Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchQuercetinQuercetin (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

Quercetin inhibits SARS-CoV-2 infection and prevents syncytium formation by cells co-expressing the viral spike protein and human ACE2

Roy et al., Virology Journal, doi:10.1186/s12985-024-02299-w
Jan 2024  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Quercetin for COVID-19
24th treatment shown to reduce risk in July 2021, now with p = 0.002 from 12 studies.
No treatment is 100% effective. Protocols combine treatments.
5,200+ studies for 112 treatments. c19early.org
In Vitro study showing inhibition of SARS-CoV-2 infection and syncytium formation by quercetin in Vero E6 and Caco-2 cells at 100-400μM concentrations. Authors found that quercetin prevented the proteolytic processing of the SARS-CoV-2 spike protein required for cell fusion, potentially by inhibiting the furin protease responsible for this cleavage. Quercetin also directly inhibited furin activity. The results suggest that sufficiently bioavailable formulations of quercetin may impair viral propagation mechanisms and be a potential COVID-19 treatment.
Bioavailability. Quercetin has low bioavailability and studies typically use advanced formulations to improve bioavailability which may be required to reach therapeutic concentrations.
73 preclinical studies support the efficacy of quercetin for COVID-19:
In Silico studies predict inhibition of SARS-CoV-2, or minimization of side effects, with quercetin or metabolites via binding to the spikeA,2,3,9,10,22,24,25,27,30,38,39,41,42,62, MproB,2,3,7,9,11,13,15,17,18,20,23,24,27,30,34,36-38,42-45, RNA-dependent RNA polymeraseC,1-3,9,32, PLproD,3,37,45, ACE2E,22,23,27,28,37,41, TMPRSS2F,22, nucleocapsidG,3, helicaseH,3,29,34, endoribonucleaseI,39, NSP16/10J,6, cathepsin LK,26, Wnt-3L,22, FZDM,22, LRP6N,22, ezrinO,40, ADRPP,38, NRP1Q,41, EP300R,16, PTGS2S,23, HSP90AA1T,16,23, matrix metalloproteinase 9U,31, IL-6V,21,35, IL-10W,21, VEGFAX,35, and RELAY,35 proteins. In Vitro studies demonstrate inhibition of the MproB,15,46,51,59 protein, and inhibition of spike-ACE2 interactionZ,47. In Vitro studies demonstrate efficacy in Calu-3AA,50, A549AB,21, HEK293-ACE2+AC,58, Huh-7AD,25, Caco-2AE,49, Vero E6AF,19,42,49, mTECAG,52, and RAW264.7AH,52 cells. Animal studies demonstrate efficacy in K18-hACE2 miceAI,55, db/db miceAJ,52,61, BALB/c miceAK,60, and rats19. Quercetin reduced proinflammatory cytokines and protected lung and kidney tissue against LPS-induced damage in mice60, inhibits LPS-induced cytokine storm by modulating key inflammatory and antioxidant pathways in macrophages5, and inhibits SARS-CoV-2 ORF3a ion channel activity, which contributes to viral pathogenicity and cytotoxicity54.
a. The trimeric spike (S) protein is a glycoprotein that mediates viral entry by binding to the host ACE2 receptor, is critical for SARS-CoV-2's ability to infect host cells, and is a target of neutralizing antibodies. Inhibition of the spike protein prevents viral attachment, halting infection at the earliest stage.
b. The main protease or Mpro, also known as 3CLpro or nsp5, is a cysteine protease that cleaves viral polyproteins into functional units needed for replication. Inhibiting Mpro disrupts the SARS-CoV-2 lifecycle within the host cell, preventing the creation of new copies.
c. RNA-dependent RNA polymerase (RdRp), also called nsp12, is the core enzyme of the viral replicase-transcriptase complex that copies the positive-sense viral RNA genome into negative-sense templates for progeny RNA synthesis. Inhibiting RdRp blocks viral genome replication and transcription.
d. The papain-like protease (PLpro) has multiple functions including cleaving viral polyproteins and suppressing the host immune response by deubiquitination and deISGylation of host proteins. Inhibiting PLpro may block viral replication and help restore normal immune responses.
e. The angiotensin converting enzyme 2 (ACE2) protein is a host cell transmembrane protein that serves as the cellular receptor for the SARS-CoV-2 spike protein. ACE2 is expressed on many cell types, including epithelial cells in the lungs, and allows the virus to enter and infect host cells. Inhibition may affect ACE2's physiological function in blood pressure control.
f. Transmembrane protease serine 2 (TMPRSS2) is a host cell protease that primes the spike protein, facilitating cellular entry. TMPRSS2 activity helps enable cleavage of the spike protein required for membrane fusion and virus entry. Inhibition may especially protect respiratory epithelial cells, buy may have physiological effects.
g. The nucleocapsid (N) protein binds and encapsulates the viral genome by coating the viral RNA. N enables formation and release of infectious virions and plays additional roles in viral replication and pathogenesis. N is also an immunodominant antigen used in diagnostic assays.
h. The helicase, or nsp13, protein unwinds the double-stranded viral RNA, a crucial step in replication and transcription. Inhibition may prevent viral genome replication and the creation of new virus components.
i. The endoribonuclease, also known as NendoU or nsp15, cleaves specific sequences in viral RNA which may help the virus evade detection by the host immune system. Inhibition may hinder the virus's ability to mask itself from the immune system, facilitating a stronger immune response.
j. The NSP16/10 complex consists of non-structural proteins 16 and 10, forming a 2'-O-methyltransferase that modifies the viral RNA cap structure. This modification helps the virus evade host immune detection by mimicking host mRNA, making NSP16/10 a promising antiviral target.
k. Cathepsin L is a host lysosomal cysteine protease that can prime the spike protein through an alternative pathway when TMPRSS2 is unavailable. Dual targeting of cathepsin L and TMPRSS2 may maximize disruption of alternative pathways for virus entry.
l. Wingless-related integration site (Wnt) ligand 3 is a host signaling molecule that activates the Wnt signaling pathway, which is important in development, cell growth, and tissue repair. Some studies suggest that SARS-CoV-2 infection may interfere with the Wnt signaling pathway, and that Wnt3a is involved in SARS-CoV-2 entry.
m. The frizzled (FZD) receptor is a host transmembrane receptor that binds Wnt ligands, initiating the Wnt signaling cascade. FZD serves as a co-receptor, along with ACE2, in some proposed mechanisms of SARS-CoV-2 infection. The virus may take advantage of this pathway as an alternative entry route.
n. Low-density lipoprotein receptor-related protein 6 is a cell surface co-receptor essential for Wnt signaling. LRP6 acts in tandem with FZD for signal transduction and has been discussed as a potential co-receptor for SARS-CoV-2 entry.
o. The ezrin protein links the cell membrane to the cytoskeleton (the cell's internal support structure) and plays a role in cell shape, movement, adhesion, and signaling. Drugs that occupy the same spot on ezrin where the viral spike protein would bind may hindering viral attachment, and drug binding could further stabilize ezrin, strengthening its potential natural capacity to impede viral fusion and entry.
p. The Adipocyte Differentiation-Related Protein (ADRP, also known as Perilipin 2 or PLIN2) is a lipid droplet protein regulating the storage and breakdown of fats in cells. SARS-CoV-2 may hijack the lipid handling machinery of host cells and ADRP may play a role in this process. Disrupting ADRP's interaction with the virus may hinder the virus's ability to use lipids for replication and assembly.
q. Neuropilin-1 (NRP1) is a cell surface receptor with roles in blood vessel development, nerve cell guidance, and immune responses. NRP1 may function as a co-receptor for SARS-CoV-2, facilitating viral entry into cells. Blocking NRP1 may disrupt an alternative route of viral entry.
r. EP300 (E1A Binding Protein P300) is a transcriptional coactivator involved in several cellular processes, including growth, differentiation, and apoptosis, through its acetyltransferase activity that modifies histones and non-histone proteins. EP300 facilitates viral entry into cells and upregulates inflammatory cytokine production.
s. Prostaglandin G/H synthase 2 (PTGS2, also known as COX-2) is an enzyme crucial for the production of inflammatory molecules called prostaglandins. PTGS2 plays a role in the inflammatory response that can become severe in COVID-19 and inhibitors (like some NSAIDs) may have benefits in dampening harmful inflammation, but note that prostaglandins have diverse physiological functions.
t. Heat Shock Protein 90 Alpha Family Class A Member 1 (HSP90AA1) is a chaperone protein that helps other proteins fold correctly and maintains their stability. HSP90AA1 plays roles in cell signaling, survival, and immune responses. HSP90AA1 may interact with numerous viral proteins, but note that it has diverse physiological functions.
u. Matrix metalloproteinase 9 (MMP9), also called gelatinase B, is a zinc-dependent enzyme that breaks down collagen and other components of the extracellular matrix. MMP9 levels increase in severe COVID-19. Overactive MMP9 can damage lung tissue and worsen inflammation. Inhibition of MMP9 may prevent excessive tissue damage and help regulate the inflammatory response.
v. The interleukin-6 (IL-6) pro-inflammatory cytokine (signaling molecule) has a complex role in the immune response and may trigger and perpetuate inflammation. Elevated IL-6 levels are associated with severe COVID-19 cases and cytokine storm. Anti-IL-6 therapies may be beneficial in reducing excessive inflammation in severe COVID-19 cases.
w. The interleukin-10 (IL-10) anti-inflammatory cytokine helps regulate and dampen immune responses, preventing excessive inflammation. IL-10 levels can also be elevated in severe COVID-19. IL-10 could either help control harmful inflammation or potentially contribute to immune suppression.
x. Vascular Endothelial Growth Factor A (VEGFA) promotes the growth of new blood vessels (angiogenesis) and has roles in inflammation and immune responses. VEGFA may contribute to blood vessel leakiness and excessive inflammation associated with severe COVID-19.
y. RELA is a transcription factor subunit of NF-kB and is a key regulator of inflammation, driving pro-inflammatory gene expression. SARS-CoV-2 may hijack and modulate NF-kB pathways.
z. The interaction between the SARS-CoV-2 spike protein and the human ACE2 receptor is a primary method of viral entry, inhibiting this interaction can prevent the virus from attaching to and entering host cells, halting infection at an early stage.
aa. Calu-3 is a human lung adenocarcinoma cell line with moderate ACE2 and TMPRSS2 expression and SARS-CoV-2 susceptibility. It provides a model of the human respiratory epithelium, but many not be ideal for modeling early stages of infection due to the moderate expression levels of ACE2 and TMPRSS2.
ab. A549 is a human lung carcinoma cell line with low ACE2 expression and SARS-CoV-2 susceptibility. Viral entry/replication can be studied but the cells may not replicate all aspects of lung infection.
ac. HEK293-ACE2+ is a human embryonic kidney cell line engineered for high ACE2 expression and SARS-CoV-2 susceptibility.
ad. Huh-7 cells were derived from a liver tumor (hepatoma).
ae. Caco-2 cells come from a colorectal adenocarcinoma (cancer). They are valued for their ability to form a polarized cell layer with properties similar to the intestinal lining.
af. Vero E6 is an African green monkey kidney cell line with low/no ACE2 expression and high SARS-CoV-2 susceptibility. The cell line is easy to maintain and supports robust viral replication, however the monkey origin may not accurately represent human responses.
ag. mTEC is a mouse tubular epithelial cell line.
ah. RAW264.7 is a mouse macrophage cell line.
ai. A mouse model expressing the human ACE2 receptor under the control of the K18 promoter.
aj. A mouse model of obesity and severe insulin resistance leading to type 2 diabetes due to a mutation in the leptin receptor gene that impairs satiety signaling.
ak. A mouse model commonly used in infectious disease and cancer research due to higher immune response and susceptibility to infection.
Roy et al., 25 Jan 2024, peer-reviewed, 7 authors. Contact: majambu.mbikay@ircm.qc.ca.
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
This PaperQuercetinAll
Quercetin inhibits SARS-CoV-2 infection and prevents syncytium formation by cells co-expressing the viral spike protein and human ACE2
Annie V Roy, Michael Chan, Logan Banadyga, Shihua He, Wenjun Zhu, Michel Chrétien, Majambu Mbikay
Virology Journal, doi:10.1186/s12985-024-02299-w
Background Several in silico studies have determined that quercetin, a plant flavonol, could bind with strong affinity and low free energy to SARS-CoV-2 proteins involved in viral entry and replication, suggesting it could block infection of human cells by the virus. In the present study, we examined the ex vivo ability of quercetin to inhibit of SARS-CoV-2 replication and explored the mechanisms of this inhibition. Methods Green monkey kidney Vero E6 cells and in human colon carcinoma Caco-2 cells were infected with SARS-CoV-2 and incubated in presence of quercetin; the amount of replicated viral RNA was measured in spent media by RT-qPCR. Since the formation of syncytia is a mechanism of SARS-CoV-2 propagation, a syncytialization model was set up using human embryonic kidney HEK293 co-expressing SARS-CoV-2 Spike (S) protein and human angiotensin converting enzyme 2 (ACE2), [HEK293(S + ACE2) cells], to assess the effect of quercetin on this cytopathic event by microscopic imaging and protein immunoblotting. Results Quercetin inhibited SARS-CoV-2 replication in Vero E6 cells and Caco-2 cells in a concentration-dependent manner with a half inhibitory concentration (IC 50 ) of 166.6 and 145.2 µM, respectively. It also inhibited syncytialization of HEK293(S + ACE2) cells with an IC 50 of 156.7 µM. Spike and ACE2 co-expression was associated with decreased expression, increased proteolytic processing of the S protein, and diminished production of the fusogenic S2' fragment of S. Furin, a proposed protease for this processing, was inhibited by quercetin in vitro with an IC 50 of 116 µM. Conclusion These findings suggest that at low 3-digit micromolar concentrations of quercetin could impair SARS-CoV-2 infection of human cells partly by blocking the fusion process that promotes its propagation.
Abbreviations Supplementary Information The online version contains supplementary material available at https://doi. org/10.1186/s12985-024-02299-w. Supplementary Material 1: Supplementary Figure S1 . Confirmation of S protein bands. Cells were transfected with the indicated expression vectors and their extracts analyzed as described for Fig. 3 . Immunoblotting of S protein and its fragments was performed using antibodies from Abcam (cat# ab272504) and Sino Biological (cat# 40592-T62). The Spike-Linker-GFP gene is expressed as a fusion S-GFP protein whereas with the Spike-P2A-GFP gene, the S protein and GFP are expressed as two separate molecules, hence the size difference in immunoreactive S bands produced par the two vectors. Supplementary Material 2: Supplementary Figure S2 . Pull-down of ACE2 by S protein. HEK293(S+ACE2) cell extracts were subjected to immunoprecipitation with GFP-trap beads. The precipitates were analyzed by immunoblotting for ACE-2 and GFP; the densities of immunoreactive bands were determined. A. A representative blot. B&C. The S/ACE2 and S2/ACE density ratios were computed. The values (means ± SD of 3 independent experiments) of quercetin-treated cells were expressed relative to those of DMSO treated control cells. Supplementary Material 3: Supplementary Figure S3 . Effect of isoquercetin on HEK293(S+ACE2) syncytialization. The experiment was conducted as described in Fig. 1 . Isoquercetin did not inhibit the formation de syncytia...
References
Abian, Ortega-Alarcon, Jimenez-Alesanco, Ceballos-Laita, Vega et al., Structural stability of SARS-CoV-2 3CLpro and identification of quercetin as an inhibitor by experimental screening, Int J Biol Macromol
Babadaei, Hasan, Vahdani, Bloukh, Sharifi et al., Development of remdesivir repositioning as a nucleotide analog against COVID-19 RNA dependent RNA polymerase, J Biomol Struct Dyn
Buchrieser, Dufloo, Hubert, Monel, Planas et al., Syncytia formation by SARS-CoV-2-infected cells, EMBO J
Carullo, Badolato, Aiello, Bioavailability and biochemistry of quercetin and applications to health and diseases
Chaves, Fintelman-Rodrigues, Wang, Sacramento, Temerozo et al., Commercially available flavonols are better SARS-CoV-2 inhibitors than isoflavone and Flavones, Viruses
De Boer, Dihal, Van Der Woude, Arts, Wolffram et al., Tissue distribution of quercetin in rats and pigs, J Nutr
De Granada-Flor, Sousa, Filipe, Santos, De Almeida, Quercetin dual interaction at the membrane level, ChemComm
Donnelly, Luke, Mehrotra, Li, Hughes et al., Analysis of the aphthovirus 2A/2B polyprotein 'cleavage' mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal 'skip, J Gen Virol
Essalmani, Jain, Resiga, Andreo, Evagelidis et al., Distinctive roles of furin and TMPRSS2 in SARS-CoV-2 infectivity, J Virol
Fodor, Tiperciuc, Login, Orasan, Lazar et al., Endothelial dysfunction, inflammation, and oxidative stress in COVID-19-mechanisms and therapeutic targets, Oxid Med Cell Longev
Furushima, Otake, Koike, Onishi, Mori et al., Investigation of the oral Retention of Tea catechins in humans: an exploratory interventional study, Nutrients
Ganguli, Howlader, Dey, Barua, Islam et al., Association of comorbidities with the COVID-19 severity and hospitalization: a study among the recovered individuals in Bangladesh, Int J Health Sci
Garcia-Albeniz, Amo, Polo, Morales-Asencio, Hernan, Systematic review and meta-analysis of randomized trials of hydroxychloroquine for the prevention of COVID-19, Eur J Epidemiol
Gunst, Staerke, Pahus, Kristensen, Bodilsen et al., Efficacy of the TMPRSS2 inhibitor camostat mesilate in patients hospitalized with Covid-19-a double-blind randomized controlled trial, EClinicalMedicine
Harrison, Lin, Wang, Mechanisms of SARS-CoV-2 transmission and pathogenesis, Trends Immunol
Hashemzaei, Far, Yari, Heravi, Tabrizian et al., Anticancer and apoptosis-inducing effects of quercetin in vitro and in vivo, Oncol Rep
Hiremath, Kumar, Nandan, Mantesh, Shankarappa et al., In silico docking analysis revealed the potential of phytochemicals present in Phyllanthus amarus and Andrographis paniculata, used in Ayurveda medicine in inhibiting SARS-CoV-2, 3 Biotech
Horita, Fukumoto, Global case fatality rate from COVID-19 has decreased by 96.8% during 2.5 years of the pandemic, J Med Virol
Kandeil, Mostafa, Kutkat, Moatasim, Al-Karmalawy et al., Bioactive polyphenolic compounds showing strong antiviral activities against severe acute respiratory syndrome coronavirus 2, Pathogens
Konwar, Maurya, Bose, A meta-analysis of safety of different regimens of remdesivir in COVID-19 patients, Curr Drug Saf
Liu, Raghuvanshi, Ceylan, Bolling, Quercetin and its metabolites inhibit recombinant human angiotensin-converting enzyme 2 (ACE2) activity, J Agric Food Chem
Manjunathan, Periyaswami, Rosita, Pandya, Selvaraj et al., Molecular docking analysis reveals the functional inhibitory effect of Genistein and Quercetin on TMPRSS2: SARS-COV-2 cell entry facilitator spike protein, BMC Bioinform
Marzi, Vakil, Bahmanyar, Zarenezhad, Paxlovid: mechanism of action, synthesis, and in silico study, BioMed Res Int
Msemburi, Karlinsky, Knutson, Aleshin-Guendel, Chatterji et al., The WHO estimates of excess mortality associated with the COVID-19 pandemic, Nature
Munafo, Donati, Brindani, Ottonello, Armirotti et al., Quercetin and luteolin are single-digit micromolar inhibitors of the SARS-CoV-2 RNAdependent RNA polymerase, Sci Rep
Najjar-Debbiny, Gronich, Weber, Khoury, Amar et al., Effectiveness of paxlovid in reducing severe coronavirus disease 2019 and mortality in high-risk patients, Clin Infect Dis
Ning, Wang, Wu, Chen, Pei et al., The COVID-19 vaccination and vaccine inequity worldwide: an empirical study based on global data, Int J Environ Res Public Health
Onishi, Mori, Kanbara, Habe, Ota et al., Green tea catechins adsorbed on the murine pharyngeal mucosa reduce influenza a virus infection, J Funct Foods
Pan, Fang, Zhang, Pan, Liu et al., Chinese herbal compounds against SARS-CoV-2: Puerarin and quercetin impair the binding of viral S-protein to ACE2 receptor, Comput Struct Biotechnol J
Pandey, Rai, Tahir, Wahab, Bandyopadhyay et al., Prevalence of comorbidities and symptoms stratified by severity of illness amongst adult patients with COVID-19: a systematic review, Arch Med Sci Atheroscler Dis
Paulke, Eckert, Schubert-Zsilavecz, Wurglics, Isoquercitrin provides better bioavailability than quercetin: comparison of quercetin metabolites in body tissue and brain sections after six days administration of isoquercitrin and quercetin, Pharmazie
Schaefer, Jung, Hummer, Binding of SARS-CoV-2 fusion peptide to host endosome and plasma membrane, J Phys Chem B
Singh, Barry, Croatt, Ackerman, Grande et al., The spike protein of SARS-CoV-2 induces heme oxygenase-1: pathophysiologic implications, Biochim Biophys Acta -Mol Basis Dis
Sun, Sui, Zhou, Ya, Yuan et al., Structural basis of covalent inhibitory mechanism of TMPRSS2-related serine proteases by camostat, J Virol
Tsuchiya, Membrane interactions of phytochemicals as their molecular mechanism applicable to the discovery of drug leads from plants, Molecules
Tsuchiya, Structure-dependent membrane interaction of flavonoids associated with their bioactivity, Food Chem
Yang, Wang, Long, Li, Its main pharmacological activity and potential application in clinical medicine, Oxid Med Cell Longev
Yuan, Pavel, Wang, Kwachukwu, Mediouni et al., Hydroxychloroquine blocks SARS-CoV-2 entry into the endocytic pathway in mammalian cell culture, Commun Biol
Zhang, Hao, Zhang, He, Chen et al., Potential of green tea EGCG in neutralizing SARS-CoV-2 Omicron variant with greater tropism toward the upper respiratory tract, Trends Food Sci Technol
Zhu, Declercq, Creemers, Chen, Cui et al., Limitations of inhibitory activities of polyphenols on furin-mediated substrate processing, Curr Med Chem
Zhu, Scholle, Kisthardt, Xie, Flavonols and dihydroflavonols inhibit the main protease activity of SARS-CoV-2 and the replication of human coronavirus 229, E. Virology
Zhu, Van De Ven, Verbiest, Koeckelberghs, Chen et al., Polyphenols can inhibit furin in vitro as a result of the reactivity of their auto-oxidation products to proteins, Curr Med Chem
{ 'indexed': {'date-parts': [[2024, 1, 26]], 'date-time': '2024-01-26T00:14:14Z', 'timestamp': 1706228054889}, 'reference-count': 42, 'publisher': 'Springer Science and Business Media LLC', 'issue': '1', 'license': [ { 'start': { 'date-parts': [[2024, 1, 25]], 'date-time': '2024-01-25T00:00:00Z', 'timestamp': 1706140800000}, 'content-version': 'tdm', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by/4.0'}, { 'start': { 'date-parts': [[2024, 1, 25]], 'date-time': '2024-01-25T00:00:00Z', 'timestamp': 1706140800000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by/4.0'}], 'funder': [ { 'DOI': '10.13039/100011094', 'name': 'Public Health Agency of Canada', 'doi-asserted-by': 'publisher'}, {'name': 'Richard and Edith Strauss Foundation'}, {'name': 'the Lazaridis Family Foundation'}, {'name': 'Power Corporation'}, {'name': 'Fondation J-Louis Lévesque'}, {'name': 'Fondation Notre Dame de Zeitoun'}], 'content-domain': {'domain': ['link.springer.com'], 'crossmark-restriction': False}, 'abstract': '<jats:title>Abstract</jats:title><jats:sec>\n' ' <jats:title>Background</jats:title>\n' ' <jats:p>Several <jats:italic>in silico</jats:italic> studies have determined ' 'that quercetin, a plant flavonol, could bind with strong affinity and low free energy to ' 'SARS-CoV-2 proteins involved in viral entry and replication, suggesting it could block ' 'infection of human cells by the virus. In the present study, we examined the ex vivo ability ' 'of quercetin to inhibit of SARS-CoV-2 replication and explored the mechanisms of this ' 'inhibition.</jats:p>\n' ' </jats:sec><jats:sec>\n' ' <jats:title>Methods</jats:title>\n' ' <jats:p>Green monkey kidney Vero E6 cells and in human colon carcinoma Caco-2 ' 'cells were infected with SARS-CoV-2 and incubated in presence of quercetin; the amount of ' 'replicated viral RNA was measured in spent media by RT-qPCR. Since the formation of syncytia ' 'is a mechanism of SARS-CoV-2 propagation, a syncytialization model was set up using human ' 'embryonic kidney HEK293 co-expressing SARS-CoV-2 Spike (S) protein and human angiotensin ' 'converting enzyme 2 (ACE2), [HEK293(S\u2009+\u2009ACE2) cells], to assess the effect of ' 'quercetin on this cytopathic event by microscopic imaging and protein ' 'immunoblotting.</jats:p>\n' ' </jats:sec><jats:sec>\n' ' <jats:title>Results</jats:title>\n' ' <jats:p>Quercetin inhibited SARS-CoV-2 replication in Vero E6 cells and ' 'Caco-2 cells in a concentration-dependent manner with a half inhibitory concentration ' '(IC<jats:sub>50</jats:sub>) of 166.6 and 145.2 µM, respectively. It also inhibited ' 'syncytialization of HEK293(S\u2009+\u2009ACE2) cells with an IC<jats:sub>50</jats:sub> of ' '156.7 µM. Spike and ACE2 co-expression was associated with decreased expression, increased ' 'proteolytic processing of the S protein, and diminished production of the fusogenic S2’ ' 'fragment of S. Furin, a proposed protease for this processing, was inhibited by quercetin in ' 'vitro with an IC<jats:sub>50</jats:sub> of 116 µM.</jats:p>\n' ' </jats:sec><jats:sec>\n' ' <jats:title>Conclusion</jats:title>\n' ' <jats:p>These findings suggest that at low 3-digit micromolar concentrations ' 'of quercetin could impair SARS-CoV-2 infection of human cells partly by blocking the fusion ' 'process that promotes its propagation.</jats:p>\n' ' </jats:sec>', 'DOI': '10.1186/s12985-024-02299-w', 'type': 'journal-article', 'created': {'date-parts': [[2024, 1, 25]], 'date-time': '2024-01-25T16:02:44Z', 'timestamp': 1706198564000}, 'update-policy': 'http://dx.doi.org/10.1007/springer_crossmark_policy', 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': 'Quercetin inhibits SARS-CoV-2 infection and prevents syncytium formation by cells co-expressing ' 'the viral spike protein and human ACE2', 'prefix': '10.1186', 'volume': '21', 'author': [ {'given': 'Annie V.', 'family': 'Roy', 'sequence': 'first', 'affiliation': []}, {'given': 'Michael', 'family': 'Chan', 'sequence': 'additional', 'affiliation': []}, {'given': 'Logan', 'family': 'Banadyga', 'sequence': 'additional', 'affiliation': []}, {'given': 'Shihua', 'family': 'He', 'sequence': 'additional', 'affiliation': []}, {'given': 'Wenjun', 'family': 'Zhu', 'sequence': 'additional', 'affiliation': []}, {'given': 'Michel', 'family': 'Chrétien', 'sequence': 'additional', 'affiliation': []}, {'given': 'Majambu', 'family': 'Mbikay', 'sequence': 'additional', 'affiliation': []}], 'member': '297', 'published-online': {'date-parts': [[2024, 1, 25]]}, 'reference': [ { 'key': '2299_CR1', 'doi-asserted-by': 'publisher', 'first-page': '130', 'DOI': '10.1038/s41586-022-05522-2', 'volume': '613', 'author': 'W Msemburi', 'year': '2023', 'unstructured': 'Msemburi W, Karlinsky A, Knutson V, Aleshin-Guendel S, Chatterji S, ' 'Wakefield J. The WHO estimates of excess mortality associated with the ' 'COVID-19 pandemic. Nature. 2023;613:130–7.', 'journal-title': 'Nature'}, { 'key': '2299_CR2', 'doi-asserted-by': 'publisher', 'first-page': '1100', 'DOI': '10.1016/j.it.2020.10.004', 'volume': '41', 'author': 'AG Harrison', 'year': '2020', 'unstructured': 'Harrison AG, Lin T, Wang P. Mechanisms of SARS-CoV-2 transmission and ' 'pathogenesis. Trends Immunol. 2020;41:1100–15.', 'journal-title': 'Trends Immunol'}, { 'key': '2299_CR3', 'doi-asserted-by': 'publisher', 'first-page': 'e28231', 'DOI': '10.1002/jmv.28231', 'volume': '95', 'author': 'N Horita', 'year': '2023', 'unstructured': 'Horita N, Fukumoto T. Global case fatality rate from COVID-19 has ' 'decreased by 96.8% during 2.5 years of the pandemic. J Med Virol. ' '2023;95:e28231.', 'journal-title': 'J Med Virol'}, { 'key': '2299_CR4', 'first-page': '30', 'volume': '16', 'author': 'S Ganguli', 'year': '2022', 'unstructured': 'Ganguli S, Howlader S, Dey K, Barua S, Islam MN, Aquib TI, Partho PB, ' 'Chakraborty RR, Barua B, Hawlader MDH, Biswas PK. Association of ' 'comorbidities with the COVID-19 severity and hospitalization: a study ' 'among the recovered individuals in Bangladesh. Int J Health Sci. ' '2022;16:30–45.', 'journal-title': 'Int J Health Sci'}, { 'key': '2299_CR5', 'doi-asserted-by': 'publisher', 'first-page': 'e5', 'DOI': '10.5114/amsad.2022.115008', 'volume': '7', 'author': 'R Pandey', 'year': '2022', 'unstructured': 'Pandey R, Rai D, Tahir MW, Wahab A, Bandyopadhyay D, Lesho E, ' 'Laguio-Vila M, Fentanes E, Tariq R, Naidu SS, Aronow WS. Prevalence of ' 'comorbidities and symptoms stratified by severity of illness amongst ' 'adult patients with COVID-19: a systematic review. Arch Med Sci ' 'Atheroscler Dis. 2022;7:e5–e23.', 'journal-title': 'Arch Med Sci Atheroscler Dis'}, { 'key': '2299_CR6', 'doi-asserted-by': 'crossref', 'unstructured': 'Ning C, Wang H, Wu J, Chen Q, Pei H, Gao H. The COVID-19 vaccination and ' 'vaccine inequity worldwide: an empirical study based on global data. Int ' 'J Environ Res Public Health. 2022;19.', 'DOI': '10.3390/ijerph19095267'}, { 'key': '2299_CR7', 'doi-asserted-by': 'publisher', 'first-page': 'e0086121', 'DOI': '10.1128/JVI.00861-21', 'volume': '95', 'author': 'G Sun', 'year': '2021', 'unstructured': 'Sun G, Sui Y, Zhou Y, Ya J, Yuan C, Jiang L, Huang M. Structural basis ' 'of covalent inhibitory mechanism of TMPRSS2-related serine proteases by ' 'camostat. J Virol. 2021;95:e0086121.', 'journal-title': 'J Virol'}, { 'key': '2299_CR8', 'doi-asserted-by': 'publisher', 'first-page': '100849', 'DOI': '10.1016/j.eclinm.2021.100849', 'volume': '35', 'author': 'JD Gunst', 'year': '2021', 'unstructured': 'Gunst JD, Staerke NB, Pahus MH, Kristensen LH, Bodilsen J, Lohse N, ' 'Dalgaard LS, Bronnum D, Frobert O, Honge B, et al. Efficacy of the ' 'TMPRSS2 inhibitor camostat mesilate in patients hospitalized with ' 'Covid-19-a double-blind randomized controlled trial. EClinicalMedicine. ' '2021;35:100849.', 'journal-title': 'EClinicalMedicine'}, { 'key': '2299_CR9', 'doi-asserted-by': 'publisher', 'first-page': '958', 'DOI': '10.1038/s42003-022-03841-8', 'volume': '5', 'author': 'Z Yuan', 'year': '2022', 'unstructured': 'Yuan Z, Pavel MA, Wang H, Kwachukwu JC, Mediouni S, Jablonski JA, ' 'Nettles KW, Reddy CB, Valente ST, Hansen SB. Hydroxychloroquine blocks ' 'SARS-CoV-2 entry into the endocytic pathway in mammalian cell culture. ' 'Commun Biol. 2022;5:958.', 'journal-title': 'Commun Biol'}, { 'key': '2299_CR10', 'doi-asserted-by': 'publisher', 'first-page': '789', 'DOI': '10.1007/s10654-022-00891-4', 'volume': '37', 'author': 'X Garcia-Albeniz', 'year': '2022', 'unstructured': 'Garcia-Albeniz X, Del Amo J, Polo R, Morales-Asencio JM, Hernan MA. ' 'Systematic review and meta-analysis of randomized trials of ' 'hydroxychloroquine for the prevention of COVID-19. Eur J Epidemiol. ' '2022;37:789–96.', 'journal-title': 'Eur J Epidemiol'}, { 'key': '2299_CR11', 'doi-asserted-by': 'publisher', 'first-page': '7341493', 'DOI': '10.1155/2022/7341493', 'volume': '2022', 'author': 'M Marzi', 'year': '2022', 'unstructured': 'Marzi M, Vakil MK, Bahmanyar M, Zarenezhad E. Paxlovid: mechanism of ' 'action, synthesis, and in silico study. BioMed Res Int. ' '2022;2022:7341493.', 'journal-title': 'BioMed Res Int'}, { 'key': '2299_CR12', 'doi-asserted-by': 'publisher', 'first-page': '158', 'DOI': '10.2174/1574886316666210728110330', 'volume': '17', 'author': 'M Konwar', 'year': '2022', 'unstructured': 'Konwar M, Maurya M, Bose D. A meta-analysis of safety of different ' 'regimens of remdesivir in COVID-19 patients. Curr Drug Saf. ' '2022;17:158–67.', 'journal-title': 'Curr Drug Saf'}, { 'key': '2299_CR13', 'doi-asserted-by': 'publisher', 'first-page': '3771', 'DOI': '10.1080/07391102.2020.1767210', 'volume': '39', 'author': 'MMN Babadaei', 'year': '2021', 'unstructured': 'Babadaei MMN, Hasan A, Vahdani Y, Bloukh SH, Sharifi M, Kachooei E, ' 'Haghighat S, Falahati M. Development of remdesivir repositioning as a ' 'nucleotide analog against COVID-19 RNA dependent RNA polymerase. J ' 'Biomol Struct Dyn. 2021;39:3771–9.', 'journal-title': 'J Biomol Struct Dyn'}, { 'key': '2299_CR14', 'doi-asserted-by': 'publisher', 'first-page': 'e342', 'DOI': '10.1093/cid/ciac443', 'volume': '76', 'author': 'R Najjar-Debbiny', 'year': '2023', 'unstructured': 'Najjar-Debbiny R, Gronich N, Weber G, Khoury J, Amar M, Stein N, ' 'Goldstein LH, Saliba W. Effectiveness of paxlovid in reducing severe ' 'coronavirus disease 2019 and mortality in high-risk patients. Clin ' 'Infect Dis. 2023;76:e342–9.', 'journal-title': 'Clin Infect Dis'}, { 'key': '2299_CR15', 'doi-asserted-by': 'publisher', 'first-page': '44', 'DOI': '10.1007/s13205-020-02578-7', 'volume': '11', 'author': 'S Hiremath', 'year': '2021', 'unstructured': 'Hiremath S, Kumar HDV, Nandan M, Mantesh M, Shankarappa KS, ' 'Venkataravanappa V, Basha CRJ, Reddy CNL. In silico docking analysis ' 'revealed the potential of phytochemicals present in Phyllanthus amarus ' 'and Andrographis paniculata, used in Ayurveda medicine in inhibiting ' 'SARS-CoV-2. 3 Biotech. 2021;11:44.', 'journal-title': '3 Biotech'}, { 'key': '2299_CR16', 'doi-asserted-by': 'publisher', 'first-page': '3518', 'DOI': '10.1016/j.csbj.2020.11.010', 'volume': '18', 'author': 'B Pan', 'year': '2020', 'unstructured': 'Pan B, Fang S, Zhang J, Pan Y, Liu H, Wang Y, Li M, Liu L. Chinese ' 'herbal compounds against SARS-CoV-2: Puerarin and quercetin impair the ' 'binding of viral S-protein to ACE2 receptor. Comput Struct Biotechnol J. ' '2020;18:3518–27.', 'journal-title': 'Comput Struct Biotechnol J'}, { 'key': '2299_CR17', 'doi-asserted-by': 'publisher', 'first-page': '180', 'DOI': '10.1186/s12859-022-04724-9', 'volume': '23', 'author': 'R Manjunathan', 'year': '2022', 'unstructured': 'Manjunathan R, Periyaswami V, Mitra K, Rosita AS, Pandya M, Selvaraj J, ' 'Ravi L, Devarajan N, Doble M. Molecular docking analysis reveals the ' 'functional inhibitory effect of Genistein and Quercetin on TMPRSS2: ' 'SARS-COV-2 cell entry facilitator spike protein. BMC Bioinform. ' '2022;23:180.', 'journal-title': 'BMC Bioinform'}, { 'key': '2299_CR18', 'doi-asserted-by': 'publisher', 'first-page': '3641', 'DOI': '10.2174/092986712801323162', 'volume': '19', 'author': 'J Zhu', 'year': '2012', 'unstructured': 'Zhu J, Declercq J, Creemers JW, Chen C, Cui Y, Van de Ven WJ, Vermorken ' 'AJ. Limitations of inhibitory activities of polyphenols on ' 'furin-mediated substrate processing. Curr Med Chem. 2012;19:3641–50.', 'journal-title': 'Curr Med Chem'}, { 'key': '2299_CR19', 'doi-asserted-by': 'publisher', 'first-page': '13982', 'DOI': '10.1021/acs.jafc.0c05064', 'volume': '68', 'author': 'X Liu', 'year': '2020', 'unstructured': 'Liu X, Raghuvanshi R, Ceylan FD, Bolling BW. Quercetin and its ' 'metabolites inhibit recombinant human angiotensin-converting enzyme 2 ' '(ACE2) activity. J Agric Food Chem. 2020;68:13982–9.', 'journal-title': 'J Agric Food Chem'}, { 'key': '2299_CR20', 'doi-asserted-by': 'publisher', 'first-page': '1693', 'DOI': '10.1016/j.ijbiomac.2020.07.235', 'volume': '164', 'author': 'O Abian', 'year': '2020', 'unstructured': 'Abian O, Ortega-Alarcon D, Jimenez-Alesanco A, Ceballos-Laita L, Vega S, ' 'Reyburn HT, Rizzuti B, Velazquez-Campoy A. Structural stability of ' 'SARS-CoV-2 3CLpro and identification of quercetin as an inhibitor by ' 'experimental screening. Int J Biol Macromol. 2020;164:1693–703.', 'journal-title': 'Int J Biol Macromol'}, { 'key': '2299_CR21', 'doi-asserted-by': 'publisher', 'first-page': '21', 'DOI': '10.1016/j.virol.2022.04.005', 'volume': '571', 'author': 'Y Zhu', 'year': '2022', 'unstructured': 'Zhu Y, Scholle F, Kisthardt SC, Xie DY. Flavonols and dihydroflavonols ' 'inhibit the main protease activity of SARS-CoV-2 and the replication of ' 'human coronavirus 229E. Virology. 2022;571:21–33.', 'journal-title': 'Virology'}, { 'key': '2299_CR22', 'doi-asserted-by': 'publisher', 'first-page': '10571', 'DOI': '10.1038/s41598-022-14664-2', 'volume': '12', 'author': 'F Munafo', 'year': '2022', 'unstructured': 'Munafo F, Donati E, Brindani N, Ottonello G, Armirotti A, De Vivo M. ' 'Quercetin and luteolin are single-digit micromolar inhibitors of the ' 'SARS-CoV-2 RNA-dependent RNA polymerase. Sci Rep. 2022;12:10571.', 'journal-title': 'Sci Rep'}, { 'key': '2299_CR23', 'doi-asserted-by': 'publisher', 'first-page': '8825387', 'DOI': '10.1155/2020/8825387', 'volume': '2020', 'author': 'D Yang', 'year': '2020', 'unstructured': 'Yang D, Wang T, Long M, Li P, Quercetin. Its main pharmacological ' 'activity and potential application in clinical medicine. Oxid Med Cell ' 'Longev. 2020;2020:8825387.', 'journal-title': 'Oxid Med Cell Longev'}, { 'key': '2299_CR24', 'doi-asserted-by': 'publisher', 'first-page': '8671713', 'DOI': '10.1155/2021/8671713', 'volume': '2021', 'author': 'A Fodor', 'year': '2021', 'unstructured': 'Fodor A, Tiperciuc B, Login C, Orasan OH, Lazar AL, Buchman C, Hanghicel ' 'P, Sitar-Taut A, Suharoschi R, Vulturar R, Cozma A. Endothelial ' 'dysfunction, inflammation, and oxidative stress in COVID-19-mechanisms ' 'and therapeutic targets. Oxid Med Cell Longev. 2021;2021:8671713.', 'journal-title': 'Oxid Med Cell Longev'}, { 'key': '2299_CR25', 'doi-asserted-by': 'publisher', 'first-page': '1013', 'DOI': '10.1099/0022-1317-82-5-1013', 'volume': '82', 'author': 'MLL Donnelly', 'year': '2001', 'unstructured': 'Donnelly MLL, Luke G, Mehrotra A, Li X, Hughes LE, Gani D, Ryan MD. ' 'Analysis of the aphthovirus 2A/2B polyprotein ‘cleavage’ mechanism ' 'indicates not a proteolytic reaction, but a novel translational effect: ' 'a putative ribosomal ‘skip’. J Gen Virol. 2001;82:1013–25.', 'journal-title': 'J Gen Virol'}, { 'key': '2299_CR26', 'doi-asserted-by': 'publisher', 'first-page': '1089', 'DOI': '10.1016/j.foodchem.2009.11.057', 'volume': '120', 'author': 'H Tsuchiya', 'year': '2010', 'unstructured': 'Tsuchiya H. Structure-dependent membrane interaction of flavonoids ' 'associated with their bioactivity. Food Chem. 2010;120:1089–96.', 'journal-title': 'Food Chem'}, { 'key': '2299_CR27', 'doi-asserted-by': 'publisher', 'first-page': '18923', 'DOI': '10.3390/molecules201018923', 'volume': '20', 'author': 'H Tsuchiya', 'year': '2015', 'unstructured': 'Tsuchiya H. Membrane interactions of phytochemicals as their molecular ' 'mechanism applicable to the discovery of drug leads from plants. ' 'Molecules. 2015;20:18923–66.', 'journal-title': 'Molecules'}, { 'key': '2299_CR28', 'doi-asserted-by': 'publisher', 'first-page': 'e0012822', 'DOI': '10.1128/jvi.00128-22', 'volume': '96', 'author': 'R Essalmani', 'year': '2022', 'unstructured': 'Essalmani R, Jain J, Susan-Resiga D, Andreo U, Evagelidis A, Derbali RM, ' 'Huynh DN, Dallaire F, Laporte M, Delpal A, et al. Distinctive roles of ' 'furin and TMPRSS2 in SARS-CoV-2 infectivity. J Virol. 2022;96:e0012822.', 'journal-title': 'J Virol'}, { 'key': '2299_CR29', 'doi-asserted-by': 'crossref', 'unstructured': 'Carullo G, Badolato M, Aiello F. Bioavailability and biochemistry of ' 'quercetin and applications to health and diseases. Polyphenols: ' 'mechanisms of action in human health and disease. Elsevier; 2018. pp. ' '361–71.', 'DOI': '10.1016/B978-0-12-813006-3.00026-X'}, { 'key': '2299_CR30', 'first-page': '991', 'volume': '67', 'author': 'A Paulke', 'year': '2012', 'unstructured': 'Paulke A, Eckert GP, Schubert-Zsilavecz M, Wurglics M. Isoquercitrin ' 'provides better bioavailability than quercetin: comparison of quercetin ' 'metabolites in body tissue and brain sections after six days ' 'administration of isoquercitrin and quercetin. Pharmazie. 2012;67:991–6.', 'journal-title': 'Pharmazie'}, { 'key': '2299_CR31', 'doi-asserted-by': 'publisher', 'first-page': '1718', 'DOI': '10.1093/jn/135.7.1718', 'volume': '135', 'author': 'VC de Boer', 'year': '2005', 'unstructured': 'de Boer VC, Dihal AA, van der Woude H, Arts IC, Wolffram S, Alink GM, ' 'Rietjens IM, Keijer J, Hollman PC. Tissue distribution of quercetin in ' 'rats and pigs. J Nutr. 2005;135:1718–25.', 'journal-title': 'J Nutr'}, { 'key': '2299_CR32', 'doi-asserted-by': 'crossref', 'unstructured': 'Furushima D, Otake Y, Koike N, Onishi S, Mori T, Ota N, Yamada H. ' 'Investigation of the oral Retention of Tea catechins in humans: an ' 'exploratory interventional study. Nutrients. 2021;13.', 'DOI': '10.3390/nu13093024'}, { 'key': '2299_CR33', 'doi-asserted-by': 'publisher', 'first-page': '103894', 'DOI': '10.1016/j.jff.2020.103894', 'volume': '68', 'author': 'S Onishi', 'year': '2020', 'unstructured': 'Onishi S, Mori T, Kanbara H, Habe T, Ota N, Kurebayashi Y, Suzuki T. ' 'Green tea catechins adsorbed on the murine pharyngeal mucosa reduce ' 'influenza a virus infection. J Funct Foods. 2020;68:103894.', 'journal-title': 'J Funct Foods'}, { 'key': '2299_CR34', 'doi-asserted-by': 'publisher', 'first-page': '40', 'DOI': '10.1016/j.tifs.2022.12.012', 'volume': '132', 'author': 'Z Zhang', 'year': '2023', 'unstructured': 'Zhang Z, Hao M, Zhang X, He Y, Chen X, Taylor EW, Zhang J. Potential of ' 'green tea EGCG in neutralizing SARS-CoV-2 Omicron variant with greater ' 'tropism toward the upper respiratory tract. Trends Food Sci Technol. ' '2023;132:40–53.', 'journal-title': 'Trends Food Sci Technol'}, { 'key': '2299_CR35', 'doi-asserted-by': 'crossref', 'unstructured': 'Kandeil A, Mostafa A, Kutkat O, Moatasim Y, Al-Karmalawy AA, Rashad AA, ' 'Kayed AE, Kayed AE, El-Shesheny R, Kayali G, Ali MA. Bioactive ' 'polyphenolic compounds showing strong antiviral activities against ' 'severe acute respiratory syndrome coronavirus 2. Pathogens. 2021;10.', 'DOI': '10.3390/pathogens10060758'}, { 'key': '2299_CR36', 'doi-asserted-by': 'crossref', 'unstructured': 'Chaves OA, Fintelman-Rodrigues N, Wang X, Sacramento CQ, Temerozo JR, ' 'Ferreira AC, Mattos M, Pereira-Dutra F, Bozza PT, Castro-Faria-Neto HC ' 'et al. Commercially available flavonols are better SARS-CoV-2 inhibitors ' 'than isoflavone and Flavones. Viruses. 2022;14.', 'DOI': '10.3390/v14071458'}, { 'key': '2299_CR37', 'doi-asserted-by': 'publisher', 'first-page': 'e107405', 'DOI': '10.15252/embj.2020107405', 'volume': '40', 'author': 'J Buchrieser', 'year': '2021', 'unstructured': 'Buchrieser J, Dufloo J, Hubert M, Monel B, Planas D, Rajah MM, Planchais ' 'C, Porrot F, Guivel-Benhassine F, Van der Werf S, et al. Syncytia ' 'formation by SARS-CoV-2-infected cells. EMBO J. 2021;40:e107405.', 'journal-title': 'EMBO J'}, { 'key': '2299_CR38', 'doi-asserted-by': 'publisher', 'first-page': '7732', 'DOI': '10.1021/acs.jpcb.1c04176', 'volume': '125', 'author': 'SL Schaefer', 'year': '2021', 'unstructured': 'Schaefer SL, Jung H, Hummer G. Binding of SARS-CoV-2 fusion peptide to ' 'host endosome and plasma membrane. J Phys Chem B. 2021;125:7732–41.', 'journal-title': 'J Phys Chem B'}, { 'key': '2299_CR39', 'doi-asserted-by': 'publisher', 'first-page': '166322', 'DOI': '10.1016/j.bbadis.2021.166322', 'volume': '1868', 'author': 'RD Singh', 'year': '2022', 'unstructured': 'Singh RD, Barry MA, Croatt AJ, Ackerman AW, Grande JP, Diaz RM, Vile RG, ' 'Agarwal A, Nath KA. The spike protein of SARS-CoV-2 induces heme ' 'oxygenase-1: pathophysiologic implications. Biochim Biophys Acta - Mol ' 'Basis Dis. 2022;1868:166322.', 'journal-title': 'Biochim Biophys Acta - Mol Basis Dis'}, { 'key': '2299_CR40', 'doi-asserted-by': 'publisher', 'first-page': '819', 'DOI': '10.3892/or.2017.5766', 'volume': '38', 'author': 'M Hashemzaei', 'year': '2017', 'unstructured': 'Hashemzaei M, Delarami Far A, Yari A, Heravi RE, Tabrizian K, Taghdisi ' 'SM, Sadegh SE, Tsarouhas K, Kouretas D, Tzanakakis G, et al. Anticancer ' 'and apoptosis-inducing effects of quercetin in vitro and in vivo. Oncol ' 'Rep. 2017;38:819–28.', 'journal-title': 'Oncol Rep'}, { 'key': '2299_CR41', 'first-page': '840', 'volume': '20', 'author': 'J Zhu', 'year': '2013', 'unstructured': 'Zhu J, Van de Ven WJ, Verbiest T, Koeckelberghs G, Chen C, Cui Y, ' 'Vermorken AJ. Polyphenols can inhibit furin in vitro as a result of the ' 'reactivity of their auto-oxidation products to proteins. Curr Med Chem. ' '2013;20:840–50.', 'journal-title': 'Curr Med Chem'}, { 'key': '2299_CR42', 'first-page': '1750', 'volume': '55', 'author': 'A de Granada-Flor', 'year': '2019', 'unstructured': 'de Granada-Flor A, Sousa C, Filipe HAL, Santos M, de Almeida RFM. ' 'Quercetin dual interaction at the membrane level. ChemComm. ' '2019;55:1750–3.', 'journal-title': 'ChemComm'}], 'container-title': 'Virology Journal', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://link.springer.com/content/pdf/10.1186/s12985-024-02299-w.pdf', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://link.springer.com/article/10.1186/s12985-024-02299-w/fulltext.html', 'content-type': 'text/html', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://link.springer.com/content/pdf/10.1186/s12985-024-02299-w.pdf', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2024, 1, 25]], 'date-time': '2024-01-25T16:06:46Z', 'timestamp': 1706198806000}, 'score': 1, 'resource': {'primary': {'URL': 'https://virologyj.biomedcentral.com/articles/10.1186/s12985-024-02299-w'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2024, 1, 25]]}, 'references-count': 42, 'journal-issue': {'issue': '1', 'published-online': {'date-parts': [[2024, 12]]}}, 'alternative-id': ['2299'], 'URL': 'http://dx.doi.org/10.1186/s12985-024-02299-w', 'relation': {}, 'ISSN': ['1743-422X'], 'subject': ['Infectious Diseases', 'Virology'], 'container-title-short': 'Virol J', 'published': {'date-parts': [[2024, 1, 25]]}, 'assertion': [ { 'value': '20 November 2023', 'order': 1, 'name': 'received', 'label': 'Received', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': '18 January 2024', 'order': 2, 'name': 'accepted', 'label': 'Accepted', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': '25 January 2024', 'order': 3, 'name': 'first_online', 'label': 'First Online', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, {'order': 1, 'name': 'Ethics', 'group': {'name': 'EthicsHeading', 'label': 'Declarations'}}, { 'value': 'Not applicable.', 'order': 2, 'name': 'Ethics', 'group': {'name': 'EthicsHeading', 'label': 'Ethics approval and consent to participate'}}, { 'value': 'Not applicable.', 'order': 3, 'name': 'Ethics', 'group': {'name': 'EthicsHeading', 'label': 'Consent for publication'}}, { 'value': 'The authors declare no competing interests.', 'order': 4, 'name': 'Ethics', 'group': {'name': 'EthicsHeading', 'label': 'Competing interests'}}], 'article-number': '29'}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit