Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchQuercetinQuercetin (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

Interaction of Epigallocatechin Gallate and Quercetin with Spike Glycoprotein (S-Glycoprotein) of SARS-CoV-2: In Silico Study

Alavi et al., Biomedicines, doi:10.3390/biomedicines10123074
Nov 2022  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Quercetin for COVID-19
24th treatment shown to reduce risk in July 2021, now with p = 0.002 from 12 studies.
No treatment is 100% effective. Protocols combine treatments.
5,200+ studies for 112 treatments. c19early.org
In Silico study suggesting efficacy of epigallocatechin gallate and quercetin for SARS-CoV-2.
73 preclinical studies support the efficacy of quercetin for COVID-19:
In Silico studies predict inhibition of SARS-CoV-2, or minimization of side effects, with quercetin or metabolites via binding to the spikeA,2,3,9,10,22,24,25,27,30,38,39,41,42,62, MproB,2,3,7,9,11,13,15,17,18,20,23,24,27,30,34,36-38,42-45, RNA-dependent RNA polymeraseC,1-3,9,32, PLproD,3,37,45, ACE2E,22,23,27,28,37,41, TMPRSS2F,22, nucleocapsidG,3, helicaseH,3,29,34, endoribonucleaseI,39, NSP16/10J,6, cathepsin LK,26, Wnt-3L,22, FZDM,22, LRP6N,22, ezrinO,40, ADRPP,38, NRP1Q,41, EP300R,16, PTGS2S,23, HSP90AA1T,16,23, matrix metalloproteinase 9U,31, IL-6V,21,35, IL-10W,21, VEGFAX,35, and RELAY,35 proteins. In Vitro studies demonstrate inhibition of the MproB,15,46,51,59 protein, and inhibition of spike-ACE2 interactionZ,47. In Vitro studies demonstrate efficacy in Calu-3AA,50, A549AB,21, HEK293-ACE2+AC,58, Huh-7AD,25, Caco-2AE,49, Vero E6AF,19,42,49, mTECAG,52, and RAW264.7AH,52 cells. Animal studies demonstrate efficacy in K18-hACE2 miceAI,55, db/db miceAJ,52,61, BALB/c miceAK,60, and rats19. Quercetin reduced proinflammatory cytokines and protected lung and kidney tissue against LPS-induced damage in mice60, inhibits LPS-induced cytokine storm by modulating key inflammatory and antioxidant pathways in macrophages5, and inhibits SARS-CoV-2 ORF3a ion channel activity, which contributes to viral pathogenicity and cytotoxicity54.
a. The trimeric spike (S) protein is a glycoprotein that mediates viral entry by binding to the host ACE2 receptor, is critical for SARS-CoV-2's ability to infect host cells, and is a target of neutralizing antibodies. Inhibition of the spike protein prevents viral attachment, halting infection at the earliest stage.
b. The main protease or Mpro, also known as 3CLpro or nsp5, is a cysteine protease that cleaves viral polyproteins into functional units needed for replication. Inhibiting Mpro disrupts the SARS-CoV-2 lifecycle within the host cell, preventing the creation of new copies.
c. RNA-dependent RNA polymerase (RdRp), also called nsp12, is the core enzyme of the viral replicase-transcriptase complex that copies the positive-sense viral RNA genome into negative-sense templates for progeny RNA synthesis. Inhibiting RdRp blocks viral genome replication and transcription.
d. The papain-like protease (PLpro) has multiple functions including cleaving viral polyproteins and suppressing the host immune response by deubiquitination and deISGylation of host proteins. Inhibiting PLpro may block viral replication and help restore normal immune responses.
e. The angiotensin converting enzyme 2 (ACE2) protein is a host cell transmembrane protein that serves as the cellular receptor for the SARS-CoV-2 spike protein. ACE2 is expressed on many cell types, including epithelial cells in the lungs, and allows the virus to enter and infect host cells. Inhibition may affect ACE2's physiological function in blood pressure control.
f. Transmembrane protease serine 2 (TMPRSS2) is a host cell protease that primes the spike protein, facilitating cellular entry. TMPRSS2 activity helps enable cleavage of the spike protein required for membrane fusion and virus entry. Inhibition may especially protect respiratory epithelial cells, buy may have physiological effects.
g. The nucleocapsid (N) protein binds and encapsulates the viral genome by coating the viral RNA. N enables formation and release of infectious virions and plays additional roles in viral replication and pathogenesis. N is also an immunodominant antigen used in diagnostic assays.
h. The helicase, or nsp13, protein unwinds the double-stranded viral RNA, a crucial step in replication and transcription. Inhibition may prevent viral genome replication and the creation of new virus components.
i. The endoribonuclease, also known as NendoU or nsp15, cleaves specific sequences in viral RNA which may help the virus evade detection by the host immune system. Inhibition may hinder the virus's ability to mask itself from the immune system, facilitating a stronger immune response.
j. The NSP16/10 complex consists of non-structural proteins 16 and 10, forming a 2'-O-methyltransferase that modifies the viral RNA cap structure. This modification helps the virus evade host immune detection by mimicking host mRNA, making NSP16/10 a promising antiviral target.
k. Cathepsin L is a host lysosomal cysteine protease that can prime the spike protein through an alternative pathway when TMPRSS2 is unavailable. Dual targeting of cathepsin L and TMPRSS2 may maximize disruption of alternative pathways for virus entry.
l. Wingless-related integration site (Wnt) ligand 3 is a host signaling molecule that activates the Wnt signaling pathway, which is important in development, cell growth, and tissue repair. Some studies suggest that SARS-CoV-2 infection may interfere with the Wnt signaling pathway, and that Wnt3a is involved in SARS-CoV-2 entry.
m. The frizzled (FZD) receptor is a host transmembrane receptor that binds Wnt ligands, initiating the Wnt signaling cascade. FZD serves as a co-receptor, along with ACE2, in some proposed mechanisms of SARS-CoV-2 infection. The virus may take advantage of this pathway as an alternative entry route.
n. Low-density lipoprotein receptor-related protein 6 is a cell surface co-receptor essential for Wnt signaling. LRP6 acts in tandem with FZD for signal transduction and has been discussed as a potential co-receptor for SARS-CoV-2 entry.
o. The ezrin protein links the cell membrane to the cytoskeleton (the cell's internal support structure) and plays a role in cell shape, movement, adhesion, and signaling. Drugs that occupy the same spot on ezrin where the viral spike protein would bind may hindering viral attachment, and drug binding could further stabilize ezrin, strengthening its potential natural capacity to impede viral fusion and entry.
p. The Adipocyte Differentiation-Related Protein (ADRP, also known as Perilipin 2 or PLIN2) is a lipid droplet protein regulating the storage and breakdown of fats in cells. SARS-CoV-2 may hijack the lipid handling machinery of host cells and ADRP may play a role in this process. Disrupting ADRP's interaction with the virus may hinder the virus's ability to use lipids for replication and assembly.
q. Neuropilin-1 (NRP1) is a cell surface receptor with roles in blood vessel development, nerve cell guidance, and immune responses. NRP1 may function as a co-receptor for SARS-CoV-2, facilitating viral entry into cells. Blocking NRP1 may disrupt an alternative route of viral entry.
r. EP300 (E1A Binding Protein P300) is a transcriptional coactivator involved in several cellular processes, including growth, differentiation, and apoptosis, through its acetyltransferase activity that modifies histones and non-histone proteins. EP300 facilitates viral entry into cells and upregulates inflammatory cytokine production.
s. Prostaglandin G/H synthase 2 (PTGS2, also known as COX-2) is an enzyme crucial for the production of inflammatory molecules called prostaglandins. PTGS2 plays a role in the inflammatory response that can become severe in COVID-19 and inhibitors (like some NSAIDs) may have benefits in dampening harmful inflammation, but note that prostaglandins have diverse physiological functions.
t. Heat Shock Protein 90 Alpha Family Class A Member 1 (HSP90AA1) is a chaperone protein that helps other proteins fold correctly and maintains their stability. HSP90AA1 plays roles in cell signaling, survival, and immune responses. HSP90AA1 may interact with numerous viral proteins, but note that it has diverse physiological functions.
u. Matrix metalloproteinase 9 (MMP9), also called gelatinase B, is a zinc-dependent enzyme that breaks down collagen and other components of the extracellular matrix. MMP9 levels increase in severe COVID-19. Overactive MMP9 can damage lung tissue and worsen inflammation. Inhibition of MMP9 may prevent excessive tissue damage and help regulate the inflammatory response.
v. The interleukin-6 (IL-6) pro-inflammatory cytokine (signaling molecule) has a complex role in the immune response and may trigger and perpetuate inflammation. Elevated IL-6 levels are associated with severe COVID-19 cases and cytokine storm. Anti-IL-6 therapies may be beneficial in reducing excessive inflammation in severe COVID-19 cases.
w. The interleukin-10 (IL-10) anti-inflammatory cytokine helps regulate and dampen immune responses, preventing excessive inflammation. IL-10 levels can also be elevated in severe COVID-19. IL-10 could either help control harmful inflammation or potentially contribute to immune suppression.
