Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchQuercetinQuercetin (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

In silico anti-viral assessment of phytoconstituents in a traditional (Siddha Medicine) polyherbal formulation – Targeting Mpro and pan-coronavirus post-fusion Spike protein

Mandal et al., Journal of Traditional and Complementary Medicine, doi:10.1016/j.jtcme.2023.07.004
Jul 2023  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Quercetin for COVID-19
24th treatment shown to reduce risk in July 2021, now with p = 0.002 from 12 studies.
No treatment is 100% effective. Protocols combine treatments.
5,100+ studies for 112 treatments. c19early.org
In Silico analysis of phytoconstituents of Kabasura Kudineer against SARS-CoV-2 spike protein and Mpro, showing that quercetin (Mpro) and gallic acid (spike) had the highest binding affinity and stability.
73 preclinical studies support the efficacy of quercetin for COVID-19:
In Silico studies predict inhibition of SARS-CoV-2, or minimization of side effects, with quercetin or metabolites via binding to the spikeA,3,9,10,22,24,25,30,38,39,41,42,62-64, MproB,3,7,9,11,13,15,17,18,20,23,24,30,34,36-38,42,43,45,63-65, RNA-dependent RNA polymeraseC,1,3,9,32,64, PLproD,3,37,45, ACE2E,22,23,28,37,41,63, TMPRSS2F,22, nucleocapsidG,3, helicaseH,3,29,34, endoribonucleaseI,39, NSP16/10J,6, cathepsin LK,26, Wnt-3L,22, FZDM,22, LRP6N,22, ezrinO,40, ADRPP,38, NRP1Q,41, EP300R,16, PTGS2S,23, HSP90AA1T,16,23, matrix metalloproteinase 9U,31, IL-6V,21,35, IL-10W,21, VEGFAX,35, and RELAY,35 proteins. In Vitro studies demonstrate inhibition of the MproB,15,46,51,59 protein, and inhibition of spike-ACE2 interactionZ,47. In Vitro studies demonstrate efficacy in Calu-3AA,50, A549AB,21, HEK293-ACE2+AC,58, Huh-7AD,25, Caco-2AE,49, Vero E6AF,19,42,49, mTECAG,52, and RAW264.7AH,52 cells. Animal studies demonstrate efficacy in K18-hACE2 miceAI,55, db/db miceAJ,52,61, BALB/c miceAK,60, and rats66. Quercetin reduced proinflammatory cytokines and protected lung and kidney tissue against LPS-induced damage in mice60, inhibits LPS-induced cytokine storm by modulating key inflammatory and antioxidant pathways in macrophages5, and inhibits SARS-CoV-2 ORF3a ion channel activity, which contributes to viral pathogenicity and cytotoxicity54.
a. The trimeric spike (S) protein is a glycoprotein that mediates viral entry by binding to the host ACE2 receptor, is critical for SARS-CoV-2's ability to infect host cells, and is a target of neutralizing antibodies. Inhibition of the spike protein prevents viral attachment, halting infection at the earliest stage.
b. The main protease or Mpro, also known as 3CLpro or nsp5, is a cysteine protease that cleaves viral polyproteins into functional units needed for replication. Inhibiting Mpro disrupts the SARS-CoV-2 lifecycle within the host cell, preventing the creation of new copies.
c. RNA-dependent RNA polymerase (RdRp), also called nsp12, is the core enzyme of the viral replicase-transcriptase complex that copies the positive-sense viral RNA genome into negative-sense templates for progeny RNA synthesis. Inhibiting RdRp blocks viral genome replication and transcription.
d. The papain-like protease (PLpro) has multiple functions including cleaving viral polyproteins and suppressing the host immune response by deubiquitination and deISGylation of host proteins. Inhibiting PLpro may block viral replication and help restore normal immune responses.
e. The angiotensin converting enzyme 2 (ACE2) protein is a host cell transmembrane protein that serves as the cellular receptor for the SARS-CoV-2 spike protein. ACE2 is expressed on many cell types, including epithelial cells in the lungs, and allows the virus to enter and infect host cells. Inhibition may affect ACE2's physiological function in blood pressure control.
f. Transmembrane protease serine 2 (TMPRSS2) is a host cell protease that primes the spike protein, facilitating cellular entry. TMPRSS2 activity helps enable cleavage of the spike protein required for membrane fusion and virus entry. Inhibition may especially protect respiratory epithelial cells, buy may have physiological effects.
g. The nucleocapsid (N) protein binds and encapsulates the viral genome by coating the viral RNA. N enables formation and release of infectious virions and plays additional roles in viral replication and pathogenesis. N is also an immunodominant antigen used in diagnostic assays.
h. The helicase, or nsp13, protein unwinds the double-stranded viral RNA, a crucial step in replication and transcription. Inhibition may prevent viral genome replication and the creation of new virus components.
i. The endoribonuclease, also known as NendoU or nsp15, cleaves specific sequences in viral RNA which may help the virus evade detection by the host immune system. Inhibition may hinder the virus's ability to mask itself from the immune system, facilitating a stronger immune response.
j. The NSP16/10 complex consists of non-structural proteins 16 and 10, forming a 2'-O-methyltransferase that modifies the viral RNA cap structure. This modification helps the virus evade host immune detection by mimicking host mRNA, making NSP16/10 a promising antiviral target.
k. Cathepsin L is a host lysosomal cysteine protease that can prime the spike protein through an alternative pathway when TMPRSS2 is unavailable. Dual targeting of cathepsin L and TMPRSS2 may maximize disruption of alternative pathways for virus entry.
l. Wingless-related integration site (Wnt) ligand 3 is a host signaling molecule that activates the Wnt signaling pathway, which is important in development, cell growth, and tissue repair. Some studies suggest that SARS-CoV-2 infection may interfere with the Wnt signaling pathway, and that Wnt3a is involved in SARS-CoV-2 entry.
m. The frizzled (FZD) receptor is a host transmembrane receptor that binds Wnt ligands, initiating the Wnt signaling cascade. FZD serves as a co-receptor, along with ACE2, in some proposed mechanisms of SARS-CoV-2 infection. The virus may take advantage of this pathway as an alternative entry route.
n. Low-density lipoprotein receptor-related protein 6 is a cell surface co-receptor essential for Wnt signaling. LRP6 acts in tandem with FZD for signal transduction and has been discussed as a potential co-receptor for SARS-CoV-2 entry.
o. The ezrin protein links the cell membrane to the cytoskeleton (the cell's internal support structure) and plays a role in cell shape, movement, adhesion, and signaling. Drugs that occupy the same spot on ezrin where the viral spike protein would bind may hindering viral attachment, and drug binding could further stabilize ezrin, strengthening its potential natural capacity to impede viral fusion and entry.
p. The Adipocyte Differentiation-Related Protein (ADRP, also known as Perilipin 2 or PLIN2) is a lipid droplet protein regulating the storage and breakdown of fats in cells. SARS-CoV-2 may hijack the lipid handling machinery of host cells and ADRP may play a role in this process. Disrupting ADRP's interaction with the virus may hinder the virus's ability to use lipids for replication and assembly.
q. Neuropilin-1 (NRP1) is a cell surface receptor with roles in blood vessel development, nerve cell guidance, and immune responses. NRP1 may function as a co-receptor for SARS-CoV-2, facilitating viral entry into cells. Blocking NRP1 may disrupt an alternative route of viral entry.
r. EP300 (E1A Binding Protein P300) is a transcriptional coactivator involved in several cellular processes, including growth, differentiation, and apoptosis, through its acetyltransferase activity that modifies histones and non-histone proteins. EP300 facilitates viral entry into cells and upregulates inflammatory cytokine production.
s. Prostaglandin G/H synthase 2 (PTGS2, also known as COX-2) is an enzyme crucial for the production of inflammatory molecules called prostaglandins. PTGS2 plays a role in the inflammatory response that can become severe in COVID-19 and inhibitors (like some NSAIDs) may have benefits in dampening harmful inflammation, but note that prostaglandins have diverse physiological functions.
t. Heat Shock Protein 90 Alpha Family Class A Member 1 (HSP90AA1) is a chaperone protein that helps other proteins fold correctly and maintains their stability. HSP90AA1 plays roles in cell signaling, survival, and immune responses. HSP90AA1 may interact with numerous viral proteins, but note that it has diverse physiological functions.
u. Matrix metalloproteinase 9 (MMP9), also called gelatinase B, is a zinc-dependent enzyme that breaks down collagen and other components of the extracellular matrix. MMP9 levels increase in severe COVID-19. Overactive MMP9 can damage lung tissue and worsen inflammation. Inhibition of MMP9 may prevent excessive tissue damage and help regulate the inflammatory response.
v. The interleukin-6 (IL-6) pro-inflammatory cytokine (signaling molecule) has a complex role in the immune response and may trigger and perpetuate inflammation. Elevated IL-6 levels are associated with severe COVID-19 cases and cytokine storm. Anti-IL-6 therapies may be beneficial in reducing excessive inflammation in severe COVID-19 cases.
w. The interleukin-10 (IL-10) anti-inflammatory cytokine helps regulate and dampen immune responses, preventing excessive inflammation. IL-10 levels can also be elevated in severe COVID-19. IL-10 could either help control harmful inflammation or potentially contribute to immune suppression.
x. Vascular Endothelial Growth Factor A (VEGFA) promotes the growth of new blood vessels (angiogenesis) and has roles in inflammation and immune responses. VEGFA may contribute to blood vessel leakiness and excessive inflammation associated with severe COVID-19.
y. RELA is a transcription factor subunit of NF-kB and is a key regulator of inflammation, driving pro-inflammatory gene expression. SARS-CoV-2 may hijack and modulate NF-kB pathways.
z. The interaction between the SARS-CoV-2 spike protein and the human ACE2 receptor is a primary method of viral entry, inhibiting this interaction can prevent the virus from attaching to and entering host cells, halting infection at an early stage.
aa. Calu-3 is a human lung adenocarcinoma cell line with moderate ACE2 and TMPRSS2 expression and SARS-CoV-2 susceptibility. It provides a model of the human respiratory epithelium, but many not be ideal for modeling early stages of infection due to the moderate expression levels of ACE2 and TMPRSS2.
ab. A549 is a human lung carcinoma cell line with low ACE2 expression and SARS-CoV-2 susceptibility. Viral entry/replication can be studied but the cells may not replicate all aspects of lung infection.
ac. HEK293-ACE2+ is a human embryonic kidney cell line engineered for high ACE2 expression and SARS-CoV-2 susceptibility.
ad. Huh-7 cells were derived from a liver tumor (hepatoma).
ae. Caco-2 cells come from a colorectal adenocarcinoma (cancer). They are valued for their ability to form a polarized cell layer with properties similar to the intestinal lining.
af. Vero E6 is an African green monkey kidney cell line with low/no ACE2 expression and high SARS-CoV-2 susceptibility. The cell line is easy to maintain and supports robust viral replication, however the monkey origin may not accurately represent human responses.
ag. mTEC is a mouse tubular epithelial cell line.
ah. RAW264.7 is a mouse macrophage cell line.
ai. A mouse model expressing the human ACE2 receptor under the control of the K18 promoter.
aj. A mouse model of obesity and severe insulin resistance leading to type 2 diabetes due to a mutation in the leptin receptor gene that impairs satiety signaling.
ak. A mouse model commonly used in infectious disease and cancer research due to higher immune response and susceptibility to infection.
Mandal et al., 13 Jul 2023, India, peer-reviewed, 8 authors. Contact: deepa@pilani.bits-pilani.ac.in, p20190001@pilani.bits-pilani.ac.in, p20210457@pilani.bits-pilani.ac.in, p20170101@pilani.bits-pilani.ac.in, f2016188@pilani.bits-pilani.ac.in, manoj.kannan@plaksha.edu.in, mohit.garg@pilani.bits-pilani.ac.in, murugesan@pilani.bits-pilani.ac.in.
In Silico studies are an important part of preclinical research, however results may be very different in vivo.
This PaperQuercetinAll
In silico anti-viral assessment of phytoconstituents in a traditional (Siddha Medicine) polyherbal formulation – Targeting Mpro and pan-coronavirus post-fusion Spike protein
Sumit Kumar Mandal, Md Muzaffar-Ur Rehman, Ashish Katyal, Kanishk Rajvanshi, Manoj Kannan, Mohit Garg, Sankaranarayanan Murugesan, P R Deepa
Journal of Traditional and Complementary Medicine, doi:10.1016/j.jtcme.2023.07.004
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Conflict of Interest The authors declare no conflict of interest J o u r n a l P r e -p r o o f
References
Aljindan, Al-Subaie, Ohali, Kamaraj, Investigation of nonsynonymous mutations in the spike protein of SARS-CoV-2 and its interaction with the ACE2 receptor by molecular docking and MM/GBSA approach, Comput Biol Med, doi:10.1016/j.compbiomed.2021.104654
Arya, Bhatta, Molecular dynamics simulations. Des Dev Nov Drugs Vaccines Princ Protoc, doi:10.1016/B978-0-12-821471-8.00005-2
Banks, Beard, Cao, Integrated modeling program, applied chemical theory J o u r n a l P r e -p r o o f (IMPACT), J Comput Chem
Bellik, Hammoudi, Abdellah, Iguer-Ouada, Boukraa, None, Phytochemicals to J o u r n a l P r e -p r o o f Prevent Inflammation and Allergy. Recent Pat Inflamm Allergy Drug Discov, doi:10.2174/187221312800166886
Biosynthesis, Function, Implications for the Design of Spike-Based Vaccine Immunogens, Front Immunol, doi:10.3389/fimmu.2020.576622
Burkard, Verheije, Wicht, Coronavirus Cell Entry Occurs through the Endo-/Lysosomal Pathway in a Proteolysis-Dependent Manner, PLoS Pathog, doi:10.1371/journal.ppat.1004502
Cheng, Zhang, Liang, Antiinflammatory and antioxidant flavonoids and phenols from Cardiospermum halicacabum (倒地鈴 Dào Dì Líng), J Tradit Complement Med, doi:10.1016/S2225-4110(16)30165-1
Choudhary, Singh, Multi-scale mechanism of antiviral drug-alike phytoligands from J, doi:10.1007/s11030-021-10352-x
Cornélio Favarin, Teixeira, De Andrade, Anti-inflammatory effects of ellagic acid on acute lung injury induced by acid in mice, Mediators Inflamm, doi:10.1155/2013/164202
Delaney, ESOL: Estimating aqueous solubility directly from molecular structure, J Chem Inf Comput Sci, doi:10.1021/ci034243x
Divya, Vijayakumar, Chen, Vaseeharan, Ef, South Indian medicinal plants can combat deadly viruses along with COVID-19? -A review, Microb Pathog. J o u r n a l P r e -p r o o f, doi:10.1016/j.micpath.2020.104277
Duan, Zheng, Zhang, Niu, Lou et al., The SARS-CoV-2 Spike Glycoprotein J
Duquerroy, Vigouroux, Rottier, Rey, Bosch, Central ions and lateral asparagine/glutamine zippers stabilize the post-fusion hairpin conformation of the SARS coronavirus spike glycoprotein, Virology, doi:10.1016/j.virol.2005.02.022
Ekberg, Ryde, On the use of interaction entropy and related methods to estimate binding entropies, J Chem Theory Comput, doi:10.1021/acs.jctc.1c00374
Govea-Salas, Rivas-Estilla, Rodríguez-Herrera, Gallic acid decreases hepatitis C virus expression through its antioxidant capacity, Exp Ther Med, doi:10.3892/etm.2015.2923
Green, Segall, Chemoinformatics in lead optimization, Chemoinformatics Drug Discov. Published online, doi:10.1002/9781118742785.ch8
Halgren, New method for fast and accurate binding-site identification and analysis, Chem Biol Drug Des, doi:10.1111/j.1747-0285.2007.00483.x
Hcvpred, A web server for predicting the bioactivity of hepatitis C virus NS5B inhibitors, J Comput Chem, doi:10.1002/jcc.26223
Huang, Zhang, Zhou, Reverse screening methods to search for the protein targets of chemopreventive compounds, Front Chem, doi:10.3389/fchem.2018.00138
Jabaris, Sl, Kabasura kudineer, a siddha medicine against COVID-19 infection: scope and future perspective, Int J Complement Altern Med, doi:10.15406/ijcam.2021.14.00554
Jain, Narayanan, Chaturvedi, Pai, Sunil, In Vivo Evaluation of Withania somnifera-Based Indian Traditional Formulation (Amukkara Choornam), Against Chikungunya Virus-Induced Morbidity and Arthralgia, J Evidence-Based Integr Med, doi:10.1177/2156587218757661
Jose, Anti-inflammatory effect of Kaba Sura Kudineer (AYUSH approved COVID-19 drug)-A Siddha poly-herbal formulation against lipopolysaccharide induced inflammatory response in RAW-264.7 macrophages cells, J Ethnopharmacol, doi:10.1016/j.jep.2021.114738
Kannan, Sathiyarajeswaran, Sasikumar, Safety and Efficacy of a Siddha Medicine Fixed Regimen for the treatment of Asymptomatic and Mild COVID-19 patients, J Ayurveda Integr Med. Published online, doi:10.1016/j.jaim.2022.100589
Khalifa, Nawaz, Sobhy, Althawb, Barakat, Polyacylated anthocyanins constructively network with catalytic dyad residues of 3CLpro of 2019-nCoV than monomeric anthocyanins: A structural-relationship activity study with 10 anthocyanins using in-silico approaches, J Mol Graph Model, doi:10.1016/j.jmgm.2020.107690
Kiran, Karthik, Devi, In Silico computational screening of Kabasura Kudineer -Official Siddha Formulation and JACOM against SARS-CoV-2 spike protein, J Ayurveda Integr Med, doi:10.1016/j.jaim.2020.05.009
Kirchdoerfer, Wang, Pallesen, Erratum to: Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis, Sci Rep, doi:10.1038/s41598-018-34171-7
Kumar, Rai, Khan, Role of herbal medicines in the management of patients with COVID-19: A systematic review and meta-analysis of randomized controlled trials, J Tradit Complement Med
Li, Structure, Function, and Evolution of Coronavirus Spike Proteins, Annu Rev Virol, doi:10.1146/annurev-virology-110615-042301
Liu, Wang, Potential inhibitors against 2019-nCoV coronavirus M protease from clinically approved medicines, J Genet Genomics, doi:10.1016/j.jgg.2020.02.001
Malik, Phanus-Umporn, Schaduangrat, Shoombuatong, Isarankura-Na-Ayudhya, None
Manandhar, Mehta, Nayak, Pai, Structure-based docking, pharmacokinetic evaluation, and molecular dynamics-guided evaluation of traditional formulation against SARS-CoV-2 spike protein receptor bind domain and ACE2 receptor complex, Chem Pap, doi:10.1007/s11696-021-01917-z
Mandal, Kumar, Sharma, Murugesan, Deepa, In silico and in vitro analysis of PPAR -α / γ dual agonists: Comparative evaluation of potential phytochemicals with antiobesity drug orlistat, Comput Biol Med, doi:10.1016/j.compbiomed.2022.105796
Mandal, Puri, Kumar, Targeting lipid-sensing nuclear receptors PPAR (α, γ, β/δ): HTVS and molecular docking/dynamics analysis of pharmacological ligands as potential pan-PPAR agonists, Mol Divers, doi:10.1007/s11030-023-10666-y
Mhatre, Srivastava, Naik, Patravale, Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: A review, Phytomedicine, doi:10.1016/j.phymed.2020.153286
Miller, Br, Jr, Swails, Homeyer et al., MMPBSA. py: an efficient program for end-state free energy calculations, J Chem Theory Comput, doi:10.1021/ct300418h
Nutt, Smith, Molecular dynamics simulations of proteins: Can the explicit water model be varied?, J Chem Theory Comput, doi:10.1021/ct700053u
Otvos, Still, Somsen, Smit, Kool, Drug Discovery on Natural Products: From Ion Channels to nAChRs, from Nature to Libraries, from Analytics to Assays, SLAS Discov, doi:10.1177/2472555218822098
Ounissi, Rachedi, Targeting the SARS-CoV-2 Main protease: in silico study contributed to exploring potential natural compounds as candidate inhibitors, J Comput Biophys Chem, doi:10.1142/s2737416522500272
Petrillo, Orrù, Fais, Fantini, Quercetin and its derivates as antiviral potentials: A comprehensive review, Phyther Res, doi:10.1002/ptr.7309
Pires, Blundell, Ascher, pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures, J Med Chem, doi:10.1021/acs.jmedchem.5b00104
Sd, Singh, vitro Antiviral Activity of Kabasura Kudineer -Siddha Polyherbal Formulation Against Novel Coronavirus (SARS-CoV-2), doi:10.2139/ssrn.3842077
Sen, Chakraborty, Revival, modernization and integration of Indian traditional herbal medicine in clinical practice: Importance, challenges and future, J Tradit Complement Med, doi:10.1016/j.jtcme.2016.05.006
Shah, Modi, Sagar, In silico studies on therapeutic agents for COVID-19: Drug repurposing approach, Life Sci, doi:10.1016/j.lfs.2020.117652
Shah, Modi, Trivedi, Pharmacophore-based virtual screening, 3D-QSAR, molecular docking approach for identification of potential dipeptidyl peptidase IV inhibitors, J Biomol Struct Dyn, doi:10.1080/07391102.2020.1750485
Shirts, Klein, Swails, Lessons learned from comparing molecular dynamics engines on the SAMPL5 dataset, J Comput Aided Mol Des, doi:10.1007/s10822-016-9977-1
Shukla, Saraf, Saraf, Fundamental aspect and basic concept of siddha medicines, Syst Rev Pharm, doi:10.4103/0975-8453.83439
Siddha, SYSTEM OF MEDICINE SIDDHA SYSTEM OF MEDICINE SIDDHA SYSTEM OF MEDICINE SIDDHA SYSTEM OF MEDICINE The Science of Holistic Health
Singh, Bhardwaj, Purohit, Inhibition of nonstructural protein 15 of SARS-CoV-2 by golden spice: A computational insight, Cell Biochem Funct. Published online, doi:10.1002/cbf.3753
Singh, Bhardwaj, Sharma, Kumar, Purohit, Identification of potential plant bioactive as SARS-CoV-2 Spike protein and human ACE2 fusion inhibitors, Comput Biol J o u r n a l P r e -p r o o f Med, doi:10.1016/j.compbiomed.2021.104631
Singh, Bhardwaj, Sharma, Purohit, Kumar, In-silico evaluation of bioactive compounds from tea as potential SARS-CoV-2 nonstructural protein 16 inhibitors, J Tradit Complement Med, doi:10.1016/j.jtcme.2021.05.005
Singh, Parida, Mc, Kesavan, Kumar et al., Drug repurposing approach to fight COVID-19, Pharmacol Reports, doi:10.1007/s43440-020-00155-6
Song, Gui, Wang, Xiang, Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2, PLoS Pathog, doi:10.1371/journal.ppat.1007236
Srivastava, Rengaraju, Srivastava, Efficacy of two siddha polyherbal decoctions, Nilavembu Kudineer and Kaba Sura Kudineer, along with standard allopathy treatment in the management of mild to moderate symptomatic COVID-19 patients-a double-blind, placebo-controlled, clinical trial, Trials, doi:10.1186/s13063-021-05478-0J
Valdés-Tresanco, Valdés-Tresanco, Valiente, Moreno, gmx_MMPBSA: a new tool to perform end-state free energy calculations with GROMACS, J Chem Theory Comput, doi:10.1021/acs.jctc.1c00645
Vincent, Arokiyaraj, Saravanan, Dhanraj, Molecular docking studies on the antiviral effects of compounds from kabasura kudineer on SARS-CoV-2 3CLpro. Front Mol Biosci, doi:10.3389/fmolb.2020.613401
Wang, Xia, Zhu, Lu, Jiang, Pan-coronavirus fusion inhibitors as the hope for today and tomorrow, Protein Cell
Wong, Tap, Hashim, Dual actions of gallic acid and andrographolide trigger AdipoR1 to stimulate insulin secretion in a streptozotocin-induced diabetes rat model, J Tradit Complement Med, doi:10.1016/j.jtcme.2022.09.002
Wu, Gong, Qin, In silico analysis of the potential mechanism of a preventive Chinese medicine formula on coronavirus disease 2019, J Ethnopharmacol, doi:10.1016/j.jep.2021.114098
Xia, Lan, Zhu, Structural and functional basis for pan-CoV fusion inhibitors against SARS-CoV-2 and its variants with preclinical evaluation, Signal Transduct Target Ther, doi:10.1038/s41392-021-00712-2
Xia, Liu, Wang, Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion, Cell Res, doi:10.1038/s41422-020-0305-x
Xu, Zhang, Traditional Chinese Medicine treatment of COVID-19, Complement Ther Clin Pract, doi:10.1016/j.ctcp.2020.101165
Zysk, Some Reflections on Siddha Medicine in Tamilnadu, Indian J Hist Sci
{ 'indexed': {'date-parts': [[2023, 7, 15]], 'date-time': '2023-07-15T04:23:55Z', 'timestamp': 1689395035988}, 'reference-count': 60, 'publisher': 'Elsevier BV', 'license': [ { 'start': { 'date-parts': [[2023, 7, 1]], 'date-time': '2023-07-01T00:00:00Z', 'timestamp': 1688169600000}, 'content-version': 'tdm', 'delay-in-days': 0, 'URL': 'https://www.elsevier.com/tdm/userlicense/1.0/'}, { 'start': { 'date-parts': [[2023, 7, 7]], 'date-time': '2023-07-07T00:00:00Z', 'timestamp': 1688688000000}, 'content-version': 'vor', 'delay-in-days': 6, 'URL': 'http://creativecommons.org/licenses/by-nc-nd/4.0/'}], 'content-domain': {'domain': ['elsevier.com', 'sciencedirect.com'], 'crossmark-restriction': True}, 'published-print': {'date-parts': [[2023, 7]]}, 'DOI': '10.1016/j.jtcme.2023.07.004', 'type': 'journal-article', 'created': {'date-parts': [[2023, 7, 13]], 'date-time': '2023-07-13T21:30:39Z', 'timestamp': 1689283839000}, 'update-policy': 'http://dx.doi.org/10.1016/elsevier_cm_policy', 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': 'In silico anti-viral assessment of phytoconstituents in a traditional (Siddha Medicine) ' 'polyherbal formulation – Targeting Mpro and pan-coronavirus post-fusion Spike protein', 'prefix': '10.1016', 'author': [ {'given': 'Sumit Kumar', 'family': 'Mandal', 'sequence': 'first', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0002-5118-9005', 'authenticated-orcid': False, 'given': 'MD Muzaffar-Ur', 'family': 'Rehman', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0003-3469-3717', 'authenticated-orcid': False, 'given': 'Ashish', 'family': 'Katyal', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0002-0334-2992', 'authenticated-orcid': False, 'given': 'Kanishk', 'family': 'Rajvanshi', 'sequence': 'additional', 'affiliation': []}, {'given': 'Manoj', 'family': 'Kannan', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0001-6563-3106', 'authenticated-orcid': False, 'given': 'Mohit', 'family': 'Garg', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0002-3680-1577', 'authenticated-orcid': False, 'given': 'Sankaranarayanan', 'family': 'Murugesan', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0001-9165-5923', 'authenticated-orcid': False, 'given': 'P.R.', 'family': 'Deepa', 'sequence': 'additional', 'affiliation': []}], 'member': '78', 'reference': [ { 'issue': '2', 'key': '10.1016/j.jtcme.2023.07.004_bib1', 'doi-asserted-by': 'crossref', 'first-page': '234', 'DOI': '10.1016/j.jtcme.2016.05.006', 'article-title': 'Revival, modernization and integration of Indian traditional herbal ' 'medicine in clinical practice: importance, challenges and future', 'volume': '7', 'author': 'Sen', 'year': '2017', 'journal-title': 'J Tradit Complement Med'}, { 'issue': '2', 'key': '10.1016/j.jtcme.2023.07.004_bib3', 'first-page': '199', 'article-title': 'Some reflections on siddha medicine in tamilnadu', 'volume': '44', 'author': 'Zysk', 'year': '2009', 'journal-title': 'Indian J Hist Sci'}, { 'issue': '6', 'key': '10.1016/j.jtcme.2023.07.004_bib4', 'doi-asserted-by': 'crossref', 'first-page': '173', 'DOI': '10.15406/ijcam.2021.14.00554', 'article-title': 'Kabasura kudineer, a siddha medicine against COVID-19 infection: scope ' 'and future perspective', 'volume': '14', 'author': 'Jabaris', 'year': '2021', 'journal-title': 'Int J Complement Altern Med'}, { 'issue': '1', 'key': '10.1016/j.jtcme.2023.07.004_bib5', 'doi-asserted-by': 'crossref', 'first-page': '100', 'DOI': '10.1016/j.jtcme.2022.01.002', 'article-title': 'Role of herbal medicines in the management of patients with COVID-19: a ' 'systematic review and meta-analysis of randomized controlled trials', 'volume': '12', 'author': 'Kumar', 'year': '2022', 'journal-title': 'J Tradit Complement Med'}, { 'issue': '12', 'key': '10.1016/j.jtcme.2023.07.004_bib6', 'article-title': 'South Indian medicinal plants can combat deadly viruses along with ' 'COVID-19? - a review', 'volume': '148', 'author': 'Divya', 'year': '2020', 'journal-title': 'Microb Pathog'}, { 'key': '10.1016/j.jtcme.2023.07.004_bib7', 'article-title': 'Traditional Chinese medicine treatment of COVID-19', 'volume': '39', 'author': 'Xu', 'year': '2020', 'journal-title': 'Compl Ther Clin Pract'}, { 'key': '10.1016/j.jtcme.2023.07.004_bib8', 'doi-asserted-by': 'crossref', 'first-page': '1', 'DOI': '10.1016/j.jmgm.2020.107690', 'article-title': 'Polyacylated anthocyanins constructively network with catalytic dyad ' 'residues of 3CLpro of 2019-nCoV than monomeric anthocyanins: a ' 'structural-relationship activity study with 10 anthocyanins using ' 'in-silico approaches', 'volume': '100', 'author': 'Khalifa', 'year': '2020', 'journal-title': 'J Mol Graph Model'}, { 'issue': '2', 'key': '10.1016/j.jtcme.2023.07.004_bib9', 'doi-asserted-by': 'crossref', 'first-page': '119', 'DOI': '10.1016/j.jgg.2020.02.001', 'article-title': 'Potential inhibitors against 2019-nCoV coronavirus M protease from ' 'clinically approved medicines', 'volume': '47', 'author': 'Liu', 'year': '2020', 'journal-title': 'J Genet Genomics'}, { 'issue': '1', 'key': '10.1016/j.jtcme.2023.07.004_bib10', 'article-title': 'Erratum to: stabilized coronavirus spikes are resistant to ' 'conformational changes induced by receptor recognition or proteolysis', 'volume': '8', 'author': 'Kirchdoerfer', 'year': '2018', 'journal-title': 'Sci Rep'}, { 'issue': '8', 'key': '10.1016/j.jtcme.2023.07.004_bib11', 'doi-asserted-by': 'crossref', 'DOI': '10.1371/journal.ppat.1007236', 'article-title': 'Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex ' 'with its host cell receptor ACE2', 'volume': '14', 'author': 'Song', 'year': '2018', 'journal-title': 'PLoS Pathog'}, { 'issue': '11', 'key': '10.1016/j.jtcme.2023.07.004_bib12', 'doi-asserted-by': 'crossref', 'first-page': '1', 'DOI': '10.1371/journal.ppat.1004502', 'article-title': 'Coronavirus cell entry occurs through the endo-/lysosomal pathway in a ' 'proteolysis-dependent manner', 'volume': '10', 'author': 'Burkard', 'year': '2014', 'journal-title': 'PLoS Pathog'}, { 'issue': '1', 'key': '10.1016/j.jtcme.2023.07.004_bib13', 'doi-asserted-by': 'crossref', 'first-page': '237', 'DOI': '10.1146/annurev-virology-110615-042301', 'article-title': 'Structure, function, and evolution of coronavirus spike proteins', 'volume': '3', 'author': 'Li', 'year': '2016', 'journal-title': 'Annu Rev Virol'}, { 'key': '10.1016/j.jtcme.2023.07.004_bib14', 'doi-asserted-by': 'crossref', 'first-page': '1', 'DOI': '10.3389/fimmu.2020.576622', 'article-title': 'The SARS-CoV-2 spike glycoprotein biosynthesis, structure, function, ' 'and antigenicity: implications for the design of spike-based vaccine ' 'immunogens', 'volume': '11', 'author': 'Duan', 'year': '2020', 'journal-title': 'Front Immunol'}, { 'issue': '2', 'key': '10.1016/j.jtcme.2023.07.004_bib15', 'doi-asserted-by': 'crossref', 'first-page': '276', 'DOI': '10.1016/j.virol.2005.02.022', 'article-title': 'Central ions and lateral asparagine/glutamine zippers stabilize the ' 'post-fusion hairpin conformation of the SARS coronavirus spike ' 'glycoprotein', 'volume': '335', 'author': 'Duquerroy', 'year': '2005', 'journal-title': 'Virology'}, { 'issue': '2', 'key': '10.1016/j.jtcme.2023.07.004_bib16', 'doi-asserted-by': 'crossref', 'first-page': '84', 'DOI': '10.1007/s13238-020-00806-7', 'article-title': 'Pan-coronavirus fusion inhibitors as the hope for today and tomorrow', 'volume': '12', 'author': 'Wang', 'year': '2021', 'journal-title': 'Protein Cell'}, { 'issue': '4', 'key': '10.1016/j.jtcme.2023.07.004_bib17', 'doi-asserted-by': 'crossref', 'first-page': '343', 'DOI': '10.1038/s41422-020-0305-x', 'article-title': 'Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly ' 'potent pan-coronavirus fusion inhibitor targeting its spike protein ' 'that harbors a high capacity to mediate membrane fusion', 'volume': '30', 'author': 'Xia', 'year': '2020', 'journal-title': 'Cell Res'}, { 'key': '10.1016/j.jtcme.2023.07.004_bib18', 'doi-asserted-by': 'crossref', 'first-page': '1', 'DOI': '10.1016/j.lfs.2020.117652', 'article-title': 'In silico studies on therapeutic agents for COVID-19: drug repurposing ' 'approach', 'volume': '252', 'author': 'Shah', 'year': '2020', 'journal-title': 'Life Sci'}, { 'issue': '3', 'key': '10.1016/j.jtcme.2023.07.004_bib19', 'doi-asserted-by': 'crossref', 'first-page': '362', 'DOI': '10.1177/2472555218822098', 'article-title': 'Drug discovery on natural products: from ion channels to nAChRs, from ' 'nature to libraries, from analytics to assays', 'volume': '24', 'author': 'Otvos', 'year': '2019', 'journal-title': 'SLAS Discov'}, { 'issue': '1', 'key': '10.1016/j.jtcme.2023.07.004_bib20', 'doi-asserted-by': 'crossref', 'first-page': '35', 'DOI': '10.1016/j.jtcme.2021.05.005', 'article-title': 'In-silico evaluation of bioactive compounds from tea as potential ' 'SARS-CoV-2 nonstructural protein 16 inhibitors', 'volume': '12', 'author': 'Singh', 'year': '2022', 'journal-title': 'J Tradit Complement Med'}, { 'issue': '2', 'key': '10.1016/j.jtcme.2023.07.004_bib21', 'doi-asserted-by': 'crossref', 'first-page': '147', 'DOI': '10.2174/187221312800166886', 'article-title': 'Phytochemicals to prevent inflammation and allergy', 'volume': '6', 'author': 'Bellik', 'year': '2012', 'journal-title': 'Recent Pat Inflamm Allergy Drug Discov'}, { 'key': '10.1016/j.jtcme.2023.07.004_bib22', 'doi-asserted-by': 'crossref', 'first-page': '1', 'DOI': '10.1155/2013/164202', 'article-title': 'Anti-inflammatory effects of ellagic acid on acute lung injury induced ' 'by acid in mice', 'volume': '2013', 'author': 'Cornélio Favarin', 'year': '2013', 'journal-title': 'Mediat Inflamm'}, { 'key': '10.1016/j.jtcme.2023.07.004_bib23', 'series-title': 'GUIDELINES for SIDDHA PRACTITIONERS for COVID-19', 'year': '2020'}, { 'key': '10.1016/j.jtcme.2023.07.004_bib24', 'first-page': '1', 'article-title': 'Safety and efficacy of a siddha medicine fixed regimen for the ' 'treatment of asymptomatic and mild COVID-19 patients', 'author': 'Kannan', 'year': '2022', 'journal-title': 'J Ayurveda Integr Med'}, { 'key': '10.1016/j.jtcme.2023.07.004_bib25', 'doi-asserted-by': 'crossref', 'first-page': '1', 'DOI': '10.1016/j.jep.2021.114738', 'article-title': 'Anti-inflammatory effect of Kaba Sura Kudineer (AYUSH approved COVID-19 ' 'drug)-A Siddha poly-herbal formulation against lipopolysaccharide ' 'induced inflammatory response in RAW-264.7 macrophages cells', 'volume': '283', 'author': 'Jose', 'year': '2022', 'journal-title': 'J Ethnopharmacol'}, { 'key': '10.1016/j.jtcme.2023.07.004_bib26', 'doi-asserted-by': 'crossref', 'DOI': '10.1016/j.compbiomed.2021.104654', 'article-title': 'Investigation of nonsynonymous mutations in the spike protein of ' 'SARS-CoV-2 and its interaction with the ACE2 receptor by molecular ' 'docking and MM/GBSA approach', 'volume': '135', 'author': 'Aljindan', 'year': '2021', 'journal-title': 'Comput Biol Med'}, { 'key': '10.1016/j.jtcme.2023.07.004_bib27', 'doi-asserted-by': 'crossref', 'article-title': 'Inhibition of nonstructural protein 15 of SARS‐CoV‐2 by golden spice: a ' 'computational insight', 'author': 'Singh', 'year': '2022', 'journal-title': 'Cell Biochem Funct', 'DOI': '10.1002/cbf.3753'}, { 'key': '10.1016/j.jtcme.2023.07.004_bib28', 'doi-asserted-by': 'crossref', 'DOI': '10.1016/j.compbiomed.2021.104631', 'article-title': 'Identification of potential plant bioactive as SARS-CoV-2 Spike protein ' 'and human ACE2 fusion inhibitors', 'volume': '136', 'author': 'Singh', 'year': '2021', 'journal-title': 'Comput Biol Med'}, { 'issue': '1', 'key': '10.1016/j.jtcme.2023.07.004_bib29', 'doi-asserted-by': 'crossref', 'first-page': '288', 'DOI': '10.1038/s41392-021-00712-2', 'article-title': 'Structural and functional basis for pan-CoV fusion inhibitors against ' 'SARS-CoV-2 and its variants with preclinical evaluation', 'volume': '6', 'author': 'Xia', 'year': '2021', 'journal-title': 'Signal Transduct Targeted Ther'}, { 'issue': '6', 'key': '10.1016/j.jtcme.2023.07.004_bib30', 'doi-asserted-by': 'crossref', 'first-page': '2021', 'DOI': '10.1080/07391102.2020.1750485', 'article-title': 'Pharmacophore- based virtual screening, 3D- QSAR, molecular docking ' 'approach for identification of potential dipeptidyl peptidase IV ' 'inhibitors', 'volume': '39', 'author': 'Shah', 'year': '2021', 'journal-title': 'J Biomol Struct Dyn'}, { 'issue': '6', 'key': '10.1016/j.jtcme.2023.07.004_bib31', 'doi-asserted-by': 'crossref', 'first-page': '1479', 'DOI': '10.1007/s43440-020-00155-6', 'article-title': 'Drug repurposing approach to fight COVID-19', 'volume': '72', 'author': 'Singh', 'year': '2020', 'journal-title': 'Pharmacol Rep'}, { 'key': '10.1016/j.jtcme.2023.07.004_bib32', 'doi-asserted-by': 'crossref', 'first-page': '1', 'DOI': '10.3389/fchem.2018.00138', 'article-title': 'Reverse screening methods to search for the protein targets of ' 'chemopreventive compounds', 'volume': '6', 'author': 'Huang', 'year': '2018', 'journal-title': 'Front Chem'}, { 'issue': '6', 'key': '10.1016/j.jtcme.2023.07.004_bib33', 'doi-asserted-by': 'crossref', 'first-page': '663', 'DOI': '10.1142/S2737416522500272', 'article-title': 'Targeting the SARS-CoV-2 Main protease: in silico study contributed to ' 'exploring potential natural compounds as candidate inhibitors', 'volume': '21', 'author': 'Ounissi', 'year': '2022', 'journal-title': 'J Comput Biophys Chem'}, { 'issue': '2', 'key': '10.1016/j.jtcme.2023.07.004_bib34', 'doi-asserted-by': 'crossref', 'first-page': '146', 'DOI': '10.1111/j.1747-0285.2007.00483.x', 'article-title': 'New method for fast and accurate binding-site identification and ' 'analysis', 'volume': '69', 'author': 'Halgren', 'year': '2007', 'journal-title': 'Chem Biol Drug Des'}, { 'issue': '2', 'key': '10.1016/j.jtcme.2023.07.004_bib35', 'doi-asserted-by': 'crossref', 'first-page': '65', 'DOI': '10.1016/B978-0-12-821471-8.00005-2', 'article-title': 'Molecular dynamics simulations', 'volume': '12', 'author': 'Arya', 'year': '2021', 'journal-title': 'Des Dev Nov Drugs Vaccines Princ Protoc'}, { 'issue': '4', 'key': '10.1016/j.jtcme.2023.07.004_bib36', 'doi-asserted-by': 'crossref', 'first-page': '1550', 'DOI': '10.1021/ct700053u', 'article-title': 'Molecular dynamics simulations of proteins: can the explicit water ' 'model be varied?', 'volume': '3', 'author': 'Nutt', 'year': '2007', 'journal-title': 'J Chem Theor Comput'}, { 'issue': '16', 'key': '10.1016/j.jtcme.2023.07.004_bib37', 'doi-asserted-by': 'crossref', 'first-page': '1752', 'DOI': '10.1002/jcc.20292', 'article-title': 'Integrated modeling program, applied chemical theory (IMPACT)', 'volume': '26', 'author': 'Banks', 'year': '2005', 'journal-title': 'J Comput Chem'}, { 'key': '10.1016/j.jtcme.2023.07.004_bib38', 'doi-asserted-by': 'crossref', 'article-title': 'Targeting lipid-sensing nuclear receptors PPAR (α, γ, β/δ): HTVS and ' 'molecular docking/dynamics analysis of pharmacological ligands as ' 'potential pan-PPAR agonists', 'author': 'Mandal', 'year': '2023', 'journal-title': 'Mol Divers', 'DOI': '10.1007/s11030-023-10666-y'}, { 'issue': '10', 'key': '10.1016/j.jtcme.2023.07.004_bib39', 'doi-asserted-by': 'crossref', 'first-page': '6281', 'DOI': '10.1021/acs.jctc.1c00645', 'article-title': 'A new tool to perform end-state free energy calculations with GROMACS', 'volume': '17', 'author': 'Valdés-Tresanco', 'year': '2021', 'journal-title': 'J Chem Theor Comput'}, { 'issue': '9', 'key': '10.1016/j.jtcme.2023.07.004_bib40', 'doi-asserted-by': 'crossref', 'first-page': '3314', 'DOI': '10.1021/ct300418h', 'article-title': 'MMPBSA. py: an efficient program for end-state free energy calculations', 'volume': '8', 'author': 'Miller', 'year': '2012', 'journal-title': 'J Chem Theor Comput'}, { 'key': '10.1016/j.jtcme.2023.07.004_bib41', 'doi-asserted-by': 'crossref', 'first-page': '147', 'DOI': '10.1007/s10822-016-9977-1', 'article-title': 'Lessons learned from comparing molecular dynamics engines on the SAMPL5 ' 'dataset', 'volume': '31', 'author': 'Shirts', 'year': '2017', 'journal-title': 'J Comput Aided Mol Des'}, { 'issue': '8', 'key': '10.1016/j.jtcme.2023.07.004_bib42', 'doi-asserted-by': 'crossref', 'first-page': '5379', 'DOI': '10.1021/acs.jctc.1c00374', 'article-title': 'On the use of interaction entropy and related methods to estimate ' 'binding entropies', 'volume': '17', 'author': 'Ekberg', 'year': '2021', 'journal-title': 'J Chem Theor Comput'}, { 'issue': '9', 'key': '10.1016/j.jtcme.2023.07.004_bib43', 'doi-asserted-by': 'crossref', 'first-page': '4066', 'DOI': '10.1021/acs.jmedchem.5b00104', 'article-title': 'pkCSM: predicting small-molecule pharmacokinetic and toxicity ' 'properties using graph-based signatures', 'volume': '58', 'author': 'Pires', 'year': '2015', 'journal-title': 'J Med Chem'}, { 'issue': '3', 'key': '10.1016/j.jtcme.2023.07.004_bib44', 'doi-asserted-by': 'crossref', 'first-page': '1000', 'DOI': '10.1021/ci034243x', 'article-title': 'ESOL: estimating aqueous solubility directly from molecular structure', 'volume': '44', 'author': 'Delaney', 'year': '2004', 'journal-title': 'J Chem Inf Comput Sci'}, { 'issue': '20', 'key': '10.1016/j.jtcme.2023.07.004_bib45', 'doi-asserted-by': 'crossref', 'first-page': '1820', 'DOI': '10.1002/jcc.26223', 'article-title': 'HCVpred: a web server for predicting the bioactivity of hepatitis C ' 'virus NS5B inhibitors', 'volume': '41', 'author': 'Malik', 'year': '2020', 'journal-title': 'J Comput Chem'}, { 'issue': '1', 'key': '10.1016/j.jtcme.2023.07.004_bib46', 'doi-asserted-by': 'crossref', 'first-page': '48', 'DOI': '10.4103/0975-8453.83439', 'article-title': 'Fundamental aspect and basic concept of siddha medicines', 'volume': '2', 'author': 'Shukla', 'year': '2011', 'journal-title': 'Sys Rev Pharm'}, { 'key': '10.1016/j.jtcme.2023.07.004_bib47', 'series-title': 'In Vitro Antiviral Activity of Kabasura Kudineer - Siddha Polyherbal ' 'Formulation against Novel Coronavirus (SARS-CoV-2)', 'author': 'Ms', 'year': '2021'}, { 'key': '10.1016/j.jtcme.2023.07.004_bib48', 'doi-asserted-by': 'crossref', 'first-page': '149', 'DOI': '10.1002/9781118742785.ch8', 'article-title': 'Chemoinformatics in lead optimization', 'author': 'Green', 'year': '2013', 'journal-title': 'Chemoinformatics Drug Discov'}, { 'key': '10.1016/j.jtcme.2023.07.004_bib49', 'doi-asserted-by': 'crossref', 'first-page': '1', 'DOI': '10.1177/2156587218757661', 'article-title': 'In vivo evaluation of withania somnifera–based Indian traditional ' 'formulation (amukkara choornam), against chikungunya virus–induced ' 'morbidity and arthralgia', 'volume': '23', 'author': 'Jain', 'year': '2018', 'journal-title': 'J Evidence-Based Integr Med.'}, { 'key': '10.1016/j.jtcme.2023.07.004_bib50', 'doi-asserted-by': 'crossref', 'DOI': '10.1016/j.jep.2021.114098', 'article-title': 'In silico analysis of the potential mechanism of a preventive Chinese ' 'medicine formula on coronavirus disease 2019', 'volume': '275', 'author': 'Wu', 'year': '2021', 'journal-title': 'J Ethnopharmacol'}, { 'issue': '1', 'key': '10.1016/j.jtcme.2023.07.004_bib51', 'doi-asserted-by': 'crossref', 'first-page': '1', 'DOI': '10.1016/j.jaim.2020.05.009', 'article-title': 'In silico computational screening of kabasura kudineer - official ' 'siddha formulation and JACOM against SARS-CoV-2 spike protein', 'volume': '13', 'author': 'Kiran', 'year': '2022', 'journal-title': 'J Ayurveda Integr Med'}, { 'key': '10.1016/j.jtcme.2023.07.004_bib52', 'first-page': '434', 'article-title': 'Molecular docking studies on the anti-viral effects of compounds from ' 'kabasura kudineer on SARS-CoV-2 3CLpro', 'author': 'Vincent', 'year': '2020', 'journal-title': 'Front Mol Biosci'}, { 'key': '10.1016/j.jtcme.2023.07.004_bib53', 'first-page': '1', 'article-title': 'Multi-scale mechanism of antiviral drug-alike phytoligands from ' 'Ayurveda in managing COVID-19 and associated metabolic comorbidities: ' 'insights from network pharmacology', 'author': 'Choudhary', 'year': '2022', 'journal-title': 'Mol Divers'}, { 'issue': '2', 'key': '10.1016/j.jtcme.2023.07.004_bib54', 'doi-asserted-by': 'crossref', 'first-page': '1063', 'DOI': '10.1007/s11696-021-01917-z', 'article-title': 'Structure-based docking, pharmacokinetic evaluation, and molecular ' 'dynamics-guided evaluation of traditional formulation against ' 'SARS-CoV-2 spike protein receptor bind domain and ACE2 receptor complex', 'volume': '76', 'author': 'Manandhar', 'year': '2022', 'journal-title': 'Chem Pap'}, { 'issue': '1', 'key': '10.1016/j.jtcme.2023.07.004_bib55', 'doi-asserted-by': 'crossref', 'first-page': '266', 'DOI': '10.1002/ptr.7309', 'article-title': 'Quercetin and its derivates as antiviral potentials: a comprehensive ' 'review', 'volume': '36', 'author': 'Di Petrillo', 'year': '2022', 'journal-title': 'Phyther Res'}, { 'issue': '1', 'key': '10.1016/j.jtcme.2023.07.004_bib56', 'doi-asserted-by': 'crossref', 'first-page': '33', 'DOI': '10.1016/S2225-4110(16)30165-1', 'article-title': 'Antiinflammatory and antioxidant flavonoids and phenols from ' 'Cardiospermum halicacabum (倒地鈴 Dào Dì Líng)', 'volume': '3', 'author': 'Cheng', 'year': '2013', 'journal-title': 'J Tradit Complement Med'}, { 'key': '10.1016/j.jtcme.2023.07.004_bib57', 'doi-asserted-by': 'crossref', 'DOI': '10.1016/j.compbiomed.2022.105796', 'article-title': 'In silico and in vitro analysis of PPAR – α/γ dual agonists: ' 'comparative evaluation of potential phytochemicals with anti-obesity ' 'drug orlistat', 'volume': '147', 'author': 'Mandal', 'year': '2022', 'journal-title': 'Comput Biol Med'}, { 'issue': '2', 'key': '10.1016/j.jtcme.2023.07.004_bib58', 'doi-asserted-by': 'crossref', 'first-page': '619', 'DOI': '10.3892/etm.2015.2923', 'article-title': 'Gallic acid decreases hepatitis C virus expression through its ' 'antioxidant capacity', 'volume': '11', 'author': 'Govea-Salas', 'year': '2016', 'journal-title': 'Exp Ther Med'}, { 'key': '10.1016/j.jtcme.2023.07.004_bib59', 'doi-asserted-by': 'crossref', 'DOI': '10.1016/j.phymed.2020.153286', 'article-title': 'Antiviral activity of green tea and black tea polyphenols in ' 'prophylaxis and treatment of COVID-19: a review', 'volume': '85', 'author': 'Mhatre', 'year': '2021', 'journal-title': 'Phytomedicine'}, { 'issue': '1', 'key': '10.1016/j.jtcme.2023.07.004_bib60', 'doi-asserted-by': 'crossref', 'first-page': '11', 'DOI': '10.1016/j.jtcme.2022.09.002', 'article-title': 'Dual actions of gallic acid and andrographolide trigger AdipoR1 to ' 'stimulate insulin secretion in a streptozotocin-induced diabetes rat ' 'model', 'volume': '13', 'author': 'Wong', 'year': '2023', 'journal-title': 'J Tradit Complement Med'}, { 'issue': '1', 'key': '10.1016/j.jtcme.2023.07.004_bib61', 'first-page': '1', 'article-title': 'Efficacy of two siddha polyherbal decoctions, Nilavembu Kudineer and ' 'Kaba Sura Kudineer, along with standard allopathy treatment in the ' 'management of mild to moderate symptomatic COVID-19 patients—a ' 'double-blind, placebo-controlled, clinical trial', 'volume': '22', 'author': 'Srivastava', 'year': '2021', 'journal-title': 'Trials'}], 'container-title': 'Journal of Traditional and Complementary Medicine', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://api.elsevier.com/content/article/PII:S2225411023000809?httpAccept=text/xml', 'content-type': 'text/xml', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://api.elsevier.com/content/article/PII:S2225411023000809?httpAccept=text/plain', 'content-type': 'text/plain', 'content-version': 'vor', 'intended-application': 'text-mining'}], 'deposited': { 'date-parts': [[2023, 7, 14]], 'date-time': '2023-07-14T14:15:31Z', 'timestamp': 1689344131000}, 'score': 1, 'resource': {'primary': {'URL': 'https://linkinghub.elsevier.com/retrieve/pii/S2225411023000809'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2023, 7]]}, 'references-count': 60, 'alternative-id': ['S2225411023000809'], 'URL': 'http://dx.doi.org/10.1016/j.jtcme.2023.07.004', 'relation': {}, 'ISSN': ['2225-4110'], 'subject': ['Complementary and alternative medicine'], 'container-title-short': 'Journal of Traditional and Complementary Medicine', 'published': {'date-parts': [[2023, 7]]}, 'assertion': [ {'value': 'Elsevier', 'name': 'publisher', 'label': 'This article is maintained by'}, { 'value': 'In silico anti-viral assessment of phytoconstituents in a traditional (Siddha ' 'Medicine) polyherbal formulation – Targeting Mpro and pan-coronavirus ' 'post-fusion Spike protein', 'name': 'articletitle', 'label': 'Article Title'}, { 'value': 'Journal of Traditional and Complementary Medicine', 'name': 'journaltitle', 'label': 'Journal Title'}, { 'value': 'https://doi.org/10.1016/j.jtcme.2023.07.004', 'name': 'articlelink', 'label': 'CrossRef DOI link to publisher maintained version'}, {'value': 'article', 'name': 'content_type', 'label': 'Content Type'}, { 'value': '© 2023 Center for Food and Biomolecules, National Taiwan University. Production ' 'and hosting by Elsevier Taiwan LLC.', 'name': 'copyright', 'label': 'Copyright'}]}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit