Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchQuercetinQuercetin (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

Bioactive Polyphenolic Compounds Showing Strong Antiviral Activities against Severe Acute Respiratory Syndrome Coronavirus 2

Kandeil et al., Pathogens, doi:10.3390/pathogens10060758
Jun 2021  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Quercetin for COVID-19
24th treatment shown to reduce risk in July 2021, now with p = 0.002 from 12 studies.
No treatment is 100% effective. Protocols combine treatments.
5,100+ studies for 112 treatments. c19early.org
Vero E6 In Vitro study showing curcumin, hesperidin, and quercetin significantly inhibited SARS-CoV-2 replication, and In Silico analysis with promising Mpro and spike docking results.
Bioavailability. Quercetin has low bioavailability and studies typically use advanced formulations to improve bioavailability which may be required to reach therapeutic concentrations.
73 preclinical studies support the efficacy of quercetin for COVID-19:
In Silico studies predict inhibition of SARS-CoV-2, or minimization of side effects, with quercetin or metabolites via binding to the spikeA,3,9,10,22,24,25,30,38,39,41,42,62-64, MproB,3,7,9,11,13,15,17,18,20,23,24,30,34,36-38,42,43,45,63-65, RNA-dependent RNA polymeraseC,1,3,9,32,64, PLproD,3,37,45, ACE2E,22,23,28,37,41,63, TMPRSS2F,22, nucleocapsidG,3, helicaseH,3,29,34, endoribonucleaseI,39, NSP16/10J,6, cathepsin LK,26, Wnt-3L,22, FZDM,22, LRP6N,22, ezrinO,40, ADRPP,38, NRP1Q,41, EP300R,16, PTGS2S,23, HSP90AA1T,16,23, matrix metalloproteinase 9U,31, IL-6V,21,35, IL-10W,21, VEGFAX,35, and RELAY,35 proteins. In Vitro studies demonstrate inhibition of the MproB,15,46,51,59 protein, and inhibition of spike-ACE2 interactionZ,47. In Vitro studies demonstrate efficacy in Calu-3AA,50, A549AB,21, HEK293-ACE2+AC,58, Huh-7AD,25, Caco-2AE,49, Vero E6AF,19,42,49, mTECAG,52, and RAW264.7AH,52 cells. Animal studies demonstrate efficacy in K18-hACE2 miceAI,55, db/db miceAJ,52,61, BALB/c miceAK,60, and rats66. Quercetin reduced proinflammatory cytokines and protected lung and kidney tissue against LPS-induced damage in mice60, inhibits LPS-induced cytokine storm by modulating key inflammatory and antioxidant pathways in macrophages5, and inhibits SARS-CoV-2 ORF3a ion channel activity, which contributes to viral pathogenicity and cytotoxicity54.
Study covers curcumin and quercetin.
a. The trimeric spike (S) protein is a glycoprotein that mediates viral entry by binding to the host ACE2 receptor, is critical for SARS-CoV-2's ability to infect host cells, and is a target of neutralizing antibodies. Inhibition of the spike protein prevents viral attachment, halting infection at the earliest stage.
b. The main protease or Mpro, also known as 3CLpro or nsp5, is a cysteine protease that cleaves viral polyproteins into functional units needed for replication. Inhibiting Mpro disrupts the SARS-CoV-2 lifecycle within the host cell, preventing the creation of new copies.
c. RNA-dependent RNA polymerase (RdRp), also called nsp12, is the core enzyme of the viral replicase-transcriptase complex that copies the positive-sense viral RNA genome into negative-sense templates for progeny RNA synthesis. Inhibiting RdRp blocks viral genome replication and transcription.
d. The papain-like protease (PLpro) has multiple functions including cleaving viral polyproteins and suppressing the host immune response by deubiquitination and deISGylation of host proteins. Inhibiting PLpro may block viral replication and help restore normal immune responses.
e. The angiotensin converting enzyme 2 (ACE2) protein is a host cell transmembrane protein that serves as the cellular receptor for the SARS-CoV-2 spike protein. ACE2 is expressed on many cell types, including epithelial cells in the lungs, and allows the virus to enter and infect host cells. Inhibition may affect ACE2's physiological function in blood pressure control.
f. Transmembrane protease serine 2 (TMPRSS2) is a host cell protease that primes the spike protein, facilitating cellular entry. TMPRSS2 activity helps enable cleavage of the spike protein required for membrane fusion and virus entry. Inhibition may especially protect respiratory epithelial cells, buy may have physiological effects.
g. The nucleocapsid (N) protein binds and encapsulates the viral genome by coating the viral RNA. N enables formation and release of infectious virions and plays additional roles in viral replication and pathogenesis. N is also an immunodominant antigen used in diagnostic assays.
h. The helicase, or nsp13, protein unwinds the double-stranded viral RNA, a crucial step in replication and transcription. Inhibition may prevent viral genome replication and the creation of new virus components.
i. The endoribonuclease, also known as NendoU or nsp15, cleaves specific sequences in viral RNA which may help the virus evade detection by the host immune system. Inhibition may hinder the virus's ability to mask itself from the immune system, facilitating a stronger immune response.
j. The NSP16/10 complex consists of non-structural proteins 16 and 10, forming a 2'-O-methyltransferase that modifies the viral RNA cap structure. This modification helps the virus evade host immune detection by mimicking host mRNA, making NSP16/10 a promising antiviral target.
k. Cathepsin L is a host lysosomal cysteine protease that can prime the spike protein through an alternative pathway when TMPRSS2 is unavailable. Dual targeting of cathepsin L and TMPRSS2 may maximize disruption of alternative pathways for virus entry.
l. Wingless-related integration site (Wnt) ligand 3 is a host signaling molecule that activates the Wnt signaling pathway, which is important in development, cell growth, and tissue repair. Some studies suggest that SARS-CoV-2 infection may interfere with the Wnt signaling pathway, and that Wnt3a is involved in SARS-CoV-2 entry.
m. The frizzled (FZD) receptor is a host transmembrane receptor that binds Wnt ligands, initiating the Wnt signaling cascade. FZD serves as a co-receptor, along with ACE2, in some proposed mechanisms of SARS-CoV-2 infection. The virus may take advantage of this pathway as an alternative entry route.
n. Low-density lipoprotein receptor-related protein 6 is a cell surface co-receptor essential for Wnt signaling. LRP6 acts in tandem with FZD for signal transduction and has been discussed as a potential co-receptor for SARS-CoV-2 entry.
o. The ezrin protein links the cell membrane to the cytoskeleton (the cell's internal support structure) and plays a role in cell shape, movement, adhesion, and signaling. Drugs that occupy the same spot on ezrin where the viral spike protein would bind may hindering viral attachment, and drug binding could further stabilize ezrin, strengthening its potential natural capacity to impede viral fusion and entry.
p. The Adipocyte Differentiation-Related Protein (ADRP, also known as Perilipin 2 or PLIN2) is a lipid droplet protein regulating the storage and breakdown of fats in cells. SARS-CoV-2 may hijack the lipid handling machinery of host cells and ADRP may play a role in this process. Disrupting ADRP's interaction with the virus may hinder the virus's ability to use lipids for replication and assembly.
q. Neuropilin-1 (NRP1) is a cell surface receptor with roles in blood vessel development, nerve cell guidance, and immune responses. NRP1 may function as a co-receptor for SARS-CoV-2, facilitating viral entry into cells. Blocking NRP1 may disrupt an alternative route of viral entry.
r. EP300 (E1A Binding Protein P300) is a transcriptional coactivator involved in several cellular processes, including growth, differentiation, and apoptosis, through its acetyltransferase activity that modifies histones and non-histone proteins. EP300 facilitates viral entry into cells and upregulates inflammatory cytokine production.
s. Prostaglandin G/H synthase 2 (PTGS2, also known as COX-2) is an enzyme crucial for the production of inflammatory molecules called prostaglandins. PTGS2 plays a role in the inflammatory response that can become severe in COVID-19 and inhibitors (like some NSAIDs) may have benefits in dampening harmful inflammation, but note that prostaglandins have diverse physiological functions.
t. Heat Shock Protein 90 Alpha Family Class A Member 1 (HSP90AA1) is a chaperone protein that helps other proteins fold correctly and maintains their stability. HSP90AA1 plays roles in cell signaling, survival, and immune responses. HSP90AA1 may interact with numerous viral proteins, but note that it has diverse physiological functions.
u. Matrix metalloproteinase 9 (MMP9), also called gelatinase B, is a zinc-dependent enzyme that breaks down collagen and other components of the extracellular matrix. MMP9 levels increase in severe COVID-19. Overactive MMP9 can damage lung tissue and worsen inflammation. Inhibition of MMP9 may prevent excessive tissue damage and help regulate the inflammatory response.
v. The interleukin-6 (IL-6) pro-inflammatory cytokine (signaling molecule) has a complex role in the immune response and may trigger and perpetuate inflammation. Elevated IL-6 levels are associated with severe COVID-19 cases and cytokine storm. Anti-IL-6 therapies may be beneficial in reducing excessive inflammation in severe COVID-19 cases.
w. The interleukin-10 (IL-10) anti-inflammatory cytokine helps regulate and dampen immune responses, preventing excessive inflammation. IL-10 levels can also be elevated in severe COVID-19. IL-10 could either help control harmful inflammation or potentially contribute to immune suppression.
x. Vascular Endothelial Growth Factor A (VEGFA) promotes the growth of new blood vessels (angiogenesis) and has roles in inflammation and immune responses. VEGFA may contribute to blood vessel leakiness and excessive inflammation associated with severe COVID-19.
y. RELA is a transcription factor subunit of NF-kB and is a key regulator of inflammation, driving pro-inflammatory gene expression. SARS-CoV-2 may hijack and modulate NF-kB pathways.
z. The interaction between the SARS-CoV-2 spike protein and the human ACE2 receptor is a primary method of viral entry, inhibiting this interaction can prevent the virus from attaching to and entering host cells, halting infection at an early stage.
aa. Calu-3 is a human lung adenocarcinoma cell line with moderate ACE2 and TMPRSS2 expression and SARS-CoV-2 susceptibility. It provides a model of the human respiratory epithelium, but many not be ideal for modeling early stages of infection due to the moderate expression levels of ACE2 and TMPRSS2.
ab. A549 is a human lung carcinoma cell line with low ACE2 expression and SARS-CoV-2 susceptibility. Viral entry/replication can be studied but the cells may not replicate all aspects of lung infection.
ac. HEK293-ACE2+ is a human embryonic kidney cell line engineered for high ACE2 expression and SARS-CoV-2 susceptibility.
ad. Huh-7 cells were derived from a liver tumor (hepatoma).
ae. Caco-2 cells come from a colorectal adenocarcinoma (cancer). They are valued for their ability to form a polarized cell layer with properties similar to the intestinal lining.
af. Vero E6 is an African green monkey kidney cell line with low/no ACE2 expression and high SARS-CoV-2 susceptibility. The cell line is easy to maintain and supports robust viral replication, however the monkey origin may not accurately represent human responses.
ag. mTEC is a mouse tubular epithelial cell line.
ah. RAW264.7 is a mouse macrophage cell line.
ai. A mouse model expressing the human ACE2 receptor under the control of the K18 promoter.
aj. A mouse model of obesity and severe insulin resistance leading to type 2 diabetes due to a mutation in the leptin receptor gene that impairs satiety signaling.
ak. A mouse model commonly used in infectious disease and cancer research due to higher immune response and susceptibility to infection.
Kandeil et al., 15 Jun 2021, peer-reviewed, 11 authors.
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
This PaperQuercetinAll
Bioactive Polyphenolic Compounds Showing Strong Antiviral Activities against Severe Acute Respiratory Syndrome Coronavirus 2
Ahmed Kandeil, Ahmed Mostafa, Omnia Kutkat, Yassmin Moatasim, Ahmed A Al-Karmalawy, Adel A Rashad, Ahmed E Kayed, Azza E Kayed, Rabeh El-Shesheny, Ghazi Kayali, Mohamed A Ali
Pathogens, doi:10.3390/pathogens10060758
Until now, there has been no direct evidence of the effectiveness of repurposed FDAapproved drugs against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections. Although curcumin, hesperidin, and quercetin have broad spectra of pharmacological properties, their antiviral activities against SARS-CoV-2 remain unclear. Our study aimed to assess the in vitro antiviral activities of curcumin, hesperidin, and quercetin against SARS-CoV-2 compared to hydroxychloroquine and determine their mode of action. In Vero E6 cells, these compounds significantly inhibited virus replication, mainly as virucidal agents primarily indicating their potential activity at the early stage of viral infection. To investigate the mechanism of action of the tested compounds, molecular docking studies were carried out against both SARS-CoV-2 spike (S) and main protease (Mpro) receptors. Collectively, the obtained in silico and in vitro findings suggest that the compounds could be promising SARS-CoV-2 Mpro inhibitors. We recommend further preclinical and clinical studies on the studied compounds to find a potential therapeutic targeting COVID-19 in the near future.
Data Availability Statement: The data presented in this study are available within the article and Supplementary Materials. Conflicts of Interest: The authors declare no conflict of interest.
References
Abouaitah, Swiderska-Sroda, Kandeil, Salman, Wojnarowicz et al., Virucidal Action Against Avian Influenza H5N1 Virus and Immunomodulatory Effects of Nanoformulations Consisting of Mesoporous Silica Nanoparticles Loaded with Natural Prodrugs, Int. J. Nanomed, doi:10.2147/IJN.S247692
Al-Karmalawy, Dahab, Metwaly, Elhady, Elkaeed et al., Molecular Docking and Dynamics Simulation Revealed the Potential Inhibitory Activity of ACEIs Against SARS-CoV-2 Targeting the hACE2 Receptor, Front. Chem, doi:10.3389/fchem.2021.661230
Al-Karmalawy, Eissa, Molecular docking and dynamics simulations reveal the potential of anti-HCV drugs to inhibit COVID-19 main protease, Pharm. Sci, doi:10.34172/PS.2021.3
Al-Karmalawy, Khattab, Molecular modelling of mebendazole polymorphs as a potential colchicine binding site inhibitor, New J. Chem, doi:10.1039/D0NJ02844D
Alnajjar, Mostafa, Kandeil, Al-Karmalawy, Molecular docking, molecular dynamics, and in vitro studies reveal the potential of angiotensin II receptor blockers to inhibit the COVID-19 main protease, Heliyon, doi:10.1016/j.heliyon.2020.e05641
Annunziata, Zamparelli, Santoro, Ciampaglia, Stornaiuolo et al., May Polyphenols Have a Role Against Coronavirus Infection? An Overview of in vitro Evidence, Front. Med, doi:10.3389/fmed.2020.00240
Brogi, Computational Approaches for Drug Discovery, Molecules, doi:10.3390/molecules24173061
Chen, Chen, Wen, Ou, Chiou et al., Inhibition of Enveloped Viruses Infectivity by Curcumin, PLoS ONE, doi:10.1371/journal.pone.0062482
Choi, Song, Park, Kwon, Inhibitory effects of quercetin 3-rhamnoside on influenza A virus replication, Eur. J. Pharm. Sci, doi:10.1016/j.ejps.2009.03.002
Chu, Pan, Cheng, Hui, Krishnan et al., Molecular Diagnosis of a Novel Coronavirus (2019-nCoV) Causing an Outbreak of Pneumonia, Clin. Chem, doi:10.1093/clinchem/hvaa029
Colpitts, Schang, Rachmawati, Frentzen, Pfaender et al., Turmeric curcumin inhibits entry of all hepatitis C virus genotypes into human liver cells, Gut
Dong, Wei, Zhang, Hao, Huang et al., A dual character of flavonoids in influenza A virus replication and spread through modulating cell-autonomous immunity by MAPK signaling pathways, Sci. Rep, doi:10.1038/srep07237
El Shal, Eid, El-Sayed, El-Sayed, Al-Karmalawy, Concanavalin-A shows synergistic cytotoxicity with tamoxifen via inducing apoptosis in estrogen receptor-positive breast cancer: In vitro and molecular docking studies, Pharm. Sci, doi:10.34172/PS.2021.22
Eliaa, Al-Karmalawy, Saleh, Elshal, Empagliflozin and Doxorubicin Synergistically Inhibit the Survival of Triple-Negative Breast Cancer Cells via Interfering with the mTOR Pathway and Inhibition of Calmodulin: In Vitro and Molecular Docking Studies, ACS Pharmacol. Transl. Sci, doi:10.1021/acsptsci.0c00144
Elmaaty, Alnajjar, Hamed, Khattab, Khalifa et al., Revisiting activity of some glucocorticoids as a potential inhibitor of SARS-CoV-2 main protease: Theoretical study, RSC Adv, doi:10.1039/D0RA10674G
Elmaaty, Darwish, Khattab, Elhady, Salah et al., In a search for potential drug candidates for combating COVID-19: Computational study revealed salvianolic acid B as a potential therapeutic targeting 3CLpro and spike proteins, J. Biomol. Struct. Dyn, doi:10.1080/07391102.2021.1918256
Gao, Wang, Wei, Men, Zheng et al., Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer, Nanoscale, doi:10.1039/c2nr32181e
Ghanem, Emara, Muawia, El Maksoud, Al-Karmalawy et al., Tanshinone IIA synergistically enhances the antitumor activity of doxorubicin by interfering with the PI3K/AKT/mTOR pathway and inhibition of topoisomerase II: In vitro and molecular docking studies, New J. Chem, doi:10.1039/D0NJ04088F
Guedes, De Magalhães, Dardenne, Receptor-ligand molecular docking, Biophys. Rev, doi:10.1007/s12551-013-0130-2
Haggag, El-Ashmawy, Okasha, Is hesperidin essential for prophylaxis and treatment of COVID-19 Infection?, Med. Hypotheses, doi:10.1016/j.mehy.2020.109957
Hajialyani, Farzaei, Echeverría, Nabavi, Uriarte et al., Hesperidin as a Neuroprotective Agent: A Review of Animal and Clinical Evidence, Molecules, doi:10.3390/molecules24030648
Harwood, Danielewska-Nikiel, Borzelleca, Flamm, Williams et al., A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties, Food Chem. Toxicol, doi:10.1016/j.fct.2007.05.015
Jin, Du, Xu, Deng, Liu et al., Structure of M pro from SARS-CoV-2 and discovery of its inhibitors, Nature, doi:10.1038/s41586-020-2223-y
Johari, Kianmehr, Mustafa, Abubakar, Zandi, Antiviral activity of baicalein and quercetin against the Japanese encephalitis virus, Int. J. Mol. Sci, doi:10.3390/ijms131216785
Khattab, Al-Karmalawy, Revisiting Activity of Some Nocodazole Analogues as a Potential Anticancer Drugs Using Molecular Docking and DFT Calculations, Front. Chem, doi:10.3389/fchem.2021.628398
Kim, Kim, Song, Antiviral Activities of Quercetin and Isoquercitrin Against Human Herpesviruses, Molecules, doi:10.3390/molecules25102379
Kobayashi, Tanabe, Sugiyama, Konishi, Transepithelial transport of hesperetin and hesperidin in intestinal Caco-2 cell monolayers, Biochim. Biophys. Acta (BBA) Biomembr, doi:10.1016/j.bbamem.2007.08.020
Kuo, Lin, Tsai, Chou, Kung et al., Samarangenin B from Limonium sinense Suppresses Herpes Simplex Virus Type 1 Replication in Vero Cells by Regulation of Viral Macromolecular Synthesis, Antimicrob. Agents Chemother, doi:10.1128/AAC.46.9.2854-2864.2002
Li, Xu, Quercetin in a lotus leaves extract may be responsible for antibacterial activity, Arch. Pharmacal Res, doi:10.1007/s12272-001-1206-5
Maheshwari, Singh, Gaddipati, Srimal, Multiple biological activities of curcumin: A short review, Life Sci, doi:10.1016/j.lfs.2005.12.007
Mazumder, Raghavan, Weinstein, Kohn, Pommier, Inhibition of human immunodeficiency virus type-1 integrase by curcumin, Biochem. Pharmacol, doi:10.1016/0006-2952(95)98514-A
Moghadamtousi, Kadir, Hassandarvish, Tajik, Abubakar et al., A Review on Antibacterial, Antiviral, and Antifungal Activity of Curcumin, BioMed Res. Int, doi:10.1155/2014/186864
Mosmann, Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays, J. Immunol. Methods, doi:10.1016/0022-1759(83)90303-4
Mostafa, Kandeil, Elshaier, Kutkat, Moatasim et al., FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2, Pharmaceuticals, doi:10.3390/ph13120443
Mounce, Cesaro, Carrau, Vallet, Vignuzzi, Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding, Antivir. Res, doi:10.1016/j.antiviral.2017.03.014
Nabila, Suada, Denis, Yohan, Adi et al., Antiviral Action of Curcumin Encapsulated in Nanoemulsion against Four Serotypes of Dengue Virus, Pharm. Nanotechnol, doi:10.2174/2211738507666191210163408
Orfali, Rateb, Hassan, Alonazi, Gomaa et al., Sinapic Acid Suppresses SARS CoV-2 Replication by Targeting Its Envelope Protein, Antibiotics, doi:10.3390/antibiotics10040420
Parvez, Rehman, Alam, Al-Dosari, Alqasoumi et al., Plant-derived antiviral drugs as novel hepatitis B virus inhibitors: Cell culture and molecular docking study, Saudi Pharm. J, doi:10.1016/j.jsps.2018.12.008
Prasad, Gupta, Tyagi, Aggarwal, Curcumin, a component of golden spice: From bedside to bench and back, Biotechnol. Adv, doi:10.1016/j.biotechadv.2014.04.004
Robaszkiewicz, Balcerczyk, Bartosz, Antioxidative and prooxidative effects of quercetin on A549 cells, Cell Biol. Int, doi:10.1016/j.cellbi.2007.04.009
Rojas, Del Campo, Clement, Lemasson, García-Valdecasas et al., Effect of Quercetin on Hepatitis C Virus Life Cycle: From Viral to Host Targets, Sci. Rep, doi:10.1038/srep31777
Roshdy, Rashed, Kandeil, Mostafa, Moatasim et al., EGYVIR: An immunomodulatory herbal extract with potent antiviral activity against SARS-CoV-2, PLoS ONE, doi:10.1371/journal.pone.0241739
Samra, Soliman, Zaki, Ashour, Al-Karmalawy et al., Bioassay-guided isolation of a new cytotoxic ceramide from Cyperus rotundus L, S. Afr. J. Bot, doi:10.1016/j.sajb.2021.02.007
Sarhan, Ashour, Al-Karmalawy, The journey of antimalarial drugs against SARS-CoV-2: Review article, Inform. Med. Unlocked, doi:10.1016/j.imu.2021.100604
Schuhmacher, Reichling, Schnitzler, Virucidal effect of peppermint oil on the enveloped viruses herpes simplex virus type 1 and type 2 in vitro, Phytomedicine, doi:10.1078/094471103322331467
Shang, Ye, Shi, Wan, Luo et al., Structural basis of receptor recognition by SARS-CoV-2, Nature, doi:10.1038/s41586-020-2179-y
Soltane, Chrouda, Mostafa, Al-Karmalawy, Chouaïb et al., Strong Inhibitory Activity and Action Modes of Synthetic Maslinic Acid Derivative on Highly Pathogenic Coronaviruses: COVID-19 Drug Candidate, Pathogens, doi:10.3390/pathogens10050623
Swatson, Katoh-Kurasawa, Shaulsky, Alexander, Curcumin affects gene expression and reactive oxygen species via a PKA dependent mechanism in Dictyostelium discoideum, PLoS ONE, doi:10.1371/journal.pone.0187562
Vázquez-Calvo, De Oya, Martín-Acebes, Garcia-Moruno, Saiz, Antiviral Properties of the Natural Polyphenols Delphinidin and Epigallocatechin Gallate against the Flaviviruses West Nile Virus, Zika Virus, and Dengue Virus, Front. Microbiol, doi:10.3389/fmicb.2017.01314
Wu, Hou, Cao, Zuo, Xue et al., Virucidal efficacy of treatment with photodynamically activated curcumin on murine norovirus bio-accumulated in oysters, Photodiagn. Photodyn. Ther, doi:10.1016/j.pdpdt.2015.06.005
Wu, Li, Li, He, Jiang et al., Quercetin as an Antiviral Agent Inhibits Influenza A Virus (IAV) Entry, Viruses, doi:10.3390/v8010006
Wu, Liu, Yang, Zhang, Zhong et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, Acta Pharm. Sin. B, doi:10.1016/j.apsb.2020.02.008
Yang, Lee, Si, Lee, You et al., Curcumin Shows Antiviral Properties against Norovirus, Molecules, doi:10.3390/molecules21101401
Yang, Li, Li, Wang, Huang, Synergistic antiviral effect of curcumin functionalized graphene oxide against respiratory syncytial virus infection, Nanoscale, doi:10.1039/C7NR06520E
Zaki, Al-Karmalawy, El-Amier, Ashour, Molecular docking reveals the potential of Cleome amblyocarpa isolated compounds to inhibit COVID-19 virus main protease, New J. Chem, doi:10.1039/D0NJ03611K
Zaki, Ashour, Elhady, Darwish, Al-Karmalawy, Calendulaglycoside A Showing Potential Activity Against SARS-CoV-2 Main Protease: Molecular Docking, Molecular Dynamics, and SAR Studies, J. Tradit. Complement. Med
Zhang, Zhan, Yao, Gao, Shong, Antiviral activity of tannin from the pericarp of Punica granatum L. against genital Herpes virus in vitro, China J. Chin. Mater. Med
{ 'indexed': {'date-parts': [[2022, 4, 21]], 'date-time': '2022-04-21T11:06:14Z', 'timestamp': 1650539174233}, 'reference-count': 59, 'publisher': 'MDPI AG', 'issue': '6', 'license': [ { 'start': { 'date-parts': [[2021, 6, 15]], 'date-time': '2021-06-15T00:00:00Z', 'timestamp': 1623715200000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by/4.0/'}], 'funder': [ {'name': 'Egyptian Academy of Scientific Research & Technology', 'award': ['project ID: 7303']}, { 'DOI': '10.13039/100000060', 'name': 'National Institute of Allergy and Infectious Diseases', 'doi-asserted-by': 'publisher', 'award': ['HHSN272201400006C']}], 'content-domain': {'domain': [], 'crossmark-restriction': False}, 'short-container-title': ['Pathogens'], 'abstract': '<jats:p>Until now, there has been no direct evidence of the effectiveness of repurposed ' 'FDA-approved drugs against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) ' 'infections. Although curcumin, hesperidin, and quercetin have broad spectra of ' 'pharmacological properties, their antiviral activities against SARS-CoV-2 remain unclear. Our ' 'study aimed to assess the in vitro antiviral activities of curcumin, hesperidin, and ' 'quercetin against SARS-CoV-2 compared to hydroxychloroquine and determine their mode of ' 'action. In Vero E6 cells, these compounds significantly inhibited virus replication, mainly ' 'as virucidal agents primarily indicating their potential activity at the early stage of viral ' 'infection. To investigate the mechanism of action of the tested compounds, molecular docking ' 'studies were carried out against both SARS-CoV-2 spike (S) and main protease (Mpro) ' 'receptors. Collectively, the obtained in silico and in vitro findings suggest that the ' 'compounds could be promising SARS-CoV-2 Mpro inhibitors. We recommend further preclinical and ' 'clinical studies on the studied compounds to find a potential therapeutic targeting COVID-19 ' 'in the near future.</jats:p>', 'DOI': '10.3390/pathogens10060758', 'type': 'journal-article', 'created': {'date-parts': [[2021, 6, 16]], 'date-time': '2021-06-16T01:24:29Z', 'timestamp': 1623806669000}, 'page': '758', 'source': 'Crossref', 'is-referenced-by-count': 30, 'title': [ 'Bioactive Polyphenolic Compounds Showing Strong Antiviral Activities against Severe Acute ' 'Respiratory Syndrome Coronavirus 2'], 'prefix': '10.3390', 'volume': '10', 'author': [ { 'ORCID': 'http://orcid.org/0000-0003-3253-6961', 'authenticated-orcid': False, 'given': 'Ahmed', 'family': 'Kandeil', 'sequence': 'first', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0002-2878-5714', 'authenticated-orcid': False, 'given': 'Ahmed', 'family': 'Mostafa', 'sequence': 'additional', 'affiliation': []}, {'given': 'Omnia', 'family': 'Kutkat', 'sequence': 'additional', 'affiliation': []}, {'given': 'Yassmin', 'family': 'Moatasim', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0002-8173-6073', 'authenticated-orcid': False, 'given': 'Ahmed A.', 'family': 'Al-Karmalawy', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0001-6113-0333', 'authenticated-orcid': False, 'given': 'Adel A.', 'family': 'Rashad', 'sequence': 'additional', 'affiliation': []}, {'given': 'Ahmed E.', 'family': 'Kayed', 'sequence': 'additional', 'affiliation': []}, {'given': 'Azza E.', 'family': 'Kayed', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0002-8798-2240', 'authenticated-orcid': False, 'given': 'Rabeh', 'family': 'El-Shesheny', 'sequence': 'additional', 'affiliation': []}, {'given': 'Ghazi', 'family': 'Kayali', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0002-5615-3212', 'authenticated-orcid': False, 'given': 'Mohamed A.', 'family': 'Ali', 'sequence': 'additional', 'affiliation': []}], 'member': '1968', 'published-online': {'date-parts': [[2021, 6, 15]]}, 'reference': [ { 'key': 'ref1', 'unstructured': 'World Health Organization COVID-19 Dashboardhttps://covid19.who.int/'}, {'key': 'ref2', 'doi-asserted-by': 'publisher', 'DOI': '10.1371/journal.pone.0241739'}, {'key': 'ref3', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/antibiotics10040420'}, {'key': 'ref4', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/ph13120443'}, {'key': 'ref5', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.heliyon.2020.e05641'}, {'key': 'ref6', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.biotechadv.2014.04.004'}, {'key': 'ref7', 'doi-asserted-by': 'publisher', 'DOI': '10.1155/2014/186864'}, {'key': 'ref8', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.lfs.2005.12.007'}, {'key': 'ref9', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.pdpdt.2015.06.005'}, {'key': 'ref10', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/molecules21101401'}, {'key': 'ref11', 'doi-asserted-by': 'publisher', 'DOI': '10.1371/journal.pone.0187562'}, {'key': 'ref12', 'doi-asserted-by': 'publisher', 'DOI': '10.1039/C7NR06520E'}, {'key': 'ref13', 'doi-asserted-by': 'publisher', 'DOI': '10.2174/2211738507666191210163408'}, {'key': 'ref14', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.fct.2007.05.015'}, {'key': 'ref15', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.cellbi.2007.04.009'}, {'key': 'ref16', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/s12272-001-1206-5'}, {'key': 'ref17', 'doi-asserted-by': 'publisher', 'DOI': '10.1039/c2nr32181e'}, {'key': 'ref18', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/ijms131216785'}, {'key': 'ref19', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/molecules25102379'}, {'key': 'ref20', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.ejps.2009.03.002'}, {'key': 'ref21', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/v8010006'}, {'key': 'ref22', 'doi-asserted-by': 'publisher', 'DOI': '10.2147/IJN.S247692'}, {'key': 'ref23', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/molecules24030648'}, {'key': 'ref24', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/srep07237'}, {'key': 'ref25', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/molecules24173061'}, {'key': 'ref26', 'doi-asserted-by': 'publisher', 'DOI': '10.3389/fchem.2021.628398'}, {'key': 'ref27', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/s12551-013-0130-2'}, {'key': 'ref28', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.imu.2021.100604'}, {'key': 'ref29', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.mehy.2020.109957'}, {'key': 'ref30', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.apsb.2020.02.008'}, {'key': 'ref31', 'doi-asserted-by': 'publisher', 'DOI': '10.34172/PS.2021.3'}, {'key': 'ref32', 'doi-asserted-by': 'publisher', 'DOI': '10.1039/D0NJ03611K'}, {'key': 'ref33', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.jtcme.2021.05.001'}, {'key': 'ref34', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/pathogens10050623'}, {'key': 'ref35', 'doi-asserted-by': 'publisher', 'DOI': '10.1080/07391102.2021.1918256'}, {'key': 'ref36', 'doi-asserted-by': 'publisher', 'DOI': '10.1039/D0RA10674G'}, {'key': 'ref37', 'doi-asserted-by': 'publisher', 'DOI': '10.3389/fchem.2021.661230'}, {'key': 'ref38', 'doi-asserted-by': 'publisher', 'DOI': '10.3389/fmicb.2017.01314'}, {'key': 'ref39', 'doi-asserted-by': 'publisher', 'DOI': '10.3389/fmed.2020.00240'}, { 'key': 'ref40', 'doi-asserted-by': 'crossref', 'first-page': '1137', 'DOI': '10.1136/gutjnl-2012-304299', 'article-title': 'Turmeric curcumin inhibits entry of all hepatitis C virus genotypes ' 'into human liver cells', 'volume': '63', 'author': 'Colpitts', 'year': '2014', 'journal-title': 'Gut'}, {'key': 'ref41', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.antiviral.2017.03.014'}, {'key': 'ref42', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/0006-2952(95)98514-A'}, {'key': 'ref43', 'doi-asserted-by': 'publisher', 'DOI': '10.1371/journal.pone.0062482'}, {'key': 'ref44', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.bbamem.2007.08.020'}, {'key': 'ref45', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.jsps.2018.12.008'}, {'key': 'ref46', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/srep31777'}, {'key': 'ref47', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/0022-1759(83)90303-4'}, {'key': 'ref48', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/clinchem/hvaa029'}, { 'key': 'ref49', 'first-page': '556', 'article-title': 'Antiviral activity of tannin from the pericarp of Punica granatum L. ' 'against genital Herpes virus in vitro', 'volume': '20', 'author': 'Zhang', 'year': '1995', 'journal-title': 'China J. Chin. Mater. Med.'}, {'key': 'ref50', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/AAC.46.9.2854-2864.2002'}, {'key': 'ref51', 'doi-asserted-by': 'publisher', 'DOI': '10.1078/094471103322331467'}, { 'key': 'ref52', 'series-title': 'Molecular Operating Environment (MOE), 2008.10', 'year': '2016'}, {'key': 'ref53', 'doi-asserted-by': 'publisher', 'DOI': '10.1039/D0NJ02844D'}, {'key': 'ref54', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41586-020-2223-y'}, {'key': 'ref55', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41586-020-2179-y'}, {'key': 'ref56', 'doi-asserted-by': 'publisher', 'DOI': '10.34172/PS.2021.22'}, {'key': 'ref57', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.sajb.2021.02.007'}, {'key': 'ref58', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/acsptsci.0c00144'}, {'key': 'ref59', 'doi-asserted-by': 'publisher', 'DOI': '10.1039/D0NJ04088F'}], 'container-title': ['Pathogens'], 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://www.mdpi.com/2076-0817/10/6/758/pdf', 'content-type': 'unspecified', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2021, 6, 17]], 'date-time': '2021-06-17T16:17:41Z', 'timestamp': 1623946661000}, 'score': 1, 'resource': {'primary': {'URL': 'https://www.mdpi.com/2076-0817/10/6/758'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2021, 6, 15]]}, 'references-count': 59, 'journal-issue': {'issue': '6', 'published-online': {'date-parts': [[2021, 6]]}}, 'alternative-id': ['pathogens10060758'], 'URL': 'http://dx.doi.org/10.3390/pathogens10060758', 'relation': {}, 'ISSN': ['2076-0817'], 'issn-type': [{'value': '2076-0817', 'type': 'electronic'}], 'subject': [ 'Infectious Diseases', 'Microbiology (medical)', 'General Immunology and Microbiology', 'Molecular Biology', 'Immunology and Allergy'], 'published': {'date-parts': [[2021, 6, 15]]}}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit