Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
Abstract
All quercetin studies
Meta analysis
 
Feedback
Home
next
study
previous
study
c19early.org COVID-19 treatment researchQuercetinQuercetin (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis    Recent:   

Computational identification of selected bioactive compounds from Cedrus deodara as inhibitors against SARS-CoV-2 main protease: a pharmacoinformatics study

Shaik et al., Indian Drugs, doi:10.53879/id.61.02.13859
Feb 2024  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Quercetin for COVID-19
23rd treatment shown to reduce risk in July 2021
 
*, now with p = 0.0031 from 11 studies.
No treatment is 100% effective. Protocols combine treatments. * >10% efficacy, ≥3 studies.
4,500+ studies for 81 treatments. c19early.org
In Silico study showing that quercetin binds strongly to the SARS-CoV-2 main protease (Mpro). Authors found that out of 49 phytoconstituents from Cedrus deodara, quercetin exhibited the lowest binding energy of approximately -7.2 kcal/mol when interacting with Mpro, forming 4 hydrogen bonds and 1 hydrophobic interaction. Molecular dynamics simulations confirmed the stability of the quercetin-Mpro complex over a 50ns simulation period.
59 preclinical studies support the efficacy of quercetin for COVID-19:
In Silico studies predict inhibition of SARS-CoV-2, or minimization of side effects, with quercetin or metabolites via binding to the spikeA,2,3,15,17,18,23,31,32,34,35,52,53, MproB,2,4,6,8,10,11,13,16,17,23,27,29-31,35,36,38,53,54, RNA-dependent RNA polymeraseC,2,25, PLproD,30,38, ACE2E,15,16,21,30,34,53, TMPRSS2F,15, helicaseG,22,27, endoribonucleaseH,32, cathepsin LI,19, Wnt-3J,15, FZDK,15, LRP6L,15, ezrinM,33, ADRPN,31, NRP1O,34, EP300P,9, PTGS2Q,16, HSP90AA1R,9,16, matrix metalloproteinase 9S,24, IL-6T,14,28, IL-10U,14, VEGFAV,28, and RELAW,28 proteins. In Vitro studies demonstrate efficacy in Calu-3X,41, A549Y,14, HEK293-ACE2+Z,48, Huh-7AA,18, Caco-2AB,40, Vero E6AC,12,35,40, mTECAD,43, and RAW264.7AE,43 cells. Animal studies demonstrate efficacy in K18-hACE2 miceAF,45, db/db miceAG,43,51, BALB/c miceAH,50, and rats55. Quercetin reduced proinflammatory cytokines and protected lung and kidney tissue against LPS-induced damage in mice50.
Shaik et al., 28 Feb 2024, peer-reviewed, 3 authors. Contact: aminaammi786@gmail.com.
In Silico studies are an important part of preclinical research, however results may be very different in vivo.
This PaperQuercetinAll
COMPUTATIONAL IDENTIFICATION OF SELECTED BIOACTIVE COMPOUNDS FROM CEDRUS DEODARA AS INHIBITORS AGAINST SARS-COV-2 MAIN PROTEASE: A PHARMACOINFORMATICS STUDY
Aminabee Shaik, Lakshmana Rao Atmakuri
INDIAN DRUGS, doi:10.53879/id.61.02.13859
Amid the ongoing Covid-19 pandemic, the quest for potent antiviral treatments intensifies. This study focuses on the potential of bioactive compounds from the Himalayan cedar Cedrus deodara against the SARS-CoV-2 virus. Specifically targeting the main protease (M Pro ) and spike protein, the study employs docking trials and molecular dynamics simulations. Compounds such as quercetin, dihydrodehydrodiconiferyl alcohol, and cedeodarin exhibit notable binding affinity, surpassing the reference drug favipiravir. Molecular dynamics simulations affirm the stability of these complexes throughout the simulation period. While these findings underscore promising interactions, it is crucial to emphasize the need for further research and experimental validation to fully explore the therapeutic capabilities of C. deodara in combatting Covid-19.
References
Aminabee, Raveesha, Adithya, Mohansai, Shaherbanu et al., In vivo antinociceptive activity and In silico molecular docking of selected phytoconstituents of methanolic extract of Hypericum japonicum, J. Drug Alcohol Res
Available, Idma, None
Chandramohan, Kaphle, Chekuri, Evaluating andrographolide as a potent inhibitor of NS3-4A protease and its drug resistant mutants using in silico approaches, Adv. Virol
Chaudhuri, Symons, Deval, Innovation and trends in the development and approval of antiviral medicines: 1987-2017 and beyond, Antivir. Res
Cheng, Li, Zhou, AdmetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties, J. Chem. Inf. Model
Du, Xu, Structure of Mpro from COVID-19 virus and discovery of its inhibitors
Gangadharappa, Sharath, Revanasiddappa, Structural insights of metallo-beta-lactamase revealed an effective way of inhibition of enzyme by natural inhibitors, J. Biomol. Struct. Dyn
Goel, Singh, Lagunin, PASS-assisted exploration of new therapeutic potential of natural products, Med. Chem. Res
Hui, Azhar, Madani, The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health -The latest 2019 novel coronavirus outbreak in Wuhan, China, Int. J. Infect. Dis
Hussain, Haleem, Khan, Medicinal plants: a repository of antiviral metabolites, Future Virol
Jassim, Naji, Novel antiviral agents: a medicinal plant perspective, J. Appl. Microbiol
Kar, Sharma, Singh, Natural compounds from Clerodendrum spp. as possible therapeutic candidates against SARS-CoV-2: An in silico investigation, J Biomol. Struct. Dyn
Khurana, Ishar, Gajbhiye, PASS assisted prediction and pharmacological evaluation of novel nicotinic analogs for nootropic activity in mice, Eur. J. Pharmacol
Lin, Hsu, Lin, Antiviral natural products and herbal medicines, J. Tradit. Complem. Med
Lu, Zhao, Li, Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding, Lancet
Martinez, Sasse, Bronstrup, Antiviral drug discovery: broad-spectrum drugs from nature, Nat. Prod. Rep
Mittal, Goel, Bhargava, PASS-assisted exploration of antidepressant activity of 1,3,4-trisubstituted-β-lactam derivatives, Bioorg. Med. Chem. Lett
Morris, Huey, Lindstrom, Autodock4 and AutoDockTools4: Automated docking with selective receptor flexibility, J. Comput. Chem
Moses, Goossens, Plants for human health: greening biotechnology and synthetic biology, J. Exp. Bot
O'boyle, Banck, James, Open Babel: an open chemical toolbox, J Cheminform
Pangastuti, Amin, Amin, Natural bioactive compound from Moringa oleifera against cancer based on in silico screening, J. Teknol
Prasanth, Aminabee, Rao, Guntupalli Ch, Reddy et al., Inhibitory effects of Manosa alliacea in Freund's adjuvant arthritis on inflammatory markers and its confirmation by In silico strategy, Thai J. Pharm. Sci
Prasanth, Aminabee, Rao, Teja, Bhargavi et al., Antihelmintic activity of Mansoa alliacea against Pheretima posthuma: In vitro and In silico approach, Thai J. Pharm. Sci
Rouchka, Chariker, Chung, Phylogenetic and variant analysis of 1,040 SARS-CoV-2 Genomes
Sander, Freyss, Korff, Datawarrior: an open-source program for chemistry aware data visualization and analysis, J. Chem. Inf. Model
Schaal, Plants and people: our shared history and future, Plants People Planet
Seeliger, Groot, Ligand docking and binding site analysis with PyMOL and Autodock/Vina, J. Comput. Aided Mol. Des
Shaik, Atmakuri, Clinical trials status and approaches of COVID-19 vaccines developed globally: The Recent Updates, Pharma Times
Shaik, Atmakuri, Maram, In vivo antioxidant activity of different fractions of Indigofera barberi against paracetamol induced toxicity in rats, Turk. J. Pharm. Sci
Sussman, Lin, Jiang, Protein Data Bank (PDB): database of three-dimensional structural information of biological macromolecules, Acta Crystallogr. D Biol. Crystallogr
To, Hung, Chan, From SARS coronavirus to novel animal and human coronaviruses, J. Thorac. Dis
Van Der Spoel, Lindahl, Hess, GROMACS: fast, flexible, and free, J. Comput. Chem
Yang, Lou, Sun, AdmetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties, Bioinformatics
Zhou, Hou, Shen, Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2, Cell Discov
Zhu, Zhang, Wang, A novel coronavirus from patients with pneumonia in China, New Engl. J. Med
{ 'indexed': {'date-parts': [[2024, 3, 21]], 'date-time': '2024-03-21T01:28:16Z', 'timestamp': 1710984496790}, 'reference-count': 35, 'publisher': "Indian Drug Manufacturers' Association (IDMA)", 'issue': '02', 'content-domain': {'domain': [], 'crossmark-restriction': False}, 'published-print': {'date-parts': [[2024, 2, 28]]}, 'abstract': '<jats:p>Amid the ongoing Covid-19 pandemic, the quest for potent antiviral treatments ' 'intensifies. This study focuses on the potential of bioactive compounds from the Himalayan ' 'cedar Cedrus deodara against the SARS-CoV-2 virus. Specifically targeting the main protease ' '(MPro) and spike protein, the study employs docking trials and molecular dynamics ' 'simulations. Compounds such as quercetin, dihydrodehydrodiconiferyl alcohol, and cedeodarin ' 'exhibit notable binding affinity, surpassing the reference drug favipiravir. Molecular ' 'dynamics simulations affirm the stability of these complexes throughout the simulation ' 'period. While these findings underscore promising interactions, it is crucial to emphasize ' 'the need for further research and experimental validation to fully explore the therapeutic ' 'capabilities of C. deodara in combatting Covid-19.</jats:p>', 'DOI': '10.53879/id.61.02.13859', 'type': 'journal-article', 'created': {'date-parts': [[2024, 3, 18]], 'date-time': '2024-03-18T13:23:54Z', 'timestamp': 1710768234000}, 'page': '78-91', 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': 'COMPUTATIONAL IDENTIFICATION OF SELECTED BIOACTIVE COMPOUNDS FROM CEDRUS DEODARA AS INHIBITORS ' 'AGAINST SARS-COV-2 MAIN PROTEASE: A PHARMACOINFORMATICS STUDY', 'prefix': '10.53879', 'volume': '61', 'author': [ {'given': 'Aminabee', 'family': 'Shaik', 'sequence': 'first', 'affiliation': []}, { 'name': 'Department of Pharmacology, V. V. Institute of Pharmaceutical Sciences, ' 'Gudlavalleru-521 356, Andhra Pradesh, India', 'sequence': 'first', 'affiliation': []}, {'given': 'Lakshmana Rao', 'family': 'Atmakuri', 'sequence': 'additional', 'affiliation': []}], 'member': '31700', 'published-online': {'date-parts': [[2024, 3, 14]]}, 'reference': [ { 'key': 'ref0', 'unstructured': '1. World Health Organization. Coronavirus disease 2019 (COVID19): ' 'Situation report. 2020, 70.'}, { 'key': 'ref1', 'doi-asserted-by': 'publisher', 'unstructured': '2. Shaik A., and Atmakuri L.R.: Clinical trials status and approaches of ' 'COVID-19 vaccines developed globally: The Recent Updates. Pharma Times, ' '2022, 54(3), 7-14.', 'DOI': '10.13005/bpj/2214'}, { 'key': 'ref2', 'doi-asserted-by': 'publisher', 'unstructured': '3. Rouchka E.C., Chariker J.H. and Chung D.: Phylogenetic and variant ' 'analysis of 1,040 SARS-CoV-2 Genomes. 2020', 'DOI': '10.20944/preprints202005.0396.v1'}, { 'key': 'ref3', 'unstructured': '4. Lu R., Zhao X. and Li J.: Genomic characterization and epidemiology ' 'of 2019 novel coronavirus: implications for virus origins and receptor ' 'binding. Lancet, 2020, 395, 565-574.'}, { 'key': 'ref4', 'unstructured': '5. Jin Z., Du X. and Xu Y.: Structure of Mpro from COVID-19 virus and ' 'discovery of its inhibitors. bioRxiv. Preprint. 2020'}, { 'key': 'ref5', 'doi-asserted-by': 'publisher', 'unstructured': '6. Hui D.S., Azhar E.I. and Madani T.A.: The continuing 2019-nCoV ' 'epidemic threat of novel coronaviruses to global health - The latest ' '2019 novel coronavirus outbreak in Wuhan, China. Int. J. Infect. Dis., ' '2020, 91, 264-266.', 'DOI': '10.1016/j.ijid.2020.01.009'}, { 'key': 'ref6', 'doi-asserted-by': 'publisher', 'unstructured': '7. Moses T. and Goossens A.: Plants for human health: greening ' 'biotechnology and synthetic biology. J. Exp. Bot., 2017, 68, 4009-4011.', 'DOI': '10.1093/jxb/erx268'}, { 'key': 'ref7', 'doi-asserted-by': 'publisher', 'unstructured': '8. Schaal B.: Plants and people: our shared history and future. Plants ' 'People Planet, 2019, 1, 14-19.', 'DOI': '10.1002/ppp3.12'}, { 'key': 'ref8', 'doi-asserted-by': 'publisher', 'unstructured': '9. Jassim S.A.A. and Naji M. A.: Novel antiviral agents: a medicinal ' 'plant perspective. J. Appl. Microbiol., 2003, 95, 412-427.', 'DOI': '10.1046/j.1365-2672.2003.02026.x'}, { 'key': 'ref9', 'doi-asserted-by': 'publisher', 'unstructured': '10. Hussain W., Haleem K.S. and Khan I.: Medicinal plants: a repository ' 'of antiviral metabolites. Future Virol., 2017, 12, 299-308.', 'DOI': '10.2217/fvl-2016-0110'}, { 'key': 'ref10', 'doi-asserted-by': 'publisher', 'unstructured': '11. Shaik A., Atmakuri L.R. and Maram C.E.: In vivo antioxidant activity ' 'of different fractions of Indigofera barberi against paracetamol induced ' 'toxicity in rats. Turk. J. Pharm. Sci., 2020, 17(2), 136-140.', 'DOI': '10.4274/tjps.galenos.2018.30306'}, { 'key': 'ref11', 'doi-asserted-by': 'publisher', 'unstructured': '12. Chaudhuri S., Symons J.A. and Deval J.: Innovation and trends in the ' 'development and approval of antiviral medicines: 1987-2017 and beyond. ' 'Antivir. Res., 2018, 155, 76-88.', 'DOI': '10.1016/j.antiviral.2018.05.005'}, { 'key': 'ref12', 'doi-asserted-by': 'publisher', 'unstructured': '13. Sander T., Freyss J. and Von Korff M.: Datawarrior: an open-source ' 'program for chemistry aware data visualization and analysis. J. Chem. ' 'Inf. Model, 2015, 55, 460-473.', 'DOI': '10.1021/ci500588j'}, { 'key': 'ref13', 'doi-asserted-by': 'publisher', 'unstructured': '14. Sussman J.L., Lin D. and Jiang J.: Protein Data Bank (PDB): database ' 'of three-dimensional structural information of biological ' 'macromolecules. Acta Crystallogr. D Biol. Crystallogr., 1998, 54, ' '1078-1084.', 'DOI': '10.1107/S0907444998009378'}, { 'key': 'ref14', 'unstructured': '15. Aminabee S.K., Raveesha P., Adithya V., Mohansai M., Shaherbanu, ' 'Harshitha K., Himaja Kasthuri K., Lakshmi Priya M., Chandini Naga ' 'Mallika G. and Lakshmana Rao A.: In vivo antinociceptive activity and In ' 'silico molecular docking of selected phytoconstituents of methanolic ' 'extract of Hypericum japonicum. J. Drug Alcohol Res., 2022, 11(5), ' '01-08.'}, { 'key': 'ref15', 'doi-asserted-by': 'publisher', 'unstructured': '16. Kar P., Sharma N.R. and Singh B.: Natural compounds from ' 'Clerodendrum spp. as possible therapeutic candidates against SARS-CoV-2: ' 'An in silico investigation. J Biomol. Struct. Dyn., 2020, 1-12.', 'DOI': '10.1080/07391102.2020.1780947'}, { 'key': 'ref16', 'doi-asserted-by': 'publisher', 'unstructured': '17. Morris G.M., Huey R. and Lindstrom W.: Autodock4 and AutoDockTools4: ' 'Automated docking with selective receptor flexibility. J. Comput. Chem., ' '2009, 30, 2785-2791.', 'DOI': '10.1002/jcc.21256'}, { 'key': 'ref17', 'doi-asserted-by': 'publisher', 'unstructured': "18. O'Boyle N.M., Banck M. and James C.A. Open Babel: an open chemical " 'toolbox. J Cheminform., 2011, 3, 33.', 'DOI': '10.1186/1758-2946-3-33'}, { 'key': 'ref18', 'doi-asserted-by': 'publisher', 'unstructured': '19. Pangastuti A., Amin I. F. and Amin A.Z.: Natural bioactive compound ' 'from Moringa oleifera against cancer based on in silico screening. J. ' 'Teknol., 2016, 78, 315-318.', 'DOI': '10.11113/jt.v78.8328'}, { 'key': 'ref19', 'unstructured': '20. Prasanth D.S.N.B.K., Aminabee S.K., Lakshmana Rao A., Guntupalli ' 'Ch., Rajasekhar Reddy A., Umasankar K., Koteswara Rao S.N., Rajeshwari ' "P.: Inhibitory effects of Manosa alliacea in Freund's adjuvant arthritis " 'on inflammatory markers and its confirmation by In silico strategy. Thai ' 'J. Pharm. Sci., 2021, 45(6), 532-544.'}, { 'key': 'ref20', 'doi-asserted-by': 'publisher', 'unstructured': '21. Seeliger D. and De Groot B.L.: Ligand docking and binding site ' 'analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des., 2010, ' '24, 417-422.', 'DOI': '10.1007/s10822-010-9352-6'}, { 'key': 'ref21', 'doi-asserted-by': 'publisher', 'unstructured': '22. Yang H., Lou C. and Sun L.: AdmetSAR 2.0: Web-service for prediction ' 'and optimization of chemical ADMET properties. Bioinformatics., 2019, ' '35, 1067-1069.', 'DOI': '10.1093/bioinformatics/bty707'}, { 'key': 'ref22', 'doi-asserted-by': 'publisher', 'unstructured': '23. Cheng F., Li W. and Zhou Y.: AdmetSAR: A comprehensive source and ' 'free tool for assessment of chemical ADMET properties. J. Chem. Inf. ' 'Model., 2012, 52, 3099-3105.', 'DOI': '10.1021/ci300367a'}, { 'key': 'ref23', 'doi-asserted-by': 'publisher', 'unstructured': '24. Khurana N., Ishar M.P.S. and Gajbhiye A.: PASS assisted prediction ' 'and pharmacological evaluation of novel nicotinic analogs for nootropic ' 'activity in mice. Eur. J. Pharmacol., 2011, 662, 22-30.', 'DOI': '10.1016/j.ejphar.2011.04.048'}, { 'key': 'ref24', 'doi-asserted-by': 'publisher', 'unstructured': '25. Mittal M., Goel R.K. and Bhargava G.: PASS-assisted exploration of ' 'antidepressant activity of 1,3,4-trisubstituted-β-lactam derivatives. ' 'Bioorg. Med. Chem. Lett., 2008, 18, 5347-5349.', 'DOI': '10.1016/j.bmcl.2008.09.064'}, { 'key': 'ref25', 'doi-asserted-by': 'publisher', 'unstructured': '26. Goel R.K., Singh D. and Lagunin A.: PASS-assisted exploration of new ' 'therapeutic potential of natural products. Med. Chem. Res., 2011, 20, ' '1509-1514.', 'DOI': '10.1007/s00044-010-9398-y'}, { 'key': 'ref26', 'doi-asserted-by': 'publisher', 'unstructured': '27. Van Der Spoel D., Lindahl E. and Hess B.: GROMACS: fast, flexible, ' 'and free. J. Comput. Chem., 2005, 26, 1701-1718.', 'DOI': '10.1002/jcc.20291'}, { 'key': 'ref27', 'doi-asserted-by': 'publisher', 'unstructured': '28. Gangadharappa B.S., Sharath R. and Revanasiddappa P.D.: Structural ' 'insights of metallo-beta-lactamase revealed an effective way of ' 'inhibition of enzyme by natural inhibitors. J. Biomol. Struct. Dyn., ' '2020, 38, 3757-3771.', 'DOI': '10.1080/07391102.2019.1667265'}, { 'key': 'ref28', 'doi-asserted-by': 'publisher', 'unstructured': '29. Chandramohan V., Kaphle A. and Chekuri M.: Evaluating ' 'andrographolide as a potent inhibitor of NS3-4A protease and its drug ' 'resistant mutants using in silico approaches. Adv. Virol., 2015, 15, ' '20-67.', 'DOI': '10.1155/2015/972067'}, { 'key': 'ref29', 'unstructured': '30. Prasanth D.S.N.B.K., Aminabee S.K., Lakshmana Rao A., Teja N., ' 'Bhargavi K., Monika Ch., Pujitha B., Sandhya T., Lalitha A. and Siva ' 'Prasad P.: Antihelmintic activity of Mansoa alliacea against Pheretima ' 'posthuma: In vitro and In silico approach. Thai J. Pharm. Sci., 2020, ' '44(3), 86-196.'}, { 'key': 'ref30', 'unstructured': '31. To K.K., Hung I.F. and Chan J.F.: From SARS coronavirus to novel ' 'animal and human coronaviruses. J. Thorac. Dis., 2013, 5(2), S103-S108.'}, { 'key': 'ref31', 'doi-asserted-by': 'publisher', 'unstructured': '32. Zhu N., Zhang D. and Wang W.: A novel coronavirus from patients with ' 'pneumonia in China, 2019. N. Engl. J. Med., 2020, 82, 727-733.', 'DOI': '10.1056/NEJMoa2001017'}, { 'key': 'ref32', 'doi-asserted-by': 'publisher', 'unstructured': '33. Zhou Y., Hou Y. and Shen J.: Network-based drug repurposing for ' 'novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov., 2020, 6, 14.', 'DOI': '10.1038/s41421-020-0153-3'}, { 'key': 'ref33', 'doi-asserted-by': 'publisher', 'unstructured': '34. Lin L.T., Hsu W.C. and Lin C.C.: Antiviral natural products and ' 'herbal medicines. J. Tradit. Complement. Med., 2014, 4, 24-35.', 'DOI': '10.4103/2225-4110.124335'}, { 'key': 'ref34', 'doi-asserted-by': 'publisher', 'unstructured': '35. Martinez J.P., Sasse F. and Bronstrup M.: Antiviral drug discovery: ' 'broad-spectrum drugs from nature. Nat. Prod. Rep., 2015, 32, 29-48.', 'DOI': '10.1039/C4NP00085D'}], 'container-title': 'INDIAN DRUGS', 'original-title': [], 'link': [ { 'URL': 'https://www.indiandrugsonline.org//download/February_2024_61_2_78-91.pdf', 'content-type': 'unspecified', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2024, 3, 20]], 'date-time': '2024-03-20T10:59:47Z', 'timestamp': 1710932387000}, 'score': 1, 'resource': {'primary': {'URL': 'https://www.indiandrugsonline.org/issuesarticle-details?id=MTU0Nw=='}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2024, 2, 28]]}, 'references-count': 35, 'journal-issue': { 'issue': '02', 'published-online': {'date-parts': [[2024, 3, 14]]}, 'published-print': {'date-parts': [[2024, 2, 28]]}}, 'URL': 'http://dx.doi.org/10.53879/id.61.02.13859', 'relation': {}, 'ISSN': ['0019-462X'], 'subject': ['Drug Discovery', 'Pharmaceutical Science', 'Pharmacology'], 'container-title-short': 'IND. DRU.', 'published': {'date-parts': [[2024, 2, 28]]}}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit