Senolytic therapy alleviates physiological human brain aging and COVID-19 neuropathology
Julio Aguado, Alberto A Amarilla, Atefeh Taherian Fard, Eduardo A Albornoz, Alexander Tyshkovskiy, Marius Schwabenland, Harman K Chaggar, Naphak Modhiran, Cecilia Gómez-Inclán, Ibrahim Javed, Alireza A Baradar, Benjamin Liang, Malindrie Dharmaratne, Giovanni Pietrogrande, Pranesh Padmanabhan, Morgan E Freney, Rhys Parry, Julian D J Sng, Ariel Isaacs, Alexander A Khromykh, Alejandro Rojas-Fernandez, Thomas P Davis, Marco Prinz, Bertram Bengsch, Vadim N Gladyshev, Trent M Woodruff, Jessica C Mar, Daniel Watterson, Ernst J Wolvetang
doi:10.1101/2023.01.17.524329
Aging is the primary risk factor for most neurodegenerative diseases, and recently coronavirus disease 2019 (COVID-19) has been associated with severe neurological manifestations that can eventually impact neurodegenerative conditions in the long-term. The progressive accumulation of senescent cells in vivo strongly contributes to brain aging and neurodegenerative co-morbidities but the impact of virus-induced senescence in the aetiology of neuropathologies is unknown. Here, we show that senescent cells accumulate in physiologically aged brain organoids of human origin and that senolytic treatment reduces inflammation and cellular senescence; for which we found that combined treatment with the senolytic drugs dasatinib and quercetin rejuvenates transcriptomic human brain aging clocks. We further interrogated brain frontal cortex regions in postmortem patients who succumbed to severe COVID-19 and observed increased accumulation of senescent cells as compared to age-matched control brains from non-COVID-affected individuals. Moreover, we show that exposure of human brain organoids to SARS-CoV-2 evoked cellular senescence, and that spatial transcriptomic sequencing of virus-induced senescent cells identified a unique SARS-CoV-2 variant-specific inflammatory signature that is different from endogenous naturally-emerging senescent cells. Importantly, following SARS-CoV-2 infection of human brain organoids, treatment with senolytics blocked viral retention and prevented the emergence of senescent corticothalamic and GABAergic neurons. Furthermore, we demonstrate in human ACE2 overexpressing mice that senolytic treatment ameliorates COVID-19 brain pathology following infection with SARS-CoV-2. In vivo treatment with senolytics improved SARS-CoV-2 clinical phenotype and survival, alleviated brain senescence and reactive astrogliosis, promoted survival of dopaminergic neurons, and reduced viral and senescenceassociated secretory phenotype gene expression in the brain. Collectively, our findings demonstrate SARS-CoV-2 can trigger cellular senescence in the brain, and that senolytic therapy mitigates senescence-driven brain aging and multiple neuropathological sequelae caused by neurotropic viruses, including SARS-CoV-2. .
was calculated by the indicated statistical tests, using R or Prism software. In figure legends, n indicates the number of independent experiments or biological replicates.
Competing Interests The authors declare no competing interests.
Contributions JA and HC generated human brain organoids. JA, HC, AT, ATF, MD, MS, AA, GP, EA, NM, BL, AI, DP, IJ, AB, MF, RP, JS, CG, TW, JM and EW contributed to acquisition, analysis, or interpretation of data. AAA, EA, NM and BL participated in the infections and treatments of mice and monitored their clinical performance. JA, ATF and AT analysed transcriptomic data. JA, AA, AF, EA, JM and EW contributed to experimental design. JA planned and supervised the project and wrote the paper. All authors edited and approved the final version of this article.
Supplementary Figure legends Supplementary Figure 4 a Supplementary Figure 5
References
Aguado, Inhibition of DNA damage response at telomeres improves the detrimental phenotypes of Hutchinson-Gilford Progeria Syndrome, Nat Commun,
doi:.org:10.1038/s41467-019-13018-3
Aguado, Inhibition of the cGAS-STING pathway ameliorates the premature senescence hallmarks of Ataxia-Telangiectasia brain organoids, Aging Cell,
doi:10.1111/acel.13468
Albornoz, SARS-CoV-2 drives NLRP3 inflammasome activation in human microglia through spike protein, Mol Psychiatry
Amarilla, An Optimized High-Throughput Immuno-Plaque Assay for SARS-CoV-2, Front Microbiol,
doi:10.3389/fmicb.2021
Ceban, Fatigue and cognitive impairment in Post-COVID-19 Syndrome: A systematic review and meta-analysis, Brain Behav Immun,
doi:10.1016/j.bbi.2021
Chinta, Cellular Senescence Is Induced by the Environmental Neurotoxin Paraquat and Contributes to Neuropathology Linked to Parkinson's Disease, Cell Rep,
doi:10.1016/j.celrep.2017.12.092
Choutka, Jansari, Hornig, Iwasaki, Unexplained post-acute infection syndromes, Nat Med,
doi:10.1038/s41591-
Davis, Mccorkell, Vogel, Topol, Long COVID: major findings, mechanisms and recommendations, Nat Rev Microbiol
Di Micco, Krizhanovsky, Baker, Di Fagagna, Cellular senescence in ageing: from mechanisms to therapeutic opportunities, Nat Rev Mol Cell Biol,
doi:.org:10.1038/s41580-020-00314-w
Gasek, Kuchel, Kirkland, Xu, Strategies for Targeting Senescent Cells in Human Disease, Nat Aging,
doi:10.1038/s43587-
Golia, Interplay between inflammation and neural plasticity: Both immune activation and suppression impair LTP and BDNF expression, Brain Behav Immun,
doi:10.1016/j.bbi.2019
He, Abe, Akaishi, Oral administration of fisetin promotes the induction of hippocampal long-term potentiation in vivo, J Pharmacol Sci,
doi:10.1016/j.jphs.2017.12.008
Kim, Matney, Blankenship, Hestrin, Brown, Layer 6 corticothalamic neurons activate a cortical output layer, layer 5a, J Neurosci,
doi:10.1523/JNEUROSCI.1325
Krasieva, Ehren, O'sullivan, Tromberg, Maher, Cell and brain tissue imaging of the flavonoid fisetin using label-free two-photon microscopy, Neurochem Int,
doi:10.1016/j.neuint.2015.08.003
Kulasinghe, Transcriptomic profiling of cardiac tissues from SARS-CoV-2 patients identifies DNA damage, Immunology,
doi:10.1111/imm.13577
Mavrikaki, Lee, Solomon, Slack, Severe COVID-19 is associated with molecular signatures of aging in the human brain, Nature Aging,
doi:10.1038/s43587-022-00321-w
Mccray, Jr, Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus, J Virol,
doi:10.1128/JVI
Meinhardt, Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19, Nat Neurosci,
doi:.org:10.1038/s41593-020-00758-5
Musi, Tau protein aggregation is associated with cellular senescence in the brain, Aging Cell,
doi:10.1111/acel.12840
Nelke, Schroeter, Pawlitzki, Meuth, Ruck, Cellular senescence in neuroinflammatory disease: new therapies for old cells?, Trends Mol Med,
doi:10.1016/j.molmed.2022.07.003
Ogrodnik, Whole-body senescent cell clearance alleviates age-related brain inflammation and cognitive impairment in mice, Aging Cell,
doi:10.1111/acel.13296
Pellegrini, SARS-CoV-2 Infects the Brain Choroid Plexus and Disrupts the Blood-CSF Barrier in Human Brain Organoids, Cell Stem Cell,
doi:10.1016/j.stem.2020
Samudyata, SARS-CoV-2 promotes microglial synapse elimination in human brain organoids, Mol Psychiatry
Schwabenland, Deep spatial profiling of human COVID-19 brains reveals neuroinflammation with distinct microanatomical microglia-T-cell interactions, Immunity,
doi:10.1016/j.immuni.2021.06.002
Sepe, DNA damage response at telomeres boosts the transcription of SARS-CoV-2 receptor ACE2 during aging, EMBO Rep,
doi:10.15252/embr.202153658
Silva, The bystander effect contributes to the accumulation of senescent cells in vivo, Aging Cell,
doi:10.1111/acel.12848
Subramanian, Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, Proc Natl Acad Sci U S A,
doi:10.1073/pnas.0506580102
Taquet, Geddes, Husain, Luciano, Harrison, 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health records, Lancet Psychiatry,
doi:10.1016/S2215-0366
Tyshkovskiy, Identification and Application of Gene Expression Signatures Associated with Lifespan Extension, Cell Metab,
doi:10.1016/j.cmet.2019.06.018
Valenzuela Nieto, Potent neutralization of clinical isolates of SARS-CoV-2 D614 and G614 variants by a monomeric, sub-nanomolar affinity nanobody, Sci Rep,
doi:10.1038/s41598-021-82833-w
Zhang, Senolytic therapy alleviates Abeta-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer's disease model, Nat Neurosci,
doi:.org:10.1038/s41593-019-0372-9
{ 'institution': [{'name': 'bioRxiv'}],
'indexed': {'date-parts': [[2023, 1, 21]], 'date-time': '2023-01-21T06:01:35Z', 'timestamp': 1674280895475},
'posted': {'date-parts': [[2023, 1, 18]]},
'group-title': 'Neuroscience',
'reference-count': 57,
'publisher': 'Cold Spring Harbor Laboratory',
'content-domain': {'domain': [], 'crossmark-restriction': False},
'accepted': {'date-parts': [[2023, 1, 18]]},
'abstract': '<jats:title>Abstract</jats:title><jats:p>Aging is the primary risk factor for most '
'neurodegenerative diseases, and recently coronavirus disease 2019 (COVID-19) has been '
'associated with severe neurological manifestations that can eventually impact '
'neurodegenerative conditions in the long-term. The progressive accumulation of senescent '
'cells<jats:italic>in vivo</jats:italic>strongly contributes to brain aging and '
'neurodegenerative co-morbidities but the impact of virus-induced senescence in the aetiology '
'of neuropathologies is unknown. Here, we show that senescent cells accumulate in '
'physiologically aged brain organoids of human origin and that senolytic treatment reduces '
'inflammation and cellular senescence; for which we found that combined treatment with the '
'senolytic drugs dasatinib and quercetin rejuvenates transcriptomic human brain aging clocks. '
'We further interrogated brain frontal cortex regions in postmortem patients who succumbed to '
'severe COVID-19 and observed increased accumulation of senescent cells as compared to '
'age-matched control brains from non-COVID-affected individuals. Moreover, we show that '
'exposure of human brain organoids to SARS-CoV-2 evoked cellular senescence, and that spatial '
'transcriptomic sequencing of virus-induced senescent cells identified a unique SARS-CoV-2 '
'variant-specific inflammatory signature that is different from endogenous naturally-emerging '
'senescent cells. Importantly, following SARS-CoV-2 infection of human brain organoids, '
'treatment with senolytics blocked viral retention and prevented the emergence of senescent '
'corticothalamic and GABAergic neurons. Furthermore, we demonstrate in human ACE2 '
'overexpressing mice that senolytic treatment ameliorates COVID-19 brain pathology following '
'infection with SARS-CoV-2.<jats:italic>In vivo</jats:italic>treatment with senolytics '
'improved SARS-CoV-2 clinical phenotype and survival, alleviated brain senescence and reactive '
'astrogliosis, promoted survival of dopaminergic neurons, and reduced viral and '
'senescence-associated secretory phenotype gene expression in the brain. Collectively, our '
'findings demonstrate SARS-CoV-2 can trigger cellular senescence in the brain, and that '
'senolytic therapy mitigates senescence-driven brain aging and multiple neuropathological '
'sequelae caused by neurotropic viruses, including SARS-CoV-2.</jats:p>',
'DOI': '10.1101/2023.01.17.524329',
'type': 'posted-content',
'created': {'date-parts': [[2023, 1, 18]], 'date-time': '2023-01-18T22:55:10Z', 'timestamp': 1674082510000},
'source': 'Crossref',
'is-referenced-by-count': 0,
'title': 'Senolytic therapy alleviates physiological human brain aging and COVID-19 neuropathology',
'prefix': '10.1101',
'author': [ { 'ORCID': 'http://orcid.org/0000-0002-1841-4741',
'authenticated-orcid': False,
'given': 'Julio',
'family': 'Aguado',
'sequence': 'first',
'affiliation': []},
{'given': 'Alberto A.', 'family': 'Amarilla', 'sequence': 'additional', 'affiliation': []},
{'given': 'Atefeh', 'family': 'Taherian Fard', 'sequence': 'additional', 'affiliation': []},
{'given': 'Eduardo A.', 'family': 'Albornoz', 'sequence': 'additional', 'affiliation': []},
{'given': 'Alexander', 'family': 'Tyshkovskiy', 'sequence': 'additional', 'affiliation': []},
{'given': 'Marius', 'family': 'Schwabenland', 'sequence': 'additional', 'affiliation': []},
{'given': 'Harman K.', 'family': 'Chaggar', 'sequence': 'additional', 'affiliation': []},
{ 'ORCID': 'http://orcid.org/0000-0003-3205-4970',
'authenticated-orcid': False,
'given': 'Naphak',
'family': 'Modhiran',
'sequence': 'additional',
'affiliation': []},
{'given': 'Cecilia', 'family': 'Gómez-Inclán', 'sequence': 'additional', 'affiliation': []},
{'given': 'Ibrahim', 'family': 'Javed', 'sequence': 'additional', 'affiliation': []},
{'given': 'Alireza A.', 'family': 'Baradar', 'sequence': 'additional', 'affiliation': []},
{'given': 'Benjamin', 'family': 'Liang', 'sequence': 'additional', 'affiliation': []},
{ 'ORCID': 'http://orcid.org/0000-0002-1694-6496',
'authenticated-orcid': False,
'given': 'Malindrie',
'family': 'Dharmaratne',
'sequence': 'additional',
'affiliation': []},
{'given': 'Giovanni', 'family': 'Pietrogrande', 'sequence': 'additional', 'affiliation': []},
{'given': 'Pranesh', 'family': 'Padmanabhan', 'sequence': 'additional', 'affiliation': []},
{'given': 'Morgan E.', 'family': 'Freney', 'sequence': 'additional', 'affiliation': []},
{'given': 'Rhys', 'family': 'Parry', 'sequence': 'additional', 'affiliation': []},
{'given': 'Julian D.J.', 'family': 'Sng', 'sequence': 'additional', 'affiliation': []},
{'given': 'Ariel', 'family': 'Isaacs', 'sequence': 'additional', 'affiliation': []},
{'given': 'Alexander A.', 'family': 'Khromykh', 'sequence': 'additional', 'affiliation': []},
{ 'given': 'Alejandro',
'family': 'Rojas-Fernandez',
'sequence': 'additional',
'affiliation': []},
{'given': 'Thomas P.', 'family': 'Davis', 'sequence': 'additional', 'affiliation': []},
{'given': 'Marco', 'family': 'Prinz', 'sequence': 'additional', 'affiliation': []},
{'given': 'Bertram', 'family': 'Bengsch', 'sequence': 'additional', 'affiliation': []},
{'given': 'Vadim N.', 'family': 'Gladyshev', 'sequence': 'additional', 'affiliation': []},
{ 'ORCID': 'http://orcid.org/0000-0003-1382-911X',
'authenticated-orcid': False,
'given': 'Trent M.',
'family': 'Woodruff',
'sequence': 'additional',
'affiliation': []},
{'given': 'Jessica C.', 'family': 'Mar', 'sequence': 'additional', 'affiliation': []},
{'given': 'Daniel', 'family': 'Watterson', 'sequence': 'additional', 'affiliation': []},
{'given': 'Ernst J.', 'family': 'Wolvetang', 'sequence': 'additional', 'affiliation': []}],
'member': '246',
'reference': [ { 'key': '2023012012400623000_2023.01.17.524329v1.1',
'doi-asserted-by': 'publisher',
'DOI': '10.1038/s41591-021-01283-z'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.2',
'doi-asserted-by': 'publisher',
'DOI': '10.1038/s41591-022-01810-6'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.3',
'doi-asserted-by': 'crossref',
'first-page': '416',
'DOI': '10.1016/S2215-0366(21)00084-5',
'article-title': '6-month neurological and psychiatric outcomes in 236 379 survivors of '
'COVID-19: a retrospective cohort study using electronic health records',
'volume': '8',
'year': '2021',
'journal-title': 'Lancet Psychiatry'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.4',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.neuron.2022.10.006'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.5',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/J.BBI.2021.12.020'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.6',
'doi-asserted-by': 'crossref',
'first-page': '101651',
'DOI': '10.1016/j.eclinm.2022.101651',
'article-title': 'Fatigue and cognitive impairment after COVID-19: A prospective '
'multicentre study',
'volume': '53',
'year': '2022',
'journal-title': 'EClinicalMedicine'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.7',
'doi-asserted-by': 'crossref',
'unstructured': 'Davis, H. E. , McCorkell, L. , Vogel, J. M. & Topol, E. J. Long COVID: '
'major findings, mechanisms and recommendations. Nat Rev Microbiol '
'(2023).https://doi.org:10.1038/s41579-022-00846-2',
'DOI': '10.1038/s41579-022-00846-2'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.8',
'unstructured': 'Song, E. et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J '
'Exp Med 218 (2021). https://doi.org:10.1084/jem.20202135'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.9',
'doi-asserted-by': 'crossref',
'first-page': '928',
'DOI': '10.1038/s41422-020-0390-x',
'article-title': 'SARS-CoV-2 infects human neural progenitor cells and brain organoids',
'volume': '30',
'year': '2020',
'journal-title': 'Cell Res'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.10',
'doi-asserted-by': 'crossref',
'first-page': '168',
'DOI': '10.1038/s41593-020-00758-5',
'article-title': 'Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous '
'system entry in individuals with COVID-19',
'volume': '24',
'year': '2021',
'journal-title': 'Nat Neurosci'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.11',
'doi-asserted-by': 'crossref',
'first-page': '951',
'DOI': '10.1016/j.stem.2020.10.001',
'article-title': 'SARS-CoV-2 Infects the Brain Choroid Plexus and Disrupts the Blood-CSF '
'Barrier in Human Brain Organoids',
'volume': '27',
'year': '2020',
'journal-title': 'Cell Stem Cell'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.12',
'doi-asserted-by': 'crossref',
'unstructured': 'Samudyata et al. SARS-CoV-2 promotes microglial synapse elimination in '
'human brain organoids. Mol Psychiatry (2022). '
'https://doi.org:10.1038/s41380-022-01786-2',
'DOI': '10.1101/2021.07.07.451463'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.13',
'doi-asserted-by': 'crossref',
'unstructured': 'Albornoz, E. A. et al. SARS-CoV-2 drives NLRP3 inflammasome activation '
'in human microglia through spike protein. Mol Psychiatry (2022). '
'https://doi.org:10.1038/s41380-022-01831-0',
'DOI': '10.1038/s41380-022-01831-0'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.14',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.immuni.2021.06.002'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.15',
'doi-asserted-by': 'publisher',
'DOI': '10.1126/science.abd2985'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.16',
'unstructured': 'Stein, S. R. et al. SARS-CoV-2 infection and persistence in the human '
'body and brain at autopsy. Nature (2022). '
'https://doi.org:10.1038/s41586-022-05542-y'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.17',
'doi-asserted-by': 'publisher',
'DOI': '10.1038/s41586-022-04569-5 3'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.18',
'doi-asserted-by': 'crossref',
'unstructured': 'Mavrikaki, M. , Lee, J. D. , Solomon, I. H. & Slack, F. J. Severe '
'COVID-19 is associated with molecular signatures of aging in the human '
'brain. Nature Aging (2022). https://doi.org:10.1038/s43587-022-00321-w',
'DOI': '10.1101/2021.11.24.21266779'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.19',
'doi-asserted-by': 'crossref',
'first-page': '283',
'DOI': '10.1038/s41586-021-03995-1',
'article-title': 'Virus-induced senescence is a driver and therapeutic target in COVID-19',
'volume': '599',
'year': '2021',
'journal-title': 'Nature'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.20',
'doi-asserted-by': 'crossref',
'unstructured': 'Lopez-Otin, C. , Blasco, M. A. , Partridge, L. , Serrano, M. & Kroemer, '
'G. Hallmarks of aging: An expanding universe. Cell (2022). '
'https://doi.org:10.1016/j.cell.2022.11.001',
'DOI': '10.1016/j.cell.2022.11.001'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.21',
'doi-asserted-by': 'crossref',
'unstructured': 'Di Micco, R. , Krizhanovsky, V. , Baker, D. & d’Adda di Fagagna, F. '
'Cellular senescence in ageing: from mechanisms to therapeutic '
'opportunities. Nat Rev Mol Cell Biol (2020). '
'https://doi.org:10.1038/s41580-020-00314-w',
'DOI': '10.1038/s41580-020-00314-w'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.22',
'doi-asserted-by': 'publisher',
'DOI': '10.1038/s41593-019-0372-9'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.23',
'doi-asserted-by': 'publisher',
'DOI': '10.1038/s41586-018-0543-y'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.24',
'doi-asserted-by': 'publisher',
'DOI': '10.1111/acel.13296'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.25',
'doi-asserted-by': 'publisher',
'DOI': '10.1038/s43587-021-00121-8'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.26',
'doi-asserted-by': 'crossref',
'first-page': '1556',
'DOI': '10.1038/s41591-022-01923-y',
'article-title': 'Cellular senescence and senolytics: the path to the clinic',
'volume': '28',
'year': '2022',
'journal-title': 'Nat Med'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.27',
'doi-asserted-by': 'crossref',
'first-page': '42',
'DOI': '10.1016/j.jphs.2017.12.008',
'article-title': 'Oral administration of fisetin promotes the induction of hippocampal '
'long-term potentiation in vivo',
'volume': '136',
'year': '2018',
'journal-title': 'J Pharmacol Sci'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.28',
'doi-asserted-by': 'publisher',
'DOI': '10.1091/mbc.E11-10-0884'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.29',
'doi-asserted-by': 'publisher',
'DOI': '10.1126/science.abm2052'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.30',
'doi-asserted-by': 'publisher',
'DOI': '10.15252/embj.2020106230'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.31',
'doi-asserted-by': 'publisher',
'DOI': '10.1038/s41586-021-03307-7'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.32',
'doi-asserted-by': 'publisher',
'DOI': '10.1038/nature02118'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.33',
'unstructured': 'Kulasinghe, A. et al. Transcriptomic profiling of cardiac tissues from '
'SARS-CoV-2 patients identifies DNA damage. Immunology (2022). '
'https://doi.org:10.1111/imm.13577'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.34',
'doi-asserted-by': 'crossref',
'first-page': '417',
'DOI': '10.1016/j.cels.2015.12.004',
'article-title': 'The Molecular Signatures Database (MSigDB) hallmark gene set collection',
'volume': '1',
'year': '2015',
'journal-title': 'Cell Syst'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.35',
'doi-asserted-by': 'publisher',
'DOI': '10.1038/s41467-022-28020-5'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.36',
'doi-asserted-by': 'publisher',
'DOI': '10.1523/JNEUROSCI.1325-14.2014'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.37',
'doi-asserted-by': 'publisher',
'DOI': '10.1128/JVI.02012-06'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.38',
'doi-asserted-by': 'crossref',
'first-page': '243',
'DOI': '10.1016/j.neuint.2015.08.003',
'article-title': 'Cell and brain tissue imaging of the flavonoid fisetin using label-free '
'two-photon microscopy',
'volume': '89',
'year': '2015',
'journal-title': 'Neurochem Int'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.39',
'doi-asserted-by': 'crossref',
'first-page': '4477',
'DOI': '10.1007/s12035-021-02408-8',
'article-title': 'The Intersection of Parkinson’s Disease, Viral Infections, and COVID-19',
'volume': '58',
'year': '2021',
'journal-title': 'Mol Neurobiol'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.40',
'doi-asserted-by': 'crossref',
'first-page': '2406',
'DOI': '10.1038/s41591-022-02001-z',
'article-title': 'Long-term neurologic outcomes of COVID-19',
'volume': '28',
'year': '2022',
'journal-title': 'Nat Med'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.41',
'doi-asserted-by': 'publisher',
'DOI': '10.1038/s41593-020-00783-4'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.42',
'doi-asserted-by': 'crossref',
'first-page': '850',
'DOI': '10.1016/j.molmed.2022.07.003',
'article-title': 'Cellular senescence in neuroinflammatory disease: new therapies for old '
'cells?',
'volume': '28',
'year': '2022',
'journal-title': 'Trends Mol Med'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.43',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.celrep.2017.12.092'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.44',
'doi-asserted-by': 'publisher',
'DOI': '10.1111/acel.12840'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.45',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.cmet.2018.12.008'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.46',
'first-page': 'e53658',
'article-title': 'DNA damage response at telomeres boosts the transcription of SARS-CoV-2 '
'receptor ACE2 during aging',
'volume': '23',
'year': '2022',
'journal-title': 'EMBO Rep'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.47',
'doi-asserted-by': 'publisher',
'DOI': '10.1111/acel.12848'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.48',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.bbi.2019.07.003'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.49',
'doi-asserted-by': 'crossref',
'unstructured': 'Aguado, J. et al. Inhibition of the cGAS-STING pathway ameliorates the '
'premature senescence hallmarks of Ataxia-Telangiectasia brain organoids. '
'Aging Cell, e13468 (2021). https://doi.org:10.1111/acel.13468',
'DOI': '10.1111/acel.13468'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.50',
'doi-asserted-by': 'publisher',
'DOI': '10.1038/s41467-021-23779-5'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.51',
'doi-asserted-by': 'crossref',
'first-page': '625136',
'DOI': '10.3389/fmicb.2021.625136',
'article-title': 'An Optimized High-Throughput Immuno-Plaque Assay for SARS-CoV-2',
'volume': '12',
'year': '2021',
'journal-title': 'Front Microbiol'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.52',
'doi-asserted-by': 'publisher',
'DOI': '10.1038/s41467-019-13018-3'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.53',
'doi-asserted-by': 'publisher',
'DOI': '10.1186/s13059-014-0550-8'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.54',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.cmet.2019.06.018'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.55',
'doi-asserted-by': 'publisher',
'DOI': '10.1073/pnas.0506580102'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.56',
'doi-asserted-by': 'crossref',
'first-page': '926262',
'DOI': '10.3389/fimmu.2022.926262',
'article-title': 'Nucleocapsid Specific Diagnostics for the Detection of Divergent '
'SARS-CoV-2 Variants',
'volume': '13',
'year': '2022',
'journal-title': 'Front Immunol'},
{ 'key': '2023012012400623000_2023.01.17.524329v1.57',
'doi-asserted-by': 'publisher',
'DOI': '10.1038/s41598-021-82833-w'}],
'container-title': [],
'original-title': [],
'link': [ { 'URL': 'https://syndication.highwire.org/content/doi/10.1101/2023.01.17.524329',
'content-type': 'unspecified',
'content-version': 'vor',
'intended-application': 'similarity-checking'}],
'deposited': { 'date-parts': [[2023, 1, 20]],
'date-time': '2023-01-20T20:40:45Z',
'timestamp': 1674247245000},
'score': 1,
'resource': {'primary': {'URL': 'http://biorxiv.org/lookup/doi/10.1101/2023.01.17.524329'}},
'subtitle': [],
'short-title': [],
'issued': {'date-parts': [[2023, 1, 18]]},
'references-count': 57,
'URL': 'http://dx.doi.org/10.1101/2023.01.17.524329',
'relation': {},
'published': {'date-parts': [[2023, 1, 18]]},
'subtype': 'preprint'}