Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchQuercetinQuercetin (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus

Zhang et al., Journal of Integrative Medicine, doi:10.1016/j.joim.2020.02.005
Mar 2020  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Quercetin for COVID-19
24th treatment shown to reduce risk in July 2021, now with p = 0.002 from 12 studies.
No treatment is 100% effective. Protocols combine treatments.
5,100+ studies for 112 treatments. c19early.org
In Silico study showing that 13 natural compounds from Chinese herbal medicines have potential anti-2019-nCoV activity by binding to viral proteins such as papain-like protease (PLpro), 3C-like protease (3CLpro), and the spike protein. Authors searched literature and databases to identify 115 antiviral natural compounds that exist in Chinese herbs, then used ADME screening and molecular docking to select 13 absorbable compounds that could potentially inhibit 2019-nCoV. Quercetin docked with PLpro (binding energy -4.62 kcal/mol) and 3CLpro (-6.25 kcal/mol). By searching herbal databases, 125 Chinese herbs containing at least two of these 13 compounds were identified. Further screening for traditional use against respiratory infections yielded 26 herbals, which network analysis predicted could regulate viral infection, immune/inflammation, and hypoxia response. The results suggest these 26 medicinal plants may directly inhibit 2019-nCoV through multiple compounds and mechanisms.
73 preclinical studies support the efficacy of quercetin for COVID-19:
In Silico studies predict inhibition of SARS-CoV-2, or minimization of side effects, with quercetin or metabolites via binding to the spikeA,3,9,10,22,24,25,30,38,39,41,42,62-64, MproB,3,7,9,11,13,15,17,18,20,23,24,30,34,36-38,42,43,45,63-65, RNA-dependent RNA polymeraseC,1,3,9,32,64, PLproD,3,37,45, ACE2E,22,23,28,37,41,63, TMPRSS2F,22, nucleocapsidG,3, helicaseH,3,29,34, endoribonucleaseI,39, NSP16/10J,6, cathepsin LK,26, Wnt-3L,22, FZDM,22, LRP6N,22, ezrinO,40, ADRPP,38, NRP1Q,41, EP300R,16, PTGS2S,23, HSP90AA1T,16,23, matrix metalloproteinase 9U,31, IL-6V,21,35, IL-10W,21, VEGFAX,35, and RELAY,35 proteins. In Vitro studies demonstrate inhibition of the MproB,15,46,51,59 protein, and inhibition of spike-ACE2 interactionZ,47. In Vitro studies demonstrate efficacy in Calu-3AA,50, A549AB,21, HEK293-ACE2+AC,58, Huh-7AD,25, Caco-2AE,49, Vero E6AF,19,42,49, mTECAG,52, and RAW264.7AH,52 cells. Animal studies demonstrate efficacy in K18-hACE2 miceAI,55, db/db miceAJ,52,61, BALB/c miceAK,60, and rats66. Quercetin reduced proinflammatory cytokines and protected lung and kidney tissue against LPS-induced damage in mice60, inhibits LPS-induced cytokine storm by modulating key inflammatory and antioxidant pathways in macrophages5, and inhibits SARS-CoV-2 ORF3a ion channel activity, which contributes to viral pathogenicity and cytotoxicity54.
a. The trimeric spike (S) protein is a glycoprotein that mediates viral entry by binding to the host ACE2 receptor, is critical for SARS-CoV-2's ability to infect host cells, and is a target of neutralizing antibodies. Inhibition of the spike protein prevents viral attachment, halting infection at the earliest stage.
b. The main protease or Mpro, also known as 3CLpro or nsp5, is a cysteine protease that cleaves viral polyproteins into functional units needed for replication. Inhibiting Mpro disrupts the SARS-CoV-2 lifecycle within the host cell, preventing the creation of new copies.
c. RNA-dependent RNA polymerase (RdRp), also called nsp12, is the core enzyme of the viral replicase-transcriptase complex that copies the positive-sense viral RNA genome into negative-sense templates for progeny RNA synthesis. Inhibiting RdRp blocks viral genome replication and transcription.
d. The papain-like protease (PLpro) has multiple functions including cleaving viral polyproteins and suppressing the host immune response by deubiquitination and deISGylation of host proteins. Inhibiting PLpro may block viral replication and help restore normal immune responses.
e. The angiotensin converting enzyme 2 (ACE2) protein is a host cell transmembrane protein that serves as the cellular receptor for the SARS-CoV-2 spike protein. ACE2 is expressed on many cell types, including epithelial cells in the lungs, and allows the virus to enter and infect host cells. Inhibition may affect ACE2's physiological function in blood pressure control.
f. Transmembrane protease serine 2 (TMPRSS2) is a host cell protease that primes the spike protein, facilitating cellular entry. TMPRSS2 activity helps enable cleavage of the spike protein required for membrane fusion and virus entry. Inhibition may especially protect respiratory epithelial cells, buy may have physiological effects.
g. The nucleocapsid (N) protein binds and encapsulates the viral genome by coating the viral RNA. N enables formation and release of infectious virions and plays additional roles in viral replication and pathogenesis. N is also an immunodominant antigen used in diagnostic assays.
h. The helicase, or nsp13, protein unwinds the double-stranded viral RNA, a crucial step in replication and transcription. Inhibition may prevent viral genome replication and the creation of new virus components.
i. The endoribonuclease, also known as NendoU or nsp15, cleaves specific sequences in viral RNA which may help the virus evade detection by the host immune system. Inhibition may hinder the virus's ability to mask itself from the immune system, facilitating a stronger immune response.
j. The NSP16/10 complex consists of non-structural proteins 16 and 10, forming a 2'-O-methyltransferase that modifies the viral RNA cap structure. This modification helps the virus evade host immune detection by mimicking host mRNA, making NSP16/10 a promising antiviral target.
k. Cathepsin L is a host lysosomal cysteine protease that can prime the spike protein through an alternative pathway when TMPRSS2 is unavailable. Dual targeting of cathepsin L and TMPRSS2 may maximize disruption of alternative pathways for virus entry.
l. Wingless-related integration site (Wnt) ligand 3 is a host signaling molecule that activates the Wnt signaling pathway, which is important in development, cell growth, and tissue repair. Some studies suggest that SARS-CoV-2 infection may interfere with the Wnt signaling pathway, and that Wnt3a is involved in SARS-CoV-2 entry.
m. The frizzled (FZD) receptor is a host transmembrane receptor that binds Wnt ligands, initiating the Wnt signaling cascade. FZD serves as a co-receptor, along with ACE2, in some proposed mechanisms of SARS-CoV-2 infection. The virus may take advantage of this pathway as an alternative entry route.
n. Low-density lipoprotein receptor-related protein 6 is a cell surface co-receptor essential for Wnt signaling. LRP6 acts in tandem with FZD for signal transduction and has been discussed as a potential co-receptor for SARS-CoV-2 entry.
o. The ezrin protein links the cell membrane to the cytoskeleton (the cell's internal support structure) and plays a role in cell shape, movement, adhesion, and signaling. Drugs that occupy the same spot on ezrin where the viral spike protein would bind may hindering viral attachment, and drug binding could further stabilize ezrin, strengthening its potential natural capacity to impede viral fusion and entry.
p. The Adipocyte Differentiation-Related Protein (ADRP, also known as Perilipin 2 or PLIN2) is a lipid droplet protein regulating the storage and breakdown of fats in cells. SARS-CoV-2 may hijack the lipid handling machinery of host cells and ADRP may play a role in this process. Disrupting ADRP's interaction with the virus may hinder the virus's ability to use lipids for replication and assembly.
q. Neuropilin-1 (NRP1) is a cell surface receptor with roles in blood vessel development, nerve cell guidance, and immune responses. NRP1 may function as a co-receptor for SARS-CoV-2, facilitating viral entry into cells. Blocking NRP1 may disrupt an alternative route of viral entry.
r. EP300 (E1A Binding Protein P300) is a transcriptional coactivator involved in several cellular processes, including growth, differentiation, and apoptosis, through its acetyltransferase activity that modifies histones and non-histone proteins. EP300 facilitates viral entry into cells and upregulates inflammatory cytokine production.
s. Prostaglandin G/H synthase 2 (PTGS2, also known as COX-2) is an enzyme crucial for the production of inflammatory molecules called prostaglandins. PTGS2 plays a role in the inflammatory response that can become severe in COVID-19 and inhibitors (like some NSAIDs) may have benefits in dampening harmful inflammation, but note that prostaglandins have diverse physiological functions.
t. Heat Shock Protein 90 Alpha Family Class A Member 1 (HSP90AA1) is a chaperone protein that helps other proteins fold correctly and maintains their stability. HSP90AA1 plays roles in cell signaling, survival, and immune responses. HSP90AA1 may interact with numerous viral proteins, but note that it has diverse physiological functions.
u. Matrix metalloproteinase 9 (MMP9), also called gelatinase B, is a zinc-dependent enzyme that breaks down collagen and other components of the extracellular matrix. MMP9 levels increase in severe COVID-19. Overactive MMP9 can damage lung tissue and worsen inflammation. Inhibition of MMP9 may prevent excessive tissue damage and help regulate the inflammatory response.
v. The interleukin-6 (IL-6) pro-inflammatory cytokine (signaling molecule) has a complex role in the immune response and may trigger and perpetuate inflammation. Elevated IL-6 levels are associated with severe COVID-19 cases and cytokine storm. Anti-IL-6 therapies may be beneficial in reducing excessive inflammation in severe COVID-19 cases.
w. The interleukin-10 (IL-10) anti-inflammatory cytokine helps regulate and dampen immune responses, preventing excessive inflammation. IL-10 levels can also be elevated in severe COVID-19. IL-10 could either help control harmful inflammation or potentially contribute to immune suppression.
x. Vascular Endothelial Growth Factor A (VEGFA) promotes the growth of new blood vessels (angiogenesis) and has roles in inflammation and immune responses. VEGFA may contribute to blood vessel leakiness and excessive inflammation associated with severe COVID-19.
y. RELA is a transcription factor subunit of NF-kB and is a key regulator of inflammation, driving pro-inflammatory gene expression. SARS-CoV-2 may hijack and modulate NF-kB pathways.
z. The interaction between the SARS-CoV-2 spike protein and the human ACE2 receptor is a primary method of viral entry, inhibiting this interaction can prevent the virus from attaching to and entering host cells, halting infection at an early stage.
aa. Calu-3 is a human lung adenocarcinoma cell line with moderate ACE2 and TMPRSS2 expression and SARS-CoV-2 susceptibility. It provides a model of the human respiratory epithelium, but many not be ideal for modeling early stages of infection due to the moderate expression levels of ACE2 and TMPRSS2.
ab. A549 is a human lung carcinoma cell line with low ACE2 expression and SARS-CoV-2 susceptibility. Viral entry/replication can be studied but the cells may not replicate all aspects of lung infection.
ac. HEK293-ACE2+ is a human embryonic kidney cell line engineered for high ACE2 expression and SARS-CoV-2 susceptibility.
ad. Huh-7 cells were derived from a liver tumor (hepatoma).
ae. Caco-2 cells come from a colorectal adenocarcinoma (cancer). They are valued for their ability to form a polarized cell layer with properties similar to the intestinal lining.
af. Vero E6 is an African green monkey kidney cell line with low/no ACE2 expression and high SARS-CoV-2 susceptibility. The cell line is easy to maintain and supports robust viral replication, however the monkey origin may not accurately represent human responses.
ag. mTEC is a mouse tubular epithelial cell line.
ah. RAW264.7 is a mouse macrophage cell line.
ai. A mouse model expressing the human ACE2 receptor under the control of the K18 promoter.
aj. A mouse model of obesity and severe insulin resistance leading to type 2 diabetes due to a mutation in the leptin receptor gene that impairs satiety signaling.
ak. A mouse model commonly used in infectious disease and cancer research due to higher immune response and susceptibility to infection.
Zhang et al., 31 Mar 2020, peer-reviewed, 5 authors. Contact: shanghai_zhang@hotmail.com.
In Silico studies are an important part of preclinical research, however results may be very different in vivo.
This PaperQuercetinAll
In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus
Deng-Hai Zhang, Kun-Lun Wu, Xue Zhang, Sheng-Qiong Deng, Bin Peng
Journal of Integrative Medicine, doi:10.1016/j.joim.2020.02.005
Objective: In this study we execute a rational screen to identify Chinese medical herbs that are commonly used in treating viral respiratory infections and also contain compounds that might directly inhibit 2019 novel coronavirus (2019-nCoV), an ongoing novel coronavirus that causes pneumonia. Methods: There were two main steps in the screening process. In the first step we conducted a literature search for natural compounds that had been biologically confirmed as against sever acute respiratory syndrome coronavirus or Middle East respiratory syndrome coronavirus. Resulting compounds were cross-checked for listing in the Traditional Chinese Medicine Systems Pharmacology Database. Compounds meeting both requirements were subjected to absorption, distribution, metabolism and excretion (ADME) evaluation to verify that oral administration would be effective. Next, a docking analysis was used to test whether the compound had the potential for direct 2019-nCoV protein interaction. In the second step we searched Chinese herbal databases to identify plants containing the selected compounds. Plants containing 2 or more of the compounds identified in our screen were then checked against the catalogue for classic herbal usage. Finally, network pharmacology analysis was used to predict the general in vivo effects of each selected herb. Results: Of the natural compounds screened, 13 that exist in traditional Chinese medicines were also found to have potential anti-2019-nCoV activity. Further, 125 Chinese herbs were found to contain 2 or more of these 13 compounds. Of these 125 herbs, 26 are classically catalogued as treating viral respiratory infections. Network pharmacology analysis predicted that the general in vivo roles of these 26 herbal plants were related to regulating viral infection, immune/inflammation reactions and hypoxia response. Conclusion: Chinese herbal treatments classically used for treating viral respiratory infection might contain direct anti-2019-nCoV compounds.
Conflicts of interest The authors declare no competing interests. Appendix A. Supplementary data Supplementary data to this article can be found online at https://doi.org/10.1016/j.joim.2020.02.005.
References
Anand, Ziebuhr, Wadhwani, Mesters, Hilgenfeld, Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs, Science
Bhoj, Chen, Ubiquitylation in innate and adaptive immunity, Nature
Chen, Li, Luo, Liu, Xu et al., Binding interaction of quercetin-3-b-galactoside and its synthetic derivatives with SARS-CoV 3CL(pro): structure-activity relationship studies reveal salient pharmacophore features, Bioorg Med Chem
Chen, Nakamura, Statistical evidence for the usefulness of Chinese medicine in the treatment of SARS, Phytother Res
Hoever, Baltina, Michaelis, Kondratenko, Baltina et al., Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus, J Med Chem
Hu, Fu, Wei, Yang, Lu et al., A network pharmacology study on the active ingredients and potential targets of Tripterygium wilfordii Hook for treatment of rheumatoid arthritis, Evid Based Complement Alternat Med
Isaacson, Ploegh, Ubiquitination, ubiquitin-like modifiers, and deubiquitination in viral infection, Cell Host Microbe
Kesel, Synthesis of novel test compounds for antiviral chemotherapy of severe acute respiratory syndrome (SARS), Curr Med Chem
Kim, Kim, Park, Kim, Choi et al., Safe, high-throughput screening of natural compounds of MERS-CoV entry inhibitors using a pseudovirus expressing MERS-CoV spike protein, Int J Antimicrob Agents
Lai, Han, Chen, Wei, Huang et al., Quaternary structure, substrate selectivity and inhibitor design for SARS 3C-like proteinase, Cur Pharm Des
Li, Chen, Zhang, Guo, Wang et al., Identification of natural compounds with antiviral activities against SARS-associated coronavirus, Antiviral Res
Li, Moore, Vasilieva, Sui, Wong et al., Angiotensinconverting enzyme 2 is a functional receptor for the SARS coronavirus, Nature
Liu, Zhou, SARS-CoV protease inhibitors design using virtual screening method from natural products libraries, J Comput Chem
Mukherjee, Shah, Desai, Avery, Inhibitors of SARS-3CLpro: virtual screening, biological evaluation, and molecular dynamics simulation studies, J Chem Inf Model
Paraskevis, Kostaki, Magiorkinis, Panayiotakopoulos, Sourvinos et al., Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event, Infect Genet Evol
Park, Kim, Kim, Jeong, Kim et al., Tanshinones as selective and slow-binding inhibitors for SARS-CoV cysteine proteases, Bioorg Med Chem
Park, Kim, Kwon, Kwon, Jeong et al., Dieckol, a SARS-CoV 3CL(pro) inhibitor, isolated from the edible brown algae Ecklonia cava, Bioorg Med Chem
Park, Ko, Kim, Kim, Kwon et al., Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARS-CoV, J Enzyme Inhib Med Chem
Park, Yuk, Ryu, Lim, Kim et al., Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors, J Enzyme Inhib Med Chem
Ratia, Saikatendu, Santarsiero, Barretto, Baker et al., Severe acute respiratory syndrome coronavirus papain-like protease: structure of a viral deubiquitinating enzyme, Proc Natl Acad Sci U S A
Rizvi, Shakil, Haneef, A simple click by click protocol to perform docking: AutoDock 4.2 made easy for non-bioinformaticians, EXCLI J
Ryu, Park, Kim, Lee, Seo et al., SARS-CoV 3CLpro inhibitory effects of quinone-methide triterpenes from Tripterygium regelii, Bioorg Med Chem Lett
Shen, Niu, Wang, Huang, Wang et al., High-throughput screening and identification of potent broad-spectrum inhibitors of coronaviruses, J Virol
Song, Kim, Mj, Yuk, Wang et al., Papain-like protease (PLpro) inhibitory effects of cinnamic amides from Tribulus terrestris fruits, Biol Pharm Bull
Tian, nCoV: new challenges from coronavirus, Zhonghua Yu Fang Yi Xue Za Zhi
Wang, Du, Zhao, Li, Wei et al., Virtual screening for finding natural inhibitor against cathepsin-L for SARS therapy, Amino Acids
Wen, Kuo, Jan, Liang, Wang et al., Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus, J Med Chem
Wu, Jan, Ma, Kuo, Juan et al., Small molecules targeting severe acute respiratory syndrome human coronavirus, Proc Natl Acad Sci U S A
Xu, Lou, Liu, Pang, Tien et al., Crystal structure of severe acute respiratory syndrome coronavirus spike protein fusion core, J Biol Chem
Zhang, Huai, Miao, Qian, Wang, Systems pharmacology for investigation of the mechanisms of action of traditional Chinese medicine in drug discovery, Front Pharmacol
Zhou, Yang, Wang, Hu, Zhang et al., A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature
{ 'indexed': {'date-parts': [[2024, 1, 15]], 'date-time': '2024-01-15T06:20:33Z', 'timestamp': 1705299633645}, 'reference-count': 32, 'publisher': 'Elsevier BV', 'issue': '2', 'license': [ { 'start': { 'date-parts': [[2020, 3, 1]], 'date-time': '2020-03-01T00:00:00Z', 'timestamp': 1583020800000}, 'content-version': 'tdm', 'delay-in-days': 0, 'URL': 'https://www.elsevier.com/tdm/userlicense/1.0/'}, { 'start': { 'date-parts': [[2020, 2, 19]], 'date-time': '2020-02-19T00:00:00Z', 'timestamp': 1582070400000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'http://creativecommons.org/licenses/by-nc-nd/4.0/'}], 'funder': [ {'name': 'Shanghai Leading Talent Grants in Medicine', 'award': ['2019LG26']}, { 'name': 'Shanghai Traditional Chinese Medicine Content Construction Innovation Project', 'award': ['ZY3-CCCX-3-7001']}, {'name': 'Postdoctoral Funding of Shanghai Gongil Hospital', 'award': ['GLBH2017002']}], 'content-domain': {'domain': ['elsevier.com', 'sciencedirect.com'], 'crossmark-restriction': True}, 'published-print': {'date-parts': [[2020, 3]]}, 'DOI': '10.1016/j.joim.2020.02.005', 'type': 'journal-article', 'created': {'date-parts': [[2020, 2, 20]], 'date-time': '2020-02-20T01:02:25Z', 'timestamp': 1582160545000}, 'page': '152-158', 'update-policy': 'http://dx.doi.org/10.1016/elsevier_cm_policy', 'source': 'Crossref', 'is-referenced-by-count': 330, 'title': 'In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 ' 'novel coronavirus', 'prefix': '10.1016', 'volume': '18', 'author': [ {'given': 'Deng-hai', 'family': 'Zhang', 'sequence': 'first', 'affiliation': []}, {'given': 'Kun-lun', 'family': 'Wu', 'sequence': 'additional', 'affiliation': []}, {'given': 'Xue', 'family': 'Zhang', 'sequence': 'additional', 'affiliation': []}, {'given': 'Sheng-qiong', 'family': 'Deng', 'sequence': 'additional', 'affiliation': []}, {'given': 'Bin', 'family': 'Peng', 'sequence': 'additional', 'affiliation': []}], 'member': '78', 'reference': [ { 'key': '10.1016/j.joim.2020.02.005_b0005', 'doi-asserted-by': 'crossref', 'DOI': '10.1016/j.meegid.2020.104212', 'article-title': 'Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) ' 'rejects the hypothesis of emergence as a result of a recent ' 'recombination event', 'volume': '79', 'author': 'Paraskevis', 'year': '2020', 'journal-title': 'Infect Genet Evol'}, { 'key': '10.1016/j.joim.2020.02.005_b0010', 'unstructured': 'World Health Organization. Statement on the second meeting of the ' 'International Health Regulations (2005) Emergency Committee regarding ' 'the outbreak of novel coronavirus (2019-nCoV). (2020-01-30) ' '[2020-02-02]. ' 'https://www.who.int/news-room/detail/30-01-2020-statement-on-the-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov).'}, { 'issue': '7', 'key': '10.1016/j.joim.2020.02.005_b0015', 'doi-asserted-by': 'crossref', 'first-page': '592', 'DOI': '10.1002/ptr.1485', 'article-title': 'Statistical evidence for the usefulness of Chinese medicine in the ' 'treatment of SARS', 'volume': '18', 'author': 'Chen', 'year': '2004', 'journal-title': 'Phytother Res'}, { 'issue': '35', 'key': '10.1016/j.joim.2020.02.005_b0020', 'doi-asserted-by': 'crossref', 'first-page': '4555', 'DOI': '10.2174/138161206779010396', 'article-title': 'Quaternary structure, substrate selectivity and inhibitor design for ' 'SARS 3C-like proteinase', 'volume': '12', 'author': 'Lai', 'year': '2006', 'journal-title': 'Cur Pharm Des'}, { 'issue': '1', 'key': '10.1016/j.joim.2020.02.005_b0025', 'doi-asserted-by': 'crossref', 'first-page': '129', 'DOI': '10.1007/s00726-006-0403-1', 'article-title': 'Virtual screening for finding natural inhibitor against cathepsin-L for ' 'SARS therapy', 'volume': '33', 'author': 'Wang', 'year': '2007', 'journal-title': 'Amino Acids'}, { 'issue': '18', 'key': '10.1016/j.joim.2020.02.005_b0030', 'doi-asserted-by': 'crossref', 'first-page': '2095', 'DOI': '10.2174/0929867054637644', 'article-title': 'Synthesis of novel test compounds for antiviral chemotherapy of severe ' 'acute respiratory syndrome (SARS)', 'volume': '12', 'author': 'Kesel', 'year': '2005', 'journal-title': 'Curr Med Chem'}, { 'issue': '27', 'key': '10.1016/j.joim.2020.02.005_b0035', 'doi-asserted-by': 'crossref', 'first-page': '10012', 'DOI': '10.1073/pnas.0403596101', 'article-title': 'Small molecules targeting severe acute respiratory syndrome human ' 'coronavirus', 'volume': '101', 'author': 'Wu', 'year': '2004', 'journal-title': 'Proc Natl Acad Sci U S A'}, { 'issue': '5', 'key': '10.1016/j.joim.2020.02.005_b0040', 'doi-asserted-by': 'crossref', 'first-page': '484', 'DOI': '10.1002/jcc.20186', 'article-title': 'SARS-CoV protease inhibitors design using virtual screening method from ' 'natural products libraries', 'volume': '26', 'author': 'Liu', 'year': '2005', 'journal-title': 'J Comput Chem'}, { 'issue': '4', 'key': '10.1016/j.joim.2020.02.005_b0045', 'doi-asserted-by': 'crossref', 'first-page': '1256', 'DOI': '10.1021/jm0493008', 'article-title': 'Antiviral activity of glycyrrhizic acid derivatives against ' 'SARS-coronavirus', 'volume': '48', 'author': 'Hoever', 'year': '2005', 'journal-title': 'J Med Chem'}, { 'issue': '1', 'key': '10.1016/j.joim.2020.02.005_b0050', 'doi-asserted-by': 'crossref', 'first-page': '18', 'DOI': '10.1016/j.antiviral.2005.02.007', 'article-title': 'Identification of natural compounds with antiviral activities against ' 'SARS-associated coronavirus', 'volume': '67', 'author': 'Li', 'year': '2005', 'journal-title': 'Antiviral Res'}, { 'issue': '24', 'key': '10.1016/j.joim.2020.02.005_b0055', 'doi-asserted-by': 'crossref', 'first-page': '8295', 'DOI': '10.1016/j.bmc.2006.09.014', 'article-title': 'Binding interaction of quercetin-3-β-galactoside and its synthetic ' 'derivatives with SARS-CoV 3CL(pro): structure-activity relationship ' 'studies reveal salient pharmacophore features', 'volume': '14', 'author': 'Chen', 'year': '2006', 'journal-title': 'Bioorg Med Chem'}, { 'issue': '1', 'key': '10.1016/j.joim.2020.02.005_b0060', 'doi-asserted-by': 'crossref', 'first-page': '504', 'DOI': '10.1080/14756366.2016.1265519', 'article-title': 'Evaluation of polyphenols from Broussonetia papyrifera as coronavirus ' 'protease inhibitors', 'volume': '32', 'author': 'Park', 'year': '2017', 'journal-title': 'J Enzyme Inhib Med Chem'}, { 'issue': '7237', 'key': '10.1016/j.joim.2020.02.005_b0065', 'doi-asserted-by': 'crossref', 'first-page': '430', 'DOI': '10.1038/nature07959', 'article-title': 'Ubiquitylation in innate and adaptive immunity', 'volume': '458', 'author': 'Bhoj', 'year': '2009', 'journal-title': 'Nature'}, { 'issue': '6', 'key': '10.1016/j.joim.2020.02.005_b0070', 'doi-asserted-by': 'crossref', 'first-page': '559', 'DOI': '10.1016/j.chom.2009.05.012', 'article-title': 'Ubiquitination, ubiquitin-like modifiers, and deubiquitination in viral ' 'infection', 'volume': '5', 'author': 'Isaacson', 'year': '2009', 'journal-title': 'Cell Host Microbe'}, { 'issue': '6', 'key': '10.1016/j.joim.2020.02.005_b0075', 'doi-asserted-by': 'crossref', 'first-page': '1376', 'DOI': '10.1021/ci1004916', 'article-title': 'Inhibitors of SARS-3CLpro: virtual screening, biological evaluation, ' 'and molecular dynamics simulation studies', 'volume': '51', 'author': 'Mukherjee', 'year': '2011', 'journal-title': 'J Chem Inf Model'}, { 'issue': '6965', 'key': '10.1016/j.joim.2020.02.005_b0080', 'doi-asserted-by': 'crossref', 'first-page': '450', 'DOI': '10.1038/nature02145', 'article-title': 'Angiotensin-converting enzyme 2 is a functional receptor for the SARS ' 'coronavirus', 'volume': '426', 'author': 'Li', 'year': '2003', 'journal-title': 'Nature'}, { 'issue': '17', 'key': '10.1016/j.joim.2020.02.005_b0085', 'doi-asserted-by': 'crossref', 'first-page': '4087', 'DOI': '10.1021/jm070295s', 'article-title': 'Specific plant terpenoids and lignoids possess potent antiviral ' 'activities against severe acute respiratory syndrome coronavirus', 'volume': '50', 'author': 'Wen', 'year': '2007', 'journal-title': 'J Med Chem'}, { 'issue': '6', 'key': '10.1016/j.joim.2020.02.005_b0090', 'doi-asserted-by': 'crossref', 'first-page': '1873', 'DOI': '10.1016/j.bmcl.2010.01.152', 'article-title': 'SARS-CoV 3CLpro inhibitory effects of quinone-methide triterpenes from ' 'Tripterygium regelii', 'volume': '20', 'author': 'Ryu', 'year': '2010', 'journal-title': 'Bioorg Med Chem Lett'}, { 'issue': '19', 'key': '10.1016/j.joim.2020.02.005_b0095', 'doi-asserted-by': 'crossref', 'first-page': '5928', 'DOI': '10.1016/j.bmc.2012.07.038', 'article-title': 'Tanshinones as selective and slow-binding inhibitors for SARS-CoV ' 'cysteine proteases', 'volume': '20', 'author': 'Park', 'year': '2012', 'journal-title': 'Bioorg Med Chem'}, { 'issue': '13', 'key': '10.1016/j.joim.2020.02.005_b0100', 'doi-asserted-by': 'crossref', 'first-page': '3730', 'DOI': '10.1016/j.bmc.2013.04.026', 'article-title': 'Dieckol, a SARS-CoV 3CL(pro) inhibitor, isolated from the edible brown ' 'algae Ecklonia cava', 'volume': '21', 'author': 'Park', 'year': '2013', 'journal-title': 'Bioorg Med Chem'}, { 'issue': '6', 'key': '10.1016/j.joim.2020.02.005_b0105', 'doi-asserted-by': 'crossref', 'first-page': '1021', 'DOI': '10.1248/bpb.b14-00026', 'article-title': 'Papain-like protease (PLpro) inhibitory effects of cinnamic amides from ' 'Tribulus terrestris fruits', 'volume': '37', 'author': 'Song', 'year': '2014', 'journal-title': 'Biol Pharm Bull'}, { 'issue': '1', 'key': '10.1016/j.joim.2020.02.005_b0110', 'doi-asserted-by': 'crossref', 'first-page': '23', 'DOI': '10.3109/14756366.2014.1003215', 'article-title': 'Chalcones isolated from Angelica keiskei inhibit cysteine proteases of ' 'SARS-CoV', 'volume': '31', 'author': 'Park', 'year': '2016', 'journal-title': 'J Enzyme Inhib Med Chem'}, { 'issue': '12', 'key': '10.1016/j.joim.2020.02.005_b0115', 'doi-asserted-by': 'crossref', 'first-page': 'e00023', 'DOI': '10.1128/JVI.00023-19', 'article-title': 'High-throughput screening and identification of potent broad-spectrum ' 'inhibitors of coronaviruses', 'volume': '93', 'author': 'Shen', 'year': '2019', 'journal-title': 'J Virol'}, { 'key': '10.1016/j.joim.2020.02.005_b0120', 'doi-asserted-by': 'crossref', 'article-title': 'A pneumonia outbreak associated with a new coronavirus of probable bat ' 'origin', 'author': 'Zhou', 'year': '2020', 'journal-title': 'Nature', 'DOI': '10.1038/s41586-020-2012-7'}, { 'key': '10.1016/j.joim.2020.02.005_b0125', 'first-page': 'E001', 'article-title': '2019-nCoV: new challenges from coronavirus', 'volume': '54', 'author': 'Tian', 'year': '2020', 'journal-title': 'Zhonghua Yu Fang Yi Xue Za Zhi'}, { 'key': '10.1016/j.joim.2020.02.005_b0130', 'doi-asserted-by': 'crossref', 'first-page': '5276865', 'DOI': '10.1155/2019/5276865', 'article-title': 'A network pharmacology study on the active ingredients and potential ' 'targets of Tripterygium wilfordii Hook for treatment of rheumatoid ' 'arthritis', 'volume': '2019', 'author': 'Hu', 'year': '2019', 'journal-title': 'Evid Based Complement Alternat Med'}, { 'key': '10.1016/j.joim.2020.02.005_b0135', 'first-page': '831', 'article-title': 'A simple click by click protocol to perform docking: AutoDock 4.2 made ' 'easy for non-bioinformaticians', 'volume': '12', 'author': 'Rizvi', 'year': '2013', 'journal-title': 'EXCLI J'}, { 'issue': '5', 'key': '10.1016/j.joim.2020.02.005_b0140', 'doi-asserted-by': 'crossref', 'first-page': '730', 'DOI': '10.1016/j.ijantimicag.2018.05.003', 'article-title': 'Safe, high-throughput screening of natural compounds of MERS-CoV entry ' 'inhibitors using a pseudovirus expressing MERS-CoV spike protein', 'volume': '52', 'author': 'Kim', 'year': '2018', 'journal-title': 'Int J Antimicrob Agents'}, { 'issue': '15', 'key': '10.1016/j.joim.2020.02.005_b0145', 'doi-asserted-by': 'crossref', 'first-page': '5717', 'DOI': '10.1073/pnas.0510851103', 'article-title': 'Severe acute respiratory syndrome coronavirus papain-like protease: ' 'structure of a viral deubiquitinating enzyme', 'volume': '103', 'author': 'Ratia', 'year': '2006', 'journal-title': 'Proc Natl Acad Sci U S A'}, { 'issue': '5626', 'key': '10.1016/j.joim.2020.02.005_b0150', 'doi-asserted-by': 'crossref', 'first-page': '1763', 'DOI': '10.1126/science.1085658', 'article-title': 'Coronavirus main proteinase (3CLpro) structure: basis for design of ' 'anti-SARS drugs', 'volume': '300', 'author': 'Anand', 'year': '2003', 'journal-title': 'Science'}, { 'issue': '47', 'key': '10.1016/j.joim.2020.02.005_b0155', 'doi-asserted-by': 'crossref', 'first-page': '49414', 'DOI': '10.1074/jbc.M408782200', 'article-title': 'Crystal structure of severe acute respiratory syndrome coronavirus ' 'spike protein fusion core', 'volume': '279', 'author': 'Xu', 'year': '2004', 'journal-title': 'J Biol Chem'}, { 'key': '10.1016/j.joim.2020.02.005_b0160', 'doi-asserted-by': 'crossref', 'first-page': '743', 'DOI': '10.3389/fphar.2019.00743', 'article-title': 'Systems pharmacology for investigation of the mechanisms of action of ' 'traditional Chinese medicine in drug discovery', 'volume': '10', 'author': 'Zhang', 'year': '2019', 'journal-title': 'Front Pharmacol'}], 'container-title': 'Journal of Integrative Medicine', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://api.elsevier.com/content/article/PII:S2095496420300157?httpAccept=text/xml', 'content-type': 'text/xml', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://api.elsevier.com/content/article/PII:S2095496420300157?httpAccept=text/plain', 'content-type': 'text/plain', 'content-version': 'vor', 'intended-application': 'text-mining'}], 'deposited': { 'date-parts': [[2020, 3, 21]], 'date-time': '2020-03-21T12:09:28Z', 'timestamp': 1584792568000}, 'score': 1, 'resource': {'primary': {'URL': 'https://linkinghub.elsevier.com/retrieve/pii/S2095496420300157'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2020, 3]]}, 'references-count': 32, 'journal-issue': {'issue': '2', 'published-print': {'date-parts': [[2020, 3]]}}, 'alternative-id': ['S2095496420300157'], 'URL': 'http://dx.doi.org/10.1016/j.joim.2020.02.005', 'relation': {}, 'ISSN': ['2095-4964'], 'subject': ['General Medicine'], 'container-title-short': 'Journal of Integrative Medicine', 'published': {'date-parts': [[2020, 3]]}, 'assertion': [ {'value': 'Elsevier', 'name': 'publisher', 'label': 'This article is maintained by'}, { 'value': 'In silico screening of Chinese herbal medicines with the potential to directly ' 'inhibit 2019 novel coronavirus', 'name': 'articletitle', 'label': 'Article Title'}, { 'value': 'Journal of Integrative Medicine', 'name': 'journaltitle', 'label': 'Journal Title'}, { 'value': 'https://doi.org/10.1016/j.joim.2020.02.005', 'name': 'articlelink', 'label': 'CrossRef DOI link to publisher maintained version'}, {'value': 'article', 'name': 'content_type', 'label': 'Content Type'}, { 'value': '© 2020 Shanghai Changhai Hospital. Published by Elsevier B.V.', 'name': 'copyright', 'label': 'Copyright'}]}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit