Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchQuercetinQuercetin (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

Evaluation of therapeutic potentials of some bioactive compounds in selected African plants targeting main protease (Mpro) in SARS-CoV-2: a molecular docking study

Akinwumi et al., Egyptian Journal of Medical Human Genetics, doi:10.1186/s43042-023-00456-4
Dec 2023  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Quercetin for COVID-19
24th treatment shown to reduce risk in July 2021, now with p = 0.002 from 12 studies.
No treatment is 100% effective. Protocols combine treatments.
5,100+ studies for 112 treatments. c19early.org
In Silico study showing potential antiviral benefits of quercetin, catechin, epicatechin, vitexin, kaempferol, gamma-sitosterol, and kaur-16-ene against the SARS-CoV-2 main protease (Mpro). Molecular docking analysis showed that these compounds bind more strongly to Mpro than the control drug Remdesivir, inhibiting Mpro's activity. The compounds exhibited suitable drug-likeness and ADMET properties.
73 preclinical studies support the efficacy of quercetin for COVID-19:
In Silico studies predict inhibition of SARS-CoV-2, or minimization of side effects, with quercetin or metabolites via binding to the spikeA,3,9,10,22,24,25,30,38,39,41,42,62-64, MproB,3,7,9,11,13,15,17,18,20,23,24,30,34,36-38,42,43,45,63-65, RNA-dependent RNA polymeraseC,1,3,9,32,64, PLproD,3,37,45, ACE2E,22,23,28,37,41,63, TMPRSS2F,22, nucleocapsidG,3, helicaseH,3,29,34, endoribonucleaseI,39, NSP16/10J,6, cathepsin LK,26, Wnt-3L,22, FZDM,22, LRP6N,22, ezrinO,40, ADRPP,38, NRP1Q,41, EP300R,16, PTGS2S,23, HSP90AA1T,16,23, matrix metalloproteinase 9U,31, IL-6V,21,35, IL-10W,21, VEGFAX,35, and RELAY,35 proteins. In Vitro studies demonstrate inhibition of the MproB,15,46,51,59 protein, and inhibition of spike-ACE2 interactionZ,47. In Vitro studies demonstrate efficacy in Calu-3AA,50, A549AB,21, HEK293-ACE2+AC,58, Huh-7AD,25, Caco-2AE,49, Vero E6AF,19,42,49, mTECAG,52, and RAW264.7AH,52 cells. Animal studies demonstrate efficacy in K18-hACE2 miceAI,55, db/db miceAJ,52,61, BALB/c miceAK,60, and rats66. Quercetin reduced proinflammatory cytokines and protected lung and kidney tissue against LPS-induced damage in mice60, inhibits LPS-induced cytokine storm by modulating key inflammatory and antioxidant pathways in macrophages5, and inhibits SARS-CoV-2 ORF3a ion channel activity, which contributes to viral pathogenicity and cytotoxicity54.
a. The trimeric spike (S) protein is a glycoprotein that mediates viral entry by binding to the host ACE2 receptor, is critical for SARS-CoV-2's ability to infect host cells, and is a target of neutralizing antibodies. Inhibition of the spike protein prevents viral attachment, halting infection at the earliest stage.
b. The main protease or Mpro, also known as 3CLpro or nsp5, is a cysteine protease that cleaves viral polyproteins into functional units needed for replication. Inhibiting Mpro disrupts the SARS-CoV-2 lifecycle within the host cell, preventing the creation of new copies.
c. RNA-dependent RNA polymerase (RdRp), also called nsp12, is the core enzyme of the viral replicase-transcriptase complex that copies the positive-sense viral RNA genome into negative-sense templates for progeny RNA synthesis. Inhibiting RdRp blocks viral genome replication and transcription.
d. The papain-like protease (PLpro) has multiple functions including cleaving viral polyproteins and suppressing the host immune response by deubiquitination and deISGylation of host proteins. Inhibiting PLpro may block viral replication and help restore normal immune responses.
e. The angiotensin converting enzyme 2 (ACE2) protein is a host cell transmembrane protein that serves as the cellular receptor for the SARS-CoV-2 spike protein. ACE2 is expressed on many cell types, including epithelial cells in the lungs, and allows the virus to enter and infect host cells. Inhibition may affect ACE2's physiological function in blood pressure control.
f. Transmembrane protease serine 2 (TMPRSS2) is a host cell protease that primes the spike protein, facilitating cellular entry. TMPRSS2 activity helps enable cleavage of the spike protein required for membrane fusion and virus entry. Inhibition may especially protect respiratory epithelial cells, buy may have physiological effects.
g. The nucleocapsid (N) protein binds and encapsulates the viral genome by coating the viral RNA. N enables formation and release of infectious virions and plays additional roles in viral replication and pathogenesis. N is also an immunodominant antigen used in diagnostic assays.
h. The helicase, or nsp13, protein unwinds the double-stranded viral RNA, a crucial step in replication and transcription. Inhibition may prevent viral genome replication and the creation of new virus components.
i. The endoribonuclease, also known as NendoU or nsp15, cleaves specific sequences in viral RNA which may help the virus evade detection by the host immune system. Inhibition may hinder the virus's ability to mask itself from the immune system, facilitating a stronger immune response.
j. The NSP16/10 complex consists of non-structural proteins 16 and 10, forming a 2'-O-methyltransferase that modifies the viral RNA cap structure. This modification helps the virus evade host immune detection by mimicking host mRNA, making NSP16/10 a promising antiviral target.
k. Cathepsin L is a host lysosomal cysteine protease that can prime the spike protein through an alternative pathway when TMPRSS2 is unavailable. Dual targeting of cathepsin L and TMPRSS2 may maximize disruption of alternative pathways for virus entry.
l. Wingless-related integration site (Wnt) ligand 3 is a host signaling molecule that activates the Wnt signaling pathway, which is important in development, cell growth, and tissue repair. Some studies suggest that SARS-CoV-2 infection may interfere with the Wnt signaling pathway, and that Wnt3a is involved in SARS-CoV-2 entry.
m. The frizzled (FZD) receptor is a host transmembrane receptor that binds Wnt ligands, initiating the Wnt signaling cascade. FZD serves as a co-receptor, along with ACE2, in some proposed mechanisms of SARS-CoV-2 infection. The virus may take advantage of this pathway as an alternative entry route.
n. Low-density lipoprotein receptor-related protein 6 is a cell surface co-receptor essential for Wnt signaling. LRP6 acts in tandem with FZD for signal transduction and has been discussed as a potential co-receptor for SARS-CoV-2 entry.
o. The ezrin protein links the cell membrane to the cytoskeleton (the cell's internal support structure) and plays a role in cell shape, movement, adhesion, and signaling. Drugs that occupy the same spot on ezrin where the viral spike protein would bind may hindering viral attachment, and drug binding could further stabilize ezrin, strengthening its potential natural capacity to impede viral fusion and entry.
p. The Adipocyte Differentiation-Related Protein (ADRP, also known as Perilipin 2 or PLIN2) is a lipid droplet protein regulating the storage and breakdown of fats in cells. SARS-CoV-2 may hijack the lipid handling machinery of host cells and ADRP may play a role in this process. Disrupting ADRP's interaction with the virus may hinder the virus's ability to use lipids for replication and assembly.
q. Neuropilin-1 (NRP1) is a cell surface receptor with roles in blood vessel development, nerve cell guidance, and immune responses. NRP1 may function as a co-receptor for SARS-CoV-2, facilitating viral entry into cells. Blocking NRP1 may disrupt an alternative route of viral entry.
r. EP300 (E1A Binding Protein P300) is a transcriptional coactivator involved in several cellular processes, including growth, differentiation, and apoptosis, through its acetyltransferase activity that modifies histones and non-histone proteins. EP300 facilitates viral entry into cells and upregulates inflammatory cytokine production.
s. Prostaglandin G/H synthase 2 (PTGS2, also known as COX-2) is an enzyme crucial for the production of inflammatory molecules called prostaglandins. PTGS2 plays a role in the inflammatory response that can become severe in COVID-19 and inhibitors (like some NSAIDs) may have benefits in dampening harmful inflammation, but note that prostaglandins have diverse physiological functions.
t. Heat Shock Protein 90 Alpha Family Class A Member 1 (HSP90AA1) is a chaperone protein that helps other proteins fold correctly and maintains their stability. HSP90AA1 plays roles in cell signaling, survival, and immune responses. HSP90AA1 may interact with numerous viral proteins, but note that it has diverse physiological functions.
u. Matrix metalloproteinase 9 (MMP9), also called gelatinase B, is a zinc-dependent enzyme that breaks down collagen and other components of the extracellular matrix. MMP9 levels increase in severe COVID-19. Overactive MMP9 can damage lung tissue and worsen inflammation. Inhibition of MMP9 may prevent excessive tissue damage and help regulate the inflammatory response.
v. The interleukin-6 (IL-6) pro-inflammatory cytokine (signaling molecule) has a complex role in the immune response and may trigger and perpetuate inflammation. Elevated IL-6 levels are associated with severe COVID-19 cases and cytokine storm. Anti-IL-6 therapies may be beneficial in reducing excessive inflammation in severe COVID-19 cases.
w. The interleukin-10 (IL-10) anti-inflammatory cytokine helps regulate and dampen immune responses, preventing excessive inflammation. IL-10 levels can also be elevated in severe COVID-19. IL-10 could either help control harmful inflammation or potentially contribute to immune suppression.
x. Vascular Endothelial Growth Factor A (VEGFA) promotes the growth of new blood vessels (angiogenesis) and has roles in inflammation and immune responses. VEGFA may contribute to blood vessel leakiness and excessive inflammation associated with severe COVID-19.
y. RELA is a transcription factor subunit of NF-kB and is a key regulator of inflammation, driving pro-inflammatory gene expression. SARS-CoV-2 may hijack and modulate NF-kB pathways.
z. The interaction between the SARS-CoV-2 spike protein and the human ACE2 receptor is a primary method of viral entry, inhibiting this interaction can prevent the virus from attaching to and entering host cells, halting infection at an early stage.
aa. Calu-3 is a human lung adenocarcinoma cell line with moderate ACE2 and TMPRSS2 expression and SARS-CoV-2 susceptibility. It provides a model of the human respiratory epithelium, but many not be ideal for modeling early stages of infection due to the moderate expression levels of ACE2 and TMPRSS2.
ab. A549 is a human lung carcinoma cell line with low ACE2 expression and SARS-CoV-2 susceptibility. Viral entry/replication can be studied but the cells may not replicate all aspects of lung infection.
ac. HEK293-ACE2+ is a human embryonic kidney cell line engineered for high ACE2 expression and SARS-CoV-2 susceptibility.
ad. Huh-7 cells were derived from a liver tumor (hepatoma).
ae. Caco-2 cells come from a colorectal adenocarcinoma (cancer). They are valued for their ability to form a polarized cell layer with properties similar to the intestinal lining.
af. Vero E6 is an African green monkey kidney cell line with low/no ACE2 expression and high SARS-CoV-2 susceptibility. The cell line is easy to maintain and supports robust viral replication, however the monkey origin may not accurately represent human responses.
ag. mTEC is a mouse tubular epithelial cell line.
ah. RAW264.7 is a mouse macrophage cell line.
ai. A mouse model expressing the human ACE2 receptor under the control of the K18 promoter.
aj. A mouse model of obesity and severe insulin resistance leading to type 2 diabetes due to a mutation in the leptin receptor gene that impairs satiety signaling.
ak. A mouse model commonly used in infectious disease and cancer research due to higher immune response and susceptibility to infection.
Akinwumi et al., 11 Dec 2023, peer-reviewed, 4 authors. Contact: akinwumiishola5000@gmail.com.
In Silico studies are an important part of preclinical research, however results may be very different in vivo.
This PaperQuercetinAll
Evaluation of therapeutic potentials of some bioactive compounds in selected African plants targeting main protease (Mpro) in SARS-CoV-2: a molecular docking study
Ishola Abeeb Akinwumi, Barakat Olamide Ishola, Oluwatosin Maryam Adeyemo, Adefolarin Phebean Owojuyigbe
Egyptian Journal of Medical Human Genetics, doi:10.1186/s43042-023-00456-4
Background Coronavirus disease 2019 is an infectious disease brought on by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a global treat in early 2020. Despite worldwide research proving different medications used to treat COVID-19, the infection still affects the human race; we need to continue researching the virus to protect humanity and reduce the complications that some medications might cause. This study focuses on finding another promising therapeutic compound against SARS-CoV-2. Twenty-four (24) bioactive compounds were selected from the following African plants' Adansonia digitata L, Aframomum melegueta K. Schum, Ageratum conyzoides (L.) L, and Boswellia dalzielii, and Remdesivir was used as the control medication. The PubChem web server acquired the 3D structures of bioactive compounds in the plant and the control medication. The SARS-CoV-2 main protease (M pro ) crystal structure was obtained using the Protein Data Bank (PDB). Using the SwissADME web server, the bioactive compounds' drug-likeness was assessed, and AutoDock was employed for the molecular docking with the M pro . The Proteins Plus and Protein-Ligand Interaction Profiler web servers were used to analyse the docked complexes. Furthermore, the admetSAR website was utilized to predict the ligands' absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. Results Based on the drug-likeness screening, Rutin violated more than one of the Lipinski rules of five, while Remdesivir violated two. Molecular docking analysis results indicated that Catechin, Epicatechin, Vitexin, Quercetin, Kaempferol, Gamma-Sitosterol, and Kaur-16-ene exhibited a stronger binding affinity with M pro , with binding scores of -7.1, -7.1, -8.0, -7.3, -7.2, -6.8, and -6.5 kcal/mol, respectively, compared to Remdesivir's binding score of -6.3 kcal/mol. Consequently, binding scores of bioactive compounds suggest their potential biological activity against the SARS-CoV-2 main protease. Additionally, these bioactive compounds exhibited favourable ADMET properties. Vitexin also has a plasma protein binding below 90%, a promising medication distribution feature. Conclusions This study shows that Catechin, Epicatechin, Vitexin, Quercetin, Kaempferol, Gamma-Sitosterol, and Kaur-16-ene have better binding affinities with M pro than Remdesivir. Molecular dynamics simulation in vitro and in vivo investigation is required to support this study.
Class Declarations Ethics approval and consent to participate Not applicable. Consent for publication Not applicable. Competing interests The authors declare that they have no competing interests. Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
Akinwumi, Faleti, Owojuyigbe, Raji, Alaka, In silico studies of bioactive compounds selected from four african plants with inhibitory activity against plasmodium falciparum dihydrofolate reductase-thymidylate synthase (pfDHFR-TS), J Adv Pharm Res, doi:10.21608/aprh.2022.139794.1175
Atanasov, Zotchev, Dirsch, Supuran, Natural products in drug discovery: advances and opportunities, Nat Rev Drug Discovery
Attah, Fagbemi, Olubiyi, Dada-Adegbola, Oluwadotun et al., Therapeutic potentials of antiviral plants used in traditional african medicine with COVID-19 in focus: a Nigerian perspective, Front Pharmacol
Berman, Westbrook, Feng, Gilliland, Bhat et al., The Protein Data Bank, Nucleic Acids Research
Braca, Sinisgalli, Leo, Muscatello, Cioni et al., Phytochemical profile, antioxidant and antidiabetic activities of Adansonia digitata L (Baobab) from mali, as a source of health-promoting compounds, Molecules, doi:10.3390/molecules23123104
Calixto, The role of natural products in modern drug discovery, Anais da Academia Brasileira de Ciências
Cheng, Li, Zhou, Shen, Wu et al., admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties, J Chem Inf Model
Chomini, Peter, Ameh, Chomini, Bassey et al., Phytochemical screening and antibacterial activities of Aframomum melegueta (K. Schum) seed extracts on Salmonella typhi and Klebsiella pneumoniae, J Appl Sci Environ Manag
Daina, Michielin, Zoete, SwissADME: a free web tool to evaluate pharmacokinetics, druglikeness and medicinal chemistry friendliness of small molecules, Sci Rep, doi:10.1038/srep42717
Delano, The PyMOL molecular graphics system
Esteves, Rueff, Kranendonk, The central role of cytochrome P450 in xenobiotic metabolism-a brief review on a fascinating enzyme family, J Xenobiot, doi:10.3390/jox11030007
Fahmy, Eman, Moghannem, Azam, El-Shazly, Breaking down the barriers to a natural antiviral agent: antiviral activity and molecular docking of Erythrina speciosa extract, fractions, and the major compound, Chem Biodivers, doi:10.1002/cbdv.201900511
Ferrao, Janeque, Anti-viral compounds from Jatropha curcas seed extract with anti-HIV-1 and anti-SARS-CoV-2 action, Afr J Pharm Pharmacol, doi:10.5897/ajpp2022.5328
Fricker, Gastreich, Rarey, Automated drawing of structural molecular formulas under constraints, J Chem Inf Comput Sci, doi:10.1021/ci049958u
Gaobotse, Venkataraman, Brown, Masisi, Kwape et al., The use of African medicinal plants in cancer management, Front Pharmacol
Ghosh, Chakraborty, Biswas, Chowdhuri, Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors-an in silico docking and molecular dynamics simulation study, J Biomol Struct Dyn, doi:10.1080/07391102.2020.1779818
Gordon, Jang, Bouhaddou, Xu, Obernier et al., A SARS-CoV-2 protein interaction map reveals targets for drug repurposing, Nature, doi:10.1038/s41586-020-2286-9
Gupta, Savytskyi, Coban, Venugopal, Vasili et al., Protein structure-based in-silico approaches to drug discovery: Guide to COVID-19 therapeutics, Mol Aspects Med
Hu, Xiong, Zhu, Zhang, Zhang et al., The SARS-CoV-2 main protease (Mpro): structure, function, and emerging therapies for COVID-19, MedComm, doi:10.1002/mco2.151
Hussain, Harrasi, Al-Rawahi, Hussain, Ohemu, Chemistry and biology of essential oils of genus boswellia. Evidence-based complementary and alternative medicine 24
Ihlenfeldt, Bolton, Bryant, The PubChem chemical structure sketcher, J Cheminformatics, doi:10.1186/1758-2946-1-20
Jin, Du, Xu, Xu, Deng et al., Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors, Nature, doi:10.1038/s41586-020-2223-y
Kamatou, Vermaak, Viljoen, An updated review of Adansonia digitata: a commercially important African tree, S Afr J Bot
Kandeel, Al-Nazawi, Virtual screening and repurposing of FDA approved drugs against COVID-19 main protease, Life Sci, doi:10.1016/j.lfs.2020.117627
Keretsu, Bhujbal, Cho, Rational approach toward COVID-19 main protease inhibitors via molecular docking, molecular dynamics simulation and free energy calculation, Sci Rep, doi:10.1038/s41598-020-74468-0
Kim, Chen, Cheng, Gindulyte, He et al., PubChem in 2021: new data content and improved web interfaces, Nucleic Acids Res
Kohoude, Gbaguidi, Agbani, Ayedoun, Cazaux et al., Chemical composition and biological activities of extracts and essential oil of Boswellia dalzielii leaves, Pharm Biol, doi:10.1080/13880209.2016.1226356
Kumar, Singh, Patel, In silico prediction of potential inhibitors for the main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing, J Infect Public Health, doi:10.1016/j.jiph.2020.06.016
Liang, Pitsillou, Karagiannis, Darmawan, Ng et al., Interaction of the prototypical α-ketoamide inhibitor with the SARS-CoV-2 main protease active site in silico: molecular dynamic simulations highlight the stability of the ligand-protein complex, Comput Biol Chem, doi:10.1016/j.compbiolchem.2020.107292
Lipinski, Drug-like properties and the causes of poor solubility and poor permeability, J Pharmacol Toxicol Methods, doi:10.1016/s1056-8719(00)00107-6
Lipinski, Lombardo, Domino, Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in, Adv Drug Deliv Rev, doi:10.1016/s0169-409x(00)00129-0
Lipinski, Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions, Adv Drug Deliv Rev
Makhloufi, Ghemit, El-Kolli, Baitiche, Computational investigation into Nirematrelvir/Ritonavir synergetic efficiency compared with some approved antiviral drugs targeting main protease (Mpro) SARS-CoV-2 Omicron variant, J Indian Chem Soc
Mamza, Sodipo, Abdulrahman, Khan, Phytochemical analysis and in vitro antimicrobial assay of the methanolic stem bark extract of Boswellia dalzielii Hutch. (Burseraceae), Chem Res J
Matsumoto, Yamada, Takuma, Niino, Sagesaka, Effects of green tea catechins and theanine on preventing influenza infection among healthcare workers: a randomized controlled trial, BMC Complem Altern Med, doi:10.1186/1472-6882-11-15
Ngo, Pham, Le, Pham, Vu, Computational determination of potential inhibitors of SARS-CoV-2 main protease, J Chem Inf Model, doi:10.1021/acs.jcim.0c00491
Ngwoke, Chevallier, Wirkom, Stevenson, Elliott et al., In vitro bactericidal activity of diterpenoids isolated from Aframomum melegueta K. Schum against strains of Escherichia coli, Listeria monocytogenes and Staphylococcus aureus, J Ethnopharmacol, doi:10.1016/j.jep.2013.12.035
Oladunmoye, Characterization of organic compounds in Aframomum melegueta K. Schum Using GC-MS, Med Aromat Plants, doi:10.35248/2167-0412.19.8.331
Patil, Nimbalkar, Jadhav, Dawkar, Govindwar, Antiaflatoxigenic and antioxidant activity of an essential oil from Ageratum conyzoides L, J Sci Food Agric
Pettersen, Goddard, Huang, Couch, Greenblatt et al., UCSF Chimera-a visualization system for exploratory research and analysis, J Comput Chem
Qurishi, Hamid, Zargar, Singh, Saxena, Potential role of natural molecules in health and disease: importance of boswellic acid, J Med Plants Res
Ranjan, Kishore, Tj, Jha, Ojha et al., Nutraceutical potential of vitexin: a flavone glycoside, J Phytopharmacol, doi:10.31254/phyto.2023.12107
Reygaert, Green tea catechins: their use in treating and preventing infectious diseases, Biomed Res Int, doi:10.1155/2018/9105261
Salentin, Schreiber, Haupt, Adasme, Schroeder, PLIP: fully automated proteinligand interaction profiler, Nucleic Acids Res, doi:10.1093/nar/gkv315
Selvarani, James, Multiple inflammatory and antiviral activities in Adansonia digitata (Baobab) leaves, fruits and seeds, J Med Plants Res
Shamsi, Mohammad, Anwar, Alajmi, Hussain et al., Glecaprevir and Maraviroc are high-affinity inhibitors of SARS-CoV-2 main protease: possible implication in COVID-19 therapy, Biosci Rep, doi:10.1042/bsr20201256
Steinmann, Buer, Pietschmann, Steinmann, Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea, Br J Pharmacol, doi:10.1111/bph.12009
Stierand, Maass, Rarey, Molecular complexes at a glance: automated generation of two dimensional complex diagrams, Bioinformatics, doi:10.1093/bioinformatics/btl150
Tegasne, Kapche, Mawabo, Talla, Jouda et al., Bioguided chemical study of Boswellia dalzielii Hutch. (Burseraceae) for antibacterial agents and a new glucopyranoxylmethoxybenzyle, Nat Product Res
Thomford, Senthebane, Munro, Seele, Maroyi et al., Natural products for drug discovery in the 21st century: innovations for novel drug discovery, Int J Mol Sci
Trott, Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading, J Comput Chem
Umar, Siraj, Ajayi, Jimoh, Chukwuemeka, Molecular docking studies of some selected gallic acid derivatives against five nonstructural proteins of novel coronavirus, J Genet Eng Biotechnol, doi:10.1186/s43141-021-00120-7
Vincent, Arokiyaraj, Saravanan, Dhanraj, Molecular docking studies on the anti-viral effects of compounds from kabasura kudineer on SARS-CoV-2 3CLpro, Front Mol Biosci, doi:10.3389/fmolb.2020.61340
Xu, Xu, Zheng, A review of the antiviral role of green tea catechins, Molecules, doi:10.3390/molecules22081337
Yadav, Ganie, Singh, Chhillar, Yadav, Phytochemical constituents and ethnopharmacological properties of Ageratum conyzoides L, Phytother Res
Zhao, Wang, Tang, Han, Li et al., Anti-inflammatory effects of kaempferol-3-O-rhamnoside on HSV-1 encephalitis in vivo and in vitro, Neurosci Lett, doi:10.1016/j.neulet.2021.136172
{ 'indexed': { 'date-parts': [[2023, 12, 13]], 'date-time': '2023-12-13T00:50:40Z', 'timestamp': 1702428640133}, 'reference-count': 57, 'publisher': 'Springer Science and Business Media LLC', 'issue': '1', 'license': [ { 'start': { 'date-parts': [[2023, 12, 11]], 'date-time': '2023-12-11T00:00:00Z', 'timestamp': 1702252800000}, 'content-version': 'tdm', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by/4.0'}, { 'start': { 'date-parts': [[2023, 12, 11]], 'date-time': '2023-12-11T00:00:00Z', 'timestamp': 1702252800000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by/4.0'}], 'content-domain': {'domain': ['link.springer.com'], 'crossmark-restriction': False}, 'abstract': '<jats:title>Abstract</jats:title><jats:sec>\n' ' <jats:title>Background</jats:title>\n' ' <jats:p>Coronavirus disease 2019 (COVID-19) is an infectious disease brought ' 'on by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a global treat in ' 'early 2020. Despite worldwide research proving different medications used to treat COVID-19, ' 'the infection still affects the human race; we need to continue researching the virus to ' 'protect humanity and reduce the complications that some medications might cause. This study ' 'focuses on finding another promising therapeutic compound against SARS-CoV-2. Twenty-four ' "(24) bioactive compounds were selected from the following African plants'\xa0" '<jats:italic>Adansonia digitata L, Aframomum melegueta K. Schum, Ageratum conyzoides (L.) ' 'L</jats:italic>, and <jats:italic>Boswellia dalzielii, and</jats:italic> Remdesivir was used ' 'as the control medication. The PubChem web server acquired the 3D structures of bioactive ' 'compounds in the plant and the control medication. The SARS-CoV-2 main protease ' '(M<jats:sup>pro</jats:sup>) crystal structure was obtained using the Protein Data Bank (PDB). ' "Using the SwissADME web server, the bioactive compounds' drug-likeness was assessed, and " 'AutoDock was employed for the molecular docking with the M<jats:sup>pro</jats:sup>. The ' 'Proteins Plus and Protein–Ligand Interaction Profiler web servers were used to analyse the ' "docked complexes. Furthermore, the admetSAR website was utilized to predict the ligands' " 'absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties.</jats:p>\n' ' </jats:sec><jats:sec>\n' ' <jats:title>Results</jats:title>\n' ' <jats:p>Based on the drug-likeness screening, Rutin violated more than one of ' 'the Lipinski rules of five, while Remdesivir violated two. Molecular docking analysis results ' 'indicated that Catechin, Epicatechin, Vitexin, Quercetin, Kaempferol, Gamma-Sitosterol, and ' 'Kaur-16-ene exhibited a stronger binding affinity with M<jats:sup>pro</jats:sup>, with ' 'binding scores of −\xa07.1, −\xa07.1, −\xa08.0, −\xa07.3, −\xa07.2, −\xa06.8, and −\xa06.5\xa0' "kcal/mol, respectively, compared to Remdesivir's binding score of −\xa06.3\xa0kcal/mol. " 'Consequently, binding scores of bioactive compounds suggest their potential biological ' 'activity against the SARS-CoV-2 main protease. Additionally, these bioactive compounds ' 'exhibited favourable ADMET properties. Vitexin also has a plasma protein binding below 90%, a ' 'promising medication distribution feature.</jats:p>\n' ' </jats:sec><jats:sec>\n' ' <jats:title>Conclusions</jats:title>\n' ' <jats:p>This study shows that Catechin, Epicatechin, Vitexin, Quercetin, ' 'Kaempferol, Gamma-Sitosterol, and Kaur-16-ene have better binding affinities with ' 'M<jats:sup>pro</jats:sup> than Remdesivir. Molecular dynamics simulation\xa0in vitro\xa0' 'and\xa0in vivo\xa0investigation is required to support this study.</jats:p>\n' ' </jats:sec>', 'DOI': '10.1186/s43042-023-00456-4', 'type': 'journal-article', 'created': { 'date-parts': [[2023, 12, 11]], 'date-time': '2023-12-11T12:02:41Z', 'timestamp': 1702296161000}, 'update-policy': 'http://dx.doi.org/10.1007/springer_crossmark_policy', 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': 'Evaluation of therapeutic potentials of some bioactive compounds in selected African plants ' 'targeting main protease (Mpro) in SARS-CoV-2: a molecular docking study', 'prefix': '10.1186', 'volume': '24', 'author': [ { 'ORCID': 'http://orcid.org/0000-0003-1973-8833', 'authenticated-orcid': False, 'given': 'Ishola Abeeb', 'family': 'Akinwumi', 'sequence': 'first', 'affiliation': []}, {'given': 'Barakat Olamide', 'family': 'Ishola', 'sequence': 'additional', 'affiliation': []}, { 'given': 'Oluwatosin Maryam', 'family': 'Adeyemo', 'sequence': 'additional', 'affiliation': []}, { 'given': 'Adefolarin Phebean', 'family': 'Owojuyigbe', 'sequence': 'additional', 'affiliation': []}], 'member': '297', 'published-online': {'date-parts': [[2023, 12, 11]]}, 'reference': [ { 'key': '456_CR1', 'doi-asserted-by': 'publisher', 'author': 'DE Gordon', 'year': '2020', 'unstructured': 'Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, O’Meara MJ, ' 'Rezelj VV, Guo JZ, Swaney DL, Tummino TA, Huettenhain R, Kaake RM, ' 'Richards AL, Tutuncuoglu B, Krogan NJ (2020) A SARS-CoV-2 protein ' 'interaction map reveals targets for drug repurposing. Nature. ' 'https://doi.org/10.1038/s41586-020-2286-9', 'journal-title': 'Nature', 'DOI': '10.1038/s41586-020-2286-9'}, { 'key': '456_CR2', 'doi-asserted-by': 'publisher', 'author': 'Z Jin', 'year': '2020', 'unstructured': 'Jin Z, Du X, Xu HE, Xu Y, Deng YQ, Meiqin L, Liu M, Zhao Y, Zhang B, Li ' 'X, Li XF, Zhang L, Peng C, Yang H (2020) Structure of Mpro from ' 'SARS-CoV-2 and discovery of its inhibitors. Nature. ' 'https://doi.org/10.1038/s41586-020-2223-y', 'journal-title': 'Nature', 'DOI': '10.1038/s41586-020-2223-y'}, { 'key': '456_CR3', 'doi-asserted-by': 'publisher', 'author': 'M Kandeel', 'year': '2020', 'unstructured': 'Kandeel M, Al-Nazawi M (2020) Virtual screening and repurposing of FDA ' 'approved drugs against COVID-19 main protease. Life Sci. ' 'https://doi.org/10.1016/j.lfs.2020.117627', 'journal-title': 'Life Sci', 'DOI': '10.1016/j.lfs.2020.117627'}, { 'key': '456_CR4', 'doi-asserted-by': 'publisher', 'author': 'S Keretsu', 'year': '2020', 'unstructured': 'Keretsu S, Bhujbal SP, Cho SJ (2020) Rational approach toward COVID-19 ' 'main protease inhibitors via molecular docking, molecular dynamics ' 'simulation and free energy calculation. Sci Rep. ' 'https://doi.org/10.1038/s41598-020-74468-0', 'journal-title': 'Sci Rep', 'DOI': '10.1038/s41598-020-74468-0'}, { 'key': '456_CR5', 'doi-asserted-by': 'publisher', 'author': 'ST Ngo', 'year': '2020', 'unstructured': 'Ngo ST, Pham NQ, Le L, Pham DH, Vu VV (2020) Computational determination ' 'of potential inhibitors of SARS-CoV-2 main protease. J Chem Inf Model. ' 'https://doi.org/10.1021/acs.jcim.0c00491', 'journal-title': 'J Chem Inf Model', 'DOI': '10.1021/acs.jcim.0c00491'}, { 'key': '456_CR6', 'doi-asserted-by': 'publisher', 'author': 'Y Kumar', 'year': '2020', 'unstructured': 'Kumar Y, Singh H, Patel CN (2020) In silico prediction of potential ' 'inhibitors for the main protease of SARS-CoV-2 using molecular docking ' 'and dynamics simulation based drug-repurposing. J Infect Public Health. ' 'https://doi.org/10.1016/j.jiph.2020.06.016', 'journal-title': 'J Infect Public Health', 'DOI': '10.1016/j.jiph.2020.06.016'}, { 'key': '456_CR7', 'doi-asserted-by': 'publisher', 'author': 'A Shamsi', 'year': '2020', 'unstructured': 'Shamsi A, Mohammad T, Anwar S, Alajmi MF, Hussain A, Rehman MT, Islam A, ' 'Hassan MI (2020) Glecaprevir and Maraviroc are high-affinity inhibitors ' 'of SARS-CoV-2 main protease: possible implication in COVID-19 therapy. ' 'Biosci Rep. https://doi.org/10.1042/bsr20201256', 'DOI': '10.1042/bsr20201256'}, { 'key': '456_CR8', 'doi-asserted-by': 'publisher', 'author': 'J Liang', 'year': '2020', 'unstructured': 'Liang J, Pitsillou E, Karagiannis TC, Darmawan KK, Ng K, Hung A (2020) ' 'Interaction of the prototypical α-ketoamide inhibitor with the ' 'SARS-CoV-2 main protease active site in silico: molecular dynamic ' 'simulations highlight the stability of the ligand-protein complex. ' 'Comput Biol Chem. https://doi.org/10.1016/j.compbiolchem.2020.107292', 'journal-title': 'Comput Biol Chem', 'DOI': '10.1016/j.compbiolchem.2020.107292'}, { 'issue': '3', 'key': '456_CR9', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.jics.2023.100891', 'volume': '100', 'author': 'A Makhloufi', 'year': '2023', 'unstructured': 'Makhloufi A, Ghemit R, El-Kolli M, Baitiche M (2023) Computational ' 'investigation into Nirematrelvir/Ritonavir synergetic efficiency ' 'compared with some approved antiviral drugs targeting main protease ' '(Mpro) SARS-CoV-2 Omicron variant. J Indian Chem Soc 100(3):100891', 'journal-title': 'J Indian Chem Soc'}, { 'key': '456_CR10', 'doi-asserted-by': 'crossref', 'unstructured': 'Calixto JB (2019) The role of natural products in modern drug discovery. ' 'Anais da Academia Brasileira de Ciências 91', 'DOI': '10.1590/0001-3765201920190105'}, { 'issue': '3', 'key': '456_CR11', 'doi-asserted-by': 'publisher', 'first-page': '200', 'DOI': '10.1038/s41573-020-00114-z', 'volume': '20', 'author': 'AG Atanasov', 'year': '2021', 'unstructured': 'Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT (2021) Natural products ' 'in drug discovery: advances and opportunities. Nat Rev Drug Discovery ' '20(3):200–216', 'journal-title': 'Nat Rev Drug Discovery'}, { 'issue': '6', 'key': '456_CR12', 'doi-asserted-by': 'publisher', 'first-page': '1578', 'DOI': '10.3390/ijms19061578', 'volume': '19', 'author': 'NE Thomford', 'year': '2018', 'unstructured': 'Thomford NE, Senthebane DA, Rowe A, Munro D, Seele P, Maroyi A, Dzobo K ' '(2018) Natural products for drug discovery in the 21st century: ' 'innovations for novel drug discovery. Int J Mol Sci 19(6):1578', 'journal-title': 'Int J Mol Sci'}, { 'key': '456_CR13', 'doi-asserted-by': 'crossref', 'unstructured': 'Gaobotse G, Venkataraman S, Brown PD, Masisi K, Kwape TE, Nkwe DO et al ' '(2023) The use of African medicinal plants in cancer management. Front ' 'Pharmacol 14', 'DOI': '10.3389/fphar.2023.1122388'}, { 'key': '456_CR14', 'doi-asserted-by': 'crossref', 'unstructured': 'Attah AF, Fagbemi AA, Olubiyi O, Dada-Adegbola H, Oluwadotun A, Elujoba ' 'A et al (2021) Therapeutic potentials of antiviral plants used in ' 'traditional african medicine with COVID-19 in focus: a Nigerian ' 'perspective. Front Pharmacol 12', 'DOI': '10.3389/fphar.2021.596855'}, { 'issue': '4', 'key': '456_CR15', 'doi-asserted-by': 'publisher', 'first-page': '908', 'DOI': '10.1016/j.sajb.2011.08.010', 'volume': '77', 'author': 'GP Kamatou', 'year': '2011', 'unstructured': 'Kamatou GP, Vermaak I, Viljoen AM (2011) An updated review of Adansonia ' 'digitata: a commercially important African tree. S Afr J Bot ' '77(4):908–919', 'journal-title': 'S Afr J Bot'}, { 'issue': '8', 'key': '456_CR16', 'first-page': '576', 'volume': '3', 'author': 'V Selvarani', 'year': '2009', 'unstructured': 'Selvarani V, Hudson James B (2009) Multiple inflammatory and antiviral ' 'activities in Adansonia digitata (Baobab) leaves, fruits and seeds. J ' 'Med Plants Res 3(8):576–582', 'journal-title': 'J Med Plants Res'}, { 'issue': '8', 'key': '456_CR17', 'first-page': '1419', 'volume': '24', 'author': 'MS Chomini', 'year': '2020', 'unstructured': 'Chomini MS, Peter MK, Ameh M, Chomini AE, Bassey EA, Ayodele AO (2020) ' 'Phytochemical screening and antibacterial activities of Aframomum ' 'melegueta (K. Schum) seed extracts on Salmonella typhi and Klebsiella ' 'pneumoniae. J Appl Sci Environ Manag 24(8):1419–1424', 'journal-title': 'J Appl Sci Environ Manag'}, { 'issue': '3', 'key': '456_CR18', 'doi-asserted-by': 'publisher', 'first-page': '1147', 'DOI': '10.1016/j.jep.2013.12.035', 'volume': '151', 'author': 'KG Ngwoke', 'year': '2014', 'unstructured': 'Ngwoke KG, Chevallier O, Wirkom VK, Stevenson P, Elliott CT, Situ C ' '(2014) In vitro bactericidal activity of diterpenoids isolated from ' 'Aframomum melegueta K. Schum against strains of Escherichia coli, ' 'Listeria monocytogenes and Staphylococcus aureus. J Ethnopharmacol ' '151(3):1147–1154. https://doi.org/10.1016/j.jep.2013.12.035', 'journal-title': 'J Ethnopharmacol'}, { 'issue': '4', 'key': '456_CR19', 'doi-asserted-by': 'publisher', 'first-page': '608', 'DOI': '10.1002/jsfa.3857', 'volume': '90', 'author': 'RP Patil', 'year': '2010', 'unstructured': 'Patil RP, Nimbalkar MS, Jadhav UU, Dawkar VV, Govindwar SP (2010) ' 'Antiaflatoxigenic and antioxidant activity of an essential oil from ' 'Ageratum conyzoides L. J Sci Food Agric 90(4):608–614', 'journal-title': 'J Sci Food Agric'}, { 'issue': '9', 'key': '456_CR20', 'doi-asserted-by': 'publisher', 'first-page': '2163', 'DOI': '10.1002/ptr.6405', 'volume': '33', 'author': 'N Yadav', 'year': '2019', 'unstructured': 'Yadav N, Ganie SA, Singh B, Chhillar AK, Yadav SS (2019) Phytochemical ' 'constituents and ethnopharmacological properties of Ageratum conyzoides ' 'L. Phytother Res 33(9):2163–2178', 'journal-title': 'Phytother Res'}, { 'issue': '4', 'key': '456_CR21', 'first-page': '161', 'volume': '3', 'author': 'UT Mamza', 'year': '2018', 'unstructured': 'Mamza UT, Sodipo OA, Abdulrahman FI, Khan IZ (2018) Phytochemical ' 'analysis and in vitro antimicrobial assay of the methanolic stem bark ' 'extract of Boswellia dalzielii Hutch. (Burseraceae). Chem Res J ' '3(4):161–168', 'journal-title': 'Chem Res J'}, { 'issue': '23', 'key': '456_CR22', 'doi-asserted-by': 'publisher', 'first-page': '5199', 'DOI': '10.1080/14786419.2020.1794863', 'volume': '35', 'author': 'C Tegasne', 'year': '2021', 'unstructured': 'Tegasne C, Kapche GD, Mawabo IK, Talla RM, Jouda JB, Happi GM, Sewald N ' '(2021) Bioguided chemical study of Boswellia dalzielii Hutch. ' '(Burseraceae) for antibacterial agents and a new ' 'glucopyranoxylmethoxybenzyle. Nat Product Res 35(23):5199–5208', 'journal-title': 'Nat Product Res'}, { 'key': '456_CR23', 'doi-asserted-by': 'crossref', 'unstructured': 'Hussain H, Al-Harrasi A, Al-Rawahi A, Hussain J (2013) Chemistry and ' 'biology of essential oils of genus boswellia. Evidence-based ' 'complementary and alternative medicine', 'DOI': '10.1155/2013/140509'}, { 'key': '456_CR24', 'unstructured': 'Ohemu TL, Agunu A, Olotu PN, Ajima U, Dafam DG, Azila JJ (2014) ' 'Ethnobotanical survey of medical plants used in the traditional ' 'treatment of viral infections in Jos, plateau state, Nigeria'}, { 'issue': '25', 'key': '456_CR25', 'first-page': '2778', 'volume': '4', 'author': 'Y Qurishi', 'year': '2010', 'unstructured': 'Qurishi Y, Hamid A, Zargar MA, Singh SK, Saxena AK (2010) Potential role ' 'of natural molecules in health and disease: importance of boswellic ' 'acid. J Med Plants Res 4(25):2778–2785', 'journal-title': 'J Med Plants Res'}, { 'key': '456_CR26', 'doi-asserted-by': 'publisher', 'first-page': '3104', 'DOI': '10.3390/molecules23123104', 'volume': '23', 'author': 'A Braca', 'year': '2018', 'unstructured': 'Braca A, Sinisgalli C, De Leo M, Muscatello B, Cioni PL, Milella L, ' 'Ostuni A, Giani S, Sanogo R (2018) Phytochemical profile, antioxidant ' 'and antidiabetic activities of Adansonia digitata L (Baobab) from mali, ' 'as a source of health-promoting compounds. Molecules 23:3104. ' 'https://doi.org/10.3390/molecules23123104', 'journal-title': 'Molecules'}, { 'key': '456_CR27', 'doi-asserted-by': 'publisher', 'first-page': '331', 'DOI': '10.35248/2167-0412.19.8.331', 'volume': '8', 'author': 'MK Oladunmoye', 'year': '2019', 'unstructured': 'Oladunmoye MK (2019) Characterization of organic compounds in Aframomum ' 'melegueta K. Schum Using GC-MS Med Aromat Plants (Los Angeles) 8:331. ' 'https://doi.org/10.35248/2167-0412.19.8.331', 'journal-title': 'Schum Using GC-MS Med Aromat Plants (Los Angeles)'}, { 'issue': '1', 'key': '456_CR28', 'doi-asserted-by': 'publisher', 'first-page': '1', 'DOI': '10.1186/1758-2946-1-20', 'volume': '1', 'author': 'WD Ihlenfeldt', 'year': '2009', 'unstructured': 'Ihlenfeldt WD, Bolton EE, Bryant SH (2009) The PubChem chemical ' 'structure sketcher. J Cheminformatics 1(1):1–9. ' 'https://doi.org/10.1186/1758-2946-1-20', 'journal-title': 'J Cheminformatics'}, { 'issue': '1', 'key': '456_CR29', 'doi-asserted-by': 'publisher', 'first-page': '33', 'DOI': '10.1080/13880209.2016.1226356', 'volume': '55', 'author': 'MJ Kohoude', 'year': '2017', 'unstructured': 'Kohoude MJ, Gbaguidi F, Agbani P, Ayedoun M, Cazaux S, Bouajila J (2017) ' 'Chemical composition and biological activities of extracts and essential ' 'oil of Boswellia dalzielii leaves. Pharm Biol 55(1):33–42. ' 'https://doi.org/10.1080/13880209.2016.1226356', 'journal-title': 'Pharm Biol'}, { 'issue': 'D1', 'key': '456_CR30', 'doi-asserted-by': 'publisher', 'first-page': 'D1388', 'DOI': '10.1093/nar/gkaa971', 'volume': '49', 'author': 'S Kim', 'year': '2019', 'unstructured': 'Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, ' 'Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE (2019) PubChem in ' '2021: new data content and improved web interfaces. Nucleic Acids Res ' '49(D1):D1388–D1395', 'journal-title': 'Nucleic Acids Res'}, { 'key': '456_CR31', 'doi-asserted-by': 'publisher', 'first-page': '235', 'DOI': '10.1093/nar/28.1.235', 'volume': '28', 'author': 'HM Berman', 'year': '2000', 'unstructured': 'Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, ' 'Shindyalov IN, Bourne PE (2000) The Protein Data Bank Nucleic Acids ' 'Research 28:235–242', 'journal-title': 'The Protein Data Bank Nucleic Acids Research'}, { 'issue': '13', 'key': '456_CR32', 'doi-asserted-by': 'publisher', 'first-page': '1605', 'DOI': '10.1002/jcc.20084', 'volume': '25', 'author': 'EF Pettersen', 'year': '2004', 'unstructured': 'Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, ' 'Ferrin TE (2004) UCSF Chimera–a visualization system for exploratory ' 'research and analysis. J Comput Chem 25(13):1605', 'journal-title': 'J Comput Chem'}, { 'key': '456_CR33', 'doi-asserted-by': 'publisher', 'first-page': '42717', 'DOI': '10.1038/srep42717', 'volume': '7', 'author': 'A Daina', 'year': '2017', 'unstructured': 'Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to ' 'evaluate pharmacokinetics, druglikeness and medicinal chemistry ' 'friendliness of small molecules. Sci Rep 7:42717. ' 'https://doi.org/10.1038/srep42717', 'journal-title': 'Sci Rep'}, { 'key': '456_CR34', 'doi-asserted-by': 'publisher', 'first-page': '34', 'DOI': '10.1016/j.addr.2016.04.029', 'volume': '101', 'author': 'C Lipinski', 'year': '2016', 'unstructured': 'Lipinski C (2016) Rule of five in 2015 and beyond: Target and ligand ' 'structural limitations, ligand chemistry structure and drug discovery ' 'project decisions. Adv Drug Deliv Rev 101:34–41', 'journal-title': 'Adv Drug Deliv Rev'}, { 'issue': '2', 'key': '456_CR35', 'doi-asserted-by': 'publisher', 'first-page': '455', 'DOI': '10.1002/jcc.21334', 'volume': '31', 'author': 'O Trott', 'year': '2010', 'unstructured': 'Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy ' 'of docking with a new scoring function, efficient optimization and ' 'multithreading. J Comput Chem 31(2):455–461', 'journal-title': 'J Comput Chem'}, { 'key': '456_CR36', 'doi-asserted-by': 'publisher', 'first-page': '16', 'DOI': '10.1186/s43141-021-00120-7', 'volume': '19', 'author': 'HI Umar', 'year': '2021', 'unstructured': 'Umar HI, Siraj B, Ajayi A, Jimoh TO, Chukwuemeka PO (2021) Molecular ' 'docking studies of some selected gallic acid derivatives against five ' 'non-structural proteins of novel coronavirus. J Genet Eng Biotechnol ' '19:16. https://doi.org/10.1186/s43141-021-00120-7', 'journal-title': 'J Genet Eng Biotechnol'}, { 'key': '456_CR37', 'volume-title': 'The PyMOL molecular graphics system', 'author': 'Delano', 'year': '2005', 'unstructured': 'Delano (2005) The PyMOL molecular graphics system. DeLano Scientific ' 'LLC, South San Francisco'}, { 'issue': 'W1', 'key': '456_CR38', 'doi-asserted-by': 'publisher', 'first-page': 'W443', 'DOI': '10.1093/nar/gkv315', 'volume': '43', 'author': 'S Salentin', 'year': '2015', 'unstructured': 'Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M (2015) PLIP: ' 'fully automated proteinligand interaction profiler. Nucleic Acids Res ' '43(W1):W443–W447. https://doi.org/10.1093/nar/gkv315', 'journal-title': 'Nucleic Acids Res'}, { 'issue': '14', 'key': '456_CR39', 'doi-asserted-by': 'publisher', 'first-page': '1710', 'DOI': '10.1093/bioinformatics/btl150', 'volume': '22', 'author': 'K Stierand', 'year': '2006', 'unstructured': 'Stierand K, Maass PC, Rarey M (2006) Molecular complexes at a glance: ' 'automated generation of two dimensional complex diagrams. Bioinformatics ' '22(14):1710–1716. https://doi.org/10.1093/bioinformatics/btl150', 'journal-title': 'Bioinformatics'}, { 'issue': '3', 'key': '456_CR40', 'doi-asserted-by': 'publisher', 'first-page': '1065', 'DOI': '10.1021/ci049958u', 'volume': '44', 'author': 'PC Fricker', 'year': '2004', 'unstructured': 'Fricker PC, Gastreich M, Rarey M (2004) Automated drawing of structural ' 'molecular formulas under constraints. J Chem Inf Comput Sci ' '44(3):1065–1078. https://doi.org/10.1021/ci049958u', 'journal-title': 'J Chem Inf Comput Sci'}, { 'key': '456_CR41', 'doi-asserted-by': 'publisher', 'first-page': '3099', 'DOI': '10.1021/ci300367a', 'volume': '52', 'author': 'F Cheng', 'year': '2012', 'unstructured': 'Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G et al (2012) admetSAR: a ' 'comprehensive source and free tool for assessment of chemical ADMET ' 'properties. J Chem Inf Model 52:3099–3105', 'journal-title': 'J Chem Inf Model'}, { 'key': '456_CR42', 'doi-asserted-by': 'crossref', 'unstructured': 'Gupta YP, Savytskyi OV, Coban M, Venugopal A, Vasili P, Weber CA, Rohit ' 'C, Ravi D, Hopkins C, Prakasha K, Caulfield TR (2022) Protein ' 'structure-based in-silico approaches to drug discovery: Guide to ' 'COVID-19 therapeutics. Mol Aspects Med 101151–101151.', 'DOI': '10.1016/j.mam.2022.101151'}, { 'key': '456_CR43', 'doi-asserted-by': 'publisher', 'unstructured': 'Lipinski CA, Lombardo F, Domino BW, Feeney PJ (2001) Experimental and ' 'computational approaches to estimate solubility and permeability in drug ' 'discovery and development settings 1PII of original article: ' 'S0169–409X(96)00423–1. The article was originally published in Adv Drug ' 'Deliv Rev 1997;23:3–25. 1. Adv Drug Deliv Rev 46(1–3):3–26. ' 'https://doi.org/10.1016/s0169-409x(00)00129-0.', 'DOI': '10.1016/s0169-409x(00)00129-0'}, { 'issue': '1', 'key': '456_CR44', 'doi-asserted-by': 'publisher', 'first-page': '235', 'DOI': '10.1016/s1056-8719(00)00107-6', 'volume': '44', 'author': 'CA Lipinski', 'year': '2008', 'unstructured': 'Lipinski CA (2008) Drug-like properties and the causes of poor ' 'solubility and poor permeability. J Pharmacol Toxicol Methods ' '44(1):235–249. https://doi.org/10.1016/s1056-8719(00)00107-6', 'journal-title': 'J Pharmacol Toxicol Methods'}, { 'key': '456_CR45', 'doi-asserted-by': 'publisher', 'author': 'R Ghosh', 'year': '2020', 'unstructured': 'Ghosh R, Chakraborty A, Biswas A, Chowdhuri S (2020) Evaluation of green ' 'tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) ' 'inhibitors—an in silico docking and molecular dynamics simulation study. ' 'J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2020.1779818', 'journal-title': 'J Biomol Struct Dyn', 'DOI': '10.1080/07391102.2020.1779818'}, { 'key': '456_CR46', 'doi-asserted-by': 'publisher', 'author': 'Q Hu', 'year': '2022', 'unstructured': 'Hu Q, Xiong Y, Zhu G, Zhang Y, Zhang Y, Huang P, Ge G (2022) The ' 'SARS-CoV-2 main protease (Mpro): structure, function, and emerging ' 'therapies for COVID-19. MedComm. https://doi.org/10.1002/mco2.151', 'journal-title': 'MedComm', 'DOI': '10.1002/mco2.151'}, { 'issue': '3', 'key': '456_CR47', 'doi-asserted-by': 'publisher', 'first-page': '107', 'DOI': '10.21608/aprh.2022.139794.1175', 'volume': '6', 'author': 'IA Akinwumi', 'year': '2022', 'unstructured': 'Akinwumi IA, Faleti AI, Owojuyigbe AP, Raji FM, Alaka OM (2022) In ' 'silico studies of bioactive compounds selected from four african plants ' 'with inhibitory activity against plasmodium falciparum dihydrofolate ' 'reductase-thymidylate synthase (pfDHFR-TS). J Adv Pharm Res ' '6(3):107–122. https://doi.org/10.21608/aprh.2022.139794.1175', 'journal-title': 'J Adv Pharm Res'}, { 'key': '456_CR48', 'doi-asserted-by': 'publisher', 'author': 'K Matsumoto', 'year': '2011', 'unstructured': 'Matsumoto K, Yamada H, Takuma N, Niino H, Sagesaka YM (2011) Effects of ' 'green tea catechins and theanine on preventing influenza infection among ' 'healthcare workers: a randomized controlled trial. BMC Complem Altern ' 'Med. https://doi.org/10.1186/1472-6882-11-15', 'journal-title': 'BMC Complem Altern Med', 'DOI': '10.1186/1472-6882-11-15'}, { 'key': '456_CR49', 'doi-asserted-by': 'publisher', 'first-page': '1', 'DOI': '10.1155/2018/9105261', 'volume': '2018', 'author': 'WC Reygaert', 'year': '2018', 'unstructured': 'Reygaert WC (2018) Green tea catechins: their use in treating and ' 'preventing infectious diseases. Biomed Res Int 2018:1–9. ' 'https://doi.org/10.1155/2018/9105261', 'journal-title': 'Biomed Res Int'}, { 'issue': '8', 'key': '456_CR50', 'doi-asserted-by': 'publisher', 'first-page': '1337', 'DOI': '10.3390/molecules22081337', 'volume': '22', 'author': 'J Xu', 'year': '2017', 'unstructured': 'Xu J, Xu Z, Zheng W (2017) A review of the antiviral role of green tea ' 'catechins. Molecules 22(8):1337. ' 'https://doi.org/10.3390/molecules22081337', 'journal-title': 'Molecules'}, { 'issue': '5', 'key': '456_CR51', 'doi-asserted-by': 'publisher', 'first-page': '1059', 'DOI': '10.1111/bph.12009', 'volume': '168', 'author': 'J Steinmann', 'year': '2013', 'unstructured': 'Steinmann J, Buer J, Pietschmann T, Steinmann E (2013) Anti-infective ' 'properties of epigallocatechin-3-gallate (EGCG), a component of green ' 'tea. Br J Pharmacol 168(5):1059–1073. https://doi.org/10.1111/bph.12009', 'journal-title': 'Br J Pharmacol'}, { 'key': '456_CR52', 'doi-asserted-by': 'publisher', 'author': 'NM Fahmy', 'year': '2020', 'unstructured': 'Fahmy NM, Eman A, Moghannem SA, Azam F, El-Shazly M, Abdel, (2020) ' 'Breaking down the barriers to a natural antiviral agent: antiviral ' 'activity and molecular docking of Erythrina speciosa extract, fractions, ' 'and the major compound. Chem Biodivers. ' 'https://doi.org/10.1002/cbdv.201900511', 'journal-title': 'Chem Biodivers', 'DOI': '10.1002/cbdv.201900511'}, { 'issue': '1', 'key': '456_CR53', 'doi-asserted-by': 'publisher', 'first-page': '44', 'DOI': '10.31254/phyto.2023.12107', 'volume': '12', 'author': 'R Ranjan', 'year': '2023', 'unstructured': 'Ranjan R, Kishore K, Tj S, Jha AK, Ojha BK, Kumar S, Kumar R (2023) ' 'Nutraceutical potential of vitexin: a flavone glycoside. J ' 'Phytopharmacol 12(1):44–50. https://doi.org/10.31254/phyto.2023.12107', 'journal-title': 'J Phytopharmacol'}, { 'key': '456_CR54', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.neulet.2021.136172', 'volume': '765', 'author': 'C Zhao', 'year': '2021', 'unstructured': 'Zhao C, Wang F, Tang B, Han J, Li X, Lian G, Li X, Hao S (2021) ' 'Anti-inflammatory effects of kaempferol-3-O-rhamnoside on HSV-1 ' 'encephalitis in vivo and in vitro. Neurosci Lett 765:136172. ' 'https://doi.org/10.1016/j.neulet.2021.136172', 'journal-title': 'Neurosci Lett'}, { 'issue': '1', 'key': '456_CR55', 'doi-asserted-by': 'publisher', 'first-page': '1', 'DOI': '10.5897/ajpp2022.5328', 'volume': '17', 'author': 'JES Ferrao', 'year': '2023', 'unstructured': 'Ferrao JES, Janeque AGE (2023) Anti-viral compounds from Jatropha curcas ' 'seed extract with anti-HIV-1 and anti-SARS-CoV-2 action. Afr J Pharm ' 'Pharmacol 17(1):1–9. https://doi.org/10.5897/ajpp2022.5328', 'journal-title': 'Afr J Pharm Pharmacol'}, { 'key': '456_CR56', 'doi-asserted-by': 'publisher', 'author': 'S Vincent', 'year': '2020', 'unstructured': 'Vincent S, Arokiyaraj S, Saravanan M, Dhanraj M (2020) Molecular docking ' 'studies on the anti-viral effects of compounds from kabasura kudineer on ' 'SARS-CoV-2 3CLpro. Front Mol Biosci. ' 'https://doi.org/10.3389/fmolb.2020.61340', 'journal-title': 'Front Mol Biosci', 'DOI': '10.3389/fmolb.2020.61340'}, { 'issue': '3', 'key': '456_CR57', 'doi-asserted-by': 'publisher', 'first-page': '94', 'DOI': '10.3390/jox11030007', 'volume': '11', 'author': 'F Esteves', 'year': '2021', 'unstructured': 'Esteves F, Rueff J, Kranendonk M (2021) The central role of cytochrome ' 'P450 in xenobiotic metabolism—a brief review on a fascinating enzyme ' 'family. J Xenobiot 11(3):94–114. https://doi.org/10.3390/jox11030007', 'journal-title': 'J Xenobiot'}], 'container-title': 'Egyptian Journal of Medical Human Genetics', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://link.springer.com/content/pdf/10.1186/s43042-023-00456-4.pdf', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://link.springer.com/article/10.1186/s43042-023-00456-4/fulltext.html', 'content-type': 'text/html', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://link.springer.com/content/pdf/10.1186/s43042-023-00456-4.pdf', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2023, 12, 12]], 'date-time': '2023-12-12T04:31:35Z', 'timestamp': 1702355495000}, 'score': 1, 'resource': {'primary': {'URL': 'https://jmhg.springeropen.com/articles/10.1186/s43042-023-00456-4'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2023, 12, 11]]}, 'references-count': 57, 'journal-issue': {'issue': '1', 'published-online': {'date-parts': [[2023, 12]]}}, 'alternative-id': ['456'], 'URL': 'http://dx.doi.org/10.1186/s43042-023-00456-4', 'relation': {'references': [{'id-type': 'uri', 'id': '', 'asserted-by': 'subject'}]}, 'ISSN': ['2090-2441'], 'subject': ['Genetics (clinical)'], 'container-title-short': 'Egypt J Med Hum Genet', 'published': {'date-parts': [[2023, 12, 11]]}, 'assertion': [ { 'value': '4 May 2023', 'order': 1, 'name': 'received', 'label': 'Received', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': '13 November 2023', 'order': 2, 'name': 'accepted', 'label': 'Accepted', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': '11 December 2023', 'order': 3, 'name': 'first_online', 'label': 'First Online', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, {'order': 1, 'name': 'Ethics', 'group': {'name': 'EthicsHeading', 'label': 'Declarations'}}, { 'value': 'Not applicable.', 'order': 2, 'name': 'Ethics', 'group': {'name': 'EthicsHeading', 'label': 'Ethics approval and consent to participate'}}, { 'value': 'Not applicable.', 'order': 3, 'name': 'Ethics', 'group': {'name': 'EthicsHeading', 'label': 'Consent for publication'}}, { 'value': 'The authors declare that they have no competing interests.', 'order': 4, 'name': 'Ethics', 'group': {'name': 'EthicsHeading', 'label': 'Competing interests'}}], 'article-number': '80'}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit