Conv. Plasma
Nigella Sativa
Peg.. Lambda

All quercetin studies
Meta analysis
Home COVID-19 treatment researchQuercetinQuercetin (more..)
Melatonin Meta
Bromhexine Meta Metformin Meta
Budesonide Meta
Cannabidiol Meta Molnupiravir Meta
Colchicine Meta
Conv. Plasma Meta
Curcumin Meta Nigella Sativa Meta
Ensovibep Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Peg.. Lambda Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta Remdesivir Meta
Ivermectin Meta
Lactoferrin Meta

All Studies   Meta Analysis   Recent:  

Inhibitory potential of phytochemicals on five SARS-CoV-2 proteins: in silico evaluation of endemic plants of Bosnia and Herzegovina

Corbo et al., Biotechnology & Biotechnological Equipment, doi:10.1080/13102818.2023.2222196
Jun 2023  
  Source   PDF   All Studies   Meta AnalysisMeta
In Silico study of phytochemicals from 28 plants identifying hesperidin and quercetin as having the highest binding affinity for SARS-CoV-2 RdRp.
The highest affinity for Mpro was observed for genistein and hesperidin, with both compounds forming interactions of interest. Hesperidin and luteolin had the highest binding affinity for PLpro, but no significant interactions were observed. For RdRp, hesperidin and quercetin showed the highest binding affinity, with both forming interactions of interest. Hesperidin and fisetin had the highest binding affinity for spike glycoprotein, and both achieved significant interactions. The highest affinity for NendoU was obtained for hesperidin and isorhamnetin, with both compounds forming interactions of interest.
Corbo et al., 3 Jun 2023, peer-reviewed, 6 authors.
In Silico studies are an important part of preclinical research, however results may be very different in vivo.
All Studies   Meta Analysis   Submit Updates or Corrections
This PaperQuercetinAll
Inhibitory potential of phytochemicals on five SARS-CoV-2 proteins: in silico evaluation of endemic plants of Bosnia and Herzegovina
Tarik Corbo, Abdurahim Kalajdzic, Dzenita Omerkic, Farah Catic, Naris Pojskic, Kasim Bajrovic
Biotechnology & Biotechnological Equipment, doi:10.1080/13102818.2023.2222196
The outbreak of the coronavirus disease 2019, caused by the SARS-CoV-2 virus, has prompted global health concerns. In response, researchers have been conducting investigations on active compounds in plants that may hold the potential to inhibit the proliferation of the virus. The aim of this study was to simulate and predict structural interactions of selected compounds isolated from 28 endemic plants of Bosnia and Herzegovina against the main protease (Mpro), papain-like protease (PLpro), RNA-dependent RNA polymerase (RdRp), spike glycoprotein and uridylate-specific endoribonuclease (NendoU) of SARS-CoV-2. The majority of compounds, especially hesperidin, showed great binding affinity to the target proteins. The highest affinity for Mpro was observed for genistein and hesperidin, while in terms of structural interactions, both compounds achieved interactions of interest. Hesperidin and luteolin were the compounds with the highest binding affinity for PLpro, but no significant interactions were observed. For RdRp, hesperidin and quercetin showed the highest binding affinity, where both compounds formed interactions of interest. Hesperidin and fisetin were the compounds with the highest binding affinity for spike glycoprotein, and both compounds achieved significant interactions. The highest affinity for NendoU was obtained for hesperidin and isorhamnetin, where both compounds formed interactions of interest. Although these findings appear encouraging, further research is needed, which includes in vitro and in vivo assessments, along with clinical trials, to provide evidence for the potential therapeutic uses of these plants.
Authors' contributions Conceptualization and design: KB, TC; supervision: KB, NP; methods: AK, DZO, FC, TC; data collection and/or processing: AK, DZO, FC, TC; analysis and/or interpretation: AK, DZO, FC, TC; manuscript writing: AK, TC; critical review: KB, NP. All authors read and approved the final manuscript. Disclosure statement The authors report no conflict of interest.
Abdizadeh, Hadizadeh, Abdizadeh, In silico analysis and identification of antiviral coumarin derivatives against 3-chymotrypsin-like main protease of the novel coronavirus SARS-CoV-2, Mol Divers
Adel, Elnaggar, Albohy, Evaluation of antiviral activity of carica papaya leaves against SARS-CoV-2 assisted by metabolomic profiling, RSC Adv
Adem, Eyupoglu, Ibrahim, Multidimensional in silico strategy for identification of natural polyphenols-based SARS-CoV-2 main protease (mpro) inhibitors to unveil a hope against COVID-19, Comput Biol Med
Agrawal, Agrawal, Blunden, Pharmacological significance of hesperidin and hesperetin, two citrus flavonoids, as promising antiviral compounds for prophylaxis against and combating COVID-19, Nat Prod Commun
Aini, Kharisma, Widyananda, Bioactive compounds from purslane (portulaca oleracea L.) and star anise (illicium verum hook) as SARS-CoV-2 antiviral agent via dual inhibitor mechanism: in silico approach, Pharmacogn J
Altu, Budiman, Razali, Technical data of In silico analysis of the interaction of dietary flavonoid compounds against spike-glycoprotein and proteases of SARS-CoV-2, Data
Amin, Banerjee, Ghosh, Protease targeted COVID-19 drug discovery and its challenges: insight into viral main protease (mpro) and papain-like protease (PLpro) inhibitors, Bioorg Med Chem
Aranda, Wieczór, Terrazas, Mechanism of reaction of RNA-dependent RNA polymerase from SARS-CoV-2, Chem Catal
Bachar, Mazumder, Bachar, A review of medicinal plants with antiviral activity available in Bangladesh and mechanistic insight into their bioactive metabolites on SARS-CoV-2, HIV and HBV, Front Pharmacol
Basu, Sarkar, Maulik, Molecular docking study of potential phytochemicals and their effects on the complex of SARS-CoV2 spike protein and human ACE2, Sci Rep
Begum, Srivastava, Ray, Repurposing nonnucleoside antivirals against SARS-CoV2 NSP12 (RNA dependent RNA polymerase): in silico-molecular insight, Biochem Biophys Res Commun
Berman, Westbrook, Feng, The protein data bank, Nucleic Acids Res
Cai Y, Zhang, Xiao, Distinct conformational states of SARS-CoV-2 spike protein, Science
Chen, Tsai, Chang, The exploration of phytocompounds theoretically combats SARS-CoV-2 pandemic against virus entry, viral replication and immune evasion, J Infect Public Health
Cho, Li, Lalonde, Drug repurposing for the SARS-CoV-2 papain-Like protease, ChemMedChem
Corbo, Miralem, Kalajdzic, In silico prediction of the inhibitory effect of phytochemical components extracted from knautia sarajevensis on the main protease of SARS-CoV-2 virus, GenApp
Das, Sarmah, Lyndem, An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study, J Biomol Struct Dyn
Farouk, Baig, Khan, Screening of inhibitors against SARS-CoV-2 spike protein and their capability to block the viral entry mechanism: a viroinformatics study, Saudi J Biol Sci
Ferreira, Fadl, Villanueva, Catalytic dyad residues His41 and Cys145 impact the catalytic activity and overall conformational fold of the main SARS-CoV-2 protease 3-chymotrypsin-like protease, Front Chem
Frazier, Dillard, Krahn, Characterization of SARS2 Nsp15 nuclease activity reveals it's mad about U, Nucleic Acids Res
Gasmi, Mujawdiya, Lysiuk, quercetin in the prevention and treatment of coronavirus infections: a focus on SARS-CoV-2, Pharmaceuticals
Hm, Gareeb, Kaushik, Ginkgo biloba in the management of the COVID-19 severity, Arch Pharm (Weinheim)
Hognon, Marazzi, García-Iriepa, Atomistic-level description of the covalent inhibition of SARS-CoV-2 papain-like protease, IJMS
Hu, Guo, Zhou, Characteristics of SARS-CoV-2 and COVID-19, Nat Rev Microbiol
Ibrahim, Ismail, Bauer, Supporting SARS-CoV-2 papain-like protease drug discovery: in silico methods and benchmarking, Front Chem
Jendele, Krivak, Skoda, PrankWeb: a web server for ligand binding site prediction and visualization, Nucleic Acids Res
Jiang, Yang, Zhang, Potential inhibitors targeting papain-Like protease of SARS-CoV-2: two birds with one stone, Front Chem
Kaul, Paul, Kumar, Promising antiviral activities of natural flavonoids against SARS-CoV-2 targets: systematic review, IJMS
Kim Y, Wower, Maltseva, Tipiracil binds to uridine site and inhibits Nsp15 endoribonuclease NendoU from SARS-CoV-2, Commun Biol
Kim, Chen, Cheng, PubChem in 2021: new data content and improved web interfaces, Nucleic Acids Res
Kumar, Kashyap, Chowdhury, Identification of phytochemicals as potential therapeutic agents that binds to Nsp15 protein target of coronavirus (SARS-CoV-2) that are capable of inhibiting virus replication, Phytomed
Kumar, Paul, A multi-targeted approach to identify potential flavonoids against three targets in the SARS-CoV-2 life cycle, Comput Biol Med
Laskowski, Swindells, LigPlot+: multiple ligand-protein interaction diagrams for drug discovery, J Chem Inf Model
Lei, Kusov, Hilgenfeld, Nsp3 of coronaviruses: structures and functions of a large multi-domain protein, Antiviral Res
Li, Luan, Zhang, Molecular docking of potential SARS-CoV-2 papain-like protease inhibitors, Biochem Biophys Res Commun
Liang, Pitsillou, Ververis, Investigation of small molecule inhibitors of the SARS-CoV-2 papain-like protease by all-atom microsecond modelling, PELE monte carlo simulations, and in vitro activity inhibition, Chem Phys Lett
Liu, Zhang, Gao, Discovery of genistein derivatives as potential SARS-CoV-2 main protease inhibitors by virtual screening, molecular dynamics simulations and ADMET analysis, Front Pharmacol
Ma, Wang, Validation and invalidation of SARS-CoV-2 papain-like protease inhibitors, ACS Pharmacol Transl Sci
Matondo, Kilembe, Ngoyi, Oleanolic acid, ursolic acid and apigenin from ocimum basilicum as potential inhibitors of the SARS-CoV-2 main protease: a molecular docking study, IJPR
Mishra, Kaur, Singh, Fisetin 8-C-glucoside as entry inhibitor in SARS CoV-2 infection: molecular modelling study, J Biomol Struct Dyn
Moradi, Golmohammadi, Najafi, In silico analysis of inhibiting papain-like protease from SARS-CoV-2 by using plant-derived peptides, Int J Pept Res Ther
Morris, Huey, Lindstrom, AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility, J Comput Chem
Mouffouk, Mouffouk, Mouffouk, Flavonols as potential antiviral drugs targeting SARS-CoV-2 proteases (3CLpro and PLpro), spike protein, RNA-dependent RNA polymerase (RdRp) and angiotensin-converting enzyme II receptor (ACE2), Eur J Pharmacol
Munafò, Donati, Brindani, quercetin and luteolin are single-digit micromolar inhibitors of the SARS-CoV-2 RNA-dependent RNA polymerase, Sci Rep
O'boyle, Banck, James, Open babel: an open chemical toolbox, J Cheminform
Pandey, Rane, Chatterjee, Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: an in silico study for drug development, J Biomol Struct Dyn
Pendyala, Patras, In silico screening of cyanobacterial and food bioactive compounds to predict potential inhibitors of COVID-19 main protease (mpro), papain-like protease (PLpro) and RNA-dependent RNA polymerase (RdRp). ChemRxiv. 2022. This content is a preprint and has not been peer-reviewed
Pettersen, Goddard, Huang, UCSF chimera-a visualization system for exploratory research and analysis, J Comput Chem
Ramesh, Kulkarni, Velusamy, Current update of phytotherapeutic agents in the treatment of COVID-19: in-silico based virtual screening approach for the development of antiviral drug, Front Biosci (Landmark Ed)
Rehman, Akhter, Batool, Effectiveness of natural antioxidants against SARS-CoV-2? Insights from the in-silico world, Antibiotics
Shahhamzehei, Abdelfatah, Efferth, In silico and in vitro identification of pan-coronaviral main protease inhibitors from a large natural product library, Pharmaceuticals
Singh, Sk, Sonawane, Plant-derived natural polyphenols as potential antiviral drugs against SARS-CoV-2 via RNA-dependent RNA polymerase (RdRp) inhibition: an in-silico analysis, J Biomol Struct Dyn
Srinivasan, Brognaro, Prabhu, Antiviral activity of natural phenolic compounds in complex at an allosteric site of SARS-CoV-2 papain-like protease, Commun Biol
Tejera, Pérez-Castillo Y, Toscano, Computational modeling predicts potential effects of the herbal infusion "horchata" against COVID-19, Food Chem
Trott, Olson, AutoDock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J Comput Chem
Ullrich, Nitsche, The SARS-CoV-2 main protease as drug target, Bioorg Med Chem Lett
Veeramachaneni, Thunuguntla, Bobbillapati, Structural and simulation analysis of hotspot residues interactions of SARS-CoV 2 with human ACE2 receptor, J Biomol Struct Dyn
Walls, Park Yj, Tortorici, Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein, Cell
Wang, Zhu, Molecular docking for drug discovery and development: a widely used approach but far from perfect, Future Med Chem
Wu, Liu, Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, Acta Pharm Sin B
Please send us corrections, updates, or comments. Vaccines and treatments are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment, vaccine, or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop