Analgesics
Antiandrogens
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
Abstract
All quercetin studies
Meta analysis
 
Feedback
Home
next
study
previous
study
c19early.org COVID-19 treatment researchQuercetinQuercetin (more..)
Melatonin Meta
Metformin Meta
Azvudine Meta
Bromhexine Meta Molnupiravir Meta
Budesonide Meta
Colchicine Meta
Conv. Plasma Meta Nigella Sativa Meta
Curcumin Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis    Recent:   

Evaluation of therapeutic potentials of some bioactive compounds in selected African plants targeting main protease (Mpro) in SARS-CoV-2: a molecular docking study

Akinwumi et al., Egyptian Journal of Medical Human Genetics, doi:10.1186/s43042-023-00456-4
Dec 2023  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Quercetin for COVID-19
22nd treatment shown to reduce risk in July 2021
 
*, now known with p = 0.0031 from 11 studies.
No treatment is 100% effective. Protocols combine complementary and synergistic treatments. * >10% efficacy in meta analysis with ≥3 clinical studies.
4,100+ studies for 60+ treatments. c19early.org
In Silico study showing potential antiviral benefits of quercetin, catechin, epicatechin, vitexin, kaempferol, gamma-sitosterol, and kaur-16-ene against the SARS-CoV-2 main protease (Mpro). Molecular docking analysis showed that these compounds bind more strongly to Mpro than the control drug Remdesivir, inhibiting Mpro's activity. The compounds exhibited suitable drug-likeness and ADMET properties.
In Silico studies predict inhibition of SARS-CoV-2, or minimization of side effects, with quercetin or metabolites via binding to the spike Note A, Alavi, Azmi (B), Chandran, Kandeil, Mandal, Moschovou, Nguyen, Pan, Thapa (B), Şimşek, Mpro Note B, Akinwumi, Alanzi, Ibeh, Kandeil, Mandal, Moschovou, Nguyen, Qin, Rehman, Sekiou (B), Singh, Thapa (B), Wang, Zhang, Shaik, Waqas, RNA-dependent RNA polymerase Note C, Corbo, PLpro Note D, Ibeh, Zhang, ACE2 Note E, Chandran, Ibeh, Qin, Thapa (B), Şimşek, Alkafaas, TMPRSS2 Note F, Chandran, helicase Note G, Alanzi, Singh (B), endoribonuclease Note H, Alavi, cathepsin L Note I, Ahmed, Wnt-3 Note J, Chandran, FZD Note K, Chandran, LRP6 Note L, Chandran, ezrin Note M, Chellasamy, ADRP Note N, Nguyen, NRP1 Note O, Şimşek, EP300 Note P, Hasanah, PTGS2 Note Q, Qin, HSP90AA1 Note R, Qin, Hasanah, matrix metalloproteinase 9 Note S, Sai Ramesh, IL-6 Note T, Yang, Yang (B), IL-10 Note U, Yang, VEGFA Note V, Yang (B), and RELA Note W, Yang (B) proteins. In Vitro studies demonstrate efficacy in Calu-3 Note X, DiGuilio, A549 Note Y, Yang, HEK293-ACE2+ Note Z, Singh (C), Huh-7 Note AA, Pan, Caco-2 Note AB, Roy, Vero E6 Note AC, Kandeil, El-Megharbel, Roy, mTEC Note AD, Wu, and RAW264.7 Note AE, Wu cells. Animal studies demonstrate efficacy in K18-hACE2 mice Note AF, Aguado, db/db mice Note AG, Wu, Wu (B), BALB/c mice Note AH, Shaker, and rats El-Megharbel (B). Quercetin reduced proinflammatory cytokines and protected lung and kidney tissue against LPS-induced damage in mice Shaker.
Akinwumi et al., 11 Dec 2023, peer-reviewed, 4 authors. Contact: akinwumiishola5000@gmail.com.
In Silico studies are an important part of preclinical research, however results may be very different in vivo.
This PaperQuercetinAll
Evaluation of therapeutic potentials of some bioactive compounds in selected African plants targeting main protease (Mpro) in SARS-CoV-2: a molecular docking study
Ishola Abeeb Akinwumi, Barakat Olamide Ishola, Oluwatosin Maryam Adeyemo, Adefolarin Phebean Owojuyigbe
Egyptian Journal of Medical Human Genetics, doi:10.1186/s43042-023-00456-4
Background Coronavirus disease 2019 is an infectious disease brought on by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a global treat in early 2020. Despite worldwide research proving different medications used to treat COVID-19, the infection still affects the human race; we need to continue researching the virus to protect humanity and reduce the complications that some medications might cause. This study focuses on finding another promising therapeutic compound against SARS-CoV-2. Twenty-four (24) bioactive compounds were selected from the following African plants' Adansonia digitata L, Aframomum melegueta K. Schum, Ageratum conyzoides (L.) L, and Boswellia dalzielii, and Remdesivir was used as the control medication. The PubChem web server acquired the 3D structures of bioactive compounds in the plant and the control medication. The SARS-CoV-2 main protease (M pro ) crystal structure was obtained using the Protein Data Bank (PDB). Using the SwissADME web server, the bioactive compounds' drug-likeness was assessed, and AutoDock was employed for the molecular docking with the M pro . The Proteins Plus and Protein-Ligand Interaction Profiler web servers were used to analyse the docked complexes. Furthermore, the admetSAR website was utilized to predict the ligands' absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. Results Based on the drug-likeness screening, Rutin violated more than one of the Lipinski rules of five, while Remdesivir violated two. Molecular docking analysis results indicated that Catechin, Epicatechin, Vitexin, Quercetin, Kaempferol, Gamma-Sitosterol, and Kaur-16-ene exhibited a stronger binding affinity with M pro , with binding scores of -7.1, -7.1, -8.0, -7.3, -7.2, -6.8, and -6.5 kcal/mol, respectively, compared to Remdesivir's binding score of -6.3 kcal/mol. Consequently, binding scores of bioactive compounds suggest their potential biological activity against the SARS-CoV-2 main protease. Additionally, these bioactive compounds exhibited favourable ADMET properties. Vitexin also has a plasma protein binding below 90%, a promising medication distribution feature. Conclusions This study shows that Catechin, Epicatechin, Vitexin, Quercetin, Kaempferol, Gamma-Sitosterol, and Kaur-16-ene have better binding affinities with M pro than Remdesivir. Molecular dynamics simulation in vitro and in vivo investigation is required to support this study.
Class Declarations Ethics approval and consent to participate Not applicable. Consent for publication Not applicable. Competing interests The authors declare that they have no competing interests. Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
Akinwumi, Faleti, Owojuyigbe, Raji, Alaka, In silico studies of bioactive compounds selected from four african plants with inhibitory activity against plasmodium falciparum dihydrofolate reductase-thymidylate synthase (pfDHFR-TS), J Adv Pharm Res, doi:10.21608/aprh.2022.139794.1175
Atanasov, Zotchev, Dirsch, Supuran, Natural products in drug discovery: advances and opportunities, Nat Rev Drug Discovery
Attah, Fagbemi, Olubiyi, Dada-Adegbola, Oluwadotun et al., Therapeutic potentials of antiviral plants used in traditional african medicine with COVID-19 in focus: a Nigerian perspective, Front Pharmacol
Berman, Westbrook, Feng, Gilliland, Bhat et al., The Protein Data Bank, Nucleic Acids Research
Braca, Sinisgalli, Leo, Muscatello, Cioni et al., Phytochemical profile, antioxidant and antidiabetic activities of Adansonia digitata L (Baobab) from mali, as a source of health-promoting compounds, Molecules, doi:10.3390/molecules23123104
Calixto, The role of natural products in modern drug discovery, Anais da Academia Brasileira de Ciências
Cheng, Li, Zhou, Shen, Wu et al., admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties, J Chem Inf Model
Chomini, Peter, Ameh, Chomini, Bassey et al., Phytochemical screening and antibacterial activities of Aframomum melegueta (K. Schum) seed extracts on Salmonella typhi and Klebsiella pneumoniae, J Appl Sci Environ Manag
Daina, Michielin, Zoete, SwissADME: a free web tool to evaluate pharmacokinetics, druglikeness and medicinal chemistry friendliness of small molecules, Sci Rep, doi:10.1038/srep42717
Delano, The PyMOL molecular graphics system
Esteves, Rueff, Kranendonk, The central role of cytochrome P450 in xenobiotic metabolism-a brief review on a fascinating enzyme family, J Xenobiot, doi:10.3390/jox11030007
Fahmy, Eman, Moghannem, Azam, El-Shazly, Breaking down the barriers to a natural antiviral agent: antiviral activity and molecular docking of Erythrina speciosa extract, fractions, and the major compound, Chem Biodivers, doi:10.1002/cbdv.201900511
Ferrao, Janeque, Anti-viral compounds from Jatropha curcas seed extract with anti-HIV-1 and anti-SARS-CoV-2 action, Afr J Pharm Pharmacol, doi:10.5897/ajpp2022.5328
Fricker, Gastreich, Rarey, Automated drawing of structural molecular formulas under constraints, J Chem Inf Comput Sci, doi:10.1021/ci049958u
Gaobotse, Venkataraman, Brown, Masisi, Kwape et al., The use of African medicinal plants in cancer management, Front Pharmacol
Ghosh, Chakraborty, Biswas, Chowdhuri, Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors-an in silico docking and molecular dynamics simulation study, J Biomol Struct Dyn, doi:10.1080/07391102.2020.1779818
Gordon, Jang, Bouhaddou, Xu, Obernier et al., A SARS-CoV-2 protein interaction map reveals targets for drug repurposing, Nature, doi:10.1038/s41586-020-2286-9
Gupta, Savytskyi, Coban, Venugopal, Vasili et al., Protein structure-based in-silico approaches to drug discovery: Guide to COVID-19 therapeutics, Mol Aspects Med
Hu, Xiong, Zhu, Zhang, Zhang et al., The SARS-CoV-2 main protease (Mpro): structure, function, and emerging therapies for COVID-19, MedComm, doi:10.1002/mco2.151
Hussain, Harrasi, Al-Rawahi, Hussain, Ohemu, Chemistry and biology of essential oils of genus boswellia. Evidence-based complementary and alternative medicine 24
Ihlenfeldt, Bolton, Bryant, The PubChem chemical structure sketcher, J Cheminformatics, doi:10.1186/1758-2946-1-20
Jin, Du, Xu, Xu, Deng et al., Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors, Nature, doi:10.1038/s41586-020-2223-y
Kamatou, Vermaak, Viljoen, An updated review of Adansonia digitata: a commercially important African tree, S Afr J Bot
Kandeel, Al-Nazawi, Virtual screening and repurposing of FDA approved drugs against COVID-19 main protease, Life Sci, doi:10.1016/j.lfs.2020.117627
Keretsu, Bhujbal, Cho, Rational approach toward COVID-19 main protease inhibitors via molecular docking, molecular dynamics simulation and free energy calculation, Sci Rep, doi:10.1038/s41598-020-74468-0
Kim, Chen, Cheng, Gindulyte, He et al., PubChem in 2021: new data content and improved web interfaces, Nucleic Acids Res
Kohoude, Gbaguidi, Agbani, Ayedoun, Cazaux et al., Chemical composition and biological activities of extracts and essential oil of Boswellia dalzielii leaves, Pharm Biol, doi:10.1080/13880209.2016.1226356
Kumar, Singh, Patel, In silico prediction of potential inhibitors for the main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing, J Infect Public Health, doi:10.1016/j.jiph.2020.06.016
Liang, Pitsillou, Karagiannis, Darmawan, Ng et al., Interaction of the prototypical α-ketoamide inhibitor with the SARS-CoV-2 main protease active site in silico: molecular dynamic simulations highlight the stability of the ligand-protein complex, Comput Biol Chem, doi:10.1016/j.compbiolchem.2020.107292
Lipinski, Drug-like properties and the causes of poor solubility and poor permeability, J Pharmacol Toxicol Methods, doi:10.1016/s1056-8719(00)00107-6
Lipinski, Lombardo, Domino, Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in, Adv Drug Deliv Rev, doi:10.1016/s0169-409x(00)00129-0
Lipinski, Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions, Adv Drug Deliv Rev
Makhloufi, Ghemit, El-Kolli, Baitiche, Computational investigation into Nirematrelvir/Ritonavir synergetic efficiency compared with some approved antiviral drugs targeting main protease (Mpro) SARS-CoV-2 Omicron variant, J Indian Chem Soc
Mamza, Sodipo, Abdulrahman, Khan, Phytochemical analysis and in vitro antimicrobial assay of the methanolic stem bark extract of Boswellia dalzielii Hutch. (Burseraceae), Chem Res J
Matsumoto, Yamada, Takuma, Niino, Sagesaka, Effects of green tea catechins and theanine on preventing influenza infection among healthcare workers: a randomized controlled trial, BMC Complem Altern Med, doi:10.1186/1472-6882-11-15
Ngo, Pham, Le, Pham, Vu, Computational determination of potential inhibitors of SARS-CoV-2 main protease, J Chem Inf Model, doi:10.1021/acs.jcim.0c00491
Ngwoke, Chevallier, Wirkom, Stevenson, Elliott et al., In vitro bactericidal activity of diterpenoids isolated from Aframomum melegueta K. Schum against strains of Escherichia coli, Listeria monocytogenes and Staphylococcus aureus, J Ethnopharmacol, doi:10.1016/j.jep.2013.12.035
Oladunmoye, Characterization of organic compounds in Aframomum melegueta K. Schum Using GC-MS, Med Aromat Plants, doi:10.35248/2167-0412.19.8.331
Patil, Nimbalkar, Jadhav, Dawkar, Govindwar, Antiaflatoxigenic and antioxidant activity of an essential oil from Ageratum conyzoides L, J Sci Food Agric
Pettersen, Goddard, Huang, Couch, Greenblatt et al., UCSF Chimera-a visualization system for exploratory research and analysis, J Comput Chem
Qurishi, Hamid, Zargar, Singh, Saxena, Potential role of natural molecules in health and disease: importance of boswellic acid, J Med Plants Res
Ranjan, Kishore, Tj, Jha, Ojha et al., Nutraceutical potential of vitexin: a flavone glycoside, J Phytopharmacol, doi:10.31254/phyto.2023.12107
Reygaert, Green tea catechins: their use in treating and preventing infectious diseases, Biomed Res Int, doi:10.1155/2018/9105261
Salentin, Schreiber, Haupt, Adasme, Schroeder, PLIP: fully automated proteinligand interaction profiler, Nucleic Acids Res, doi:10.1093/nar/gkv315
Selvarani, James, Multiple inflammatory and antiviral activities in Adansonia digitata (Baobab) leaves, fruits and seeds, J Med Plants Res
Shamsi, Mohammad, Anwar, Alajmi, Hussain et al., Glecaprevir and Maraviroc are high-affinity inhibitors of SARS-CoV-2 main protease: possible implication in COVID-19 therapy, Biosci Rep, doi:10.1042/bsr20201256
Steinmann, Buer, Pietschmann, Steinmann, Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea, Br J Pharmacol, doi:10.1111/bph.12009
Stierand, Maass, Rarey, Molecular complexes at a glance: automated generation of two dimensional complex diagrams, Bioinformatics, doi:10.1093/bioinformatics/btl150
Tegasne, Kapche, Mawabo, Talla, Jouda et al., Bioguided chemical study of Boswellia dalzielii Hutch. (Burseraceae) for antibacterial agents and a new glucopyranoxylmethoxybenzyle, Nat Product Res
Thomford, Senthebane, Munro, Seele, Maroyi et al., Natural products for drug discovery in the 21st century: innovations for novel drug discovery, Int J Mol Sci
Trott, Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading, J Comput Chem
Umar, Siraj, Ajayi, Jimoh, Chukwuemeka, Molecular docking studies of some selected gallic acid derivatives against five nonstructural proteins of novel coronavirus, J Genet Eng Biotechnol, doi:10.1186/s43141-021-00120-7
Vincent, Arokiyaraj, Saravanan, Dhanraj, Molecular docking studies on the anti-viral effects of compounds from kabasura kudineer on SARS-CoV-2 3CLpro, Front Mol Biosci, doi:10.3389/fmolb.2020.61340
Xu, Xu, Zheng, A review of the antiviral role of green tea catechins, Molecules, doi:10.3390/molecules22081337
Yadav, Ganie, Singh, Chhillar, Yadav, Phytochemical constituents and ethnopharmacological properties of Ageratum conyzoides L, Phytother Res
Zhao, Wang, Tang, Han, Li et al., Anti-inflammatory effects of kaempferol-3-O-rhamnoside on HSV-1 encephalitis in vivo and in vitro, Neurosci Lett, doi:10.1016/j.neulet.2021.136172
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit