Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchQuercetinQuercetin (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

Inhibitory effects of specific combination of natural compounds against SARS-CoV-2 and its Alpha, Beta, Gamma, Delta, Kappa, and Mu variants

Goc et al., European Journal of Microbiology and Immunology, doi:10.1556/1886.2021.00022
Jan 2022  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Quercetin for COVID-19
24th treatment shown to reduce risk in July 2021, now with p = 0.002 from 12 studies.
No treatment is 100% effective. Protocols combine treatments.
5,100+ studies for 112 treatments. c19early.org
In Vitro study testing combinations of plant extracts and micronutrients with several variants of SARS-CoV-2. A combination of vitamin C, N-acetylcysteine, curcumin, quercetin, resveratrol, theaflavin, naringenin, baicalin, and broccoli extract showed the highest inhibition of RBD binding, and also decreased RdRp, furin, and cathepsin L activity.
Bioavailability. Quercetin has low bioavailability and studies typically use advanced formulations to improve bioavailability which may be required to reach therapeutic concentrations.
73 preclinical studies support the efficacy of quercetin for COVID-19:
In Silico studies predict inhibition of SARS-CoV-2, or minimization of side effects, with quercetin or metabolites via binding to the spikeA,3,9,10,22,24,25,30,38,39,41,42,62-64, MproB,3,7,9,11,13,15,17,18,20,23,24,30,34,36-38,42,43,45,63-65, RNA-dependent RNA polymeraseC,1,3,9,32,64, PLproD,3,37,45, ACE2E,22,23,28,37,41,63, TMPRSS2F,22, nucleocapsidG,3, helicaseH,3,29,34, endoribonucleaseI,39, NSP16/10J,6, cathepsin LK,26, Wnt-3L,22, FZDM,22, LRP6N,22, ezrinO,40, ADRPP,38, NRP1Q,41, EP300R,16, PTGS2S,23, HSP90AA1T,16,23, matrix metalloproteinase 9U,31, IL-6V,21,35, IL-10W,21, VEGFAX,35, and RELAY,35 proteins. In Vitro studies demonstrate inhibition of the MproB,15,46,51,59 protein, and inhibition of spike-ACE2 interactionZ,47. In Vitro studies demonstrate efficacy in Calu-3AA,50, A549AB,21, HEK293-ACE2+AC,58, Huh-7AD,25, Caco-2AE,49, Vero E6AF,19,42,49, mTECAG,52, and RAW264.7AH,52 cells. Animal studies demonstrate efficacy in K18-hACE2 miceAI,55, db/db miceAJ,52,61, BALB/c miceAK,60, and rats66. Quercetin reduced proinflammatory cytokines and protected lung and kidney tissue against LPS-induced damage in mice60, inhibits LPS-induced cytokine storm by modulating key inflammatory and antioxidant pathways in macrophages5, and inhibits SARS-CoV-2 ORF3a ion channel activity, which contributes to viral pathogenicity and cytotoxicity54.
Study covers quercetin, curcumin, N-acetylcysteine, and vitamin C.
a. The trimeric spike (S) protein is a glycoprotein that mediates viral entry by binding to the host ACE2 receptor, is critical for SARS-CoV-2's ability to infect host cells, and is a target of neutralizing antibodies. Inhibition of the spike protein prevents viral attachment, halting infection at the earliest stage.
b. The main protease or Mpro, also known as 3CLpro or nsp5, is a cysteine protease that cleaves viral polyproteins into functional units needed for replication. Inhibiting Mpro disrupts the SARS-CoV-2 lifecycle within the host cell, preventing the creation of new copies.
c. RNA-dependent RNA polymerase (RdRp), also called nsp12, is the core enzyme of the viral replicase-transcriptase complex that copies the positive-sense viral RNA genome into negative-sense templates for progeny RNA synthesis. Inhibiting RdRp blocks viral genome replication and transcription.
d. The papain-like protease (PLpro) has multiple functions including cleaving viral polyproteins and suppressing the host immune response by deubiquitination and deISGylation of host proteins. Inhibiting PLpro may block viral replication and help restore normal immune responses.
e. The angiotensin converting enzyme 2 (ACE2) protein is a host cell transmembrane protein that serves as the cellular receptor for the SARS-CoV-2 spike protein. ACE2 is expressed on many cell types, including epithelial cells in the lungs, and allows the virus to enter and infect host cells. Inhibition may affect ACE2's physiological function in blood pressure control.
f. Transmembrane protease serine 2 (TMPRSS2) is a host cell protease that primes the spike protein, facilitating cellular entry. TMPRSS2 activity helps enable cleavage of the spike protein required for membrane fusion and virus entry. Inhibition may especially protect respiratory epithelial cells, buy may have physiological effects.
g. The nucleocapsid (N) protein binds and encapsulates the viral genome by coating the viral RNA. N enables formation and release of infectious virions and plays additional roles in viral replication and pathogenesis. N is also an immunodominant antigen used in diagnostic assays.
h. The helicase, or nsp13, protein unwinds the double-stranded viral RNA, a crucial step in replication and transcription. Inhibition may prevent viral genome replication and the creation of new virus components.
i. The endoribonuclease, also known as NendoU or nsp15, cleaves specific sequences in viral RNA which may help the virus evade detection by the host immune system. Inhibition may hinder the virus's ability to mask itself from the immune system, facilitating a stronger immune response.
j. The NSP16/10 complex consists of non-structural proteins 16 and 10, forming a 2'-O-methyltransferase that modifies the viral RNA cap structure. This modification helps the virus evade host immune detection by mimicking host mRNA, making NSP16/10 a promising antiviral target.
k. Cathepsin L is a host lysosomal cysteine protease that can prime the spike protein through an alternative pathway when TMPRSS2 is unavailable. Dual targeting of cathepsin L and TMPRSS2 may maximize disruption of alternative pathways for virus entry.
l. Wingless-related integration site (Wnt) ligand 3 is a host signaling molecule that activates the Wnt signaling pathway, which is important in development, cell growth, and tissue repair. Some studies suggest that SARS-CoV-2 infection may interfere with the Wnt signaling pathway, and that Wnt3a is involved in SARS-CoV-2 entry.
m. The frizzled (FZD) receptor is a host transmembrane receptor that binds Wnt ligands, initiating the Wnt signaling cascade. FZD serves as a co-receptor, along with ACE2, in some proposed mechanisms of SARS-CoV-2 infection. The virus may take advantage of this pathway as an alternative entry route.
n. Low-density lipoprotein receptor-related protein 6 is a cell surface co-receptor essential for Wnt signaling. LRP6 acts in tandem with FZD for signal transduction and has been discussed as a potential co-receptor for SARS-CoV-2 entry.
o. The ezrin protein links the cell membrane to the cytoskeleton (the cell's internal support structure) and plays a role in cell shape, movement, adhesion, and signaling. Drugs that occupy the same spot on ezrin where the viral spike protein would bind may hindering viral attachment, and drug binding could further stabilize ezrin, strengthening its potential natural capacity to impede viral fusion and entry.
p. The Adipocyte Differentiation-Related Protein (ADRP, also known as Perilipin 2 or PLIN2) is a lipid droplet protein regulating the storage and breakdown of fats in cells. SARS-CoV-2 may hijack the lipid handling machinery of host cells and ADRP may play a role in this process. Disrupting ADRP's interaction with the virus may hinder the virus's ability to use lipids for replication and assembly.
q. Neuropilin-1 (NRP1) is a cell surface receptor with roles in blood vessel development, nerve cell guidance, and immune responses. NRP1 may function as a co-receptor for SARS-CoV-2, facilitating viral entry into cells. Blocking NRP1 may disrupt an alternative route of viral entry.
r. EP300 (E1A Binding Protein P300) is a transcriptional coactivator involved in several cellular processes, including growth, differentiation, and apoptosis, through its acetyltransferase activity that modifies histones and non-histone proteins. EP300 facilitates viral entry into cells and upregulates inflammatory cytokine production.
s. Prostaglandin G/H synthase 2 (PTGS2, also known as COX-2) is an enzyme crucial for the production of inflammatory molecules called prostaglandins. PTGS2 plays a role in the inflammatory response that can become severe in COVID-19 and inhibitors (like some NSAIDs) may have benefits in dampening harmful inflammation, but note that prostaglandins have diverse physiological functions.
t. Heat Shock Protein 90 Alpha Family Class A Member 1 (HSP90AA1) is a chaperone protein that helps other proteins fold correctly and maintains their stability. HSP90AA1 plays roles in cell signaling, survival, and immune responses. HSP90AA1 may interact with numerous viral proteins, but note that it has diverse physiological functions.
u. Matrix metalloproteinase 9 (MMP9), also called gelatinase B, is a zinc-dependent enzyme that breaks down collagen and other components of the extracellular matrix. MMP9 levels increase in severe COVID-19. Overactive MMP9 can damage lung tissue and worsen inflammation. Inhibition of MMP9 may prevent excessive tissue damage and help regulate the inflammatory response.
v. The interleukin-6 (IL-6) pro-inflammatory cytokine (signaling molecule) has a complex role in the immune response and may trigger and perpetuate inflammation. Elevated IL-6 levels are associated with severe COVID-19 cases and cytokine storm. Anti-IL-6 therapies may be beneficial in reducing excessive inflammation in severe COVID-19 cases.
w. The interleukin-10 (IL-10) anti-inflammatory cytokine helps regulate and dampen immune responses, preventing excessive inflammation. IL-10 levels can also be elevated in severe COVID-19. IL-10 could either help control harmful inflammation or potentially contribute to immune suppression.
x. Vascular Endothelial Growth Factor A (VEGFA) promotes the growth of new blood vessels (angiogenesis) and has roles in inflammation and immune responses. VEGFA may contribute to blood vessel leakiness and excessive inflammation associated with severe COVID-19.
y. RELA is a transcription factor subunit of NF-kB and is a key regulator of inflammation, driving pro-inflammatory gene expression. SARS-CoV-2 may hijack and modulate NF-kB pathways.
z. The interaction between the SARS-CoV-2 spike protein and the human ACE2 receptor is a primary method of viral entry, inhibiting this interaction can prevent the virus from attaching to and entering host cells, halting infection at an early stage.
aa. Calu-3 is a human lung adenocarcinoma cell line with moderate ACE2 and TMPRSS2 expression and SARS-CoV-2 susceptibility. It provides a model of the human respiratory epithelium, but many not be ideal for modeling early stages of infection due to the moderate expression levels of ACE2 and TMPRSS2.
ab. A549 is a human lung carcinoma cell line with low ACE2 expression and SARS-CoV-2 susceptibility. Viral entry/replication can be studied but the cells may not replicate all aspects of lung infection.
ac. HEK293-ACE2+ is a human embryonic kidney cell line engineered for high ACE2 expression and SARS-CoV-2 susceptibility.
ad. Huh-7 cells were derived from a liver tumor (hepatoma).
ae. Caco-2 cells come from a colorectal adenocarcinoma (cancer). They are valued for their ability to form a polarized cell layer with properties similar to the intestinal lining.
af. Vero E6 is an African green monkey kidney cell line with low/no ACE2 expression and high SARS-CoV-2 susceptibility. The cell line is easy to maintain and supports robust viral replication, however the monkey origin may not accurately represent human responses.
ag. mTEC is a mouse tubular epithelial cell line.
ah. RAW264.7 is a mouse macrophage cell line.
ai. A mouse model expressing the human ACE2 receptor under the control of the K18 promoter.
aj. A mouse model of obesity and severe insulin resistance leading to type 2 diabetes due to a mutation in the leptin receptor gene that impairs satiety signaling.
ak. A mouse model commonly used in infectious disease and cancer research due to higher immune response and susceptibility to infection.
Goc et al., 21 Jan 2022, peer-reviewed, 5 authors.
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
This PaperQuercetinAll
Inhibitory effects of specific combination of natural compounds against SARS-CoV-2 and its Alpha, Beta, Gamma, Delta, Kappa, and Mu variants
Anna Goc, Aleksandra Niedzwiecki, Vadim Ivanov, Svetlana Ivanova, Matthias Rath
doi:10.1556/1886.2021.00022
Despite vaccine availability, the global spread of COVID-19 continues, largely facilitated by emerging SARS-CoV-2 mutations. Our earlier research documented that a specific combination of plant-derived compounds can inhibit SARS-CoV-2 binding to its ACE2 receptor and controlling key cellular mechanisms of viral infectivity. In this study, we evaluated the efficacy of a defined mixture of plant extracts and micronutrients against original SARS-CoV-2 and its Alpha, Beta, Gamma, Delta, Kappa, and Mu variants. The composition containing vitamin C, N-acetylcysteine, resveratrol, theaflavin, curcumin, quercetin, naringenin, baicalin, and broccoli extract demonstrated a highest efficacy by inhibiting the receptor-binding domain (RBD) binding of SARS-CoV-2 to its cellular ACE2 receptor by 90%. In vitro exposure of test pseudo-typed variants to this formula for 1 h before or simultaneously administrated to human pulmonary cells resulted in up to 60% inhibition in their cellular entry. Additionally, this composition significantly inhibited other cellular mechanisms of viral infectivity, including the activity of viral RdRp, furin, and cathepsin L. These findings demonstrate the efficacy of natural compounds against SARS-CoV-2 including its mutated forms through pleiotropic mechanisms. Our results imply that simultaneous inhibition of multiple mechanisms of viral infection of host cells could be an effective strategy to prevent SARS-CoV-2 infection.
References
Andreano, Piccini, Licastro, Casalino, Johnson et al., SARS-CoV-2 escape from a highly neutralizing COVID-19 convalescent plasma, Proc Natl Acad Sci, doi:10.1073/pnas.2103154118
Barbour, Rayya, Houssam, El-Hakim, Niedzwiecki et al., Alleviation of histopathologic effects of avian influenza virus by a specific nutrient synergy, Int J Appl Res Vet Med
Chakraborty, Maity, COVID-19 outbreak: migration, effects on society, global environment and prevention, Sci Total Environ, doi:10.1016/j.scitotenv.2020.138882
Collier, Marco, Ferreira, Meng, Datir et al., Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccineelicited antibodies, Nature, doi:10.1038/s41586-021-03412-7
Deryabin, Lvov, Botikov, Ivanov, Kalinovsky et al., Effects of a nutrient mixture on infectious properties of the highly pathogenic strain of avian influenza virus A/H5N1, Biofactors, doi:10.1002/biof.5520330201
Du, He, Zhou, Liu, Zheng et al., The spike protein of SARS-CoV-a target for vaccine and therapeutic development, Nat Rev Microbiol, doi:10.1038/nrmicro2090
Du, Yang, Zhou, Lu, Li et al., MERS-CoV spike protein: a key target for antivirals, Expert Opin Ther Targets, doi:10.1080/14728222.2017.1271415
Dyson, Hill, Moore, Curran-Sebastian, Tildesley et al., Possible future waves of SARS-CoV-2 infection generated by variants of concern with a range of characteristics, Nat Commun, doi:10.1038/s41467-021-25915-7
Fehr, Perlman, Coronaviruses: an overview of their replication and pathogenesis, Methods Mol Biol, doi:10.1007/978-1-4939-2438-7_1
Follis, York, Nunberg, Furin cleavage of the SARS coronavirus spike glycoprotein enhances cell-cell fusion but does not affect virion entry, Virology, doi:10.1016/j.virol.2006.02.003
Glowacka, Bertram, Müller, Allen, Soilleux et al., Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response, J Virol
Goc, Ivanov, Ivanova, Chatterjee, Rath et al., Simultaneous inhibition of SARS-CoV-2 infectivity by a specific combination of plant-derived compounds, Eur J Bio Biotech, doi:10.24018/ejbio.2021.2.5.258
Goc, Niedzwiecki, Rath, Polyunsaturated u-3 fatty acids inhibit ACE2-controlled SARS-CoV-2 binding and cellular entry, Sci Rep, doi:10.1038/s41598-021-84850-1
Goc, Sumera, Rath, Niedzwiecki, Phenolic compounds disrupt spike-mediated receptor-binding and entry of SARS-CoV-2 pseudo-virions, PLOS ONE, doi:10.1371/journal.pone.0253489
Gopinath, Jokinen, Kurkinen, Pentikäinen, Screening of natural products targeting SARS-CoV-2-ACE2 receptor interface -A MixMD based HTVS pipeline, Front Chem, doi:10.3389/fchem.2020.589769
Ivanov, Goc, Ivanova, Niedzwiecki, Rath, Inhibition of ACE2 expression by Ascorbic acid alone and its combination with other natural compounds, Infect Dis Res Trmt (Auckl), doi:10.1177/1178633721994605
Ivanov, Ivanova, Niedzwiecki, Rath, Effective and safe global public health strategy to fight the COVID-19 pandemic: specific micronutrient combination inhibits Coronavirus cell-entry receptor (ACE2) expression, J Cell Med Nat Health
Jariwalla, Gangapurkar, Pandit, Kalinovsky, Niedzwiecki et al., Micronutrient cooperation in suppression of HIV production in chronically and latently infected cells, Mol Med Rep, doi:10.3892/mmr_00000268
Jariwalla, Roomi, Gangapurkar, Kalinovsky, Niedzwiecki et al., Suppression of influenza A virus nuclear antigen production and neuraminidase activity by a nutrient mixture containing ascorbic acid, green tea extract and amino acids, Biofactors, doi:10.1002/biof.5520310101
Johnson, Xie, Kumari, Lokugamage, Muruato et al., Furin cleavage site is key to SARS-CoV-2 pathogenesis, doi:10.1101/2020.08.26.268854%20Preprint
Li, Structure, function, and evolution of coronavirus spike proteins, Annu Rev Virol, doi:10.1146/annurev-virology-110615-042301
Liu, Luo, Libby, Shi, Cathepsin L-selective inhibitors: a potentially promising treatment for COVID-19 patients, Pharmacol Ther, doi:10.1016/j.pharmthera.2020.107587
Ming, Qiang, Involvement of spike protein, furin, and ACE2 in SARS-CoV-2-related cardiovascular complications, SN Compr Clin Med, doi:10.1007/s42399-020-00400-2
Muchtaridi, Fauzi, Ikram, Gazzali, Wahab, Natural flavonoids as potential angiotensin-converting enzyme 2 inhibitors for anti-SARS-CoV-2, Molecules, doi:10.3390/molecules25173980
Simmons, Gosalia, Rennekamp, Reeves, Diamond et al., Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry, Proc Natl Acad Sci
Tian, Huang, Fang, Wu, Furin DB: A database of 20-residue furin cleavage site motifs, substrates and their associated drugs, Int J Mol Sci, doi:10.3390/ijms12021060
Yang, Chen, Hamdoun, Coghi, Ng et al., Corilagin prevents SARS-CoV-2 infection by targeting RBD-ACE2 binding, Phytomedicine, doi:10.1016/j.phymed.2021.153591
Zhang, Cui, Li, Wang, Yu et al., Ten emerging SARS-CoV-2 spike variants exhibit variable infectivity, animal tropism, and antibody neutralization, Commun Biol, doi:10.1038/s42003-021-02728-4
Zhang, Hamdoun, Chen, Yang, Ip et al., Identification of natural compounds as SARS-CoV-2 entry inhibitors by molecular docking-based virtual screening with biolayer interferometry, Pharmacol Res, doi:10.1016/j.phrs.2021.105820
Zhang, Rao, Li, Zhu, Liu et al., High dose vitamin C infusion for the treatment of critically ill COVID-19, Ann Intensive Care, doi:10.1186/s13613-020-00792-3
{ 'indexed': {'date-parts': [[2022, 1, 23]], 'date-time': '2022-01-23T03:11:22Z', 'timestamp': 1642907482391}, 'reference-count': 60, 'publisher': 'Akademiai Kiado Zrt.', 'license': [ { 'start': { 'date-parts': [[2022, 1, 21]], 'date-time': '2022-01-21T00:00:00Z', 'timestamp': 1642723200000}, 'content-version': 'unspecified', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by-nc/4.0/'}], 'funder': [{'name': 'Dr. Rath Health Foundation'}], 'content-domain': {'domain': ['akjournals.com'], 'crossmark-restriction': True}, 'short-container-title': ['EuJMI'], 'published-print': {'date-parts': [[2022, 1, 21]]}, 'abstract': '<jats:title>Abstract</jats:title>\n' ' <jats:p>Despite vaccine availability, the global spread of COVID-19 continues, ' 'largely facilitated by emerging SARS-CoV-2 mutations. Our earlier research documented that a ' 'specific combination of plant-derived compounds can inhibit SARS-CoV-2 binding to its ACE2 ' 'receptor and controlling key cellular mechanisms of viral infectivity. In this study, we ' 'evaluated the efficacy of a defined mixture of plant extracts and micronutrients against ' 'original SARS-CoV-2 and its Alpha, Beta, Gamma, Delta, Kappa, and Mu variants. The ' 'composition containing vitamin C, N-acetylcysteine, resveratrol, theaflavin, curcumin, ' 'quercetin, naringenin, baicalin, and broccoli extract demonstrated a highest efficacy by ' 'inhibiting the receptor-binding domain (RBD) binding of SARS-CoV-2 to its cellular ACE2 ' 'receptor by 90%. <jats:italic>In vitro</jats:italic> exposure of test pseudo-typed variants ' 'to this formula for 1\u2009h before or simultaneously administrated to human pulmonary cells ' 'resulted in up to 60% inhibition in their cellular entry. Additionally, this composition ' 'significantly inhibited other cellular mechanisms of viral infectivity, including the ' 'activity of viral RdRp, furin, and cathepsin L. These findings demonstrate the efficacy of ' 'natural compounds against SARS-CoV-2 including its mutated forms through pleiotropic ' 'mechanisms. Our results imply that simultaneous inhibition of multiple mechanisms of viral ' 'infection of host cells could be an effective strategy to prevent SARS-CoV-2 ' 'infection.</jats:p>', 'DOI': '10.1556/1886.2021.00022', 'type': 'journal-article', 'created': {'date-parts': [[2022, 1, 21]], 'date-time': '2022-01-21T10:45:13Z', 'timestamp': 1642761913000}, 'update-policy': 'http://dx.doi.org/10.1556/policypage.crossmark.crossref.1', 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': [ 'Inhibitory effects of specific combination of natural compounds against SARS-CoV-2 and its ' 'Alpha, Beta, Gamma, Delta, Kappa, and Mu variants'], 'prefix': '10.1556', 'author': [ { 'given': 'Anna', 'family': 'Goc', 'sequence': 'first', 'affiliation': [ { 'name': 'Dr. Rath Research Institute, 5941 Optical Ct., San Jose, CA ' '95138, USA'}]}, { 'ORCID': 'http://orcid.org/0000-0003-1275-8583', 'authenticated-orcid': True, 'given': 'Aleksandra', 'family': 'Niedzwiecki', 'sequence': 'additional', 'affiliation': [ { 'name': 'Dr. Rath Research Institute, 5941 Optical Ct., San Jose, CA ' '95138, USA'}]}, { 'given': 'Vadim', 'family': 'Ivanov', 'sequence': 'additional', 'affiliation': [ { 'name': 'Dr. Rath Research Institute, 5941 Optical Ct., San Jose, CA ' '95138, USA'}]}, { 'given': 'Svetlana', 'family': 'Ivanova', 'sequence': 'additional', 'affiliation': [ { 'name': 'Dr. Rath Research Institute, 5941 Optical Ct., San Jose, CA ' '95138, USA'}]}, { 'given': 'Matthias', 'family': 'Rath', 'sequence': 'additional', 'affiliation': [ { 'name': 'Dr. Rath Research Institute, 5941 Optical Ct., San Jose, CA ' '95138, USA'}]}], 'member': '425', 'reference': [ { 'key': 'ref81', 'doi-asserted-by': 'crossref', 'first-page': '226', 'DOI': '10.1038/nrmicro2090', 'article-title': 'The spike protein of SARS-CoV-a target for vaccine and therapeutic ' 'development', 'volume': '7', 'author': 'Du', 'year': '2009', 'journal-title': 'Nat Rev Microbiol'}, { 'key': 'ref251', 'doi-asserted-by': 'crossref', 'first-page': '1103', 'DOI': '10.1007/s42399-020-00400-2', 'article-title': 'Involvement of spike protein, furin, and ACE2 in SARS-CoV-2-related ' 'cardiovascular complications', 'volume': '2', 'author': 'Ming', 'year': '2020', 'journal-title': 'SN Compr Clin Med'}, { 'key': 'ref371', 'doi-asserted-by': 'crossref', 'first-page': '136', 'DOI': '10.1038/s41586-021-03412-7', 'article-title': 'Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies', 'volume': '593', 'author': 'Collier', 'year': '2021', 'journal-title': 'Nature'}, { 'key': 'ref111', 'doi-asserted-by': 'crossref', 'first-page': '4122', 'DOI': '10.1128/JVI.02232-10', 'article-title': 'Evidence that TMPRSS2 activates the severe acute respiratory syndrome ' 'coronavirus spike protein for membrane fusion and reduces viral control ' 'by the humoral immune response', 'volume': '85', 'author': 'Glowacka', 'year': '2011', 'journal-title': 'J Virol'}, { 'key': 'ref201', 'first-page': '1', 'article-title': 'Inhibition of ACE2 expression by Ascorbic acid alone and its ' 'combination with other natural compounds', 'volume': '14', 'author': 'Ivanov', 'year': '2021', 'journal-title': 'Infect Dis Res Trmt (Auckl)'}, { 'key': 'ref431', 'doi-asserted-by': 'crossref', 'first-page': '4122', 'DOI': '10.1128/JVI.02232-10', 'article-title': 'Evidence that TMPRSS2 activates the severe acute respiratory syndrome ' 'coronavirus spike protein for membrane fusion and reduces viral control ' 'by the humoral immune response', 'volume': '85', 'author': 'Glowacka', 'year': '2011', 'journal-title': 'J Virol'}, { 'key': 'ref421', 'doi-asserted-by': 'crossref', 'first-page': '1', 'DOI': '10.1007/978-1-4939-2438-7_1', 'article-title': 'Coronaviruses: an overview of their replication and pathogenesis', 'volume': '1282', 'author': 'Fehr', 'year': '2015', 'journal-title': 'Methods Mol Biol'}, { 'key': 'ref221', 'doi-asserted-by': 'crossref', 'first-page': '1060', 'DOI': '10.3390/ijms12021060', 'article-title': 'A database of 20-residue furin cleavage site motifs, substrates and ' 'their associated drugs', 'volume': '12', 'author': 'Tian', 'year': '2011', 'journal-title': 'Int J Mol Sci'}, { 'key': 'ref401', 'doi-asserted-by': 'crossref', 'first-page': '226', 'DOI': '10.1038/nrmicro2090', 'article-title': 'The spike protein of SARS-CoV-a target for vaccine and therapeutic ' 'development', 'volume': '7', 'author': 'Du', 'year': '2009', 'journal-title': 'Nat Rev Microbiol'}, { 'key': 'ref131', 'doi-asserted-by': 'crossref', 'first-page': '105820', 'DOI': '10.1016/j.phrs.2021.105820', 'article-title': 'Identification of natural compounds as SARS-CoV-2 entry inhibitors by ' 'molecular docking-based virtual screening with bio-layer interferometry', 'volume': '172', 'author': 'Zhang', 'year': '2021', 'journal-title': 'Pharmacol Res'}, { 'key': 'ref241', 'first-page': '268854', 'article-title': 'Furin cleavage site is key to SARS-CoV-2 pathogenesis', 'author': 'Johnson', 'year': '2020', 'journal-title': 'bioRxiv'}, { 'key': 'ref31', 'doi-asserted-by': 'crossref', 'DOI': '10.1073/pnas.2103154118', 'article-title': 'SARS-CoV-2 escape from a highly neutralizing COVID-19 convalescent ' 'plasma', 'volume': '118', 'author': 'Andreano', 'year': '2021', 'journal-title': 'Proc Natl Acad Sci USA'}, { 'key': 'ref161', 'doi-asserted-by': 'crossref', 'first-page': '153591', 'DOI': '10.1016/j.phymed.2021.153591', 'article-title': 'Corilagin prevents SARS-CoV-2 infection by targeting RBD-ACE2 binding', 'volume': '87', 'author': 'Yang', 'year': '2021', 'journal-title': 'Phytomedicine'}, { 'key': 'ref551', 'doi-asserted-by': 'crossref', 'first-page': '358', 'DOI': '10.1016/j.virol.2006.02.003', 'article-title': 'Furin cleavage of the SARS coronavirus spike glycoprotein enhances ' 'cell-cell fusion but does not affect virion entry', 'volume': '350', 'author': 'Follis', 'year': '2006', 'journal-title': 'Virology'}, { 'key': 'ref351', 'doi-asserted-by': 'crossref', 'DOI': '10.1073/pnas.2103154118', 'article-title': 'SARS-CoV-2 escape from a highly neutralizing COVID-19 convalescent ' 'plasma', 'volume': '118', 'author': 'Andreano', 'year': '2021', 'journal-title': 'Proc Natl Acad Sci USA'}, { 'key': 'ref601', 'first-page': '377', 'article-title': 'Micronutrient cooperation in suppression of HIV production in ' 'chronically and latently infected cells', 'volume': '3', 'author': 'Jariwalla', 'year': '2010', 'journal-title': 'Mol Med Rep'}, { 'key': 'ref281', 'first-page': '377', 'article-title': 'Micronutrient cooperation in suppression of HIV production in ' 'chronically and latently infected cells', 'volume': '3', 'author': 'Jariwalla', 'year': '2010', 'journal-title': 'Mol Med Rep'}, { 'key': 'ref141', 'doi-asserted-by': 'crossref', 'first-page': '3980', 'DOI': '10.3390/molecules25173980', 'article-title': 'Natural flavonoids as potential angiotensin-converting enzyme 2 ' 'inhibitors for anti-SARS-CoV-2', 'volume': '25', 'author': 'Muchtaridi', 'year': '2020', 'journal-title': 'Molecules'}, { 'key': 'ref151', 'doi-asserted-by': 'crossref', 'first-page': '589769', 'DOI': '10.3389/fchem.2020.589769', 'article-title': 'Screening of natural products targeting SARS-CoV-2-ACE2 receptor ' 'interface -A MixMD based HTVS pipeline', 'volume': '8', 'author': 'Gopinath', 'year': '2020', 'journal-title': 'Front Chem'}, { 'key': 'ref621', 'doi-asserted-by': 'crossref', 'first-page': '1', 'DOI': '10.1002/biof.5520310101', 'article-title': 'Suppression of influenza A virus nuclear antigen production and ' 'neuraminidase activity by a nutrient mixture containing ascorbic acid, ' 'green tea extract and amino acids', 'volume': '31', 'author': 'Jariwalla', 'year': '2001', 'journal-title': 'Biofactors'}, { 'key': 'ref51', 'doi-asserted-by': 'crossref', 'first-page': '136', 'DOI': '10.1038/s41586-021-03412-7', 'article-title': 'Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies', 'volume': '593', 'author': 'Collier', 'year': '2021', 'journal-title': 'Nature'}, { 'key': 'ref171', 'doi-asserted-by': 'crossref', 'first-page': '24', 'DOI': '10.24018/ejbio.2021.2.5.258', 'article-title': 'Simultaneous inhibition of SARS-CoV-2 infectivity by a specific ' 'combination of plant-derived compounds', 'volume': '2', 'author': 'Goc', 'year': '2021', 'journal-title': 'Eur J Bio Biotech'}, { 'key': 'ref91', 'doi-asserted-by': 'crossref', 'first-page': '131', 'DOI': '10.1080/14728222.2017.1271415', 'article-title': 'MERS-CoV spike protein: a key target for antivirals', 'volume': '21', 'author': 'Du', 'year': '2017', 'journal-title': 'Expert Opin Ther Targets'}, { 'key': 'ref451', 'doi-asserted-by': 'crossref', 'first-page': '105820', 'DOI': '10.1016/j.phrs.2021.105820', 'article-title': 'Identification of natural compounds as SARS-CoV-2 entry inhibitors by ' 'molecular docking-based virtual screening with bio-layer interferometry', 'volume': '172', 'author': 'Zhang', 'year': '2021', 'journal-title': 'Pharmacol Res'}, { 'key': 'ref301', 'doi-asserted-by': 'crossref', 'first-page': '1', 'DOI': '10.1002/biof.5520310101', 'article-title': 'Suppression of influenza A virus nuclear antigen production and ' 'neuraminidase activity by a nutrient mixture containing ascorbic acid, ' 'green tea extract and amino acids', 'volume': '31', 'author': 'Jariwalla', 'year': '2001', 'journal-title': 'Biofactors'}, { 'key': 'ref01', 'doi-asserted-by': 'crossref', 'first-page': '138882', 'DOI': '10.1016/j.scitotenv.2020.138882', 'article-title': 'COVID-19 outbreak: migration, effects on society, global environment ' 'and prevention', 'volume': '728', 'author': 'Chakraborty', 'year': '2020', 'journal-title': 'Sci Total Environ'}, { 'key': 'ref501', 'doi-asserted-by': 'crossref', 'DOI': '10.1371/journal.pone.0253489', 'article-title': 'Phenolic compounds disrupt spike-mediated receptor-binding and entry of ' 'SARS-CoV-2 pseudo-virions', 'volume': '16', 'author': 'Goc', 'year': '2021', 'journal-title': 'PLOS ONE'}, { 'key': 'ref611', 'doi-asserted-by': 'crossref', 'first-page': '85', 'DOI': '10.1002/biof.5520330201', 'article-title': 'Effects of a nutrient mixture on infectious properties of the highly ' 'pathogenic strain of avian influenza virus A/H5N1', 'volume': '33', 'author': 'Deryabin', 'year': '2008', 'journal-title': 'Biofactors'}, { 'key': 'ref181', 'doi-asserted-by': 'crossref', 'DOI': '10.1371/journal.pone.0253489', 'article-title': 'Phenolic compounds disrupt spike-mediated receptor-binding and entry of ' 'SARS-CoV-2 pseudo-virions', 'volume': '16', 'author': 'Goc', 'year': '2021', 'journal-title': 'PLOS ONE'}, { 'key': 'ref631', 'doi-asserted-by': 'crossref', 'first-page': '5', 'DOI': '10.1186/s13613-020-00792-3', 'article-title': 'High dose vitamin C infusion for the treatment of critically ill ' 'COVID-19', 'volume': '11', 'author': 'Zhang', 'year': '2021', 'journal-title': 'Ann Intensive Care'}, { 'key': 'ref411', 'doi-asserted-by': 'crossref', 'first-page': '131', 'DOI': '10.1080/14728222.2017.1271415', 'article-title': 'MERS-CoV spike protein: a key target for antivirals', 'volume': '21', 'author': 'Du', 'year': '2017', 'journal-title': 'Expert Opin Ther Targets'}, { 'key': 'ref71', 'doi-asserted-by': 'crossref', 'first-page': '237', 'DOI': '10.1146/annurev-virology-110615-042301', 'article-title': 'Structure, function, and evolution of coronavirus spike proteins', 'volume': '3', 'author': 'Li', 'year': '2016', 'journal-title': 'Annu Rev Virol'}, { 'key': 'ref191', 'doi-asserted-by': 'crossref', 'first-page': '5207', 'DOI': '10.1038/s41598-021-84850-1', 'article-title': 'Polyunsaturated ω-3 fatty acids inhibit ACE2-controlled SARS-CoV-2 ' 'binding and cellular entry', 'volume': '11', 'author': 'Goc', 'year': '2021', 'journal-title': 'Sci Rep'}, { 'key': 'ref231', 'doi-asserted-by': 'crossref', 'first-page': '358', 'DOI': '10.1016/j.virol.2006.02.003', 'article-title': 'Furin cleavage of the SARS coronavirus spike glycoprotein enhances ' 'cell-cell fusion but does not affect virion entry', 'volume': '350', 'author': 'Follis', 'year': '2006', 'journal-title': 'Virology'}, { 'key': 'ref571', 'doi-asserted-by': 'crossref', 'first-page': '1103', 'DOI': '10.1007/s42399-020-00400-2', 'article-title': 'Involvement of spike protein, furin, and ACE2 in SARS-CoV-2-related ' 'cardiovascular complications', 'volume': '2', 'author': 'Ming', 'year': '2020', 'journal-title': 'SN Compr Clin Med'}, { 'key': 'ref321', 'doi-asserted-by': 'crossref', 'first-page': '138882', 'DOI': '10.1016/j.scitotenv.2020.138882', 'article-title': 'COVID-19 outbreak: migration, effects on society, global environment ' 'and prevention', 'volume': '728', 'author': 'Chakraborty', 'year': '2020', 'journal-title': 'Sci Total Environ'}, { 'key': 'ref471', 'doi-asserted-by': 'crossref', 'first-page': '589769', 'DOI': '10.3389/fchem.2020.589769', 'article-title': 'Screening of natural products targeting SARS-CoV-2-ACE2 receptor ' 'interface -A MixMD based HTVS pipeline', 'volume': '8', 'author': 'Gopinath', 'year': '2020', 'journal-title': 'Front Chem'}, { 'key': 'ref61', 'doi-asserted-by': 'crossref', 'first-page': '5730', 'DOI': '10.1038/s41467-021-25915-7', 'article-title': 'Possible future waves of SARS-CoV-2 infection generated by variants of ' 'concern with a range of characteristics', 'volume': '12', 'author': 'Dyson', 'year': '2021', 'journal-title': 'Nat Commun'}, { 'key': 'ref271', 'first-page': '9', 'article-title': 'Alleviation of histopathologic effects of avian influenza virus by a ' 'specific nutrient synergy', 'volume': '5', 'author': 'Barbour', 'year': '2007', 'journal-title': 'Int J Appl Res Vet Med'}, { 'key': 'ref41', 'doi-asserted-by': 'crossref', 'first-page': '1196', 'DOI': '10.1038/s42003-021-02728-4', 'article-title': 'Ten emerging SARS-CoV-2 spike variants exhibit variable infectivity, ' 'animal tropism, and antibody neutralization', 'volume': '4', 'author': 'Zhang', 'year': '2021', 'journal-title': 'Commun Biol'}, { 'key': 'ref391', 'doi-asserted-by': 'crossref', 'first-page': '237', 'DOI': '10.1146/annurev-virology-110615-042301', 'article-title': 'Structure, function, and evolution of coronavirus spike proteins', 'volume': '3', 'author': 'Li', 'year': '2016', 'journal-title': 'Annu Rev Virol'}, { 'key': 'ref441', 'doi-asserted-by': 'crossref', 'first-page': '11876', 'DOI': '10.1073/pnas.0505577102', 'article-title': 'Inhibitors of cathepsin L prevent severe acute respiratory syndrome ' 'coronavirus entry', 'volume': '102', 'author': 'Simmons', 'year': '2005', 'journal-title': 'Proc Natl Acad Sci'}, { 'key': 'ref491', 'doi-asserted-by': 'crossref', 'first-page': '24', 'DOI': '10.24018/ejbio.2021.2.5.258', 'article-title': 'Simultaneous inhibition of SARS-CoV-2 infectivity by a specific ' 'combination of plant-derived compounds', 'volume': '2', 'author': 'Goc', 'year': '2021', 'journal-title': 'Eur J Bio Biotech'}, { 'key': 'ref101', 'doi-asserted-by': 'crossref', 'first-page': '1', 'DOI': '10.1007/978-1-4939-2438-7_1', 'article-title': 'Coronaviruses: an overview of their replication and pathogenesis', 'volume': '1282', 'author': 'Fehr', 'year': '2015', 'journal-title': 'Methods Mol Biol'}, { 'key': 'ref521', 'first-page': '1', 'article-title': 'Inhibition of ACE2 expression by Ascorbic acid alone and its ' 'combination with other natural compounds', 'volume': '14', 'author': 'Ivanov', 'year': '2021', 'journal-title': 'Infect Dis Res Trmt (Auckl)'}, { 'key': 'ref481', 'doi-asserted-by': 'crossref', 'first-page': '153591', 'DOI': '10.1016/j.phymed.2021.153591', 'article-title': 'Corilagin prevents SARS-CoV-2 infection by targeting RBD-ACE2 binding', 'volume': '87', 'author': 'Yang', 'year': '2021', 'journal-title': 'Phytomedicine'}, { 'key': 'ref211', 'doi-asserted-by': 'crossref', 'first-page': '107587', 'DOI': '10.1016/j.pharmthera.2020.107587', 'article-title': 'Cathepsin L-selective inhibitors: a potentially promising treatment for ' 'COVID-19 patients', 'volume': '213', 'author': 'Liu', 'year': '2020', 'journal-title': 'Pharmacol Ther'}, { 'key': 'ref361', 'doi-asserted-by': 'crossref', 'first-page': '1196', 'DOI': '10.1038/s42003-021-02728-4', 'article-title': 'Ten emerging SARS-CoV-2 spike variants exhibit variable infectivity, ' 'animal tropism, and antibody neutralization', 'volume': '4', 'author': 'Zhang', 'year': '2021', 'journal-title': 'Commun Biol'}, { 'key': 'ref561', 'first-page': '268854', 'article-title': 'Furin cleavage site is key to SARS-CoV-2 pathogenesis', 'author': 'Johnson', 'year': '2020', 'journal-title': 'bioRxiv'}, { 'key': 'ref261', 'article-title': 'Effective and safe global public health strategy to fight the COVID-19 ' 'pandemic: specific micronutrient combination inhibits Coronavirus ' 'cell-entry receptor (ACE2) expression', 'author': 'Ivanov', 'year': '2020', 'journal-title': 'J Cell Med Nat Health'}, { 'key': 'ref291', 'doi-asserted-by': 'crossref', 'first-page': '85', 'DOI': '10.1002/biof.5520330201', 'article-title': 'Effects of a nutrient mixture on infectious properties of the highly ' 'pathogenic strain of avian influenza virus A/H5N1', 'volume': '33', 'author': 'Deryabin', 'year': '2008', 'journal-title': 'Biofactors'}, { 'key': 'ref381', 'doi-asserted-by': 'crossref', 'first-page': '5730', 'DOI': '10.1038/s41467-021-25915-7', 'article-title': 'Possible future waves of SARS-CoV-2 infection generated by variants of ' 'concern with a range of characteristics', 'volume': '12', 'author': 'Dyson', 'year': '2021', 'journal-title': 'Nat Commun'}, { 'key': 'ref581', 'article-title': 'Effective and safe global public health strategy to fight the COVID-19 ' 'pandemic: specific micronutrient combination inhibits Coronavirus ' 'cell-entry receptor (ACE2) expression', 'author': 'Ivanov', 'year': '2020', 'journal-title': 'J Cell Med Nat Health'}, { 'key': 'ref311', 'doi-asserted-by': 'crossref', 'first-page': '5', 'DOI': '10.1186/s13613-020-00792-3', 'article-title': 'High dose vitamin C infusion for the treatment of critically ill ' 'COVID-19', 'volume': '11', 'author': 'Zhang', 'year': '2021', 'journal-title': 'Ann Intensive Care'}, { 'key': 'ref591', 'first-page': '9', 'article-title': 'Alleviation of histopathologic effects of avian influenza virus by a ' 'specific nutrient synergy', 'volume': '5', 'author': 'Barbour', 'year': '2007', 'journal-title': 'Int J Appl Res Vet Med'}, { 'key': 'ref511', 'doi-asserted-by': 'crossref', 'first-page': '5207', 'DOI': '10.1038/s41598-021-84850-1', 'article-title': 'Polyunsaturated ω-3 fatty acids inhibit ACE2-controlled SARS-CoV-2 ' 'binding and cellular entry', 'volume': '11', 'author': 'Goc', 'year': '2021', 'journal-title': 'Sci Rep'}, { 'key': 'ref461', 'doi-asserted-by': 'crossref', 'first-page': '3980', 'DOI': '10.3390/molecules25173980', 'article-title': 'Natural flavonoids as potential angiotensin-converting enzyme 2 ' 'inhibitors for anti-SARS-CoV-2', 'volume': '25', 'author': 'Muchtaridi', 'year': '2020', 'journal-title': 'Molecules'}, { 'key': 'ref531', 'doi-asserted-by': 'crossref', 'first-page': '107587', 'DOI': '10.1016/j.pharmthera.2020.107587', 'article-title': 'Cathepsin L-selective inhibitors: a potentially promising treatment for ' 'COVID-19 patients', 'volume': '213', 'author': 'Liu', 'year': '2020', 'journal-title': 'Pharmacol Ther'}, { 'key': 'ref121', 'doi-asserted-by': 'crossref', 'first-page': '11876', 'DOI': '10.1073/pnas.0505577102', 'article-title': 'Inhibitors of cathepsin L prevent severe acute respiratory syndrome ' 'coronavirus entry', 'volume': '102', 'author': 'Simmons', 'year': '2005', 'journal-title': 'Proc Natl Acad Sci'}, { 'key': 'ref541', 'doi-asserted-by': 'crossref', 'first-page': '1060', 'DOI': '10.3390/ijms12021060', 'article-title': 'A database of 20-residue furin cleavage site motifs, substrates and ' 'their associated drugs', 'volume': '12', 'author': 'Tian', 'year': '2011', 'journal-title': 'Int J Mol Sci'}], 'container-title': ['European Journal of Microbiology and Immunology'], 'original-title': [], 'link': [ { 'URL': 'https://akjournals.com/view/journals/1886/aop/article-10.1556-1886.2021.00022/article-10.1556-1886.2021.00022.xml', 'content-type': 'text/html', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://akjournals.com/downloadpdf/journals/1886/aop/article-10.1556-1886.2021.00022/article-10.1556-1886.2021.00022.xml', 'content-type': 'text/html', 'content-version': 'vor', 'intended-application': 'syndication'}, { 'URL': 'https://akjournals.com/downloadpdf/journals/1886/aop/article-10.1556-1886.2021.00022/article-10.1556-1886.2021.00022.xml', 'content-type': 'unspecified', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2022, 1, 23]], 'date-time': '2022-01-23T02:42:05Z', 'timestamp': 1642905725000}, 'score': 1, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2022, 1, 21]]}, 'references-count': 60, 'URL': 'http://dx.doi.org/10.1556/1886.2021.00022', 'relation': {}, 'ISSN': ['2062-509X', '2062-8633'], 'issn-type': [{'value': '2062-509X', 'type': 'print'}, {'value': '2062-8633', 'type': 'electronic'}], 'published': {'date-parts': [[2022, 1, 21]]}}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit