercetin, andrographolide, and HCQ.
a. The trimeric spike (S) protein is a glycoprotein that mediates viral entry by binding to the host ACE2 receptor, is critical for SARS-CoV-2's ability to infect host cells, and is a target of neutralizing antibodies. Inhibition of the spike protein prevents viral attachment, halting infection at the earliest stage.
b. The main protease or Mpro, also known as 3CLpro or nsp5, is a cysteine protease that cleaves viral polyproteins into functional units needed for replication. Inhibiting Mpro disrupts the SARS-CoV-2 lifecycle within the host cell, preventing the creation of new copies.
c. RNA-dependent RNA polymerase (RdRp), also called nsp12, is the core enzyme of the viral replicase-transcriptase complex that copies the positive-sense viral RNA genome into negative-sense templates for progeny RNA synthesis. Inhibiting RdRp blocks viral genome replication and transcription.
d. The papain-like protease (PLpro) has multiple functions including cleaving viral polyproteins and suppressing the host immune response by deubiquitination and deISGylation of host proteins. Inhibiting PLpro may block viral replication and help restore normal immune responses.
e. The angiotensin converting enzyme 2 (ACE2) protein is a host cell transmembrane protein that serves as the cellular receptor for the SARS-CoV-2 spike protein. ACE2 is expressed on many cell types, including epithelial cells in the lungs, and allows the virus to enter and infect host cells. Inhibition may affect ACE2's physiological function in blood pressure control.
f. Transmembrane protease serine 2 (TMPRSS2) is a host cell protease that primes the spike protein, facilitating cellular entry. TMPRSS2 activity helps enable cleavage of the spike protein required for membrane fusion and virus entry. Inhibition may especially protect respiratory epithelial cells, buy may have physiological effects.
g. The nucleocapsid (N) protein binds and encapsulates the viral genome by coating the viral RNA. N enables formation and release of infectious virions and plays additional roles in viral replication and pathogenesis. N is also an immunodominant antigen used in diagnostic assays.
h. The helicase, or nsp13, protein unwinds the double-stranded viral RNA, a crucial step in replication and transcription. Inhibition may prevent viral genome replication and the creation of new virus components.
i. The endoribonuclease, also known as NendoU or nsp15, cleaves specific sequences in viral RNA which may help the virus evade detection by the host immune system. Inhibition may hinder the virus's ability to mask itself from the immune system, facilitating a stronger immune response.
j. The NSP16/10 complex consists of non-structural proteins 16 and 10, forming a 2'-O-methyltransferase that modifies the viral RNA cap structure. This modification helps the virus evade host immune detection by mimicking host mRNA, making NSP16/10 a promising antiviral target.
k. Cathepsin L is a host lysosomal cysteine protease that can prime the spike protein through an alternative pathway when TMPRSS2 is unavailable. Dual targeting of cathepsin L and TMPRSS2 may maximize disruption of alternative pathways for virus entry.
l. Wingless-related integration site (Wnt) ligand 3 is a host signaling molecule that activates the Wnt signaling pathway, which is important in development, cell growth, and tissue repair. Some studies suggest that SARS-CoV-2 infection may interfere with the Wnt signaling pathway, and that Wnt3a is involved in SARS-CoV-2 entry.
m. The frizzled (FZD) receptor is a host transmembrane receptor that binds Wnt ligands, initiating the Wnt signaling cascade. FZD serves as a co-receptor, along with ACE2, in some proposed mechanisms of SARS-CoV-2 infection. The virus may take advantage of this pathway as an alternative entry route.
n. Low-density lipoprotein receptor-related protein 6 is a cell surface co-receptor essential for Wnt signaling. LRP6 acts in tandem with FZD for signal transduction and has been discussed as a potential co-receptor for SARS-CoV-2 entry.
o. The ezrin protein links the cell membrane to the cytoskeleton (the cell's internal support structure) and plays a role in cell shape, movement, adhesion, and signaling. Drugs that occupy the same spot on ezrin where the viral spike protein would bind may hindering viral attachment, and drug binding could further stabilize ezrin, strengthening its potential natural capacity to impede viral fusion and entry.
p. The Adipocyte Differentiation-Related Protein (ADRP, also known as Perilipin 2 or PLIN2) is a lipid droplet protein regulating the storage and breakdown of fats in cells. SARS-CoV-2 may hijack the lipid handling machinery of host cells and ADRP may play a role in this process. Disrupting ADRP's interaction with the virus may hinder the virus's ability to use lipids for replication and assembly.
q. Neuropilin-1 (NRP1) is a cell surface receptor with roles in blood vessel development, nerve cell guidance, and immune responses. NRP1 may function as a co-receptor for SARS-CoV-2, facilitating viral entry into cells. Blocking NRP1 may disrupt an alternative route of viral entry.
r. EP300 (E1A Binding Protein P300) is a transcriptional coactivator involved in several cellular processes, including growth, differentiation, and apoptosis, through its acetyltransferase activity that modifies histones and non-histone proteins. EP300 facilitates viral entry into cells and upregulates inflammatory cytokine production.
s. Prostaglandin G/H synthase 2 (PTGS2, also known as COX-2) is an enzyme crucial for the production of inflammatory molecules called prostaglandins. PTGS2 plays a role in the inflammatory response that can become severe in COVID-19 and inhibitors (like some NSAIDs) may have benefits in dampening harmful inflammation, but note that prostaglandins have diverse physiological functions.
t. Heat Shock Protein 90 Alpha Family Class A Member 1 (HSP90AA1) is a chaperone protein that helps other proteins fold correctly and maintains their stability. HSP90AA1 plays roles in cell signaling, survival, and immune responses. HSP90AA1 may interact with numerous viral proteins, but note that it has diverse physiological functions.
u. Matrix metalloproteinase 9 (MMP9), also called gelatinase B, is a zinc-dependent enzyme that breaks down collagen and other components of the extracellular matrix. MMP9 levels increase in severe COVID-19. Overactive MMP9 can damage lung tissue and worsen inflammation. Inhibition of MMP9 may prevent excessive tissue damage and help regulate the inflammatory response.
v. The interleukin-6 (IL-6) pro-inflammatory cytokine (signaling molecule) has a complex role in the immune response and may trigger and perpetuate inflammation. Elevated IL-6 levels are associated with severe COVID-19 cases and cytokine storm. Anti-IL-6 therapies may be beneficial in reducing excessive inflammation in severe COVID-19 cases.
w. The interleukin-10 (IL-10) anti-inflammatory cytokine helps regulate and dampen immune responses, preventing excessive inflammation. IL-10 levels can also be elevated in severe COVID-19. IL-10 could either help control harmful inflammation or potentially contribute to immune suppression.
x. Vascular Endothelial Growth Factor A (VEGFA) promotes the growth of new blood vessels (angiogenesis) and has roles in inflammation and immune responses. VEGFA may contribute to blood vessel leakiness and excessive inflammation associated with severe COVID-19.
y. RELA is a transcription factor subunit of NF-kB and is a key regulator of inflammation, driving pro-inflammatory gene expression. SARS-CoV-2 may hijack and modulate NF-kB pathways.
z. The interaction between the SARS-CoV-2 spike protein and the human ACE2 receptor is a primary method of viral entry, inhibiting this interaction can prevent the virus from attaching to and entering host cells, halting infection at an early stage.
aa. Calu-3 is a human lung adenocarcinoma cell line with moderate ACE2 and TMPRSS2 expression and SARS-CoV-2 susceptibility. It provides a model of the human respiratory epithelium, but many not be ideal for modeling early stages of infection due to the moderate expression levels of ACE2 and TMPRSS2.
ab. A549 is a human lung carcinoma cell line with low ACE2 expression and SARS-CoV-2 susceptibility. Viral entry/replication can be studied but the cells may not replicate all aspects of lung infection.
ac. HEK293-ACE2+ is a human embryonic kidney cell line engineered for high ACE2 expression and SARS-CoV-2 susceptibility.
ad. Huh-7 cells were derived from a liver tumor (hepatoma).
ae. Caco-2 cells come from a colorectal adenocarcinoma (cancer). They are valued for their ability to form a polarized cell layer with properties similar to the intestinal lining.
af. Vero E6 is an African green monkey kidney cell line with low/no ACE2 expression and high SARS-CoV-2 susceptibility. The cell line is easy to maintain and supports robust viral replication, however the monkey origin may not accurately represent human responses.
ag. mTEC is a mouse tubular epithelial cell line.
ah. RAW264.7 is a mouse macrophage cell line.
ai. A mouse model expressing the human ACE2 receptor under the control of the K18 promoter.
aj. A mouse model of obesity and severe insulin resistance leading to type 2 diabetes due to a mutation in the leptin receptor gene that impairs satiety signaling.
ak. A mouse model commonly used in infectious disease and cancer research due to higher immune response and susceptibility to infection.
Nguyen et al., 12 Jan 2023, peer-reviewed, 4 authors.
In Silico studies are an important part of preclinical research, however results may be very different in vivo.
This PaperQuercetinAll
The Potential of Ameliorating COVID-19 and Sequelae From Andrographis paniculata via Bioinformatics
Hien Thi Nguyen, Van Mai Do, Thanh Thuy Phan, Dung Tam Nguyen Huynh
Bioinformatics and Biology Insights, doi:10.1177/11779322221149622
The current coronavirus disease 2019 (COVID-19) outbreak is alarmingly escalating and raises challenges in finding efficient compounds for treatment. Repurposing phytochemicals in herbs is an ideal and economical approach for screening potential herbal components against COVID-19. Andrographis paniculata, also known as Chuan Xin Lian, has traditionally been used as an anti-inflammatory and antibacterial herb for centuries and has recently been classified as a promising herbal remedy for adjuvant therapy in treating respiratory diseases. This study aimed to screen Chuan Xin Lian's bioactive components and elicit the potential pharmacological mechanisms and plausible pathways for treating COVID-19 using network pharmacology combined with molecular docking. The results found terpenoid (andrographolide) and flavonoid (luteolin, quercetin, kaempferol, and wogonin) derivatives had remarkable potential against COVID-19 and sequelae owing to their high degrees in the component-target-pathway network and strong binding capacities in docking scores. In addition, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the PI3K-AKT signaling pathway might be the most vital molecular pathway in the pathophysiology of COVID-19 and long-term sequelae whereby therapeutic strategies can intervene.
Author Contribution DTNH was in charge of the entire research and responsible for developing hypotheses, interpreting results, and performing the network analysis. DTNH, HTN, VMD, and TTP participated in the manuscript's writing and discussion. Data collection and screening were carried out by HTN, VMD, and TTP. All authors have read and agreed to the published version of the manuscript. Supplemental Material Supplemental material for this article is available online.
References
Akbar, Andrographis paniculata: a review of pharmacological activities and clinical effects, Altern Med Rev
Akbarsha, Murugaian, Aspects of the male reproductive toxicity/ male antifertility property of andrographolide in albino rats: effect on the testis and the cauda epididymidal spermatozoa, Phytother Res
Banerjee, Kar, Mukherjee, Haldar, Sharma et al., Immunoprotective potential of ayurvedic herb kalmegh (Andrographis paniculata) against respiratory viral infections-LC-MS/MS and network pharmacology analysis, Phytochem Anal
Bardelčíková, Miroššay, Šoltýs, Mojžiš, Therapeutic and prophylactic effect of flavonoids in post-COVID-19 therapy, Phytother Res
Berman, Westbrook, Feng, The protein data bank, Nucleic Acids Res
Binkowski, Naghibzadeh, Liang, CASTp: computed atlas of surface topography of proteins, Nucleic Acids Res
Cáceres, Hancke, Burgos, Wikman, Prevention of common colds with Andrographis paniculata dried extract, Phytomedicine
Dai, Chen, Chai, Zhao, Wang et al., Overview of pharmacological activities of Andrographis paniculata and its major compound andrographolide, Crit Rev Food Sci Nutr
Daina, Michielin, Zoete, SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci Rep
Dundas, Ouyang, Tseng, Binkowski, Turpaz et al., CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues, Nucleic Acids Res
Enmozhi, Raja, Sebastine, Joseph, Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: an in silico approach, J Biomol Struct Dyn
Fan, Liao, Wei, Wang, Kai et al., Treatment efficacy of Lianhua Qingwen capsules for early-stage COVID-19, Am J Transl Res
Fang, Dong, Liu, HERB: a high-throughput experiment-and reference-guided database of traditional Chinese medicine, Nucleic Acids Res
Farahani, Niknam, Amirabad, Molecular pathways involved in COVID-19 and potential pathway-based therapeutic targets, Biomed Pharmacother
Fishilevich, Nudel, Rappaport, GeneHancer: genome-wide integration of enhancers and target genes in GeneCards, Database
Ge, Jung, Yao, ShinyGO: a graphical gene-set enrichment tool for animals and plants, Bioinformatics
Grosdidier, Zoete, Michielin, SwissDock, a protein-small molecule docking web service based on EADock DSS, Nucleic Acids Res
Gu, Zhang, Cen, Quercetin as a potential treatment for COVID-19-induced acute kidney injury: Based on network pharmacology and molecular docking study, PLoS ONE
Hancke, Burgos, Caceres, Wikman, A double-blind study with a new monodrug Kan Jang: decrease of symptoms and improvement in the recovery from common colds, Phytother Res
Hopkins, Network pharmacology, Nature Biotechnol
Hossain, Urbi, Karuniawati, burm. F.) Wall. Ex Nees: an updated review of phytochemistry, antimicrobial pharmacology, and clinical safety and efficacy, Life
Hou, Jin, Kang, Kim, Interleukin-6 (IL-6) and IL-17 synergistically promote viral persistence by inhibiting cellular apoptosis and cytotoxic T cell function, J Virol
Icard, Lincet, Wu, The key role of Warburg effect in SARS-CoV-2 replication and associated inflammatory response, Biochimie
Kabir, Hasan, Rahman, A survey of medicinal plants used by the Deb barma clan of the Tripura tribe of Moulvibazar district, Bangladesh, Jo Ethnobiol Ethnomed
Kamdem, Sang, Ho, Mechanism of the superoxide scavenging activity of neoandrographolide − a natural product from Andrographis paniculata nees, J Agric Food Chem
Kapil, Koul, Banerjee, Gupta, Antihepatotoxic effects of major diterpenoid constituents of Andrographis paniculata, Biochem Pharmacol
Kumar, Sridevi, Kumar, Nanduri, Rajagopal, Anticancer and immunostimulatory compounds from Andrographis paniculata, J Ethnopharmacol
Lesjak, Beara, Simin, Antioxidant and anti-inflammatory activities of quercetin and its derivatives, J Funct Foods
Luo, Liu, Wang, Traditional Chinese medicine combined with Moxibustion in the treatment of "long-COVID": a protocol for systematic review and meta-analysis, Medicine
Lättig, Böhl, Fischer, Mechanism of inhibition of human secretory phospholipase A2 by flavonoids: rationale for lead design, J Comput Aided Mol Des
Maltezou, Pavli, Tsakris, Post-COVID syndrome: an insight on its pathogenesis, Vaccines
Mehandru, Merad, Pathological sequelae of long-haul COVID, Nat Immunol
Misra, Pal, Guru, Katiyar, Srivastava et al., Antimalarial activity of Andrographis paniculata (Kalmegh) against plasmodium berghei NK 65 in mastomys natalensis, Int J Pharmacog
More, Patil, Sakle, Mokale, Network analysis and molecular mapping for SARS-CoV-2 to reveal drug targets and repurposing of clinically developed drugs, Virology
Mu, Sheng, Wang, Amin, Li et al., Potential compound from herbal food of Rhizoma Polygonati for treatment of COVID-19 analyzed by network pharmacology: viral and cancer signaling mechanisms, J Funct Foods
Murugan, Pandian, Jeyakanthan, Computational investigation on Andrographis paniculata phytochemicals to evaluate their potency against SARS-CoV-2 in comparison to known antiviral compounds in drug trials, J Biomol Struct Dyn
Naik, Hule, Evaluation of immunomodulatory activity of an extract of andrographolides from Andographis paniculata, Planta Med
Nath, Johnson, Mechanisms of viral persistence in the brain and therapeutic approaches, FEBS J
Okhuarobo, Falodun, Erharuyi, Imieje, Falodun et al., Harnessing the medicinal properties of Andrographis paniculata for diseases and beyond: a review of its phytochemistry and pharmacology, Asian Pac J Trop Dis
Parasher, COVID-19: current understanding of its pathophysiology, clinical presentation and treatment, Postgrad Med J
Pawar, Pal, Molecular and functional resemblance of dexamethasone and quercetin: a paradigm worth exploring in dexamethasone-nonresponsive COVID-19 patients, Phytother Res
Pettersen, Goddard, Huang, UCSF Chimera-a visualization system for exploratory research and analysis, J Comput Chem
Piñero, Queralt-Rosinach, Bravo, DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes, Database
Rajagopal, Kumar, Deevi, Satyanarayana, Rajagopalan, Andrographolide, a potential cancer therapeutic agent isolated from Andrographis paniculata, J Exp Ther Oncol
Rehan, Ahmed, Howladar, A computational approach identified andrographolide as a potential drug for suppressing COVID-19-induced cytokine storm, Front Immunol
Sa-Ngiamsuntorn, Suksatu, Pewkliang, Anti-SARS-CoV-2 activity of Andrographis paniculata extract and its major component andrographolide in human lung epithelial cells and cytotoxicity evaluation in major organ cell representatives, J Nat Prod
Sanner, Olson, Spehner, Reduced surface: an efficient way to compute molecular surfaces, Biopolymers
Sbp, Panggabean, Atikana, Antiviral activities of andrographolide and its derivatives: mechanism of action and delivery system, Pharmaceuticals
Schoch, Ciufo, Domrachev, NCBI taxonomy: a comprehensive update on curation, resources and tools, Database
Schultze, Aschenbrenner, COVID-19 and the human innate immune system, Cell
Shannon, Markiel, Ozier, Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res
Sharma, Singh, Sehgal, Handa, Antihepatotoxic activity of some plants used in herbal formulations, Fitoterapia
Sheeja, Shihab, Kuttan, Antioxidant and anti-inflammatory activities of the plant Andrographis paniculata nees, Immunopharmacol Immunotoxicol
Shen, Chen, Chiou, Andrographolide prevents oxygen radical production by human neutrophils: possible mechanism(s) involved in its antiinflammatory effect, Br J Pharmacol
Silveira, Prieto-Garcia, Boylan, COVID-19: is there evidence for the use of herbal medicines as adjuvant symptomatic therapy, Front Pharmacol
Singh, Banerjee, Rao, Modulatory influence of Andrographis paniculata on mouse hepatic and extrahepatic carcinogen metabolizing enzymes and antioxidant status, Phytother Res
Szklarczyk, Gable, Lyon, STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets, Nucleic Acids Res
Szklarczyk, Gable, Nastou, The STRING database in 2021: customizable protein-protein networks, and functional characterization of useruploaded gene/measurement sets, Nucleic Acids Res
Tang, Eisenbrand, Andrographis paniculata
Theoharides, Conti, Dexamethasone for COVID-19? Not so fast, J Biol Regul Homeost Agents
Tian, Chen, Lei, Zhao, Liang, CASTp 3.0: computed atlas of surface topography of proteins, Nucleic Acids Res
Trougakos, Stamatelopoulos, Terpos, Insights to SARS-CoV-2 life cycle, pathophysiology, and rationalized treatments that target COVID-19 clinical complications, J Biomed Sci
Valério, Georgetti, Magro, Quercetin reduces inflammatory pain: inhibition of oxidative stress and cytokine production, J Nat Prod
Veronese, Bonica, Cotugno, Interventions for improving long COVID-19 symptomatology: a systematic review, Viruses
Wang, Zhu, Xue, Wen, Tao, Research progress in the treatment of complications and sequelae of COVID-19, Front Med
Wiart, Kumar, Yusof, Hamimah, Fauzi et al., Antiviral properties of ent-labdene diterpenes of Andrographis paniculata nees, inhibitors of herpes simplex virus type 1, Phytother Res
Wu, Chern, Damu, Flavonoids and ent-labdane diterpenoids from Andrographis paniculata and their antiplatelet aggregatory and vasorelaxing effects, J Asian Nat Prod Res
Xu, Chen, Fry, Barrow, Marshall et al., Modulation of immune response in mice immunised with an inactivated salmonella vaccine and gavaged with Andrographis paniculata extract or andrographolide, Int Immunopharmacol
Zhang, Lv, Zhou, Efficacy and safety of Xiyanping injection in the treatment of COVID-19: a multicenter, prospective, open-label and randomized controlled trial, Phytother Res
Zheng, Xue, Wang, Guo, Liu, Application of network pharmacology in the study of the mechanism of action of traditional Chinese medicine in the treatment of COVID-19, Front Pharmacol
Zhu, Hou, Yang, Network pharmacology integrated with experimental validation revealed the anti-inflammatory effects of Andrographis paniculata, Sci Rep
{ 'indexed': {'date-parts': [[2023, 1, 13]], 'date-time': '2023-01-13T06:02:26Z', 'timestamp': 1673589746737}, 'reference-count': 72, 'publisher': 'SAGE Publications', 'license': [ { 'start': { 'date-parts': [[2023, 1, 1]], 'date-time': '2023-01-01T00:00:00Z', 'timestamp': 1672531200000}, 'content-version': 'unspecified', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by-nc/4.0/'}], 'content-domain': {'domain': ['journals.sagepub.com'], 'crossmark-restriction': True}, 'published-print': {'date-parts': [[2023, 1]]}, 'abstract': '<jats:p> The current coronavirus disease 2019 (COVID-19) outbreak is alarmingly escalating ' 'and raises challenges in finding efficient compounds for treatment. Repurposing ' 'phytochemicals in herbs is an ideal and economical approach for screening potential herbal ' 'components against COVID-19. Andrographis paniculata, also known as Chuan Xin Lian, has ' 'traditionally been used as an anti-inflammatory and antibacterial herb for centuries and has ' 'recently been classified as a promising herbal remedy for adjuvant therapy in treating ' 'respiratory diseases. This study aimed to screen Chuan Xin Lian’s bioactive components and ' 'elicit the potential pharmacological mechanisms and plausible pathways for treating COVID-19 ' 'using network pharmacology combined with molecular docking. The results found terpenoid ' '(andrographolide) and flavonoid (luteolin, quercetin, kaempferol, and wogonin) derivatives ' 'had remarkable potential against COVID-19 and sequelae owing to their high degrees in the ' 'component-target-pathway network and strong binding capacities in docking scores. In ' 'addition, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the ' 'PI3K-AKT signaling pathway might be the most vital molecular pathway in the pathophysiology ' 'of COVID-19 and long-term sequelae whereby therapeutic strategies can intervene. </jats:p>', 'DOI': '10.1177/11779322221149622', 'type': 'journal-article', 'created': {'date-parts': [[2023, 1, 12]], 'date-time': '2023-01-12T09:15:33Z', 'timestamp': 1673514933000}, 'page': '117793222211496', 'update-policy': 'http://dx.doi.org/10.1177/sage-journals-update-policy', 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': 'The Potential of Ameliorating COVID-19 and Sequelae From <i>Andrographis paniculata</i> via ' 'Bioinformatics', 'prefix': '10.1177', 'volume': '17', 'author': [ { 'given': 'Hien Thi', 'family': 'Nguyen', 'sequence': 'first', 'affiliation': [ { 'name': 'Faculty of Public Health, Can Tho University of Medicine and ' 'Pharmacy, Can Tho, Vietnam'}]}, { 'given': 'Van Mai', 'family': 'Do', 'sequence': 'additional', 'affiliation': [ { 'name': 'Faculty of Traditional Medicine, Can Tho University of Medicine ' 'and Pharmacy, Can Tho, Vietnam'}]}, { 'given': 'Thanh Thuy', 'family': 'Phan', 'sequence': 'additional', 'affiliation': [ { 'name': 'Faculty of Pharmacy, Nguyen Tat Thanh University, Ho Chi Minh ' 'C\ufeffity, Vietnam'}]}, { 'given': 'Dung Tam', 'family': 'Nguyen Huynh', 'sequence': 'additional', 'affiliation': [ { 'name': 'School of Pharmacy, College of Pharmacy, Taipei Medical ' 'University, Taipei'}]}], 'member': '179', 'published-online': {'date-parts': [[2023, 1, 12]]}, 'reference': [ { 'key': 'bibr1-11779322221149622', 'unstructured': 'World Health Organization. World health statistics 2022: monitoring ' 'health for the SDGs, sustainable development goals. Published May 19, ' '2022. https://www.who.int/publications/i/item/9789240051157'}, { 'key': 'bibr2-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.3389/fmed.2021.757605'}, { 'key': 'bibr3-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/v14091863'}, { 'key': 'bibr4-11779322221149622', 'volume': '101', 'author': 'Luo D', 'year': '2022', 'journal-title': 'Medicine'}, { 'key': 'bibr5-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/nbt1007-1110'}, { 'key': 'bibr6-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.virol.2020.12.006'}, { 'key': 'bibr7-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.jff.2020.104149'}, { 'key': 'bibr8-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1371/journal.pone.0245209'}, { 'key': 'bibr9-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.3389/fphar.2020.581840'}, { 'key': 'bibr10-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1080/07391102.2020.1777901'}, { 'key': 'bibr11-11779322221149622', 'first-page': '3092', 'volume': '39', 'author': 'Enmozhi SK', 'year': '2021', 'journal-title': 'J Biomol Struct Dyn'}, { 'key': 'bibr12-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.3389/fimmu.2021.648250'}, { 'key': 'bibr13-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/ptr.7141'}, { 'key': 'bibr14-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41598-021-89257-6'}, { 'key': 'bibr15-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/pca.3011'}, { 'key': 'bibr16-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/ptr.2650090804'}, { 'key': 'bibr17-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S0944-7113(97)80051-7'}, { 'key': 'bibr18-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/nar/gkaa1063'}, { 'key': 'bibr19-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/srep42717'}, { 'key': 'bibr20-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/database/bax028'}, { 'key': 'bibr21-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/database/bav028'}, { 'key': 'bibr22-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/database/baaa062'}, { 'key': 'bibr23-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/nar/gky1131'}, { 'key': 'bibr24-11779322221149622', 'volume': '49', 'author': 'Szklarczyk D', 'year': '2020', 'journal-title': 'Nucleic Acids Res'}, { 'key': 'bibr25-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1101/gr.1239303'}, { 'key': 'bibr26-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/bioinformatics/btz931'}, { 'key': 'bibr27-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/nar/gkr366'}, { 'key': 'bibr28-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/nar/28.1.235'}, { 'key': 'bibr29-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/nar/gky473'}, { 'key': 'bibr30-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/nar/gkl282'}, { 'key': 'bibr31-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/nar/gkg512'}, { 'key': 'bibr32-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/(SICI)1097-0282(199603)38:3<305::AID-BIP4>3.0.CO;2-Y'}, { 'key': 'bibr33-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/jcc.20084'}, { 'key': 'bibr34-11779322221149622', 'first-page': '66', 'volume': '16', 'author': 'Akbar S.', 'year': '2011', 'journal-title': 'Altern Med Rev'}, { 'key': 'bibr35-11779322221149622', 'doi-asserted-by': 'crossref', 'first-page': '1', 'DOI': '10.1186/1746-4269-10-1', 'volume': '10', 'author': 'Kabir MH', 'year': '2014', 'journal-title': 'Jo Ethnobiol Ethnomed'}, { 'key': 'bibr36-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1080/10286020701273627'}, { 'key': 'bibr37-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1055/s-0029-1185398'}, { 'key': 'bibr38-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.intimp.2006.12.008'}, { 'key': 'bibr39-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1046/j.1359-4117.2003.01090.x'}, { 'key': 'bibr40-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.jep.2004.03.004'}, { 'key': 'bibr41-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1080/08923970600626007'}, { 'key': 'bibr42-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/sj.bjp.0704493'}, { 'key': 'bibr43-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1080/10408398.2018.1501657'}, { 'key': 'bibr44-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/ptr.1765'}, { 'key': 'bibr45-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.3109/13880209209054010'}, { 'key': 'bibr46-11779322221149622', 'first-page': '97', 'volume-title': 'Chinese Drugs of Plant Origin', 'volume': '1992', 'author': 'Tang W'}, { 'key': 'bibr47-11779322221149622', 'first-page': '131', 'volume': '62', 'author': 'Sharma A', 'year': '1991', 'journal-title': 'Fitoterapia'}, { 'key': 'bibr48-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/0006-2952(93)90364-3'}, { 'key': 'bibr49-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/jf025556f'}, { 'key': 'bibr50-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/ptr.730'}, { 'key': 'bibr51-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/1099-1573(200009)14:6<432::AID-PTR622>3.0.CO;2-I'}, { 'key': 'bibr52-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/ph14111102'}, { 'key': 'bibr53-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S2222-1808(14)60509-0'}, { 'key': 'bibr54-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/life11040348'}, { 'key': 'bibr55-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/acs.jnatprod.0c01324'}, { 'key': 'bibr56-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/ptr.7436'}, { 'key': 'bibr57-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/s10822-007-9129-8'}, { 'key': 'bibr58-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.jff.2017.10.047'}, { 'key': 'bibr59-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/np900259y'}, { 'key': 'bibr60-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/ptr.6886'}, { 'key': 'bibr61-11779322221149622', 'first-page': '1241', 'volume': '34', 'author': 'Theoharides TC', 'year': '2020', 'journal-title': 'J Biol Regul Homeost Agents'}, { 'key': 'bibr62-11779322221149622', 'first-page': '1332', 'volume': '14', 'author': 'Fan SJ', 'year': '2022', 'journal-title': 'Am J Transl Res'}, { 'key': 'bibr63-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1136/postgradmedj-2020-138577'}, { 'key': 'bibr64-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1186/s12929-020-00703-5'}, { 'key': 'bibr65-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.cell.2021.02.029'}, { 'key': 'bibr66-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.biopha.2021.112420'}, { 'key': 'bibr67-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.3389/fphar.2022.926901'}, { 'key': 'bibr68-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/vaccines9050497'}, { 'key': 'bibr69-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41590-021-01104-y'}, { 'key': 'bibr70-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1111/febs.15871'}, { 'key': 'bibr71-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/JVI.00724-14'}, { 'key': 'bibr72-11779322221149622', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.biochi.2020.11.010'}], 'container-title': 'Bioinformatics and Biology Insights', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'http://journals.sagepub.com/doi/pdf/10.1177/11779322221149622', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'http://journals.sagepub.com/doi/full-xml/10.1177/11779322221149622', 'content-type': 'application/xml', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'http://journals.sagepub.com/doi/pdf/10.1177/11779322221149622', 'content-type': 'unspecified', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2023, 1, 12]], 'date-time': '2023-01-12T09:15:50Z', 'timestamp': 1673514950000}, 'score': 1, 'resource': {'primary': {'URL': 'http://journals.sagepub.com/doi/10.1177/11779322221149622'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2023, 1]]}, 'references-count': 72, 'alternative-id': ['10.1177/11779322221149622'], 'URL': 'http://dx.doi.org/10.1177/11779322221149622', 'relation': {}, 'ISSN': ['1177-9322', '1177-9322'], 'subject': [ 'Applied Mathematics', 'Computational Mathematics', 'Computer Science Applications', 'Molecular Biology', 'Biochemistry'], 'container-title-short': 'Bioinform Biol Insights', 'published': {'date-parts': [[2023, 1]]}}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit