Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchQuercetinQuercetin (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

Senolytic therapy alleviates physiological human brain aging and COVID-19 neuropathology

Aguado et al., bioRxiv, doi:10.1101/2023.01.17.524329
Jan 2023  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Quercetin for COVID-19
24th treatment shown to reduce risk in July 2021, now with p = 0.002 from 12 studies.
No treatment is 100% effective. Protocols combine treatments.
5,200+ studies for 112 treatments. c19early.org
In Vitro and animal study showing that senolytics including dasatinib + quercetin improve survival and mitigate neuropathological sequelae of SARS-CoV-2.
Authors show that SARS-CoV-2 can initiate cellular senescence in the brains of COVID-19 patients and in human brain organoids, and that senolytics inhibit SARS-CoV-2 and senescence in human brain organoids.
With K18-hACE2 mice, authors show that senolytics dasatinib + quercetin, fisetin, and navitoclax improved clinical scores and mortality, and mitigated COVID-19 brain pathology. The highest survival rate was seen with dasatinib + quercetin.
Bioavailability. Quercetin has low bioavailability and studies typically use advanced formulations to improve bioavailability which may be required to reach therapeutic concentrations.
73 preclinical studies support the efficacy of quercetin for COVID-19:
In Silico studies predict inhibition of SARS-CoV-2, or minimization of side effects, with quercetin or metabolites via binding to the spikeA,2,3,9,10,22,24,25,27,30,38,39,41,42,62, MproB,2,3,7,9,11,13,15,17,18,20,23,24,27,30,34,36-38,42-45, RNA-dependent RNA polymeraseC,1-3,9,32, PLproD,3,37,45, ACE2E,22,23,27,28,37,41, TMPRSS2F,22, nucleocapsidG,3, helicaseH,3,29,34, endoribonucleaseI,39, NSP16/10J,6, cathepsin LK,26, Wnt-3L,22, FZDM,22, LRP6N,22, ezrinO,40, ADRPP,38, NRP1Q,41, EP300R,16, PTGS2S,23, HSP90AA1T,16,23, matrix metalloproteinase 9U,31, IL-6V,21,35, IL-10W,21, VEGFAX,35, and RELAY,35 proteins. In Vitro studies demonstrate inhibition of the MproB,15,46,51,59 protein, and inhibition of spike-ACE2 interactionZ,47. In Vitro studies demonstrate efficacy in Calu-3AA,50, A549AB,21, HEK293-ACE2+AC,58, Huh-7AD,25, Caco-2AE,49, Vero E6AF,19,42,49, mTECAG,52, and RAW264.7AH,52 cells. Animal studies demonstrate efficacy in K18-hACE2 miceAI,55, db/db miceAJ,52,61, BALB/c miceAK,60, and rats19. Quercetin reduced proinflammatory cytokines and protected lung and kidney tissue against LPS-induced damage in mice60, inhibits LPS-induced cytokine storm by modulating key inflammatory and antioxidant pathways in macrophages5, and inhibits SARS-CoV-2 ORF3a ion channel activity, which contributes to viral pathogenicity and cytotoxicity54.
a. The trimeric spike (S) protein is a glycoprotein that mediates viral entry by binding to the host ACE2 receptor, is critical for SARS-CoV-2's ability to infect host cells, and is a target of neutralizing antibodies. Inhibition of the spike protein prevents viral attachment, halting infection at the earliest stage.
b. The main protease or Mpro, also known as 3CLpro or nsp5, is a cysteine protease that cleaves viral polyproteins into functional units needed for replication. Inhibiting Mpro disrupts the SARS-CoV-2 lifecycle within the host cell, preventing the creation of new copies.
c. RNA-dependent RNA polymerase (RdRp), also called nsp12, is the core enzyme of the viral replicase-transcriptase complex that copies the positive-sense viral RNA genome into negative-sense templates for progeny RNA synthesis. Inhibiting RdRp blocks viral genome replication and transcription.
d. The papain-like protease (PLpro) has multiple functions including cleaving viral polyproteins and suppressing the host immune response by deubiquitination and deISGylation of host proteins. Inhibiting PLpro may block viral replication and help restore normal immune responses.
e. The angiotensin converting enzyme 2 (ACE2) protein is a host cell transmembrane protein that serves as the cellular receptor for the SARS-CoV-2 spike protein. ACE2 is expressed on many cell types, including epithelial cells in the lungs, and allows the virus to enter and infect host cells. Inhibition may affect ACE2's physiological function in blood pressure control.
f. Transmembrane protease serine 2 (TMPRSS2) is a host cell protease that primes the spike protein, facilitating cellular entry. TMPRSS2 activity helps enable cleavage of the spike protein required for membrane fusion and virus entry. Inhibition may especially protect respiratory epithelial cells, buy may have physiological effects.
g. The nucleocapsid (N) protein binds and encapsulates the viral genome by coating the viral RNA. N enables formation and release of infectious virions and plays additional roles in viral replication and pathogenesis. N is also an immunodominant antigen used in diagnostic assays.
h. The helicase, or nsp13, protein unwinds the double-stranded viral RNA, a crucial step in replication and transcription. Inhibition may prevent viral genome replication and the creation of new virus components.
i. The endoribonuclease, also known as NendoU or nsp15, cleaves specific sequences in viral RNA which may help the virus evade detection by the host immune system. Inhibition may hinder the virus's ability to mask itself from the immune system, facilitating a stronger immune response.
j. The NSP16/10 complex consists of non-structural proteins 16 and 10, forming a 2'-O-methyltransferase that modifies the viral RNA cap structure. This modification helps the virus evade host immune detection by mimicking host mRNA, making NSP16/10 a promising antiviral target.
k. Cathepsin L is a host lysosomal cysteine protease that can prime the spike protein through an alternative pathway when TMPRSS2 is unavailable. Dual targeting of cathepsin L and TMPRSS2 may maximize disruption of alternative pathways for virus entry.
l. Wingless-related integration site (Wnt) ligand 3 is a host signaling molecule that activates the Wnt signaling pathway, which is important in development, cell growth, and tissue repair. Some studies suggest that SARS-CoV-2 infection may interfere with the Wnt signaling pathway, and that Wnt3a is involved in SARS-CoV-2 entry.
m. The frizzled (FZD) receptor is a host transmembrane receptor that binds Wnt ligands, initiating the Wnt signaling cascade. FZD serves as a co-receptor, along with ACE2, in some proposed mechanisms of SARS-CoV-2 infection. The virus may take advantage of this pathway as an alternative entry route.
n. Low-density lipoprotein receptor-related protein 6 is a cell surface co-receptor essential for Wnt signaling. LRP6 acts in tandem with FZD for signal transduction and has been discussed as a potential co-receptor for SARS-CoV-2 entry.
o. The ezrin protein links the cell membrane to the cytoskeleton (the cell's internal support structure) and plays a role in cell shape, movement, adhesion, and signaling. Drugs that occupy the same spot on ezrin where the viral spike protein would bind may hindering viral attachment, and drug binding could further stabilize ezrin, strengthening its potential natural capacity to impede viral fusion and entry.
p. The Adipocyte Differentiation-Related Protein (ADRP, also known as Perilipin 2 or PLIN2) is a lipid droplet protein regulating the storage and breakdown of fats in cells. SARS-CoV-2 may hijack the lipid handling machinery of host cells and ADRP may play a role in this process. Disrupting ADRP's interaction with the virus may hinder the virus's ability to use lipids for replication and assembly.
q. Neuropilin-1 (NRP1) is a cell surface receptor with roles in blood vessel development, nerve cell guidance, and immune responses. NRP1 may function as a co-receptor for SARS-CoV-2, facilitating viral entry into cells. Blocking NRP1 may disrupt an alternative route of viral entry.
r. EP300 (E1A Binding Protein P300) is a transcriptional coactivator involved in several cellular processes, including growth, differentiation, and apoptosis, through its acetyltransferase activity that modifies histones and non-histone proteins. EP300 facilitates viral entry into cells and upregulates inflammatory cytokine production.
s. Prostaglandin G/H synthase 2 (PTGS2, also known as COX-2) is an enzyme crucial for the production of inflammatory molecules called prostaglandins. PTGS2 plays a role in the inflammatory response that can become severe in COVID-19 and inhibitors (like some NSAIDs) may have benefits in dampening harmful inflammation, but note that prostaglandins have diverse physiological functions.
t. Heat Shock Protein 90 Alpha Family Class A Member 1 (HSP90AA1) is a chaperone protein that helps other proteins fold correctly and maintains their stability. HSP90AA1 plays roles in cell signaling, survival, and immune responses. HSP90AA1 may interact with numerous viral proteins, but note that it has diverse physiological functions.
u. Matrix metalloproteinase 9 (MMP9), also called gelatinase B, is a zinc-dependent enzyme that breaks down collagen and other components of the extracellular matrix. MMP9 levels increase in severe COVID-19. Overactive MMP9 can damage lung tissue and worsen inflammation. Inhibition of MMP9 may prevent excessive tissue damage and help regulate the inflammatory response.
v. The interleukin-6 (IL-6) pro-inflammatory cytokine (signaling molecule) has a complex role in the immune response and may trigger and perpetuate inflammation. Elevated IL-6 levels are associated with severe COVID-19 cases and cytokine storm. Anti-IL-6 therapies may be beneficial in reducing excessive inflammation in severe COVID-19 cases.
w. The interleukin-10 (IL-10) anti-inflammatory cytokine helps regulate and dampen immune responses, preventing excessive inflammation. IL-10 levels can also be elevated in severe COVID-19. IL-10 could either help control harmful inflammation or potentially contribute to immune suppression.
x. Vascular Endothelial Growth Factor A (VEGFA) promotes the growth of new blood vessels (angiogenesis) and has roles in inflammation and immune responses. VEGFA may contribute to blood vessel leakiness and excessive inflammation associated with severe COVID-19.
y. RELA is a transcription factor subunit of NF-kB and is a key regulator of inflammation, driving pro-inflammatory gene expression. SARS-CoV-2 may hijack and modulate NF-kB pathways.
z. The interaction between the SARS-CoV-2 spike protein and the human ACE2 receptor is a primary method of viral entry, inhibiting this interaction can prevent the virus from attaching to and entering host cells, halting infection at an early stage.
aa. Calu-3 is a human lung adenocarcinoma cell line with moderate ACE2 and TMPRSS2 expression and SARS-CoV-2 susceptibility. It provides a model of the human respiratory epithelium, but many not be ideal for modeling early stages of infection due to the moderate expression levels of ACE2 and TMPRSS2.
ab. A549 is a human lung carcinoma cell line with low ACE2 expression and SARS-CoV-2 susceptibility. Viral entry/replication can be studied but the cells may not replicate all aspects of lung infection.
ac. HEK293-ACE2+ is a human embryonic kidney cell line engineered for high ACE2 expression and SARS-CoV-2 susceptibility.
ad. Huh-7 cells were derived from a liver tumor (hepatoma).
ae. Caco-2 cells come from a colorectal adenocarcinoma (cancer). They are valued for their ability to form a polarized cell layer with properties similar to the intestinal lining.
af. Vero E6 is an African green monkey kidney cell line with low/no ACE2 expression and high SARS-CoV-2 susceptibility. The cell line is easy to maintain and supports robust viral replication, however the monkey origin may not accurately represent human responses.
ag. mTEC is a mouse tubular epithelial cell line.
ah. RAW264.7 is a mouse macrophage cell line.
ai. A mouse model expressing the human ACE2 receptor under the control of the K18 promoter.
aj. A mouse model of obesity and severe insulin resistance leading to type 2 diabetes due to a mutation in the leptin receptor gene that impairs satiety signaling.
ak. A mouse model commonly used in infectious disease and cancer research due to higher immune response and susceptibility to infection.
Aguado et al., 18 Jan 2023, Australia, preprint, 29 authors, this trial uses multiple treatments in the treatment arm (combined with dasatinib) - results of individual treatments may vary. Contact: j.aguadoperez@uq.edu.au.
This PaperQuercetinAll
Senolytic therapy alleviates physiological human brain aging and COVID-19 neuropathology
Julio Aguado, Alberto A Amarilla, Atefeh Taherian Fard, Eduardo A Albornoz, Alexander Tyshkovskiy, Marius Schwabenland, Harman K Chaggar, Naphak Modhiran, Cecilia Gómez-Inclán, Ibrahim Javed, Alireza A Baradar, Benjamin Liang, Malindrie Dharmaratne, Giovanni Pietrogrande, Pranesh Padmanabhan, Morgan E Freney, Rhys Parry, Julian D J Sng, Ariel Isaacs, Alexander A Khromykh, Alejandro Rojas-Fernandez, Thomas P Davis, Marco Prinz, Bertram Bengsch, Vadim N Gladyshev, Trent M Woodruff, Jessica C Mar, Daniel Watterson, Ernst J Wolvetang
doi:10.1101/2023.01.17.524329
Aging is the primary risk factor for most neurodegenerative diseases, and recently coronavirus disease 2019 (COVID-19) has been associated with severe neurological manifestations that can eventually impact neurodegenerative conditions in the long-term. The progressive accumulation of senescent cells in vivo strongly contributes to brain aging and neurodegenerative co-morbidities but the impact of virus-induced senescence in the aetiology of neuropathologies is unknown. Here, we show that senescent cells accumulate in physiologically aged brain organoids of human origin and that senolytic treatment reduces inflammation and cellular senescence; for which we found that combined treatment with the senolytic drugs dasatinib and quercetin rejuvenates transcriptomic human brain aging clocks. We further interrogated brain frontal cortex regions in postmortem patients who succumbed to severe COVID-19 and observed increased accumulation of senescent cells as compared to age-matched control brains from non-COVID-affected individuals. Moreover, we show that exposure of human brain organoids to SARS-CoV-2 evoked cellular senescence, and that spatial transcriptomic sequencing of virus-induced senescent cells identified a unique SARS-CoV-2 variant-specific inflammatory signature that is different from endogenous naturally-emerging senescent cells. Importantly, following SARS-CoV-2 infection of human brain organoids, treatment with senolytics blocked viral retention and prevented the emergence of senescent corticothalamic and GABAergic neurons. Furthermore, we demonstrate in human ACE2 overexpressing mice that senolytic treatment ameliorates COVID-19 brain pathology following infection with SARS-CoV-2. In vivo treatment with senolytics improved SARS-CoV-2 clinical phenotype and survival, alleviated brain senescence and reactive astrogliosis, promoted survival of dopaminergic neurons, and reduced viral and senescenceassociated secretory phenotype gene expression in the brain. Collectively, our findings demonstrate SARS-CoV-2 can trigger cellular senescence in the brain, and that senolytic therapy mitigates senescence-driven brain aging and multiple neuropathological sequelae caused by neurotropic viruses, including SARS-CoV-2. .
was calculated by the indicated statistical tests, using R or Prism software. In figure legends, n indicates the number of independent experiments or biological replicates. Competing Interests The authors declare no competing interests. Contributions JA and HC generated human brain organoids. JA, HC, AT, ATF, MD, MS, AA, GP, EA, NM, BL, AI, DP, IJ, AB, MF, RP, JS, CG, TW, JM and EW contributed to acquisition, analysis, or interpretation of data. AAA, EA, NM and BL participated in the infections and treatments of mice and monitored their clinical performance. JA, ATF and AT analysed transcriptomic data. JA, AA, AF, EA, JM and EW contributed to experimental design. JA planned and supervised the project and wrote the paper. All authors edited and approved the final version of this article. Supplementary Figure legends Supplementary Figure 4 a Supplementary Figure 5
References
Aguado, Inhibition of DNA damage response at telomeres improves the detrimental phenotypes of Hutchinson-Gilford Progeria Syndrome, Nat Commun, doi:.org:10.1038/s41467-019-13018-3
Aguado, Inhibition of the cGAS-STING pathway ameliorates the premature senescence hallmarks of Ataxia-Telangiectasia brain organoids, Aging Cell, doi:10.1111/acel.13468
Albornoz, SARS-CoV-2 drives NLRP3 inflammasome activation in human microglia through spike protein, Mol Psychiatry
Amarilla, A versatile reverse genetics platform for SARS-CoV-2 and other positive-strand RNA viruses, Nat Commun, doi:.org:10.1038/s41467-021-23779-5
Amarilla, An Optimized High-Throughput Immuno-Plaque Assay for SARS-CoV-2, Front Microbiol, doi:10.3389/fmicb.2021
Bussian, Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline, Nature, doi:10.1038/s41586-018-0543-y
Cantuti-Castelvetri, Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity, Science, doi:10.1126/science.abd2985
Ceban, Fatigue and cognitive impairment in Post-COVID-19 Syndrome: A systematic review and meta-analysis, Brain Behav Immun, doi:10.1016/j.bbi.2021
Chaib, Tchkonia, Kirkland, Cellular senescence and senolytics: the path to the clinic, Nat Med, doi:10.1038/s41591-022-01923-y
Chinta, Cellular Senescence Is Induced by the Environmental Neurotoxin Paraquat and Contributes to Neuropathology Linked to Parkinson's Disease, Cell Rep, doi:10.1016/j.celrep.2017.12.092
Choutka, Jansari, Hornig, Iwasaki, Unexplained post-acute infection syndromes, Nat Med, doi:10.1038/s41591-
Danaher, Advances in mixed cell deconvolution enable quantification of cell types in spatial transcriptomic data, Nat Commun, doi:.org:10.1038/s41467-022-28020-5
Davis, Mccorkell, Vogel, Topol, Long COVID: major findings, mechanisms and recommendations, Nat Rev Microbiol
Di Micco, Krizhanovsky, Baker, Di Fagagna, Cellular senescence in ageing: from mechanisms to therapeutic opportunities, Nat Rev Mol Cell Biol, doi:.org:10.1038/s41580-020-00314-w
Douaud, SARS-CoV-2 is associated with changes in brain structure in UK Biobank, Nature, doi:10.1038/s41586-022-04569-5
Escartin, Reactive astrocyte nomenclature, definitions, and future directions, Nat Neurosci, doi:.org:10.1038/s41593-020-00783-4
Freund, Laberge, Demaria, Campisi, Lamin B1 loss is a senescenceassociated biomarker, Mol Biol Cell, doi:10.1091/mbc.E11-10-0884
Gasek, Kuchel, Kirkland, Xu, Strategies for Targeting Senescent Cells in Human Disease, Nat Aging, doi:10.1038/s43587-
Golia, Interplay between inflammation and neural plasticity: Both immune activation and suppression impair LTP and BDNF expression, Brain Behav Immun, doi:10.1016/j.bbi.2019
Hartung, Fatigue and cognitive impairment after COVID-19: A prospective multicentre study, EClinicalMedicine, doi:10.1016/j.eclinm.2022.101651
He, Abe, Akaishi, Oral administration of fisetin promotes the induction of hippocampal long-term potentiation in vivo, J Pharmacol Sci, doi:10.1016/j.jphs.2017.12.008
Isaacs, Nucleocapsid Specific Diagnostics for the Detection of Divergent SARS-CoV-2 Variants, Front Immunol, doi:10.3389/fimmu.2022.926262
Kim, Matney, Blankenship, Hestrin, Brown, Layer 6 corticothalamic neurons activate a cortical output layer, layer 5a, J Neurosci, doi:10.1523/JNEUROSCI.1325
Krasieva, Ehren, O'sullivan, Tromberg, Maher, Cell and brain tissue imaging of the flavonoid fisetin using label-free two-photon microscopy, Neurochem Int, doi:10.1016/j.neuint.2015.08.003
Kulasinghe, Transcriptomic profiling of cardiac tissues from SARS-CoV-2 patients identifies DNA damage, Immunology, doi:10.1111/imm.13577
Lee, Virus-induced senescence is a driver and therapeutic target in COVID-19, Nature, doi:10.1038/s41586-021-03995-1
Liberzon, The Molecular Signatures Database (MSigDB) hallmark gene set collection, Cell Syst, doi:10.1016/j.cels.2015.12.004
Lopez-Otin, Blasco, Partridge, Serrano, Kroemer, Hallmarks of aging: An expanding universe, Cell, doi:10.1016/j.cell.2022.11.001
Love, Huber, Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol, doi:.org:10.1186/s13059-014-0550-8
Mavrikaki, Lee, Solomon, Slack, Severe COVID-19 is associated with molecular signatures of aging in the human brain, Nature Aging, doi:10.1038/s43587-022-00321-w
Mccray, Jr, Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus, J Virol, doi:10.1128/JVI
Meinhardt, Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19, Nat Neurosci, doi:.org:10.1038/s41593-020-00758-5
Monje, Iwasaki, The neurobiology of long COVID, Neuron, doi:10.1016/j.neuron.2022.10.006
Musi, Tau protein aggregation is associated with cellular senescence in the brain, Aging Cell, doi:10.1111/acel.12840
Nalbandian, Post-acute COVID-19 syndrome, Nat Med, doi:10.1038/s41591-021-01283-z
Nelke, Schroeter, Pawlitzki, Meuth, Ruck, Cellular senescence in neuroinflammatory disease: new therapies for old cells?, Trends Mol Med, doi:10.1016/j.molmed.2022.07.003
Ogrodnik, Obesity-Induced Cellular Senescence Drives Anxiety and Impairs Neurogenesis, Cell Metab, doi:10.1016/j.cmet.2018.12.008
Ogrodnik, Whole-body senescent cell clearance alleviates age-related brain inflammation and cognitive impairment in mice, Aging Cell, doi:10.1111/acel.13296
Pellegrini, SARS-CoV-2 Infects the Brain Choroid Plexus and Disrupts the Blood-CSF Barrier in Human Brain Organoids, Cell Stem Cell, doi:10.1016/j.stem.2020
Ramani, SARS-CoV-2 targets neurons of 3D human brain organoids, EMBO J, doi:10.15252/embj.2020106230
Rosen, Kurtishi, Vazquez-Jimenez, Moller, The Intersection of Parkinson's Disease, Viral Infections, and COVID-19, Mol Neurobiol, doi:.org:10.1007/s12035-021-02408-8
Samudyata, SARS-CoV-2 promotes microglial synapse elimination in human brain organoids, Mol Psychiatry
Schumacher, Pothof, Vijg, Hoeijmakers, Fagagna, A DNA damage checkpoint response in telomere-initiated senescence, Nature, doi:10.1038/s41586-021-03307-732
Schwabenland, Deep spatial profiling of human COVID-19 brains reveals neuroinflammation with distinct microanatomical microglia-T-cell interactions, Immunity, doi:10.1016/j.immuni.2021.06.002
Sepe, DNA damage response at telomeres boosts the transcription of SARS-CoV-2 receptor ACE2 during aging, EMBO Rep, doi:10.15252/embr.202153658
Silva, The bystander effect contributes to the accumulation of senescent cells in vivo, Aging Cell, doi:10.1111/acel.12848
Song, Neuroinvasion of SARS-CoV-2 in human and mouse brain, J Exp Med, doi:10.1084/jem.20202135
Spudich, Nath, Nervous system consequences of COVID-19, Science, doi:10.1126/science.abm2052
Stein, SARS-CoV-2 infection and persistence in the human body and brain at autopsy, Nature, doi:10.1038/s41586-022-05542-y
Subramanian, Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, Proc Natl Acad Sci U S A, doi:10.1073/pnas.0506580102
Taquet, Geddes, Husain, Luciano, Harrison, 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health records, Lancet Psychiatry, doi:10.1016/S2215-0366
Tyshkovskiy, Identification and Application of Gene Expression Signatures Associated with Lifespan Extension, Cell Metab, doi:10.1016/j.cmet.2019.06.018
Valenzuela Nieto, Potent neutralization of clinical isolates of SARS-CoV-2 D614 and G614 variants by a monomeric, sub-nanomolar affinity nanobody, Sci Rep, doi:10.1038/s41598-021-82833-w
Xu, Xie, Al-Aly, Long-term neurologic outcomes of COVID-19, Nat Med, doi:10.1038/s41591-022-02001-z
Zhang, SARS-CoV-2 infects human neural progenitor cells and brain organoids, Cell Res, doi:10.1038/s41422-020-0390-x
Zhang, Senolytic therapy alleviates Abeta-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer's disease model, Nat Neurosci, doi:.org:10.1038/s41593-019-0372-9
{ 'institution': [{'name': 'bioRxiv'}], 'indexed': {'date-parts': [[2023, 1, 21]], 'date-time': '2023-01-21T06:01:35Z', 'timestamp': 1674280895475}, 'posted': {'date-parts': [[2023, 1, 18]]}, 'group-title': 'Neuroscience', 'reference-count': 57, 'publisher': 'Cold Spring Harbor Laboratory', 'content-domain': {'domain': [], 'crossmark-restriction': False}, 'accepted': {'date-parts': [[2023, 1, 18]]}, 'abstract': '<jats:title>Abstract</jats:title><jats:p>Aging is the primary risk factor for most ' 'neurodegenerative diseases, and recently coronavirus disease 2019 (COVID-19) has been ' 'associated with severe neurological manifestations that can eventually impact ' 'neurodegenerative conditions in the long-term. The progressive accumulation of senescent ' 'cells<jats:italic>in vivo</jats:italic>strongly contributes to brain aging and ' 'neurodegenerative co-morbidities but the impact of virus-induced senescence in the aetiology ' 'of neuropathologies is unknown. Here, we show that senescent cells accumulate in ' 'physiologically aged brain organoids of human origin and that senolytic treatment reduces ' 'inflammation and cellular senescence; for which we found that combined treatment with the ' 'senolytic drugs dasatinib and quercetin rejuvenates transcriptomic human brain aging clocks. ' 'We further interrogated brain frontal cortex regions in postmortem patients who succumbed to ' 'severe COVID-19 and observed increased accumulation of senescent cells as compared to ' 'age-matched control brains from non-COVID-affected individuals. Moreover, we show that ' 'exposure of human brain organoids to SARS-CoV-2 evoked cellular senescence, and that spatial ' 'transcriptomic sequencing of virus-induced senescent cells identified a unique SARS-CoV-2 ' 'variant-specific inflammatory signature that is different from endogenous naturally-emerging ' 'senescent cells. Importantly, following SARS-CoV-2 infection of human brain organoids, ' 'treatment with senolytics blocked viral retention and prevented the emergence of senescent ' 'corticothalamic and GABAergic neurons. Furthermore, we demonstrate in human ACE2 ' 'overexpressing mice that senolytic treatment ameliorates COVID-19 brain pathology following ' 'infection with SARS-CoV-2.<jats:italic>In vivo</jats:italic>treatment with senolytics ' 'improved SARS-CoV-2 clinical phenotype and survival, alleviated brain senescence and reactive ' 'astrogliosis, promoted survival of dopaminergic neurons, and reduced viral and ' 'senescence-associated secretory phenotype gene expression in the brain. Collectively, our ' 'findings demonstrate SARS-CoV-2 can trigger cellular senescence in the brain, and that ' 'senolytic therapy mitigates senescence-driven brain aging and multiple neuropathological ' 'sequelae caused by neurotropic viruses, including SARS-CoV-2.</jats:p>', 'DOI': '10.1101/2023.01.17.524329', 'type': 'posted-content', 'created': {'date-parts': [[2023, 1, 18]], 'date-time': '2023-01-18T22:55:10Z', 'timestamp': 1674082510000}, 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': 'Senolytic therapy alleviates physiological human brain aging and COVID-19 neuropathology', 'prefix': '10.1101', 'author': [ { 'ORCID': 'http://orcid.org/0000-0002-1841-4741', 'authenticated-orcid': False, 'given': 'Julio', 'family': 'Aguado', 'sequence': 'first', 'affiliation': []}, {'given': 'Alberto A.', 'family': 'Amarilla', 'sequence': 'additional', 'affiliation': []}, {'given': 'Atefeh', 'family': 'Taherian Fard', 'sequence': 'additional', 'affiliation': []}, {'given': 'Eduardo A.', 'family': 'Albornoz', 'sequence': 'additional', 'affiliation': []}, {'given': 'Alexander', 'family': 'Tyshkovskiy', 'sequence': 'additional', 'affiliation': []}, {'given': 'Marius', 'family': 'Schwabenland', 'sequence': 'additional', 'affiliation': []}, {'given': 'Harman K.', 'family': 'Chaggar', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0003-3205-4970', 'authenticated-orcid': False, 'given': 'Naphak', 'family': 'Modhiran', 'sequence': 'additional', 'affiliation': []}, {'given': 'Cecilia', 'family': 'Gómez-Inclán', 'sequence': 'additional', 'affiliation': []}, {'given': 'Ibrahim', 'family': 'Javed', 'sequence': 'additional', 'affiliation': []}, {'given': 'Alireza A.', 'family': 'Baradar', 'sequence': 'additional', 'affiliation': []}, {'given': 'Benjamin', 'family': 'Liang', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0002-1694-6496', 'authenticated-orcid': False, 'given': 'Malindrie', 'family': 'Dharmaratne', 'sequence': 'additional', 'affiliation': []}, {'given': 'Giovanni', 'family': 'Pietrogrande', 'sequence': 'additional', 'affiliation': []}, {'given': 'Pranesh', 'family': 'Padmanabhan', 'sequence': 'additional', 'affiliation': []}, {'given': 'Morgan E.', 'family': 'Freney', 'sequence': 'additional', 'affiliation': []}, {'given': 'Rhys', 'family': 'Parry', 'sequence': 'additional', 'affiliation': []}, {'given': 'Julian D.J.', 'family': 'Sng', 'sequence': 'additional', 'affiliation': []}, {'given': 'Ariel', 'family': 'Isaacs', 'sequence': 'additional', 'affiliation': []}, {'given': 'Alexander A.', 'family': 'Khromykh', 'sequence': 'additional', 'affiliation': []}, { 'given': 'Alejandro', 'family': 'Rojas-Fernandez', 'sequence': 'additional', 'affiliation': []}, {'given': 'Thomas P.', 'family': 'Davis', 'sequence': 'additional', 'affiliation': []}, {'given': 'Marco', 'family': 'Prinz', 'sequence': 'additional', 'affiliation': []}, {'given': 'Bertram', 'family': 'Bengsch', 'sequence': 'additional', 'affiliation': []}, {'given': 'Vadim N.', 'family': 'Gladyshev', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0003-1382-911X', 'authenticated-orcid': False, 'given': 'Trent M.', 'family': 'Woodruff', 'sequence': 'additional', 'affiliation': []}, {'given': 'Jessica C.', 'family': 'Mar', 'sequence': 'additional', 'affiliation': []}, {'given': 'Daniel', 'family': 'Watterson', 'sequence': 'additional', 'affiliation': []}, {'given': 'Ernst J.', 'family': 'Wolvetang', 'sequence': 'additional', 'affiliation': []}], 'member': '246', 'reference': [ { 'key': '2023012012400623000_2023.01.17.524329v1.1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41591-021-01283-z'}, { 'key': '2023012012400623000_2023.01.17.524329v1.2', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41591-022-01810-6'}, { 'key': '2023012012400623000_2023.01.17.524329v1.3', 'doi-asserted-by': 'crossref', 'first-page': '416', 'DOI': '10.1016/S2215-0366(21)00084-5', 'article-title': '6-month neurological and psychiatric outcomes in 236 379 survivors of ' 'COVID-19: a retrospective cohort study using electronic health records', 'volume': '8', 'year': '2021', 'journal-title': 'Lancet Psychiatry'}, { 'key': '2023012012400623000_2023.01.17.524329v1.4', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.neuron.2022.10.006'}, { 'key': '2023012012400623000_2023.01.17.524329v1.5', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/J.BBI.2021.12.020'}, { 'key': '2023012012400623000_2023.01.17.524329v1.6', 'doi-asserted-by': 'crossref', 'first-page': '101651', 'DOI': '10.1016/j.eclinm.2022.101651', 'article-title': 'Fatigue and cognitive impairment after COVID-19: A prospective ' 'multicentre study', 'volume': '53', 'year': '2022', 'journal-title': 'EClinicalMedicine'}, { 'key': '2023012012400623000_2023.01.17.524329v1.7', 'doi-asserted-by': 'crossref', 'unstructured': 'Davis, H. E. , McCorkell, L. , Vogel, J. M. & Topol, E. J. Long COVID: ' 'major findings, mechanisms and recommendations. Nat Rev Microbiol ' '(2023).https://doi.org:10.1038/s41579-022-00846-2', 'DOI': '10.1038/s41579-022-00846-2'}, { 'key': '2023012012400623000_2023.01.17.524329v1.8', 'unstructured': 'Song, E. et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J ' 'Exp Med 218 (2021). https://doi.org:10.1084/jem.20202135'}, { 'key': '2023012012400623000_2023.01.17.524329v1.9', 'doi-asserted-by': 'crossref', 'first-page': '928', 'DOI': '10.1038/s41422-020-0390-x', 'article-title': 'SARS-CoV-2 infects human neural progenitor cells and brain organoids', 'volume': '30', 'year': '2020', 'journal-title': 'Cell Res'}, { 'key': '2023012012400623000_2023.01.17.524329v1.10', 'doi-asserted-by': 'crossref', 'first-page': '168', 'DOI': '10.1038/s41593-020-00758-5', 'article-title': 'Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous ' 'system entry in individuals with COVID-19', 'volume': '24', 'year': '2021', 'journal-title': 'Nat Neurosci'}, { 'key': '2023012012400623000_2023.01.17.524329v1.11', 'doi-asserted-by': 'crossref', 'first-page': '951', 'DOI': '10.1016/j.stem.2020.10.001', 'article-title': 'SARS-CoV-2 Infects the Brain Choroid Plexus and Disrupts the Blood-CSF ' 'Barrier in Human Brain Organoids', 'volume': '27', 'year': '2020', 'journal-title': 'Cell Stem Cell'}, { 'key': '2023012012400623000_2023.01.17.524329v1.12', 'doi-asserted-by': 'crossref', 'unstructured': 'Samudyata et al. SARS-CoV-2 promotes microglial synapse elimination in ' 'human brain organoids. Mol Psychiatry (2022). ' 'https://doi.org:10.1038/s41380-022-01786-2', 'DOI': '10.1101/2021.07.07.451463'}, { 'key': '2023012012400623000_2023.01.17.524329v1.13', 'doi-asserted-by': 'crossref', 'unstructured': 'Albornoz, E. A. et al. SARS-CoV-2 drives NLRP3 inflammasome activation ' 'in human microglia through spike protein. Mol Psychiatry (2022). ' 'https://doi.org:10.1038/s41380-022-01831-0', 'DOI': '10.1038/s41380-022-01831-0'}, { 'key': '2023012012400623000_2023.01.17.524329v1.14', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.immuni.2021.06.002'}, { 'key': '2023012012400623000_2023.01.17.524329v1.15', 'doi-asserted-by': 'publisher', 'DOI': '10.1126/science.abd2985'}, { 'key': '2023012012400623000_2023.01.17.524329v1.16', 'unstructured': 'Stein, S. R. et al. SARS-CoV-2 infection and persistence in the human ' 'body and brain at autopsy. Nature (2022). ' 'https://doi.org:10.1038/s41586-022-05542-y'}, { 'key': '2023012012400623000_2023.01.17.524329v1.17', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41586-022-04569-5 3'}, { 'key': '2023012012400623000_2023.01.17.524329v1.18', 'doi-asserted-by': 'crossref', 'unstructured': 'Mavrikaki, M. , Lee, J. D. , Solomon, I. H. & Slack, F. J. Severe ' 'COVID-19 is associated with molecular signatures of aging in the human ' 'brain. Nature Aging (2022). https://doi.org:10.1038/s43587-022-00321-w', 'DOI': '10.1101/2021.11.24.21266779'}, { 'key': '2023012012400623000_2023.01.17.524329v1.19', 'doi-asserted-by': 'crossref', 'first-page': '283', 'DOI': '10.1038/s41586-021-03995-1', 'article-title': 'Virus-induced senescence is a driver and therapeutic target in COVID-19', 'volume': '599', 'year': '2021', 'journal-title': 'Nature'}, { 'key': '2023012012400623000_2023.01.17.524329v1.20', 'doi-asserted-by': 'crossref', 'unstructured': 'Lopez-Otin, C. , Blasco, M. A. , Partridge, L. , Serrano, M. & Kroemer, ' 'G. Hallmarks of aging: An expanding universe. Cell (2022). ' 'https://doi.org:10.1016/j.cell.2022.11.001', 'DOI': '10.1016/j.cell.2022.11.001'}, { 'key': '2023012012400623000_2023.01.17.524329v1.21', 'doi-asserted-by': 'crossref', 'unstructured': 'Di Micco, R. , Krizhanovsky, V. , Baker, D. & d’Adda di Fagagna, F. ' 'Cellular senescence in ageing: from mechanisms to therapeutic ' 'opportunities. Nat Rev Mol Cell Biol (2020). ' 'https://doi.org:10.1038/s41580-020-00314-w', 'DOI': '10.1038/s41580-020-00314-w'}, { 'key': '2023012012400623000_2023.01.17.524329v1.22', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41593-019-0372-9'}, { 'key': '2023012012400623000_2023.01.17.524329v1.23', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41586-018-0543-y'}, { 'key': '2023012012400623000_2023.01.17.524329v1.24', 'doi-asserted-by': 'publisher', 'DOI': '10.1111/acel.13296'}, { 'key': '2023012012400623000_2023.01.17.524329v1.25', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s43587-021-00121-8'}, { 'key': '2023012012400623000_2023.01.17.524329v1.26', 'doi-asserted-by': 'crossref', 'first-page': '1556', 'DOI': '10.1038/s41591-022-01923-y', 'article-title': 'Cellular senescence and senolytics: the path to the clinic', 'volume': '28', 'year': '2022', 'journal-title': 'Nat Med'}, { 'key': '2023012012400623000_2023.01.17.524329v1.27', 'doi-asserted-by': 'crossref', 'first-page': '42', 'DOI': '10.1016/j.jphs.2017.12.008', 'article-title': 'Oral administration of fisetin promotes the induction of hippocampal ' 'long-term potentiation in vivo', 'volume': '136', 'year': '2018', 'journal-title': 'J Pharmacol Sci'}, { 'key': '2023012012400623000_2023.01.17.524329v1.28', 'doi-asserted-by': 'publisher', 'DOI': '10.1091/mbc.E11-10-0884'}, { 'key': '2023012012400623000_2023.01.17.524329v1.29', 'doi-asserted-by': 'publisher', 'DOI': '10.1126/science.abm2052'}, { 'key': '2023012012400623000_2023.01.17.524329v1.30', 'doi-asserted-by': 'publisher', 'DOI': '10.15252/embj.2020106230'}, { 'key': '2023012012400623000_2023.01.17.524329v1.31', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41586-021-03307-7'}, { 'key': '2023012012400623000_2023.01.17.524329v1.32', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/nature02118'}, { 'key': '2023012012400623000_2023.01.17.524329v1.33', 'unstructured': 'Kulasinghe, A. et al. Transcriptomic profiling of cardiac tissues from ' 'SARS-CoV-2 patients identifies DNA damage. Immunology (2022). ' 'https://doi.org:10.1111/imm.13577'}, { 'key': '2023012012400623000_2023.01.17.524329v1.34', 'doi-asserted-by': 'crossref', 'first-page': '417', 'DOI': '10.1016/j.cels.2015.12.004', 'article-title': 'The Molecular Signatures Database (MSigDB) hallmark gene set collection', 'volume': '1', 'year': '2015', 'journal-title': 'Cell Syst'}, { 'key': '2023012012400623000_2023.01.17.524329v1.35', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41467-022-28020-5'}, { 'key': '2023012012400623000_2023.01.17.524329v1.36', 'doi-asserted-by': 'publisher', 'DOI': '10.1523/JNEUROSCI.1325-14.2014'}, { 'key': '2023012012400623000_2023.01.17.524329v1.37', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/JVI.02012-06'}, { 'key': '2023012012400623000_2023.01.17.524329v1.38', 'doi-asserted-by': 'crossref', 'first-page': '243', 'DOI': '10.1016/j.neuint.2015.08.003', 'article-title': 'Cell and brain tissue imaging of the flavonoid fisetin using label-free ' 'two-photon microscopy', 'volume': '89', 'year': '2015', 'journal-title': 'Neurochem Int'}, { 'key': '2023012012400623000_2023.01.17.524329v1.39', 'doi-asserted-by': 'crossref', 'first-page': '4477', 'DOI': '10.1007/s12035-021-02408-8', 'article-title': 'The Intersection of Parkinson’s Disease, Viral Infections, and COVID-19', 'volume': '58', 'year': '2021', 'journal-title': 'Mol Neurobiol'}, { 'key': '2023012012400623000_2023.01.17.524329v1.40', 'doi-asserted-by': 'crossref', 'first-page': '2406', 'DOI': '10.1038/s41591-022-02001-z', 'article-title': 'Long-term neurologic outcomes of COVID-19', 'volume': '28', 'year': '2022', 'journal-title': 'Nat Med'}, { 'key': '2023012012400623000_2023.01.17.524329v1.41', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41593-020-00783-4'}, { 'key': '2023012012400623000_2023.01.17.524329v1.42', 'doi-asserted-by': 'crossref', 'first-page': '850', 'DOI': '10.1016/j.molmed.2022.07.003', 'article-title': 'Cellular senescence in neuroinflammatory disease: new therapies for old ' 'cells?', 'volume': '28', 'year': '2022', 'journal-title': 'Trends Mol Med'}, { 'key': '2023012012400623000_2023.01.17.524329v1.43', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.celrep.2017.12.092'}, { 'key': '2023012012400623000_2023.01.17.524329v1.44', 'doi-asserted-by': 'publisher', 'DOI': '10.1111/acel.12840'}, { 'key': '2023012012400623000_2023.01.17.524329v1.45', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.cmet.2018.12.008'}, { 'key': '2023012012400623000_2023.01.17.524329v1.46', 'first-page': 'e53658', 'article-title': 'DNA damage response at telomeres boosts the transcription of SARS-CoV-2 ' 'receptor ACE2 during aging', 'volume': '23', 'year': '2022', 'journal-title': 'EMBO Rep'}, { 'key': '2023012012400623000_2023.01.17.524329v1.47', 'doi-asserted-by': 'publisher', 'DOI': '10.1111/acel.12848'}, { 'key': '2023012012400623000_2023.01.17.524329v1.48', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.bbi.2019.07.003'}, { 'key': '2023012012400623000_2023.01.17.524329v1.49', 'doi-asserted-by': 'crossref', 'unstructured': 'Aguado, J. et al. Inhibition of the cGAS-STING pathway ameliorates the ' 'premature senescence hallmarks of Ataxia-Telangiectasia brain organoids. ' 'Aging Cell, e13468 (2021). https://doi.org:10.1111/acel.13468', 'DOI': '10.1111/acel.13468'}, { 'key': '2023012012400623000_2023.01.17.524329v1.50', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41467-021-23779-5'}, { 'key': '2023012012400623000_2023.01.17.524329v1.51', 'doi-asserted-by': 'crossref', 'first-page': '625136', 'DOI': '10.3389/fmicb.2021.625136', 'article-title': 'An Optimized High-Throughput Immuno-Plaque Assay for SARS-CoV-2', 'volume': '12', 'year': '2021', 'journal-title': 'Front Microbiol'}, { 'key': '2023012012400623000_2023.01.17.524329v1.52', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41467-019-13018-3'}, { 'key': '2023012012400623000_2023.01.17.524329v1.53', 'doi-asserted-by': 'publisher', 'DOI': '10.1186/s13059-014-0550-8'}, { 'key': '2023012012400623000_2023.01.17.524329v1.54', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.cmet.2019.06.018'}, { 'key': '2023012012400623000_2023.01.17.524329v1.55', 'doi-asserted-by': 'publisher', 'DOI': '10.1073/pnas.0506580102'}, { 'key': '2023012012400623000_2023.01.17.524329v1.56', 'doi-asserted-by': 'crossref', 'first-page': '926262', 'DOI': '10.3389/fimmu.2022.926262', 'article-title': 'Nucleocapsid Specific Diagnostics for the Detection of Divergent ' 'SARS-CoV-2 Variants', 'volume': '13', 'year': '2022', 'journal-title': 'Front Immunol'}, { 'key': '2023012012400623000_2023.01.17.524329v1.57', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41598-021-82833-w'}], 'container-title': [], 'original-title': [], 'link': [ { 'URL': 'https://syndication.highwire.org/content/doi/10.1101/2023.01.17.524329', 'content-type': 'unspecified', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2023, 1, 20]], 'date-time': '2023-01-20T20:40:45Z', 'timestamp': 1674247245000}, 'score': 1, 'resource': {'primary': {'URL': 'http://biorxiv.org/lookup/doi/10.1101/2023.01.17.524329'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2023, 1, 18]]}, 'references-count': 57, 'URL': 'http://dx.doi.org/10.1101/2023.01.17.524329', 'relation': {}, 'published': {'date-parts': [[2023, 1, 18]]}, 'subtype': 'preprint'}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit