Evaluation of therapeutic potentials of some bioactive compounds in selected African plants targeting main protease (Mpro) in SARS-CoV-2: a molecular docking study
Ishola Abeeb Akinwumi, Barakat Olamide Ishola, Oluwatosin Maryam Adeyemo, Adefolarin Phebean Owojuyigbe
Egyptian Journal of Medical Human Genetics, doi:10.1186/s43042-023-00456-4
Background Coronavirus disease 2019 is an infectious disease brought on by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a global treat in early 2020. Despite worldwide research proving different medications used to treat COVID-19, the infection still affects the human race; we need to continue researching the virus to protect humanity and reduce the complications that some medications might cause. This study focuses on finding another promising therapeutic compound against SARS-CoV-2. Twenty-four (24) bioactive compounds were selected from the following African plants' Adansonia digitata L, Aframomum melegueta K. Schum, Ageratum conyzoides (L.) L, and Boswellia dalzielii, and Remdesivir was used as the control medication. The PubChem web server acquired the 3D structures of bioactive compounds in the plant and the control medication. The SARS-CoV-2 main protease (M pro ) crystal structure was obtained using the Protein Data Bank (PDB). Using the SwissADME web server, the bioactive compounds' drug-likeness was assessed, and AutoDock was employed for the molecular docking with the M pro . The Proteins Plus and Protein-Ligand Interaction Profiler web servers were used to analyse the docked complexes. Furthermore, the admetSAR website was utilized to predict the ligands' absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties.
Results Based on the drug-likeness screening, Rutin violated more than one of the Lipinski rules of five, while Remdesivir violated two. Molecular docking analysis results indicated that Catechin, Epicatechin, Vitexin, Quercetin, Kaempferol, Gamma-Sitosterol, and Kaur-16-ene exhibited a stronger binding affinity with M pro , with binding scores of -7.1, -7.1, -8.0, -7.3, -7.2, -6.8, and -6.5 kcal/mol, respectively, compared to Remdesivir's binding score of -6.3 kcal/mol. Consequently, binding scores of bioactive compounds suggest their potential biological activity against the SARS-CoV-2 main protease. Additionally, these bioactive compounds exhibited favourable ADMET properties. Vitexin also has a plasma protein binding below 90%, a promising medication distribution feature.
Conclusions This study shows that Catechin, Epicatechin, Vitexin, Quercetin, Kaempferol, Gamma-Sitosterol, and Kaur-16-ene have better binding affinities with M pro than Remdesivir. Molecular dynamics simulation in vitro and in vivo investigation is required to support this study.
Class
Declarations Ethics approval and consent to participate Not applicable.
Consent for publication Not applicable.
Competing interests The authors declare that they have no competing interests.
Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
Akinwumi, Faleti, Owojuyigbe, Raji, Alaka, In silico studies of bioactive compounds selected from four african plants with inhibitory activity against plasmodium falciparum dihydrofolate reductase-thymidylate synthase (pfDHFR-TS), J Adv Pharm Res,
doi:10.21608/aprh.2022.139794.1175
Atanasov, Zotchev, Dirsch, Supuran, Natural products in drug discovery: advances and opportunities, Nat Rev Drug Discovery
Attah, Fagbemi, Olubiyi, Dada-Adegbola, Oluwadotun et al., Therapeutic potentials of antiviral plants used in traditional african medicine with COVID-19 in focus: a Nigerian perspective, Front Pharmacol
Berman, Westbrook, Feng, Gilliland, Bhat et al., The Protein Data Bank, Nucleic Acids Research
Braca, Sinisgalli, Leo, Muscatello, Cioni et al., Phytochemical profile, antioxidant and antidiabetic activities of Adansonia digitata L (Baobab) from mali, as a source of health-promoting compounds, Molecules,
doi:10.3390/molecules23123104
Calixto, The role of natural products in modern drug discovery, Anais da Academia Brasileira de Ciências
Cheng, Li, Zhou, Shen, Wu et al., admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties, J Chem Inf Model
Chomini, Peter, Ameh, Chomini, Bassey et al., Phytochemical screening and antibacterial activities of Aframomum melegueta (K. Schum) seed extracts on Salmonella typhi and Klebsiella pneumoniae, J Appl Sci Environ Manag
Daina, Michielin, Zoete, SwissADME: a free web tool to evaluate pharmacokinetics, druglikeness and medicinal chemistry friendliness of small molecules, Sci Rep,
doi:10.1038/srep42717
Delano, The PyMOL molecular graphics system
Esteves, Rueff, Kranendonk, The central role of cytochrome P450 in xenobiotic metabolism-a brief review on a fascinating enzyme family, J Xenobiot,
doi:10.3390/jox11030007
Fahmy, Eman, Moghannem, Azam, El-Shazly, Breaking down the barriers to a natural antiviral agent: antiviral activity and molecular docking of Erythrina speciosa extract, fractions, and the major compound, Chem Biodivers,
doi:10.1002/cbdv.201900511
Ferrao, Janeque, Anti-viral compounds from Jatropha curcas seed extract with anti-HIV-1 and anti-SARS-CoV-2 action, Afr J Pharm Pharmacol,
doi:10.5897/ajpp2022.5328
Fricker, Gastreich, Rarey, Automated drawing of structural molecular formulas under constraints, J Chem Inf Comput Sci,
doi:10.1021/ci049958u
Gaobotse, Venkataraman, Brown, Masisi, Kwape et al., The use of African medicinal plants in cancer management, Front Pharmacol
Ghosh, Chakraborty, Biswas, Chowdhuri, Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors-an in silico docking and molecular dynamics simulation study, J Biomol Struct Dyn,
doi:10.1080/07391102.2020.1779818
Gordon, Jang, Bouhaddou, Xu, Obernier et al., A SARS-CoV-2 protein interaction map reveals targets for drug repurposing, Nature,
doi:10.1038/s41586-020-2286-9
Gupta, Savytskyi, Coban, Venugopal, Vasili et al., Protein structure-based in-silico approaches to drug discovery: Guide to COVID-19 therapeutics, Mol Aspects Med
Hu, Xiong, Zhu, Zhang, Zhang et al., The SARS-CoV-2 main protease (Mpro): structure, function, and emerging therapies for COVID-19, MedComm,
doi:10.1002/mco2.151
Hussain, Harrasi, Al-Rawahi, Hussain, Ohemu, Chemistry and biology of essential oils of genus boswellia. Evidence-based complementary and alternative medicine 24
Kamatou, Vermaak, Viljoen, An updated review of Adansonia digitata: a commercially important African tree, S Afr J Bot
Kandeel, Al-Nazawi, Virtual screening and repurposing of FDA approved drugs against COVID-19 main protease, Life Sci,
doi:10.1016/j.lfs.2020.117627
Keretsu, Bhujbal, Cho, Rational approach toward COVID-19 main protease inhibitors via molecular docking, molecular dynamics simulation and free energy calculation, Sci Rep,
doi:10.1038/s41598-020-74468-0
Kim, Chen, Cheng, Gindulyte, He et al., PubChem in 2021: new data content and improved web interfaces, Nucleic Acids Res
Kohoude, Gbaguidi, Agbani, Ayedoun, Cazaux et al., Chemical composition and biological activities of extracts and essential oil of Boswellia dalzielii leaves, Pharm Biol,
doi:10.1080/13880209.2016.1226356
Kumar, Singh, Patel, In silico prediction of potential inhibitors for the main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing, J Infect Public Health,
doi:10.1016/j.jiph.2020.06.016
Liang, Pitsillou, Karagiannis, Darmawan, Ng et al., Interaction of the prototypical α-ketoamide inhibitor with the SARS-CoV-2 main protease active site in silico: molecular dynamic simulations highlight the stability of the ligand-protein complex, Comput Biol Chem,
doi:10.1016/j.compbiolchem.2020.107292
Lipinski, Lombardo, Domino, Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in, Adv Drug Deliv Rev,
doi:10.1016/s0169-409x(00)00129-0
Lipinski, Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions, Adv Drug Deliv Rev
Makhloufi, Ghemit, El-Kolli, Baitiche, Computational investigation into Nirematrelvir/Ritonavir synergetic efficiency compared with some approved antiviral drugs targeting main protease (Mpro) SARS-CoV-2 Omicron variant, J Indian Chem Soc
Mamza, Sodipo, Abdulrahman, Khan, Phytochemical analysis and in vitro antimicrobial assay of the methanolic stem bark extract of Boswellia dalzielii Hutch. (Burseraceae), Chem Res J
Matsumoto, Yamada, Takuma, Niino, Sagesaka, Effects of green tea catechins and theanine on preventing influenza infection among healthcare workers: a randomized controlled trial, BMC Complem Altern Med,
doi:10.1186/1472-6882-11-15
Ngo, Pham, Le, Pham, Vu, Computational determination of potential inhibitors of SARS-CoV-2 main protease, J Chem Inf Model,
doi:10.1021/acs.jcim.0c00491
Ngwoke, Chevallier, Wirkom, Stevenson, Elliott et al., In vitro bactericidal activity of diterpenoids isolated from Aframomum melegueta K. Schum against strains of Escherichia coli, Listeria monocytogenes and Staphylococcus aureus, J Ethnopharmacol,
doi:10.1016/j.jep.2013.12.035
Patil, Nimbalkar, Jadhav, Dawkar, Govindwar, Antiaflatoxigenic and antioxidant activity of an essential oil from Ageratum conyzoides L, J Sci Food Agric
Pettersen, Goddard, Huang, Couch, Greenblatt et al., UCSF Chimera-a visualization system for exploratory research and analysis, J Comput Chem
Qurishi, Hamid, Zargar, Singh, Saxena, Potential role of natural molecules in health and disease: importance of boswellic acid, J Med Plants Res
Reygaert, Green tea catechins: their use in treating and preventing infectious diseases, Biomed Res Int,
doi:10.1155/2018/9105261
Salentin, Schreiber, Haupt, Adasme, Schroeder, PLIP: fully automated proteinligand interaction profiler, Nucleic Acids Res,
doi:10.1093/nar/gkv315
Selvarani, James, Multiple inflammatory and antiviral activities in Adansonia digitata (Baobab) leaves, fruits and seeds, J Med Plants Res
Shamsi, Mohammad, Anwar, Alajmi, Hussain et al., Glecaprevir and Maraviroc are high-affinity inhibitors of SARS-CoV-2 main protease: possible implication in COVID-19 therapy, Biosci Rep,
doi:10.1042/bsr20201256
Steinmann, Buer, Pietschmann, Steinmann, Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea, Br J Pharmacol,
doi:10.1111/bph.12009
Tegasne, Kapche, Mawabo, Talla, Jouda et al., Bioguided chemical study of Boswellia dalzielii Hutch. (Burseraceae) for antibacterial agents and a new glucopyranoxylmethoxybenzyle, Nat Product Res
Thomford, Senthebane, Munro, Seele, Maroyi et al., Natural products for drug discovery in the 21st century: innovations for novel drug discovery, Int J Mol Sci
Trott, Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading, J Comput Chem
Umar, Siraj, Ajayi, Jimoh, Chukwuemeka, Molecular docking studies of some selected gallic acid derivatives against five nonstructural proteins of novel coronavirus, J Genet Eng Biotechnol,
doi:10.1186/s43141-021-00120-7
Vincent, Arokiyaraj, Saravanan, Dhanraj, Molecular docking studies on the anti-viral effects of compounds from kabasura kudineer on SARS-CoV-2 3CLpro, Front Mol Biosci,
doi:10.3389/fmolb.2020.61340
Yadav, Ganie, Singh, Chhillar, Yadav, Phytochemical constituents and ethnopharmacological properties of Ageratum conyzoides L, Phytother Res
Zhao, Wang, Tang, Han, Li et al., Anti-inflammatory effects of kaempferol-3-O-rhamnoside on HSV-1 encephalitis in vivo and in vitro, Neurosci Lett,
doi:10.1016/j.neulet.2021.136172
DOI record:
{
"DOI": "10.1186/s43042-023-00456-4",
"ISSN": [
"2090-2441"
],
"URL": "http://dx.doi.org/10.1186/s43042-023-00456-4",
"abstract": "<jats:title>Abstract</jats:title><jats:sec>\n <jats:title>Background</jats:title>\n <jats:p>Coronavirus disease 2019 (COVID-19) is an infectious disease brought on by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a global treat in early 2020. Despite worldwide research proving different medications used to treat COVID-19, the infection still affects the human race; we need to continue researching the virus to protect humanity and reduce the complications that some medications might cause. This study focuses on finding another promising therapeutic compound against SARS-CoV-2. Twenty-four (24) bioactive compounds were selected from the following African plants' <jats:italic>Adansonia digitata L, Aframomum melegueta K. Schum, Ageratum conyzoides (L.) L</jats:italic>, and <jats:italic>Boswellia dalzielii, and</jats:italic> Remdesivir was used as the control medication. The PubChem web server acquired the 3D structures of bioactive compounds in the plant and the control medication. The SARS-CoV-2 main protease (M<jats:sup>pro</jats:sup>) crystal structure was obtained using the Protein Data Bank (PDB). Using the SwissADME web server, the bioactive compounds' drug-likeness was assessed, and AutoDock was employed for the molecular docking with the M<jats:sup>pro</jats:sup>. The Proteins Plus and Protein–Ligand Interaction Profiler web servers were used to analyse the docked complexes. Furthermore, the admetSAR website was utilized to predict the ligands' absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties.</jats:p>\n </jats:sec><jats:sec>\n <jats:title>Results</jats:title>\n <jats:p>Based on the drug-likeness screening, Rutin violated more than one of the Lipinski rules of five, while Remdesivir violated two. Molecular docking analysis results indicated that Catechin, Epicatechin, Vitexin, Quercetin, Kaempferol, Gamma-Sitosterol, and Kaur-16-ene exhibited a stronger binding affinity with M<jats:sup>pro</jats:sup>, with binding scores of − 7.1, − 7.1, − 8.0, − 7.3, − 7.2, − 6.8, and − 6.5 kcal/mol, respectively, compared to Remdesivir's binding score of − 6.3 kcal/mol. Consequently, binding scores of bioactive compounds suggest their potential biological activity against the SARS-CoV-2 main protease. Additionally, these bioactive compounds exhibited favourable ADMET properties. Vitexin also has a plasma protein binding below 90%, a promising medication distribution feature.</jats:p>\n </jats:sec><jats:sec>\n <jats:title>Conclusions</jats:title>\n <jats:p>This study shows that Catechin, Epicatechin, Vitexin, Quercetin, Kaempferol, Gamma-Sitosterol, and Kaur-16-ene have better binding affinities with M<jats:sup>pro</jats:sup> than Remdesivir. Molecular dynamics simulation in vitro and in vivo investigation is required to support this study.</jats:p>\n </jats:sec>",
"alternative-id": [
"456"
],
"article-number": "80",
"assertion": [
{
"group": {
"label": "Article History",
"name": "ArticleHistory"
},
"label": "Received",
"name": "received",
"order": 1,
"value": "4 May 2023"
},
{
"group": {
"label": "Article History",
"name": "ArticleHistory"
},
"label": "Accepted",
"name": "accepted",
"order": 2,
"value": "13 November 2023"
},
{
"group": {
"label": "Article History",
"name": "ArticleHistory"
},
"label": "First Online",
"name": "first_online",
"order": 3,
"value": "11 December 2023"
},
{
"group": {
"label": "Declarations",
"name": "EthicsHeading"
},
"name": "Ethics",
"order": 1
},
{
"group": {
"label": "Ethics approval and consent to participate",
"name": "EthicsHeading"
},
"name": "Ethics",
"order": 2,
"value": "Not applicable."
},
{
"group": {
"label": "Consent for publication",
"name": "EthicsHeading"
},
"name": "Ethics",
"order": 3,
"value": "Not applicable."
},
{
"group": {
"label": "Competing interests",
"name": "EthicsHeading"
},
"name": "Ethics",
"order": 4,
"value": "The authors declare that they have no competing interests."
}
],
"author": [
{
"ORCID": "http://orcid.org/0000-0003-1973-8833",
"affiliation": [],
"authenticated-orcid": false,
"family": "Akinwumi",
"given": "Ishola Abeeb",
"sequence": "first"
},
{
"affiliation": [],
"family": "Ishola",
"given": "Barakat Olamide",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Adeyemo",
"given": "Oluwatosin Maryam",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Owojuyigbe",
"given": "Adefolarin Phebean",
"sequence": "additional"
}
],
"container-title": "Egyptian Journal of Medical Human Genetics",
"container-title-short": "Egypt J Med Hum Genet",
"content-domain": {
"crossmark-restriction": false,
"domain": [
"link.springer.com"
]
},
"created": {
"date-parts": [
[
2023,
12,
11
]
],
"date-time": "2023-12-11T12:02:41Z",
"timestamp": 1702296161000
},
"deposited": {
"date-parts": [
[
2023,
12,
12
]
],
"date-time": "2023-12-12T04:31:35Z",
"timestamp": 1702355495000
},
"indexed": {
"date-parts": [
[
2023,
12,
13
]
],
"date-time": "2023-12-13T00:50:40Z",
"timestamp": 1702428640133
},
"is-referenced-by-count": 0,
"issue": "1",
"issued": {
"date-parts": [
[
2023,
12,
11
]
]
},
"journal-issue": {
"issue": "1",
"published-online": {
"date-parts": [
[
2023,
12
]
]
}
},
"language": "en",
"license": [
{
"URL": "https://creativecommons.org/licenses/by/4.0",
"content-version": "tdm",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2023,
12,
11
]
],
"date-time": "2023-12-11T00:00:00Z",
"timestamp": 1702252800000
}
},
{
"URL": "https://creativecommons.org/licenses/by/4.0",
"content-version": "vor",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2023,
12,
11
]
],
"date-time": "2023-12-11T00:00:00Z",
"timestamp": 1702252800000
}
}
],
"link": [
{
"URL": "https://link.springer.com/content/pdf/10.1186/s43042-023-00456-4.pdf",
"content-type": "application/pdf",
"content-version": "vor",
"intended-application": "text-mining"
},
{
"URL": "https://link.springer.com/article/10.1186/s43042-023-00456-4/fulltext.html",
"content-type": "text/html",
"content-version": "vor",
"intended-application": "text-mining"
},
{
"URL": "https://link.springer.com/content/pdf/10.1186/s43042-023-00456-4.pdf",
"content-type": "application/pdf",
"content-version": "vor",
"intended-application": "similarity-checking"
}
],
"member": "297",
"original-title": [],
"prefix": "10.1186",
"published": {
"date-parts": [
[
2023,
12,
11
]
]
},
"published-online": {
"date-parts": [
[
2023,
12,
11
]
]
},
"publisher": "Springer Science and Business Media LLC",
"reference": [
{
"DOI": "10.1038/s41586-020-2286-9",
"author": "DE Gordon",
"doi-asserted-by": "publisher",
"journal-title": "Nature",
"key": "456_CR1",
"unstructured": "Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, O’Meara MJ, Rezelj VV, Guo JZ, Swaney DL, Tummino TA, Huettenhain R, Kaake RM, Richards AL, Tutuncuoglu B, Krogan NJ (2020) A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. https://doi.org/10.1038/s41586-020-2286-9",
"year": "2020"
},
{
"DOI": "10.1038/s41586-020-2223-y",
"author": "Z Jin",
"doi-asserted-by": "publisher",
"journal-title": "Nature",
"key": "456_CR2",
"unstructured": "Jin Z, Du X, Xu HE, Xu Y, Deng YQ, Meiqin L, Liu M, Zhao Y, Zhang B, Li X, Li XF, Zhang L, Peng C, Yang H (2020) Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature. https://doi.org/10.1038/s41586-020-2223-y",
"year": "2020"
},
{
"DOI": "10.1016/j.lfs.2020.117627",
"author": "M Kandeel",
"doi-asserted-by": "publisher",
"journal-title": "Life Sci",
"key": "456_CR3",
"unstructured": "Kandeel M, Al-Nazawi M (2020) Virtual screening and repurposing of FDA approved drugs against COVID-19 main protease. Life Sci. https://doi.org/10.1016/j.lfs.2020.117627",
"year": "2020"
},
{
"DOI": "10.1038/s41598-020-74468-0",
"author": "S Keretsu",
"doi-asserted-by": "publisher",
"journal-title": "Sci Rep",
"key": "456_CR4",
"unstructured": "Keretsu S, Bhujbal SP, Cho SJ (2020) Rational approach toward COVID-19 main protease inhibitors via molecular docking, molecular dynamics simulation and free energy calculation. Sci Rep. https://doi.org/10.1038/s41598-020-74468-0",
"year": "2020"
},
{
"DOI": "10.1021/acs.jcim.0c00491",
"author": "ST Ngo",
"doi-asserted-by": "publisher",
"journal-title": "J Chem Inf Model",
"key": "456_CR5",
"unstructured": "Ngo ST, Pham NQ, Le L, Pham DH, Vu VV (2020) Computational determination of potential inhibitors of SARS-CoV-2 main protease. J Chem Inf Model. https://doi.org/10.1021/acs.jcim.0c00491",
"year": "2020"
},
{
"DOI": "10.1016/j.jiph.2020.06.016",
"author": "Y Kumar",
"doi-asserted-by": "publisher",
"journal-title": "J Infect Public Health",
"key": "456_CR6",
"unstructured": "Kumar Y, Singh H, Patel CN (2020) In silico prediction of potential inhibitors for the main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing. J Infect Public Health. https://doi.org/10.1016/j.jiph.2020.06.016",
"year": "2020"
},
{
"DOI": "10.1042/bsr20201256",
"author": "A Shamsi",
"doi-asserted-by": "publisher",
"key": "456_CR7",
"unstructured": "Shamsi A, Mohammad T, Anwar S, Alajmi MF, Hussain A, Rehman MT, Islam A, Hassan MI (2020) Glecaprevir and Maraviroc are high-affinity inhibitors of SARS-CoV-2 main protease: possible implication in COVID-19 therapy. Biosci Rep. https://doi.org/10.1042/bsr20201256",
"year": "2020"
},
{
"DOI": "10.1016/j.compbiolchem.2020.107292",
"author": "J Liang",
"doi-asserted-by": "publisher",
"journal-title": "Comput Biol Chem",
"key": "456_CR8",
"unstructured": "Liang J, Pitsillou E, Karagiannis TC, Darmawan KK, Ng K, Hung A (2020) Interaction of the prototypical α-ketoamide inhibitor with the SARS-CoV-2 main protease active site in silico: molecular dynamic simulations highlight the stability of the ligand-protein complex. Comput Biol Chem. https://doi.org/10.1016/j.compbiolchem.2020.107292",
"year": "2020"
},
{
"DOI": "10.1016/j.jics.2023.100891",
"author": "A Makhloufi",
"doi-asserted-by": "publisher",
"issue": "3",
"journal-title": "J Indian Chem Soc",
"key": "456_CR9",
"unstructured": "Makhloufi A, Ghemit R, El-Kolli M, Baitiche M (2023) Computational investigation into Nirematrelvir/Ritonavir synergetic efficiency compared with some approved antiviral drugs targeting main protease (Mpro) SARS-CoV-2 Omicron variant. J Indian Chem Soc 100(3):100891",
"volume": "100",
"year": "2023"
},
{
"DOI": "10.1590/0001-3765201920190105",
"doi-asserted-by": "crossref",
"key": "456_CR10",
"unstructured": "Calixto JB (2019) The role of natural products in modern drug discovery. Anais da Academia Brasileira de Ciências 91"
},
{
"DOI": "10.1038/s41573-020-00114-z",
"author": "AG Atanasov",
"doi-asserted-by": "publisher",
"first-page": "200",
"issue": "3",
"journal-title": "Nat Rev Drug Discovery",
"key": "456_CR11",
"unstructured": "Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT (2021) Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discovery 20(3):200–216",
"volume": "20",
"year": "2021"
},
{
"DOI": "10.3390/ijms19061578",
"author": "NE Thomford",
"doi-asserted-by": "publisher",
"first-page": "1578",
"issue": "6",
"journal-title": "Int J Mol Sci",
"key": "456_CR12",
"unstructured": "Thomford NE, Senthebane DA, Rowe A, Munro D, Seele P, Maroyi A, Dzobo K (2018) Natural products for drug discovery in the 21st century: innovations for novel drug discovery. Int J Mol Sci 19(6):1578",
"volume": "19",
"year": "2018"
},
{
"DOI": "10.3389/fphar.2023.1122388",
"doi-asserted-by": "crossref",
"key": "456_CR13",
"unstructured": "Gaobotse G, Venkataraman S, Brown PD, Masisi K, Kwape TE, Nkwe DO et al (2023) The use of African medicinal plants in cancer management. Front Pharmacol 14"
},
{
"DOI": "10.3389/fphar.2021.596855",
"doi-asserted-by": "crossref",
"key": "456_CR14",
"unstructured": "Attah AF, Fagbemi AA, Olubiyi O, Dada-Adegbola H, Oluwadotun A, Elujoba A et al (2021) Therapeutic potentials of antiviral plants used in traditional african medicine with COVID-19 in focus: a Nigerian perspective. Front Pharmacol 12"
},
{
"DOI": "10.1016/j.sajb.2011.08.010",
"author": "GP Kamatou",
"doi-asserted-by": "publisher",
"first-page": "908",
"issue": "4",
"journal-title": "S Afr J Bot",
"key": "456_CR15",
"unstructured": "Kamatou GP, Vermaak I, Viljoen AM (2011) An updated review of Adansonia digitata: a commercially important African tree. S Afr J Bot 77(4):908–919",
"volume": "77",
"year": "2011"
},
{
"author": "V Selvarani",
"first-page": "576",
"issue": "8",
"journal-title": "J Med Plants Res",
"key": "456_CR16",
"unstructured": "Selvarani V, Hudson James B (2009) Multiple inflammatory and antiviral activities in Adansonia digitata (Baobab) leaves, fruits and seeds. J Med Plants Res 3(8):576–582",
"volume": "3",
"year": "2009"
},
{
"author": "MS Chomini",
"first-page": "1419",
"issue": "8",
"journal-title": "J Appl Sci Environ Manag",
"key": "456_CR17",
"unstructured": "Chomini MS, Peter MK, Ameh M, Chomini AE, Bassey EA, Ayodele AO (2020) Phytochemical screening and antibacterial activities of Aframomum melegueta (K. Schum) seed extracts on Salmonella typhi and Klebsiella pneumoniae. J Appl Sci Environ Manag 24(8):1419–1424",
"volume": "24",
"year": "2020"
},
{
"DOI": "10.1016/j.jep.2013.12.035",
"author": "KG Ngwoke",
"doi-asserted-by": "publisher",
"first-page": "1147",
"issue": "3",
"journal-title": "J Ethnopharmacol",
"key": "456_CR18",
"unstructured": "Ngwoke KG, Chevallier O, Wirkom VK, Stevenson P, Elliott CT, Situ C (2014) In vitro bactericidal activity of diterpenoids isolated from Aframomum melegueta K. Schum against strains of Escherichia coli, Listeria monocytogenes and Staphylococcus aureus. J Ethnopharmacol 151(3):1147–1154. https://doi.org/10.1016/j.jep.2013.12.035",
"volume": "151",
"year": "2014"
},
{
"DOI": "10.1002/jsfa.3857",
"author": "RP Patil",
"doi-asserted-by": "publisher",
"first-page": "608",
"issue": "4",
"journal-title": "J Sci Food Agric",
"key": "456_CR19",
"unstructured": "Patil RP, Nimbalkar MS, Jadhav UU, Dawkar VV, Govindwar SP (2010) Antiaflatoxigenic and antioxidant activity of an essential oil from Ageratum conyzoides L. J Sci Food Agric 90(4):608–614",
"volume": "90",
"year": "2010"
},
{
"DOI": "10.1002/ptr.6405",
"author": "N Yadav",
"doi-asserted-by": "publisher",
"first-page": "2163",
"issue": "9",
"journal-title": "Phytother Res",
"key": "456_CR20",
"unstructured": "Yadav N, Ganie SA, Singh B, Chhillar AK, Yadav SS (2019) Phytochemical constituents and ethnopharmacological properties of Ageratum conyzoides L. Phytother Res 33(9):2163–2178",
"volume": "33",
"year": "2019"
},
{
"author": "UT Mamza",
"first-page": "161",
"issue": "4",
"journal-title": "Chem Res J",
"key": "456_CR21",
"unstructured": "Mamza UT, Sodipo OA, Abdulrahman FI, Khan IZ (2018) Phytochemical analysis and in vitro antimicrobial assay of the methanolic stem bark extract of Boswellia dalzielii Hutch. (Burseraceae). Chem Res J 3(4):161–168",
"volume": "3",
"year": "2018"
},
{
"DOI": "10.1080/14786419.2020.1794863",
"author": "C Tegasne",
"doi-asserted-by": "publisher",
"first-page": "5199",
"issue": "23",
"journal-title": "Nat Product Res",
"key": "456_CR22",
"unstructured": "Tegasne C, Kapche GD, Mawabo IK, Talla RM, Jouda JB, Happi GM, Sewald N (2021) Bioguided chemical study of Boswellia dalzielii Hutch. (Burseraceae) for antibacterial agents and a new glucopyranoxylmethoxybenzyle. Nat Product Res 35(23):5199–5208",
"volume": "35",
"year": "2021"
},
{
"DOI": "10.1155/2013/140509",
"doi-asserted-by": "crossref",
"key": "456_CR23",
"unstructured": "Hussain H, Al-Harrasi A, Al-Rawahi A, Hussain J (2013) Chemistry and biology of essential oils of genus boswellia. Evidence-based complementary and alternative medicine"
},
{
"key": "456_CR24",
"unstructured": "Ohemu TL, Agunu A, Olotu PN, Ajima U, Dafam DG, Azila JJ (2014) Ethnobotanical survey of medical plants used in the traditional treatment of viral infections in Jos, plateau state, Nigeria"
},
{
"author": "Y Qurishi",
"first-page": "2778",
"issue": "25",
"journal-title": "J Med Plants Res",
"key": "456_CR25",
"unstructured": "Qurishi Y, Hamid A, Zargar MA, Singh SK, Saxena AK (2010) Potential role of natural molecules in health and disease: importance of boswellic acid. J Med Plants Res 4(25):2778–2785",
"volume": "4",
"year": "2010"
},
{
"DOI": "10.3390/molecules23123104",
"author": "A Braca",
"doi-asserted-by": "publisher",
"first-page": "3104",
"journal-title": "Molecules",
"key": "456_CR26",
"unstructured": "Braca A, Sinisgalli C, De Leo M, Muscatello B, Cioni PL, Milella L, Ostuni A, Giani S, Sanogo R (2018) Phytochemical profile, antioxidant and antidiabetic activities of Adansonia digitata L (Baobab) from mali, as a source of health-promoting compounds. Molecules 23:3104. https://doi.org/10.3390/molecules23123104",
"volume": "23",
"year": "2018"
},
{
"DOI": "10.35248/2167-0412.19.8.331",
"author": "MK Oladunmoye",
"doi-asserted-by": "publisher",
"first-page": "331",
"journal-title": "Schum Using GC-MS Med Aromat Plants (Los Angeles)",
"key": "456_CR27",
"unstructured": "Oladunmoye MK (2019) Characterization of organic compounds in Aframomum melegueta K. Schum Using GC-MS Med Aromat Plants (Los Angeles) 8:331. https://doi.org/10.35248/2167-0412.19.8.331",
"volume": "8",
"year": "2019"
},
{
"DOI": "10.1186/1758-2946-1-20",
"author": "WD Ihlenfeldt",
"doi-asserted-by": "publisher",
"first-page": "1",
"issue": "1",
"journal-title": "J Cheminformatics",
"key": "456_CR28",
"unstructured": "Ihlenfeldt WD, Bolton EE, Bryant SH (2009) The PubChem chemical structure sketcher. J Cheminformatics 1(1):1–9. https://doi.org/10.1186/1758-2946-1-20",
"volume": "1",
"year": "2009"
},
{
"DOI": "10.1080/13880209.2016.1226356",
"author": "MJ Kohoude",
"doi-asserted-by": "publisher",
"first-page": "33",
"issue": "1",
"journal-title": "Pharm Biol",
"key": "456_CR29",
"unstructured": "Kohoude MJ, Gbaguidi F, Agbani P, Ayedoun M, Cazaux S, Bouajila J (2017) Chemical composition and biological activities of extracts and essential oil of Boswellia dalzielii leaves. Pharm Biol 55(1):33–42. https://doi.org/10.1080/13880209.2016.1226356",
"volume": "55",
"year": "2017"
},
{
"DOI": "10.1093/nar/gkaa971",
"author": "S Kim",
"doi-asserted-by": "publisher",
"first-page": "D1388",
"issue": "D1",
"journal-title": "Nucleic Acids Res",
"key": "456_CR30",
"unstructured": "Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE (2019) PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res 49(D1):D1388–D1395",
"volume": "49",
"year": "2019"
},
{
"DOI": "10.1093/nar/28.1.235",
"author": "HM Berman",
"doi-asserted-by": "publisher",
"first-page": "235",
"journal-title": "The Protein Data Bank Nucleic Acids Research",
"key": "456_CR31",
"unstructured": "Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank Nucleic Acids Research 28:235–242",
"volume": "28",
"year": "2000"
},
{
"DOI": "10.1002/jcc.20084",
"author": "EF Pettersen",
"doi-asserted-by": "publisher",
"first-page": "1605",
"issue": "13",
"journal-title": "J Comput Chem",
"key": "456_CR32",
"unstructured": "Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605",
"volume": "25",
"year": "2004"
},
{
"DOI": "10.1038/srep42717",
"author": "A Daina",
"doi-asserted-by": "publisher",
"first-page": "42717",
"journal-title": "Sci Rep",
"key": "456_CR33",
"unstructured": "Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, druglikeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717. https://doi.org/10.1038/srep42717",
"volume": "7",
"year": "2017"
},
{
"DOI": "10.1016/j.addr.2016.04.029",
"author": "C Lipinski",
"doi-asserted-by": "publisher",
"first-page": "34",
"journal-title": "Adv Drug Deliv Rev",
"key": "456_CR34",
"unstructured": "Lipinski C (2016) Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Adv Drug Deliv Rev 101:34–41",
"volume": "101",
"year": "2016"
},
{
"DOI": "10.1002/jcc.21334",
"author": "O Trott",
"doi-asserted-by": "publisher",
"first-page": "455",
"issue": "2",
"journal-title": "J Comput Chem",
"key": "456_CR35",
"unstructured": "Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31(2):455–461",
"volume": "31",
"year": "2010"
},
{
"DOI": "10.1186/s43141-021-00120-7",
"author": "HI Umar",
"doi-asserted-by": "publisher",
"first-page": "16",
"journal-title": "J Genet Eng Biotechnol",
"key": "456_CR36",
"unstructured": "Umar HI, Siraj B, Ajayi A, Jimoh TO, Chukwuemeka PO (2021) Molecular docking studies of some selected gallic acid derivatives against five non-structural proteins of novel coronavirus. J Genet Eng Biotechnol 19:16. https://doi.org/10.1186/s43141-021-00120-7",
"volume": "19",
"year": "2021"
},
{
"author": "Delano",
"key": "456_CR37",
"unstructured": "Delano (2005) The PyMOL molecular graphics system. DeLano Scientific LLC, South San Francisco",
"volume-title": "The PyMOL molecular graphics system",
"year": "2005"
},
{
"DOI": "10.1093/nar/gkv315",
"author": "S Salentin",
"doi-asserted-by": "publisher",
"first-page": "W443",
"issue": "W1",
"journal-title": "Nucleic Acids Res",
"key": "456_CR38",
"unstructured": "Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M (2015) PLIP: fully automated proteinligand interaction profiler. Nucleic Acids Res 43(W1):W443–W447. https://doi.org/10.1093/nar/gkv315",
"volume": "43",
"year": "2015"
},
{
"DOI": "10.1093/bioinformatics/btl150",
"author": "K Stierand",
"doi-asserted-by": "publisher",
"first-page": "1710",
"issue": "14",
"journal-title": "Bioinformatics",
"key": "456_CR39",
"unstructured": "Stierand K, Maass PC, Rarey M (2006) Molecular complexes at a glance: automated generation of two dimensional complex diagrams. Bioinformatics 22(14):1710–1716. https://doi.org/10.1093/bioinformatics/btl150",
"volume": "22",
"year": "2006"
},
{
"DOI": "10.1021/ci049958u",
"author": "PC Fricker",
"doi-asserted-by": "publisher",
"first-page": "1065",
"issue": "3",
"journal-title": "J Chem Inf Comput Sci",
"key": "456_CR40",
"unstructured": "Fricker PC, Gastreich M, Rarey M (2004) Automated drawing of structural molecular formulas under constraints. J Chem Inf Comput Sci 44(3):1065–1078. https://doi.org/10.1021/ci049958u",
"volume": "44",
"year": "2004"
},
{
"DOI": "10.1021/ci300367a",
"author": "F Cheng",
"doi-asserted-by": "publisher",
"first-page": "3099",
"journal-title": "J Chem Inf Model",
"key": "456_CR41",
"unstructured": "Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G et al (2012) admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model 52:3099–3105",
"volume": "52",
"year": "2012"
},
{
"DOI": "10.1016/j.mam.2022.101151",
"doi-asserted-by": "crossref",
"key": "456_CR42",
"unstructured": "Gupta YP, Savytskyi OV, Coban M, Venugopal A, Vasili P, Weber CA, Rohit C, Ravi D, Hopkins C, Prakasha K, Caulfield TR (2022) Protein structure-based in-silico approaches to drug discovery: Guide to COVID-19 therapeutics. Mol Aspects Med 101151–101151."
},
{
"DOI": "10.1016/s0169-409x(00)00129-0",
"doi-asserted-by": "publisher",
"key": "456_CR43",
"unstructured": "Lipinski CA, Lombardo F, Domino BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169–409X(96)00423–1. The article was originally published in Adv Drug Deliv Rev 1997;23:3–25. 1. Adv Drug Deliv Rev 46(1–3):3–26. https://doi.org/10.1016/s0169-409x(00)00129-0."
},
{
"DOI": "10.1016/s1056-8719(00)00107-6",
"author": "CA Lipinski",
"doi-asserted-by": "publisher",
"first-page": "235",
"issue": "1",
"journal-title": "J Pharmacol Toxicol Methods",
"key": "456_CR44",
"unstructured": "Lipinski CA (2008) Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 44(1):235–249. https://doi.org/10.1016/s1056-8719(00)00107-6",
"volume": "44",
"year": "2008"
},
{
"DOI": "10.1080/07391102.2020.1779818",
"author": "R Ghosh",
"doi-asserted-by": "publisher",
"journal-title": "J Biomol Struct Dyn",
"key": "456_CR45",
"unstructured": "Ghosh R, Chakraborty A, Biswas A, Chowdhuri S (2020) Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors—an in silico docking and molecular dynamics simulation study. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2020.1779818",
"year": "2020"
},
{
"DOI": "10.1002/mco2.151",
"author": "Q Hu",
"doi-asserted-by": "publisher",
"journal-title": "MedComm",
"key": "456_CR46",
"unstructured": "Hu Q, Xiong Y, Zhu G, Zhang Y, Zhang Y, Huang P, Ge G (2022) The SARS-CoV-2 main protease (Mpro): structure, function, and emerging therapies for COVID-19. MedComm. https://doi.org/10.1002/mco2.151",
"year": "2022"
},
{
"DOI": "10.21608/aprh.2022.139794.1175",
"author": "IA Akinwumi",
"doi-asserted-by": "publisher",
"first-page": "107",
"issue": "3",
"journal-title": "J Adv Pharm Res",
"key": "456_CR47",
"unstructured": "Akinwumi IA, Faleti AI, Owojuyigbe AP, Raji FM, Alaka OM (2022) In silico studies of bioactive compounds selected from four african plants with inhibitory activity against plasmodium falciparum dihydrofolate reductase-thymidylate synthase (pfDHFR-TS). J Adv Pharm Res 6(3):107–122. https://doi.org/10.21608/aprh.2022.139794.1175",
"volume": "6",
"year": "2022"
},
{
"DOI": "10.1186/1472-6882-11-15",
"author": "K Matsumoto",
"doi-asserted-by": "publisher",
"journal-title": "BMC Complem Altern Med",
"key": "456_CR48",
"unstructured": "Matsumoto K, Yamada H, Takuma N, Niino H, Sagesaka YM (2011) Effects of green tea catechins and theanine on preventing influenza infection among healthcare workers: a randomized controlled trial. BMC Complem Altern Med. https://doi.org/10.1186/1472-6882-11-15",
"year": "2011"
},
{
"DOI": "10.1155/2018/9105261",
"author": "WC Reygaert",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "Biomed Res Int",
"key": "456_CR49",
"unstructured": "Reygaert WC (2018) Green tea catechins: their use in treating and preventing infectious diseases. Biomed Res Int 2018:1–9. https://doi.org/10.1155/2018/9105261",
"volume": "2018",
"year": "2018"
},
{
"DOI": "10.3390/molecules22081337",
"author": "J Xu",
"doi-asserted-by": "publisher",
"first-page": "1337",
"issue": "8",
"journal-title": "Molecules",
"key": "456_CR50",
"unstructured": "Xu J, Xu Z, Zheng W (2017) A review of the antiviral role of green tea catechins. Molecules 22(8):1337. https://doi.org/10.3390/molecules22081337",
"volume": "22",
"year": "2017"
},
{
"DOI": "10.1111/bph.12009",
"author": "J Steinmann",
"doi-asserted-by": "publisher",
"first-page": "1059",
"issue": "5",
"journal-title": "Br J Pharmacol",
"key": "456_CR51",
"unstructured": "Steinmann J, Buer J, Pietschmann T, Steinmann E (2013) Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea. Br J Pharmacol 168(5):1059–1073. https://doi.org/10.1111/bph.12009",
"volume": "168",
"year": "2013"
},
{
"DOI": "10.1002/cbdv.201900511",
"author": "NM Fahmy",
"doi-asserted-by": "publisher",
"journal-title": "Chem Biodivers",
"key": "456_CR52",
"unstructured": "Fahmy NM, Eman A, Moghannem SA, Azam F, El-Shazly M, Abdel, (2020) Breaking down the barriers to a natural antiviral agent: antiviral activity and molecular docking of Erythrina speciosa extract, fractions, and the major compound. Chem Biodivers. https://doi.org/10.1002/cbdv.201900511",
"year": "2020"
},
{
"DOI": "10.31254/phyto.2023.12107",
"author": "R Ranjan",
"doi-asserted-by": "publisher",
"first-page": "44",
"issue": "1",
"journal-title": "J Phytopharmacol",
"key": "456_CR53",
"unstructured": "Ranjan R, Kishore K, Tj S, Jha AK, Ojha BK, Kumar S, Kumar R (2023) Nutraceutical potential of vitexin: a flavone glycoside. J Phytopharmacol 12(1):44–50. https://doi.org/10.31254/phyto.2023.12107",
"volume": "12",
"year": "2023"
},
{
"DOI": "10.1016/j.neulet.2021.136172",
"author": "C Zhao",
"doi-asserted-by": "publisher",
"journal-title": "Neurosci Lett",
"key": "456_CR54",
"unstructured": "Zhao C, Wang F, Tang B, Han J, Li X, Lian G, Li X, Hao S (2021) Anti-inflammatory effects of kaempferol-3-O-rhamnoside on HSV-1 encephalitis in vivo and in vitro. Neurosci Lett 765:136172. https://doi.org/10.1016/j.neulet.2021.136172",
"volume": "765",
"year": "2021"
},
{
"DOI": "10.5897/ajpp2022.5328",
"author": "JES Ferrao",
"doi-asserted-by": "publisher",
"first-page": "1",
"issue": "1",
"journal-title": "Afr J Pharm Pharmacol",
"key": "456_CR55",
"unstructured": "Ferrao JES, Janeque AGE (2023) Anti-viral compounds from Jatropha curcas seed extract with anti-HIV-1 and anti-SARS-CoV-2 action. Afr J Pharm Pharmacol 17(1):1–9. https://doi.org/10.5897/ajpp2022.5328",
"volume": "17",
"year": "2023"
},
{
"DOI": "10.3389/fmolb.2020.61340",
"author": "S Vincent",
"doi-asserted-by": "publisher",
"journal-title": "Front Mol Biosci",
"key": "456_CR56",
"unstructured": "Vincent S, Arokiyaraj S, Saravanan M, Dhanraj M (2020) Molecular docking studies on the anti-viral effects of compounds from kabasura kudineer on SARS-CoV-2 3CLpro. Front Mol Biosci. https://doi.org/10.3389/fmolb.2020.61340",
"year": "2020"
},
{
"DOI": "10.3390/jox11030007",
"author": "F Esteves",
"doi-asserted-by": "publisher",
"first-page": "94",
"issue": "3",
"journal-title": "J Xenobiot",
"key": "456_CR57",
"unstructured": "Esteves F, Rueff J, Kranendonk M (2021) The central role of cytochrome P450 in xenobiotic metabolism—a brief review on a fascinating enzyme family. J Xenobiot 11(3):94–114. https://doi.org/10.3390/jox11030007",
"volume": "11",
"year": "2021"
}
],
"reference-count": 57,
"references-count": 57,
"relation": {
"references": [
{
"asserted-by": "subject",
"id": "",
"id-type": "uri"
}
]
},
"resource": {
"primary": {
"URL": "https://jmhg.springeropen.com/articles/10.1186/s43042-023-00456-4"
}
},
"score": 1,
"short-title": [],
"source": "Crossref",
"subject": [
"Genetics (clinical)"
],
"subtitle": [],
"title": "Evaluation of therapeutic potentials of some bioactive compounds in selected African plants targeting main protease (Mpro) in SARS-CoV-2: a molecular docking study",
"type": "journal-article",
"update-policy": "http://dx.doi.org/10.1007/springer_crossmark_policy",
"volume": "24"
}