x. Vascular Endothelial Growth Factor A (VEGFA) promotes the growth of new blood vessels (angiogenesis) and has roles in inflammation and immune responses. VEGFA may contribute to blood vessel leakiness and excessive inflammation associated with severe COVID-19.
y. RELA is a transcription factor subunit of NF-kB and is a key regulator of inflammation, driving pro-inflammatory gene expression. SARS-CoV-2 may hijack and modulate NF-kB pathways.
z. The interaction between the SARS-CoV-2 spike protein and the human ACE2 receptor is a primary method of viral entry, inhibiting this interaction can prevent the virus from attaching to and entering host cells, halting infection at an early stage.
aa. Calu-3 is a human lung adenocarcinoma cell line with moderate ACE2 and TMPRSS2 expression and SARS-CoV-2 susceptibility. It provides a model of the human respiratory epithelium, but many not be ideal for modeling early stages of infection due to the moderate expression levels of ACE2 and TMPRSS2.
ab. A549 is a human lung carcinoma cell line with low ACE2 expression and SARS-CoV-2 susceptibility. Viral entry/replication can be studied but the cells may not replicate all aspects of lung infection.
ac. HEK293-ACE2+ is a human embryonic kidney cell line engineered for high ACE2 expression and SARS-CoV-2 susceptibility.
ad. Huh-7 cells were derived from a liver tumor (hepatoma).
ae. Caco-2 cells come from a colorectal adenocarcinoma (cancer). They are valued for their ability to form a polarized cell layer with properties similar to the intestinal lining.
af. Vero E6 is an African green monkey kidney cell line with low/no ACE2 expression and high SARS-CoV-2 susceptibility. The cell line is easy to maintain and supports robust viral replication, however the monkey origin may not accurately represent human responses.
ag. mTEC is a mouse tubular epithelial cell line.
ah. RAW264.7 is a mouse macrophage cell line.
ai. A mouse model expressing the human ACE2 receptor under the control of the K18 promoter.
aj. A mouse model of obesity and severe insulin resistance leading to type 2 diabetes due to a mutation in the leptin receptor gene that impairs satiety signaling.
ak. A mouse model commonly used in infectious disease and cancer research due to higher immune response and susceptibility to infection.
Alavi et al., 29 Nov 2022, Iran, peer-reviewed, 6 authors. Contact: mehranbio83@gmail.com (corresponding author), dr.m.r.mozafari@gmail.com.
In Silico studies are an important part of preclinical research, however results may be very different in vivo.
This PaperQuercetinAll
Interaction of Epigallocatechin Gallate and Quercetin with Spike Glycoprotein (S-Glycoprotein) of SARS-CoV-2: In Silico Study
Mehran Alavi, M R Mozafari, Saba Ghaemi, Morahem Ashengroph, Fatemeh Hasanzadeh Davarani, Mohammadreza Mohammadabadi
Biomedicines, doi:10.3390/biomedicines10123074
Severe acute respiratory syndrome (SARS)-CoV-2 from the family Coronaviridae is the cause of the outbreak of severe pneumonia, known as coronavirus disease 2019 (COVID-19), which was first recognized in 2019. Various potential antiviral drugs have been presented to hinder SARS-CoV-2 or treat COVID-19 disease. Side effects of these drugs are among the main complicated issues for patients. Natural compounds, specifically primary and secondary herbal metabolites, may be considered as alternative options to provide therapeutic activity and reduce cytotoxicity. Phenolic materials such as epigallocatechin gallate (EGCG, polyphenol) and quercetin have shown antibacterial, antifungal, antiviral, anticancer, and anti-inflammatory effects in vitro and in vivo. Therefore, in this study, molecular docking was applied to measure the docking property of epigallocatechin gallate and quercetin towards the transmembrane spike (S) glycoprotein of SARS-CoV-2. Results of the present study showed Vina scores of −9.9 and −8.3 obtained for EGCG and quercetin by CB-Dock. In the case of EGCG, four hydrogen bonds of OG1, OD2, O3, and O13 atoms interacted with the Threonine (THR778) and Aspartic acid (ASP867) amino acids of the spike glycoprotein (6VSB). According to these results, epigallocatechin gallate and quercetin can be considered potent therapeutic compounds for addressing viral diseases.
References
Ahmadi, Ahmadi, Ahmadi, A review on antifungal and antibacterial activities of some medicinal plants, Micro Nano Bio Asp
Ahmadi, Antibacterial and antifungal activities of medicinal plant species and endophytes, Cell. Mol. Biomed. Rep, doi:10.55705/cmbr.2022.340532.1042
Al-Karmalawy, Dahab, Metwaly, Elhady, Elkaeed et al., Molecular Docking and Dynamics Simulation Revealed the Potential Inhibitory Activity of ACEIs Against SARS-CoV-2 Targeting the hACE2 Receptor, Front. Chem, doi:10.3389/fchem.2021.661230
Alavi, Adulrahman, Haleem, Al-Râwanduzi, Khusro et al., Nanoformulations of curcumin and quercetin with silver nanoparticles for inactivation of bacteria, Cell. Mol. Biol, doi:10.14715/cmb/2021.67.5.21
Alavi, Asare-Addo, Nokhodchi, Lectin Protein as a Promising Component to Functionalize Micelles, Liposomes and Lipid NPs against Coronavirus, Biomedicines, doi:10.3390/biomedicines8120580
Alavi, Hamblin, Martinez, Aghaie, Khan et al., Micro and nanoformulations of insulin: New approaches, Nano Micro Bios
Alavi, Hamblin, Martinez, Kennedy, Khan, Synergistic combinations of metal, metal oxide, or metalloid nanoparticles plus antibiotics against resistant and non-resistant bacteria, Micro Nano Bio Asp
Alavi, Hamblin, Mozafari, Rose Alencar De Menezes, Douglas Melo Coutinho, Surface modification of SiO 2 nanoparticles for bacterial decontaminations of blood products, Cell. Mol. Biomed. Rep, doi:10.55705/cmbr.2022.338888.1039
Alavi, Kowalski, Capasso, Douglas Melo Coutinho, Rose Alencar De Menezes, Various novel strategies for functionalization of gold and silver nanoparticles to hinder drug-resistant bacteria and cancer cells, Micro Nano Bio Asp
Alavi, Martinez, Delgado, Tinjacá, Anticancer and antibacterial activities of embelin: Micro and nano aspects, Micro Nano Bio Asp
Alavi, Rai, Antisense RNA, the modified CRISPR-Cas9, and metal/metal oxide nanoparticles to inactivate pathogenic bacteria, Cell. Mol. Biomed. Rep, doi:10.55705/cmbr.2021.142436.1014
Alavi, Rai, Martinez, Kahrizi, Khan et al., The efficiency of metal, metal oxide, and metalloid nanoparticles against cancer cells and bacterial pathogens: Different mechanisms of action, Cell. Mol. Biomed. Rep, doi:10.55705/cmbr.2022.147090.1023
Alavi, Thomas, Sreedharan, Modification of silica nanoparticles for antibacterial activities: Mechanism of action, Micro Nano Bio Asp
Albuquerque, Heleno, Oliveira, Barros, Ferreira, Phenolic compounds: Current industrial applications, limitations and future challenges, Food Funct, doi:10.1039/D0FO02324H
Aljelehawy, Alshaibah, Khafaji, Evaluation of virulence factors among Staphylococcus aureus strains isolated from patients with urinary tract infection in Al-Najaf Al-Ashraf teaching hospital, Cell. Mol. Biomed. Rep
Almasian-Tehrani, Alebouyeh, Armin, Soleimani, Azimi et al., Overview of typing techniques as molecular epidemiology tools for bacterial characterization, Cell. Mol. Biomed. Rep, doi:10.55705/cmbr.2021.143413.1016
Amraei, Ahmadi, Recent studies on antimicrobial and anticancer activities of saponins: A mini-review, Nano Micro Bios
Andijani, Wazzan, The effect of electron-donating substituents on tuning the nonlinear optical properties of pyrene-core arylamine derivatives: DFT calculations, Results Phys, doi:10.1016/j.rinp.2018.10.002
Arévalo, Pagotto, Pórfido, Daghero, Segovia et al., Ivermectin reduces in vivo coronavirus infection in a mouse experimental model, Sci. Rep, doi:10.1038/s41598-021-86679-0
Baral, Mozafari, Strategic Moves of "Superbugs" Against Available Chemical Scaffolds: Signaling, Regulation, and Challenges, ACS Pharmacol. Transl. Sci, doi:10.1021/acsptsci.0c00005
Basu, Sarkar, Maulik, Molecular docking study of potential phytochemicals and their effects on the complex of SARS-CoV2 spike protein and human ACE2, Sci. Rep, doi:10.1038/s41598-020-74715-4
Cao, Li, Improved protein-ligand binding affinity prediction by using a curvature-dependent surface-area model, Bioinformatics, doi:10.1093/bioinformatics/btu104
Casas-Sanchez, Romero-Ramirez, Hargreaves, Ellis, Grajeda et al., Inhibition of Protein N-Glycosylation Blocks SARS-CoV-2 Infection, mBio
Ceccarelli, Alessandri, Oliva, Borrazzo, Dell'isola et al., The role of teicoplanin in the treatment of SARS-CoV-2 infection: A retrospective study in critically ill COVID-19 patients (Tei-COVID study), J. Med. Virol, doi:10.1002/jmv.26925
Chamkhi, Benali, Aanniz, El Menyiy, Guaouguaou et al., Plant-microbial interaction: The mechanism and the application of microbial elicitor induced secondary metabolites biosynthesis in medicinal plants, Plant Physiol. Biochem, doi:10.1016/j.plaphy.2021.08.001
Choudhary, Zehra, Mukarram, Wani, Naeem et al., Potential Uses of Bioactive Compounds of Medicinal Plants and Their Mode of Action in Several Human Diseases
De Maat, Pijl, Kluft, Princen, Consumption of black and green tea had no effect on inflammation, haemostasis and endothelial markers in smoking healthy individuals, Eur. J. Clin. Nutr, doi:10.1038/sj.ejcn.1601084
Du, Zheng, Disoma, Li, Chen et al., Epigallocatechin-3-gallate, an active ingredient of Traditional Chinese Medicines, inhibits the 3CLpro activity of SARS-CoV-2, Int. J. Biol. Macromol
Eberhardt, Santos-Martins, Tillack, Forli, AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings, J. Chem. Inf. Model, doi:10.1021/acs.jcim.1c00203
Eweas, Alhossary, Abdel-Moneim, Molecular Docking Reveals Ivermectin and Remdesivir as Potential Repurposed Drugs Against SARS-CoV-2, Front. Microbiol, doi:10.3389/fmicb.2020.592908
Fischer, Müller, Scheidt, Luck, Drug-Membrane Interactions: Effects of Virus-Specific RNA-Dependent RNA Polymerase Inhibitors Remdesivir and Favipiravir on the Structure of Lipid Bilayers, Biochemistry, doi:10.1021/acs.biochem.2c00042
Gasmi, Mujawdiya, Lysiuk, Shanaida, Peana et al., Quercetin in the Prevention and Treatment of Coronavirus Infections: A Focus on SARS-CoV-2, Pharmaceuticals, doi:10.3390/ph15091049
Golonka, Wilk, Musiał, The Influence of UV Radiation on the Degradation of Pharmaceutical Formulations Containing Quercetin, Molecules, doi:10.3390/molecules25225454
Guedes, Costa, Dos Santos, Karl, Rocha et al., Drug design and repurposing with DockThor-VS web server focusing on SARS-CoV-2 therapeutic targets and their non-synonym variants, Sci. Rep, doi:10.1038/s41598-021-84700-0
Han, Ren, Li, Yan, Ma et al., Advances and challenges in the prevention and treatment of COVID-19, Int. J. Med. Sci, doi:10.7150/ijms.47836
Hashemzaei, Delarami Far, Yari, Heravi, Tabrizian et al., Anticancer and apoptosis-inducing effects of quercetin in vitro and in vivo, Oncol. Rep, doi:10.3892/or.2017.5766
Hong, Seo, Woo, Kwon, Song et al., Epigallocatechin Gallate Inhibits the Uridylate-Specific Endoribonuclease Nsp15 and Efficiently Neutralizes the SARS-CoV-2 Strain, J. Agric. Food Chem, doi:10.1021/acs.jafc.1c02050
Isbrucker, Edwards, Wolz, Davidovich, Bausch, Safety studies on epigallocatechin gallate (EGCG) preparations. Part 2: Dermal, acute and short-term toxicity studies, Food Chem. Toxicol, doi:10.1016/j.fct.2005.11.003
Joshi, Parkar, Ansari, Vora, Talwar et al., Role of favipiravir in the treatment of COVID-19, Int. J. Infect. Dis, doi:10.1016/j.ijid.2020.10.069
Kabarkouhi, Mehrarya, Gharehchelou, Jalilian, Jalili et al., Nanoliposome and Allied Technologies in COVID-19 Vaccines: Key Roles and Functionalities, Curr. Drug Deliv, doi:10.2174/1567201819666220427125342
Kawano, Hwang, Influence of Guanidine, Imidazole, and Some Heterocyclic Compounds on Dissolution Rates of Amorphous Silica, Clays Clay Miner, doi:10.1346/CCMN.2010.0580603
Kivrak, Ulaş, Kivrak, A comparative analysis for anti-viral drugs: Their efficiency against SARS-CoV-2, Int. Immunopharmacol, doi:10.1016/j.intimp.2020.107232
Komeno, Furuta, Nakajima, Tani, Morinaga, Analysis of the responsible site for favipiravir resistance in RNA-dependent RNA polymerase of influenza virus A/PR/8/34 (H1N1) using site-directed mutagenesis, Antivir. Res, doi:10.1016/j.antiviral.2022.105387
Kournoutou, Dinos, Azithromycin through the Lens of the COVID-19 Treatment, Antibiotics, doi:10.3390/antibiotics11081063
Liu, Grimm, Dai, Hou, Xiao et al., CB-Dock: A web server for cavity detection-guided protein-ligand blind docking, Acta Pharmacol. Sin, doi:10.1038/s41401-019-0228-6
Lopes, Da Costa, Genova Ribeiro, Da Silva, Lima et al., Quercetin pentaacetate inhibits in vitro human respiratory syncytial virus adhesion, Virus Res, doi:10.1016/j.virusres.2019.197805
Maiti, Banerjee, Epigallocatechin gallate and theaflavin gallate interaction in SARS-CoV-2 spike-protein central channel with reference to the hydroxychloroquine interaction: Bioinformatics and molecular docking study, Drug Dev. Res, doi:10.1002/ddr.21730
Majumder, Taufiqur Rahman, Mahedi Hasan, Didarul Islam, Taylor-Robinson et al., Decoding the enigma of antiviral crisis: Does one target molecule regulate all?, Cytokine, doi:10.1016/j.cyto.2018.12.008
Mettelman, Allen, Thomas, Mucosal immune responses to infection and vaccination in the respiratory tract, Immunity, doi:10.1016/j.immuni.2022.04.013
Mirtaleb, Mirtaleb, Nosrati, Heshmatnia, Falak et al., Potential therapeutic agents to COVID-19: An update review on antiviral therapy, immunotherapy, and cell therapy, Biomed. Pharmacother
Mohammadi, Sabati, When Successive Viral Mutations Prevent Definitive Treatment of COVID-19, Cell. Mol. Biomed. Rep, doi:10.55705/cmbr.2022.339012.1040
Mozafari, Torkaman, Karamouzian, Rasti, Baral, Antimicrobial Applications of Nanoliposome Encapsulated Silver Nanoparticles: A Potential Strategy to Overcome Bacterial Resistance, Curr. Nanosci, doi:10.2174/1573413716999200712184148
Mpiana, Ngbolua, Tshibangu, Kilembe, Gbolo et al., Identification of potential inhibitors of SARS-CoV-2 main protease from Aloe vera compounds: A molecular docking study, Chem. Phys. Lett, doi:10.1016/j.cplett.2020.137751
Muhammad, Abubakar, Muhammad, Genetic resistance to human malaria, Cell. Mol. Biomed. Rep
Muhammad, Sale, Salisu, Muhammad, Abubakar et al., Molecular analysis of Bio-makers of Chloroquine resistance in Plasmodium falciparum Isolate from Gombe Local Government Area, Gombe State, Nigeria, Cell. Mol. Biomed. Rep, doi:10.55705/cmbr.2022.335753.1033
Murad, Alqurashi, Hussien, Interactions of selected cardiovascular active natural compounds with CXCR4 and CXCR7 receptors: A molecular docking, molecular dynamics, and pharmacokinetic/toxicity prediction study, BMC Complement. Med. Ther, doi:10.1186/s12906-021-03488-8
Narendrakumar, Joseph, Thomas, Potential effectiveness and adverse implications of repurposing doxycycline in COVID-19 treatment, Expert Rev. Anti-Infect. Ther, doi:10.1080/14787210.2021.1865803
Nguyen, Woo, Kang, Nguyen, Kim et al., Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris, Biotechnol. Lett, doi:10.1007/s10529-011-0845-8
Ntamo, Jack, Ziqubu, Mazibuko-Mbeje, Nkambule et al., Epigallocatechin gallate as a nutraceutical to potentially target the metabolic syndrome: Novel insights into therapeutic effects beyond its antioxidant and anti-inflammatory properties, Crit. Rev. Food Sci. Nutr, doi:10.1080/10408398.2022.2104805
Pillon, Frazier, Dillard, Williams, Kocaman et al., Cryo-EM Structures of the SARS-CoV-2 Endoribonuclease Nsp15, Biorxiv Prepr. Serv. Biol, doi:10.1101/2020.08.11.244863
Puttaswamy, Gowtham, Ojha, Yadav, Choudhir et al., In silico studies evidenced the role of structurally diverse plant secondary metabolites in reducing SARS-CoV-2 pathogenesis, Sci. Rep, doi:10.1038/s41598-020-77602-0
Quinn, Patel, Koh, Haines, Norrby et al., Automated fitting of transition state force fields for biomolecular simulations, PLoS ONE, doi:10.1371/journal.pone.0264960
Rahbar-Karbasdehi, Rahbar-Karbasdehi, Clinical challenges of stress cardiomyopathy during coronavirus 2019 epidemic, Cell. Mol. Biomed. Rep, doi:10.55705/cmbr.2021.145790.1018
Rahman, Tabrez, Ali, Alqahtani, Ahmed et al., Molecular docking analysis of rutin reveals possible inhibition of SARS-CoV-2 vital proteins, J. Tradit. Complement. Med, doi:10.1016/j.jtcme.2021.01.006
Sabbagh, Kiarostami, Khatir, Rezania, Muhamad et al., Effect of zinc content on structural, functional, morphological, and thermal properties of kappa-carrageenan/NaCMC nanocomposites, Polym. Test, doi:10.1016/j.polymertesting.2020.106922
Sabbagh, Kiarostami, Mahmoudi Khatir, Rezania, Muhamad, Green Synthesis of Mg0.99 Zn0.01O Nanoparticles for the Fabrication of κ-Carrageenan/NaCMC Hydrogel in order to Deliver Catechin, Polymers, doi:10.3390/polym12040861
Salehi, Machin, Monzote, Sharifi-Rad, Ezzat et al., Therapeutic Potential of Quercetin: New Insights and Perspectives for Human Health, ACS Omega, doi:10.1021/acsomega.0c01818
Samy, Attia, Shoman, Khalil, Sugimoto et al., Phytochemical investigation of Amphilophium paniculatum; an underexplored Bignoniaceae species as a source of SARS-CoV-2 Mpro inhibitory metabolites: Isolation, identification, and molecular docking study, S. Afr. J. Bot, doi:10.1016/j.sajb.2021.05.023
Santos, Brierley, Gandhi, Cohen, Moschella et al., Repurposing Therapeutics for Potential Treatment of SARS-CoV-2: A Review, Viruses, doi:10.3390/v12070705
Santos, Grosche, Bergamini, Sabino-Silva, Jardim, Antivirals Against Coronaviruses: Candidate Drugs for SARS-CoV-2 Treatment? Front, Microbiol, doi:10.3389/fmicb.2020.01818
Schmitz, Gilberg, Löser, Bajorath, Bartz et al., Cathepsin B: Active site mapping with peptidic substrates and inhibitors, Biorg. Med. Chem, doi:10.1016/j.bmc.2018.10.017
Shehata, Attia, Rahman, Basiouni, El-Seedi et al., Diversity of Coronaviruses with Particular Attention to the Interspecies Transmission of SARS-CoV-2, Animals, doi:10.3390/ani12030378
Singh, Chapter 11-Molecular modeling studies of fused pyrimidine derivatives at various receptors, doi:10.1016/B978-0-443-18616-5.00010-7
Sun, Gao, Hu, Zhou, Why 90% of clinical drug development fails and how to improve it?, Acta Pharm. Sin. B, doi:10.1016/j.apsb.2022.02.002
Taguchi, Turki, A new advanced in silico drug discovery method for novel coronavirus (SARS-CoV-2) with tensor decomposition-based unsupervised feature extraction, PLoS ONE, doi:10.1371/journal.pone.0238907
Tamimi, Altigani, Sanz, Periodontitis and coronavirus disease 2019, Periodontol, doi:10.1111/prd.12434
Tripathy, Dassarma, Roy, Chabalala, Matsabisa, A review on possible modes of action of chloroquine/hydroxychloroquine: Repurposing against SAR-CoV-2 (COVID-19) pandemic, Int. J. Antimicrob. Agents
Uzunova, Filipova, Pavlova, Vekov, Insights into antiviral mechanisms of remdesivir, lopinavir/ritonavir and chloroquine/hydroxychloroquine affecting the new SARS-CoV-2, Biomed. Pharmacother, doi:10.1016/j.biopha.2020.110668
Verma, Patel, Chandra, Identification of novel inhibitors of SARS-CoV-2 main protease (Mpro) from Withania sp. by molecular docking and molecular dynamics simulation, J. Comput. Chem, doi:10.1002/jcc.26717
Vicenti, Zazzi, Saladini, SARS-CoV-2 RNA-dependent RNA polymerase as a therapeutic target for COVID-19, Expert Opin. Ther. Pat, doi:10.1080/13543776.2021.1880568
Yang, Atkinson, Wang, Lee, Bogoyevitch et al., The broad spectrum antiviral ivermectin targets the host nuclear transport importin α/β1 heterodimer, Antivir. Res, doi:10.1016/j.antiviral.2020.104760
Yang, Guo, Yu, Liu, Song et al., Tocilizumab mimotope alleviates kidney injury and fibrosis by inhibiting IL-6 signaling and ferroptosis in UUO model, Life Sci, doi:10.1016/j.lfs.2020.118487
Yang, Petitjean, Koehler, Zhang, Dumitru et al., Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor, Nat. Commun, doi:10.1038/s41467-020-18319-6
Yang, Wei, Fang, Gan, Wang et al., Nanochemoprevention with therapeutic benefits: An updated review focused on epigallocatechin gallate delivery, Crit. Rev. Food Sci. Nutr
Yi, Peng, Wu, Xu, Kuang et al., The Therapeutic Effects and Mechanisms of Quercetin on Metabolic Diseases: Pharmacological Data and Clinical Evidence, Oxid. Med. Cell. Longev, doi:10.1155/2021/6678662
Zhang, Bell, Yin, Zhang, EDock: Blind protein-ligand docking by replica-exchange monte carlo simulation, J. Cheminform, doi:10.1186/s13321-020-00440-9
Zhu, Guo, Geary, Zhang, Emerging Therapeutic Strategies for COVID-19 patients, Discoveries, doi:10.15190/d.2020.2
{ 'indexed': {'date-parts': [[2022, 12, 1]], 'date-time': '2022-12-01T06:02:50Z', 'timestamp': 1669874570927}, 'reference-count': 87, 'publisher': 'MDPI AG', 'issue': '12', 'license': [ { 'start': { 'date-parts': [[2022, 11, 29]], 'date-time': '2022-11-29T00:00:00Z', 'timestamp': 1669680000000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by/4.0/'}], 'content-domain': {'domain': [], 'crossmark-restriction': False}, 'abstract': '<jats:p>Severe acute respiratory syndrome (SARS)-CoV-2 from the family Coronaviridae is the ' 'cause of the outbreak of severe pneumonia, known as coronavirus disease 2019 (COVID-19), ' 'which was first recognized in 2019. Various potential antiviral drugs have been presented to ' 'hinder SARS-CoV-2 or treat COVID-19 disease. Side effects of these drugs are among the main ' 'complicated issues for patients. Natural compounds, specifically primary and secondary herbal ' 'metabolites, may be considered as alternative options to provide therapeutic activity and ' 'reduce cytotoxicity. Phenolic materials such as epigallocatechin gallate (EGCG, polyphenol) ' 'and quercetin have shown antibacterial, antifungal, antiviral, anticancer, and ' 'anti-inflammatory effects in vitro and in vivo. Therefore, in this study, molecular docking ' 'was applied to measure the docking property of epigallocatechin gallate and quercetin towards ' 'the transmembrane spike (S) glycoprotein of SARS-CoV-2. Results of the present study showed ' 'Vina scores of −9.9 and −8.3 obtained for EGCG and quercetin by CB-Dock. In the case of EGCG, ' 'four hydrogen bonds of OG1, OD2, O3, and O13 atoms interacted with the Threonine (THR778) and ' 'Aspartic acid (ASP867) amino acids of the spike glycoprotein (6VSB). According to these ' 'results, epigallocatechin gallate and quercetin can be considered potent therapeutic ' 'compounds for addressing viral diseases.</jats:p>', 'DOI': '10.3390/biomedicines10123074', 'type': 'journal-article', 'created': { 'date-parts': [[2022, 11, 30]], 'date-time': '2022-11-30T08:49:13Z', 'timestamp': 1669798153000}, 'page': '3074', 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': 'Interaction of Epigallocatechin Gallate and Quercetin with Spike Glycoprotein (S-Glycoprotein) ' 'of SARS-CoV-2: In Silico Study', 'prefix': '10.3390', 'volume': '10', 'author': [ { 'ORCID': 'http://orcid.org/0000-0002-5691-8326', 'authenticated-orcid': False, 'given': 'Mehran', 'family': 'Alavi', 'sequence': 'first', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0002-4118-1544', 'authenticated-orcid': False, 'given': 'M. R.', 'family': 'Mozafari', 'sequence': 'additional', 'affiliation': []}, {'given': 'Saba', 'family': 'Ghaemi', 'sequence': 'additional', 'affiliation': []}, {'given': 'Morahem', 'family': 'Ashengroph', 'sequence': 'additional', 'affiliation': []}, { 'given': 'Fatemeh', 'family': 'Hasanzadeh Davarani', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0002-1268-3043', 'authenticated-orcid': False, 'given': 'Mohammadreza', 'family': 'Mohammadabadi', 'sequence': 'additional', 'affiliation': []}], 'member': '1968', 'published-online': {'date-parts': [[2022, 11, 29]]}, 'reference': [ { 'key': 'ref_1', 'doi-asserted-by': 'crossref', 'first-page': '78', 'DOI': '10.55705/cmbr.2021.144995.1017', 'article-title': 'Evaluation of virulence factors among Staphylococcus aureus strains ' 'isolated from patients with urinary tract infection in Al-Najaf ' 'Al-Ashraf teaching hospital', 'volume': '1', 'author': 'Aljelehawy', 'year': '2021', 'journal-title': 'Cell. Mol. Biomed. Rep.'}, { 'key': 'ref_2', 'first-page': '10', 'article-title': 'A review on antifungal and antibacterial activities of some medicinal ' 'plants', 'volume': '1', 'author': 'Ahmadi', 'year': '2022', 'journal-title': 'Micro Nano Bio Asp.'}, { 'key': 'ref_3', 'doi-asserted-by': 'crossref', 'first-page': '52', 'DOI': '10.55705/cmbr.2021.142436.1014', 'article-title': 'Antisense RNA, the modified CRISPR-Cas9, and metal/metal oxide ' 'nanoparticles to inactivate pathogenic bacteria', 'volume': '1', 'author': 'Alavi', 'year': '2021', 'journal-title': 'Cell. Mol. Biomed. Rep.'}, { 'key': 'ref_4', 'first-page': '22', 'article-title': 'Recent studies on antimicrobial and anticancer activities of saponins: ' 'A mini-review', 'volume': '1', 'author': 'Amraei', 'year': '2022', 'journal-title': 'Nano Micro Bios.'}, { 'key': 'ref_5', 'doi-asserted-by': 'crossref', 'first-page': '42', 'DOI': '10.55705/cmbr.2022.335753.1033', 'article-title': 'Molecular analysis of Bio-makers of Chloroquine resistance in ' 'Plasmodium falciparum Isolate from Gombe Local Government Area, Gombe ' 'State, Nigeria', 'volume': '2', 'author': 'Muhammad', 'year': '2022', 'journal-title': 'Cell. Mol. Biomed. Rep.'}, { 'key': 'ref_6', 'doi-asserted-by': 'crossref', 'first-page': '373', 'DOI': '10.1021/acsptsci.0c00005', 'article-title': 'Strategic Moves of “Superbugs” Against Available Chemical Scaffolds: ' 'Signaling, Regulation, and Challenges', 'volume': '3', 'author': 'Baral', 'year': '2020', 'journal-title': 'ACS Pharmacol. Transl. Sci.'}, { 'key': 'ref_7', 'doi-asserted-by': 'crossref', 'first-page': '26', 'DOI': '10.2174/1573413716999200712184148', 'article-title': 'Antimicrobial Applications of Nanoliposome Encapsulated Silver ' 'Nanoparticles: A Potential Strategy to Overcome Bacterial Resistance', 'volume': '17', 'author': 'Mozafari', 'year': '2021', 'journal-title': 'Curr. Nanosci.'}, { 'key': 'ref_8', 'doi-asserted-by': 'crossref', 'first-page': '116', 'DOI': '10.55705/cmbr.2022.342533.1043', 'article-title': 'Genetic resistance to human malaria', 'volume': '2', 'author': 'Muhammad', 'year': '2022', 'journal-title': 'Cell. Mol. Biomed. Rep.'}, { 'key': 'ref_9', 'first-page': '30', 'article-title': 'Anticancer and antibacterial activities of embelin: Micro and nano ' 'aspects', 'volume': '1', 'author': 'Alavi', 'year': '2022', 'journal-title': 'Micro Nano Bio Asp.'}, { 'key': 'ref_10', 'first-page': '1', 'article-title': 'Micro and nanoformulations of insulin: New approaches', 'volume': '1', 'author': 'Alavi', 'year': '2022', 'journal-title': 'Nano Micro Bios.'}, { 'key': 'ref_11', 'doi-asserted-by': 'crossref', 'first-page': '10', 'DOI': '10.55705/cmbr.2022.147090.1023', 'article-title': 'The efficiency of metal, metal oxide, and metalloid nanoparticles ' 'against cancer cells and bacterial pathogens: Different mechanisms of ' 'action', 'volume': '2', 'author': 'Alavi', 'year': '2022', 'journal-title': 'Cell. Mol. Biomed. Rep.'}, { 'key': 'ref_12', 'doi-asserted-by': 'crossref', 'first-page': '69', 'DOI': '10.55705/cmbr.2021.143413.1016', 'article-title': 'Overview of typing techniques as molecular epidemiology tools for ' 'bacterial characterization', 'volume': '1', 'author': 'Alebouyeh', 'year': '2021', 'journal-title': 'Cell. Mol. Biomed. Rep.'}, { 'key': 'ref_13', 'doi-asserted-by': 'crossref', 'first-page': '87', 'DOI': '10.55705/cmbr.2022.338888.1039', 'article-title': 'Surface modification of SiO2 nanoparticles for bacterial ' 'decontaminations of blood products', 'volume': '2', 'author': 'Alavi', 'year': '2022', 'journal-title': 'Cell. Mol. Biomed. Rep.'}, { 'key': 'ref_14', 'first-page': '38', 'article-title': 'Various novel strategies for functionalization of gold and silver ' 'nanoparticles to hinder drug-resistant bacteria and cancer cells', 'volume': '1', 'author': 'Alavi', 'year': '2022', 'journal-title': 'Micro Nano Bio Asp.'}, { 'key': 'ref_15', 'doi-asserted-by': 'crossref', 'first-page': '109', 'DOI': '10.55705/cmbr.2022.340532.1042', 'article-title': 'Antibacterial and antifungal activities of medicinal plant species and ' 'endophytes', 'volume': '2', 'author': 'Ahmadi', 'year': '2022', 'journal-title': 'Cell. Mol. Biomed. Rep.'}, { 'key': 'ref_16', 'first-page': '1', 'article-title': 'Synergistic combinations of metal, metal oxide, or metalloid ' 'nanoparticles plus antibiotics against resistant and non-resistant ' 'bacteria', 'volume': '1', 'author': 'Alavi', 'year': '2022', 'journal-title': 'Micro Nano Bio Asp.'}, { 'key': 'ref_17', 'first-page': '49', 'article-title': 'Modification of silica nanoparticles for antibacterial activities: ' 'Mechanism of action', 'volume': '1', 'author': 'Alavi', 'year': '2022', 'journal-title': 'Micro Nano Bio Asp.'}, { 'key': 'ref_18', 'doi-asserted-by': 'crossref', 'unstructured': 'Sabbagh, F., Kiarostami, K., Mahmoudi Khatir, N., Rezania, S., and ' 'Muhamad, I.I. (2020). Green Synthesis of Mg0.99 Zn0.01O Nanoparticles ' 'for the Fabrication of κ-Carrageenan/NaCMC Hydrogel in order to Deliver ' 'Catechin. Polymers, 12.', 'DOI': '10.3390/polym12040861'}, { 'key': 'ref_19', 'doi-asserted-by': 'crossref', 'first-page': '106922', 'DOI': '10.1016/j.polymertesting.2020.106922', 'article-title': 'Effect of zinc content on structural, functional, morphological, and ' 'thermal properties of kappa-carrageenan/NaCMC nanocomposites', 'volume': '93', 'author': 'Sabbagh', 'year': '2021', 'journal-title': 'Polym. Test.'}, { 'key': 'ref_20', 'doi-asserted-by': 'crossref', 'unstructured': 'Shehata, A.A., Attia, Y.A., Rahman, M.T., Basiouni, S., El-Seedi, H.R., ' 'Azhar, E.I., Khafaga, A.F., and Hafez, H.M. (2022). Diversity of ' 'Coronaviruses with Particular Attention to the Interspecies Transmission ' 'of SARS-CoV-2. Animals, 12.', 'DOI': '10.3390/ani12030378'}, { 'key': 'ref_21', 'doi-asserted-by': 'crossref', 'first-page': '207', 'DOI': '10.1111/prd.12434', 'article-title': 'Periodontitis and coronavirus disease 2019', 'volume': '89', 'author': 'Tamimi', 'year': '2022', 'journal-title': 'Periodontol. 2000'}, { 'key': 'ref_22', 'doi-asserted-by': 'crossref', 'first-page': '98', 'DOI': '10.55705/cmbr.2022.339012.1040', 'article-title': 'When Successive Viral Mutations Prevent Definitive Treatment of ' 'COVID-19', 'volume': '2', 'author': 'Mohammadi', 'year': '2022', 'journal-title': 'Cell. Mol. Biomed. Rep.'}, { 'key': 'ref_23', 'doi-asserted-by': 'crossref', 'first-page': '88', 'DOI': '10.55705/cmbr.2021.145790.1018', 'article-title': 'Clinical challenges of stress cardiomyopathy during coronavirus 2019 ' 'epidemic', 'volume': '1', 'year': '2021', 'journal-title': 'Cell. Mol. Biomed. Rep.'}, { 'key': 'ref_24', 'doi-asserted-by': 'crossref', 'unstructured': 'Alavi, M., Asare-Addo, K., and Nokhodchi, A. (2020). Lectin Protein as a ' 'Promising Component to Functionalize Micelles, Liposomes and Lipid NPs ' 'against Coronavirus. Biomedicines, 8.', 'DOI': '10.3390/biomedicines8120580'}, { 'key': 'ref_25', 'doi-asserted-by': 'crossref', 'first-page': '4541', 'DOI': '10.1038/s41467-020-18319-6', 'article-title': 'Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 ' 'receptor', 'volume': '11', 'author': 'Yang', 'year': '2020', 'journal-title': 'Nat. Commun.'}, { 'key': 'ref_26', 'doi-asserted-by': 'crossref', 'first-page': '1818', 'DOI': '10.3389/fmicb.2020.01818', 'article-title': 'Antivirals Against Coronaviruses: Candidate Drugs for SARS-CoV-2 ' 'Treatment?', 'volume': '11', 'author': 'Santos', 'year': '2020', 'journal-title': 'Front. Microbiol.'}, { 'key': 'ref_27', 'doi-asserted-by': 'crossref', 'first-page': 'e03718-21', 'DOI': '10.1128/mbio.03718-21', 'article-title': 'Inhibition of Protein N-Glycosylation Blocks SARS-CoV-2 Infection', 'volume': '13', 'author': 'Hargreaves', 'year': '2022', 'journal-title': 'mBio'}, { 'key': 'ref_28', 'doi-asserted-by': 'crossref', 'unstructured': 'Pillon, M.C., Frazier, M.N., Dillard, L.B., Williams, J.G., Kocaman, S., ' 'Krahn, J.M., Perera, L., Hayne, C.K., Gordon, J., and Stewart, Z.D. ' '(2020). Cryo-EM Structures of the SARS-CoV-2 Endoribonuclease Nsp15. ' 'Biorxiv Prepr. Serv. Biol.', 'DOI': '10.1101/2020.08.11.244863'}, { 'key': 'ref_29', 'first-page': '3', 'article-title': 'Liposome, Nanoliposome and Allied Technologies in COVID-19 Vaccines: ' 'Key Roles and Functionalities', 'volume': '20', 'author': 'Kabarkouhi', 'year': '2022', 'journal-title': 'Curr. Drug Deliv.'}, { 'key': 'ref_30', 'doi-asserted-by': 'crossref', 'first-page': '111518', 'DOI': '10.1016/j.biopha.2021.111518', 'article-title': 'Potential therapeutic agents to COVID-19: An update review on antiviral ' 'therapy, immunotherapy, and cell therapy', 'volume': '138', 'author': 'Mirtaleb', 'year': '2021', 'journal-title': 'Biomed. Pharmacother.'}, { 'key': 'ref_31', 'doi-asserted-by': 'crossref', 'unstructured': 'Taguchi, Y.-H., and Turki, T. (2020). A new advanced in silico drug ' 'discovery method for novel coronavirus (SARS-CoV-2) with tensor ' 'decomposition-based unsupervised feature extraction. PLoS ONE, 15.', 'DOI': '10.20944/preprints202004.0524.v1'}, { 'key': 'ref_32', 'doi-asserted-by': 'crossref', 'unstructured': 'Santos, J., Brierley, S., Gandhi, M.J., Cohen, M.A., Moschella, P.C., ' 'and Declan, A.B.L. (2020). Repurposing Therapeutics for Potential ' 'Treatment of SARS-CoV-2: A Review. Viruses, 12.', 'DOI': '10.3390/v12070705'}, { 'key': 'ref_33', 'doi-asserted-by': 'crossref', 'first-page': '107232', 'DOI': '10.1016/j.intimp.2020.107232', 'article-title': 'A comparative analysis for anti-viral drugs: Their efficiency against ' 'SARS-CoV-2', 'volume': '90', 'author': 'Kivrak', 'year': '2021', 'journal-title': 'Int. Immunopharmacol.'}, { 'key': 'ref_34', 'doi-asserted-by': 'crossref', 'first-page': 'e105', 'DOI': '10.15190/d.2020.2', 'article-title': 'Emerging Therapeutic Strategies for COVID-19 patients', 'volume': '8', 'author': 'Zhu', 'year': '2020', 'journal-title': 'Discoveries'}, { 'key': 'ref_35', 'doi-asserted-by': 'crossref', 'first-page': '501', 'DOI': '10.1016/j.ijid.2020.10.069', 'article-title': 'Role of favipiravir in the treatment of COVID-19', 'volume': '102', 'author': 'Joshi', 'year': '2021', 'journal-title': 'Int. J. Infect. Dis.'}, { 'key': 'ref_36', 'doi-asserted-by': 'crossref', 'first-page': '7132', 'DOI': '10.1038/s41598-021-86679-0', 'article-title': 'Ivermectin reduces in vivo coronavirus infection in a mouse ' 'experimental model', 'volume': '11', 'author': 'Pagotto', 'year': '2021', 'journal-title': 'Sci. Rep.'}, { 'key': 'ref_37', 'doi-asserted-by': 'crossref', 'first-page': '749', 'DOI': '10.1016/j.immuni.2022.04.013', 'article-title': 'Mucosal immune responses to infection and vaccination in the ' 'respiratory tract', 'volume': '55', 'author': 'Mettelman', 'year': '2022', 'journal-title': 'Immunity'}, { 'key': 'ref_38', 'doi-asserted-by': 'crossref', 'first-page': '106028', 'DOI': '10.1016/j.ijantimicag.2020.106028', 'article-title': 'A review on possible modes of action of chloroquine/hydroxychloroquine: ' 'Repurposing against SAR-CoV-2 (COVID-19) pandemic', 'volume': '56', 'author': 'Tripathy', 'year': '2020', 'journal-title': 'Int. J. Antimicrob. Agents'}, { 'key': 'ref_39', 'doi-asserted-by': 'crossref', 'unstructured': 'Kournoutou, G.G., and Dinos, G. (2022). Azithromycin through the Lens of ' 'the COVID-19 Treatment. Antibiotics, 11.', 'DOI': '10.3390/antibiotics11081063'}, { 'key': 'ref_40', 'doi-asserted-by': 'crossref', 'first-page': '110668', 'DOI': '10.1016/j.biopha.2020.110668', 'article-title': 'Insights into antiviral mechanisms of remdesivir, lopinavir/ritonavir ' 'and chloroquine/hydroxychloroquine affecting the new SARS-CoV-2', 'volume': '131', 'author': 'Uzunova', 'year': '2020', 'journal-title': 'Biomed. Pharmacother.'}, { 'key': 'ref_41', 'doi-asserted-by': 'crossref', 'first-page': '325', 'DOI': '10.1080/13543776.2021.1880568', 'article-title': 'SARS-CoV-2 RNA-dependent RNA polymerase as a therapeutic target for ' 'COVID-19', 'volume': '31', 'author': 'Vicenti', 'year': '2021', 'journal-title': 'Expert Opin. Ther. Pat.'}, { 'key': 'ref_42', 'doi-asserted-by': 'crossref', 'first-page': '118487', 'DOI': '10.1016/j.lfs.2020.118487', 'article-title': 'Tocilizumab mimotope alleviates kidney injury and fibrosis by ' 'inhibiting IL-6 signaling and ferroptosis in UUO model', 'volume': '261', 'author': 'Yang', 'year': '2020', 'journal-title': 'Life Sci.'}, { 'key': 'ref_43', 'doi-asserted-by': 'crossref', 'first-page': '1392', 'DOI': '10.1021/acs.biochem.2c00042', 'article-title': 'Drug–Membrane Interactions: Effects of Virus-Specific RNA-Dependent RNA ' 'Polymerase Inhibitors Remdesivir and Favipiravir on the Structure of ' 'Lipid Bilayers', 'volume': '61', 'author': 'Fischer', 'year': '2022', 'journal-title': 'Biochemistry'}, { 'key': 'ref_44', 'doi-asserted-by': 'crossref', 'first-page': '105387', 'DOI': '10.1016/j.antiviral.2022.105387', 'article-title': 'Analysis of the responsible site for favipiravir resistance in ' 'RNA-dependent RNA polymerase of influenza virus A/PR/8/34 (H1N1) using ' 'site-directed mutagenesis', 'volume': '205', 'author': 'Komeno', 'year': '2022', 'journal-title': 'Antivir. Res.'}, { 'key': 'ref_45', 'doi-asserted-by': 'crossref', 'first-page': '1803', 'DOI': '10.7150/ijms.47836', 'article-title': 'Advances and challenges in the prevention and treatment of COVID-19', 'volume': '17', 'author': 'Han', 'year': '2020', 'journal-title': 'Int. J. Med. Sci.'}, { 'key': 'ref_46', 'unstructured': 'Kumar, R., and Vardanyan, R. (2023). Fused Pyrimidine-Based Drug ' 'Discovery, Elsevier.'}, { 'key': 'ref_47', 'doi-asserted-by': 'crossref', 'first-page': '4319', 'DOI': '10.1002/jmv.26925', 'article-title': 'The role of teicoplanin in the treatment of SARS-CoV-2 infection: A ' 'retrospective study in critically ill COVID-19 patients (Tei-COVID ' 'study)', 'volume': '93', 'author': 'Ceccarelli', 'year': '2021', 'journal-title': 'J. Med. Virol.'}, { 'key': 'ref_48', 'doi-asserted-by': 'crossref', 'first-page': '104760', 'DOI': '10.1016/j.antiviral.2020.104760', 'article-title': 'The broad spectrum antiviral ivermectin targets the host nuclear ' 'transport importin α/β1 heterodimer', 'volume': '177', 'author': 'Yang', 'year': '2020', 'journal-title': 'Antivir. Res.'}, { 'key': 'ref_49', 'doi-asserted-by': 'crossref', 'first-page': '13', 'DOI': '10.1016/j.cyto.2018.12.008', 'article-title': 'Decoding the enigma of antiviral crisis: Does one target molecule ' 'regulate all?', 'volume': '115', 'author': 'Majumder', 'year': '2019', 'journal-title': 'Cytokine'}, { 'key': 'ref_50', 'doi-asserted-by': 'crossref', 'first-page': '1001', 'DOI': '10.1080/14787210.2021.1865803', 'article-title': 'Potential effectiveness and adverse implications of repurposing ' 'doxycycline in COVID-19 treatment', 'volume': '19', 'author': 'Narendrakumar', 'year': '2021', 'journal-title': 'Expert Rev. Anti-Infect. Ther.'}, { 'key': 'ref_51', 'doi-asserted-by': 'crossref', 'first-page': '269', 'DOI': '10.1016/j.plaphy.2021.08.001', 'article-title': 'Plant-microbial interaction: The mechanism and the application of ' 'microbial elicitor induced secondary metabolites biosynthesis in ' 'medicinal plants', 'volume': '167', 'author': 'Chamkhi', 'year': '2021', 'journal-title': 'Plant Physiol. Biochem.'}, { 'key': 'ref_52', 'doi-asserted-by': 'crossref', 'unstructured': 'Aftab, T., and Hakeem, K.R. (2021). Medicinal and Aromatic Plants: ' 'Healthcare and Industrial Applications, Springer International ' 'Publishing.', 'DOI': '10.1007/978-3-030-58975-2'}, { 'key': 'ref_53', 'doi-asserted-by': 'crossref', 'first-page': '14', 'DOI': '10.1039/D0FO02324H', 'article-title': 'Phenolic compounds: Current industrial applications, limitations and ' 'future challenges', 'volume': '12', 'author': 'Albuquerque', 'year': '2021', 'journal-title': 'Food Funct.'}, { 'key': 'ref_54', 'doi-asserted-by': 'crossref', 'first-page': '11849', 'DOI': '10.1021/acsomega.0c01818', 'article-title': 'Therapeutic Potential of Quercetin: New Insights and Perspectives for ' 'Human Health', 'volume': '5', 'author': 'Salehi', 'year': '2020', 'journal-title': 'ACS Omega'}, { 'key': 'ref_55', 'doi-asserted-by': 'crossref', 'first-page': '819', 'DOI': '10.3892/or.2017.5766', 'article-title': 'Anticancer and apoptosis-inducing effects of quercetin in vitro and in ' 'vivo', 'volume': '38', 'author': 'Hashemzaei', 'year': '2017', 'journal-title': 'Oncol. Rep.'}, { 'key': 'ref_56', 'doi-asserted-by': 'crossref', 'unstructured': 'Gasmi, A., Mujawdiya, P.K., Lysiuk, R., Shanaida, M., Peana, M., Gasmi ' 'Benahmed, A., Beley, N., Kovalska, N., and Bjørklund, G. (2022). ' 'Quercetin in the Prevention and Treatment of Coronavirus Infections: A ' 'Focus on SARS-CoV-2. Pharmaceuticals, 15.', 'DOI': '10.3390/ph15091049'}, { 'key': 'ref_57', 'doi-asserted-by': 'crossref', 'first-page': '151', 'DOI': '10.14715/cmb/2021.67.5.21', 'article-title': 'Nanoformulations of curcumin and quercetin with silver nanoparticles ' 'for inactivation of bacteria', 'volume': '67', 'author': 'Alavi', 'year': '2022', 'journal-title': 'Cell. Mol. Biol.'}, { 'key': 'ref_58', 'doi-asserted-by': 'crossref', 'first-page': '6678662', 'DOI': '10.1155/2021/6678662', 'article-title': 'The Therapeutic Effects and Mechanisms of Quercetin on Metabolic ' 'Diseases: Pharmacological Data and Clinical Evidence', 'volume': '2021', 'author': 'Yi', 'year': '2021', 'journal-title': 'Oxid. Med. Cell. Longev.'}, { 'key': 'ref_59', 'doi-asserted-by': 'crossref', 'first-page': '86', 'DOI': '10.1002/ddr.21730', 'article-title': 'Epigallocatechin gallate and theaflavin gallate interaction in ' 'SARS-CoV-2 spike-protein central channel with reference to the ' 'hydroxychloroquine interaction: Bioinformatics and molecular docking ' 'study', 'volume': '82', 'author': 'Maiti', 'year': '2021', 'journal-title': 'Drug Dev. Res.'}, { 'key': 'ref_60', 'doi-asserted-by': 'crossref', 'first-page': '636', 'DOI': '10.1016/j.fct.2005.11.003', 'article-title': 'Safety studies on epigallocatechin gallate (EGCG) preparations. Part 2: ' 'Dermal, acute and short-term toxicity studies', 'volume': '44', 'author': 'Isbrucker', 'year': '2006', 'journal-title': 'Food Chem. Toxicol.'}, { 'key': 'ref_61', 'doi-asserted-by': 'crossref', 'first-page': '5948', 'DOI': '10.1021/acs.jafc.1c02050', 'article-title': 'Epigallocatechin Gallate Inhibits the Uridylate-Specific ' 'Endoribonuclease Nsp15 and Efficiently Neutralizes the SARS-CoV-2 ' 'Strain', 'volume': '69', 'author': 'Hong', 'year': '2021', 'journal-title': 'J. Agric. Food Chem.'}, { 'key': 'ref_62', 'doi-asserted-by': 'crossref', 'unstructured': 'Ntamo, Y., Jack, B., Ziqubu, K., Mazibuko-Mbeje, S.E., Nkambule, B.B., ' 'Nyambuya, T.M., Mabhida, S.E., Hanser, S., Orlando, P., and Tiano, L. ' '(2022). Epigallocatechin gallate as a nutraceutical to potentially ' 'target the metabolic syndrome: Novel insights into therapeutic effects ' 'beyond its antioxidant and anti-inflammatory properties. Crit. Rev. Food ' 'Sci. Nutr., 1–23.', 'DOI': '10.1080/10408398.2022.2104805'}, { 'key': 'ref_63', 'doi-asserted-by': 'crossref', 'first-page': '1243', 'DOI': '10.1080/10408398.2019.1565490', 'article-title': 'Nanochemoprevention with therapeutic benefits: An updated review ' 'focused on epigallocatechin gallate delivery', 'volume': '60', 'author': 'Yang', 'year': '2020', 'journal-title': 'Crit. Rev. Food Sci. Nutr.'}, { 'key': 'ref_64', 'doi-asserted-by': 'crossref', 'first-page': '757', 'DOI': '10.1038/sj.ejcn.1601084', 'article-title': 'Consumption of black and green tea had no effect on inflammation, ' 'haemostasis and endothelial markers in smoking healthy individuals', 'volume': '54', 'author': 'Pijl', 'year': '2000', 'journal-title': 'Eur. J. Clin. Nutr.'}, { 'key': 'ref_65', 'doi-asserted-by': 'crossref', 'first-page': '3049', 'DOI': '10.1016/j.apsb.2022.02.002', 'article-title': 'Why 90% of clinical drug development fails and how to improve it?', 'volume': '12', 'author': 'Sun', 'year': '2022', 'journal-title': 'Acta Pharm. Sin. B'}, { 'key': 'ref_66', 'doi-asserted-by': 'crossref', 'unstructured': 'Quinn, T.R., Patel, H.N., Koh, K.H., Haines, B.E., Norrby, P.O., ' 'Helquist, P., and Wiest, O. (2022). Automated fitting of transition ' 'state force fields for biomolecular simulations. PLoS ONE, 17.', 'DOI': '10.1371/journal.pone.0264960'}, { 'key': 'ref_67', 'doi-asserted-by': 'crossref', 'first-page': '1674', 'DOI': '10.1093/bioinformatics/btu104', 'article-title': 'Improved protein-ligand binding affinity prediction by using a ' 'curvature-dependent surface-area model', 'volume': '30', 'author': 'Cao', 'year': '2014', 'journal-title': 'Bioinformatics'}, { 'key': 'ref_68', 'doi-asserted-by': 'crossref', 'first-page': '138', 'DOI': '10.1038/s41401-019-0228-6', 'article-title': 'CB-Dock: A web server for cavity detection-guided protein-ligand blind ' 'docking', 'volume': '41', 'author': 'Liu', 'year': '2020', 'journal-title': 'Acta Pharmacol. Sin.'}, { 'key': 'ref_69', 'doi-asserted-by': 'crossref', 'first-page': '1', 'DOI': '10.1038/s41598-021-84700-0', 'article-title': 'Drug design and repurposing with DockThor-VS web server focusing on ' 'SARS-CoV-2 therapeutic targets and their non-synonym variants', 'volume': '11', 'author': 'Guedes', 'year': '2021', 'journal-title': 'Sci. Rep.'}, { 'key': 'ref_70', 'doi-asserted-by': 'crossref', 'first-page': '37', 'DOI': '10.1186/s13321-020-00440-9', 'article-title': 'EDock: Blind protein–ligand docking by replica-exchange monte carlo ' 'simulation', 'volume': '12', 'author': 'Zhang', 'year': '2020', 'journal-title': 'J. Cheminform.'}, { 'key': 'ref_71', 'doi-asserted-by': 'crossref', 'first-page': '3891', 'DOI': '10.1021/acs.jcim.1c00203', 'article-title': 'AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and ' 'Python Bindings', 'volume': '61', 'author': 'Eberhardt', 'year': '2021', 'journal-title': 'J. Chem. Inf. Model.'}, { 'key': 'ref_72', 'doi-asserted-by': 'crossref', 'first-page': '605', 'DOI': '10.1016/j.rinp.2018.10.002', 'article-title': 'The effect of electron-donating substituents on tuning the nonlinear ' 'optical properties of pyrene-core arylamine derivatives: DFT ' 'calculations', 'volume': '11', 'author': 'Andijani', 'year': '2018', 'journal-title': 'Results Phys.'}, { 'key': 'ref_73', 'doi-asserted-by': 'crossref', 'first-page': '197805', 'DOI': '10.1016/j.virusres.2019.197805', 'article-title': 'Quercetin pentaacetate inhibits in vitro human respiratory syncytial ' 'virus adhesion', 'volume': '276', 'author': 'Lopes', 'year': '2020', 'journal-title': 'Virus Res.'}, { 'key': 'ref_74', 'doi-asserted-by': 'crossref', 'first-page': '1861', 'DOI': '10.1002/jcc.26717', 'article-title': 'Identification of novel inhibitors of SARS-CoV-2 main protease (Mpro) ' 'from Withania sp. by molecular docking and molecular dynamics ' 'simulation', 'volume': '42', 'author': 'Verma', 'year': '2021', 'journal-title': 'J. Comput. Chem.'}, { 'key': 'ref_75', 'doi-asserted-by': 'crossref', 'first-page': '421', 'DOI': '10.1016/j.sajb.2021.05.023', 'article-title': 'Phytochemical investigation of Amphilophium paniculatum; an ' 'underexplored Bignoniaceae species as a source of SARS-CoV-2 Mpro ' 'inhibitory metabolites: Isolation, identification, and molecular ' 'docking study', 'volume': '141', 'author': 'Samy', 'year': '2021', 'journal-title': 'S. Afr. J. Bot.'}, { 'key': 'ref_76', 'doi-asserted-by': 'crossref', 'first-page': '137751', 'DOI': '10.1016/j.cplett.2020.137751', 'article-title': 'Identification of potential inhibitors of SARS-CoV-2 main protease from ' 'Aloe vera compounds: A molecular docking study', 'volume': '754', 'author': 'Mpiana', 'year': '2020', 'journal-title': 'Chem. Phys. Lett.'}, { 'key': 'ref_77', 'doi-asserted-by': 'crossref', 'first-page': '20584', 'DOI': '10.1038/s41598-020-77602-0', 'article-title': 'In silico studies evidenced the role of structurally diverse plant ' 'secondary metabolites in reducing SARS-CoV-2 pathogenesis', 'volume': '10', 'author': 'Puttaswamy', 'year': '2020', 'journal-title': 'Sci. Rep.'}, { 'key': 'ref_78', 'doi-asserted-by': 'crossref', 'first-page': '173', 'DOI': '10.1016/j.jtcme.2021.01.006', 'article-title': 'Molecular docking analysis of rutin reveals possible inhibition of ' 'SARS-CoV-2 vital proteins', 'volume': '11', 'author': 'Rahman', 'year': '2021', 'journal-title': 'J. Tradit. Complement. Med.'}, { 'key': 'ref_79', 'doi-asserted-by': 'crossref', 'first-page': '661230', 'DOI': '10.3389/fchem.2021.661230', 'article-title': 'Molecular Docking and Dynamics Simulation Revealed the Potential ' 'Inhibitory Activity of ACEIs Against SARS-CoV-2 Targeting the hACE2 ' 'Receptor', 'volume': '9', 'author': 'Dahab', 'year': '2021', 'journal-title': 'Front. Chem.'}, { 'key': 'ref_80', 'doi-asserted-by': 'crossref', 'first-page': '592908', 'DOI': '10.3389/fmicb.2020.592908', 'article-title': 'Molecular Docking Reveals Ivermectin and Remdesivir as Potential ' 'Repurposed Drugs Against SARS-CoV-2', 'volume': '11', 'author': 'Eweas', 'year': '2021', 'journal-title': 'Front. Microbiol.'}, { 'key': 'ref_81', 'doi-asserted-by': 'crossref', 'first-page': '17699', 'DOI': '10.1038/s41598-020-74715-4', 'article-title': 'Molecular docking study of potential phytochemicals and their effects ' 'on the complex of SARS-CoV2 spike protein and human ACE2', 'volume': '10', 'author': 'Basu', 'year': '2020', 'journal-title': 'Sci. Rep.'}, { 'key': 'ref_82', 'doi-asserted-by': 'crossref', 'first-page': '831', 'DOI': '10.1007/s10529-011-0845-8', 'article-title': 'Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease ' 'expressed in Pichia pastoris', 'volume': '34', 'author': 'Nguyen', 'year': '2012', 'journal-title': 'Biotechnol. Lett.'}, { 'key': 'ref_83', 'doi-asserted-by': 'crossref', 'first-page': '1', 'DOI': '10.1016/j.ijbiomac.2021.02.012', 'article-title': 'Epigallocatechin-3-gallate, an active ingredient of Traditional Chinese ' 'Medicines, inhibits the 3CLpro activity of SARS-CoV-2', 'volume': '176', 'author': 'Du', 'year': '2021', 'journal-title': 'Int. J. Biol. Macromol.'}, { 'key': 'ref_84', 'doi-asserted-by': 'crossref', 'unstructured': 'Golonka, I., Wilk, S., and Musiał, W. (2020). The Influence of UV ' 'Radiation on the Degradation of Pharmaceutical Formulations Containing ' 'Quercetin. Molecules, 25.', 'DOI': '10.3390/molecules25225454'}, { 'key': 'ref_85', 'doi-asserted-by': 'crossref', 'first-page': '1', 'DOI': '10.1016/j.bmc.2018.10.017', 'article-title': 'Cathepsin B: Active site mapping with peptidic substrates and ' 'inhibitors', 'volume': '27', 'author': 'Schmitz', 'year': '2019', 'journal-title': 'Biorg. Med. Chem.'}, { 'key': 'ref_86', 'doi-asserted-by': 'crossref', 'first-page': '757', 'DOI': '10.1346/CCMN.2010.0580603', 'article-title': 'Influence of Guanidine, Imidazole, and Some Heterocyclic Compounds on ' 'Dissolution Rates of Amorphous Silica', 'volume': '58', 'author': 'Kawano', 'year': '2010', 'journal-title': 'Clays Clay Miner.'}, { 'key': 'ref_87', 'doi-asserted-by': 'crossref', 'unstructured': 'Murad, H.A.S., Alqurashi, T.M.A., and Hussien, M.A. (2022). Interactions ' 'of selected cardiovascular active natural compounds with CXCR4 and CXCR7 ' 'receptors: A molecular docking, molecular dynamics, and ' 'pharmacokinetic/toxicity prediction study. BMC Complement. Med. Ther., ' '22.', 'DOI': '10.1186/s12906-021-03488-8'}], 'container-title': 'Biomedicines', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://www.mdpi.com/2227-9059/10/12/3074/pdf', 'content-type': 'unspecified', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2022, 11, 30]], 'date-time': '2022-11-30T11:28:13Z', 'timestamp': 1669807693000}, 'score': 1, 'resource': {'primary': {'URL': 'https://www.mdpi.com/2227-9059/10/12/3074'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2022, 11, 29]]}, 'references-count': 87, 'journal-issue': {'issue': '12', 'published-online': {'date-parts': [[2022, 12]]}}, 'alternative-id': ['biomedicines10123074'], 'URL': 'http://dx.doi.org/10.3390/biomedicines10123074', 'relation': {}, 'ISSN': ['2227-9059'], 'subject': ['General Biochemistry, Genetics and Molecular Biology', 'Medicine (miscellaneous)'], 'container-title-short': 'Biomedicines', 'published': {'date-parts': [[2022, 11, 29]]}}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit