Channel activity of SARS-CoV-2 viroporin ORF3a inhibited by adamantanes and phenolic plant metabolites
Marina Sherif Fam, Christine Adel Sedky, Nancy Osama Turky, Hans-Georg Breitinger, Ulrike Breitinger
Scientific Reports, doi:10.1038/s41598-023-31764-9
SARS-CoV-2 has been responsible for the major worldwide pandemic of COVID-19. Despite the enormous success of vaccination campaigns, virus infections are still prevalent and effective antiviral therapies are urgently needed. Viroporins are essential for virus replication and release, and are thus promising therapeutic targets. Here, we studied the expression and function of recombinant ORF3a viroporin of SARS-CoV-2 using a combination of cell viability assays and patch-clamp electrophysiology. ORF3a was expressed in HEK293 cells and transport to the plasma membrane verified by a dot blot assay. Incorporation of a membrane-directing signal peptide increased plasma membrane expression. Cell viability tests were carried out to measure cell damage associated with ORF3a activity, and voltage-clamp recordings verified its channel activity. The classical viroporin inhibitors amantadine and rimantadine inhibited ORF3a channels. A series of ten flavonoids and polyphenolics were studied. Kaempferol, quercetin, epigallocatechin gallate, nobiletin, resveratrol and curcumin were ORF3a inhibitors, with IC 50 values ranging between 1 and 6 µM, while 6-gingerol, apigenin, naringenin and genistein were inactive. For flavonoids, inhibitory activity could be related to the pattern of OH groups on the chromone ring system. Thus, the ORF3a viroporin of SARS-CoV-2 may indeed be a promising target for antiviral drugs. Coronaviruses (CoVs) belong to the order Nidovirales, family Coronaviridae, and subfamily Coronavirinae 1 . They are subdivided into four different genera named α-, β-, γ-, and δ-CoVs 2 . Coronaviruses have been known to infect humans 2-4 , usually causing mild respiratory infections such as a common cold. However, in the past 20 years, two major outbreaks occurred due to crossover of animal β-coronavirus to humans 5 . In 2002-03 humans were infected by bat coronavirus resulting in severe acute respiratory syndrome coronavirus (SARS-CoV) and in 2019, a novel coronavirus of bat origin that had spread to humans, had been discovered in Wuhan, China 6 . This new virus, named SARS-CoV-2, is a member of the β-coronavirus family and is responsible for the ongoing pandemic of COVID-19 1, 7, 8 . SARS-CoVs are enveloped, positive sense single-stranded RNA viruses, with a genome of approximately 30 kb arranged into 14 open reading frames (ORF) encoding 31 proteins [8] [9] [10] [11] . Spike (S), envelope (E), membrane (M) and nucleoprotein (N) are the four structural proteins forming the virus capsid. The S protein binds to the host receptor through the receptor-binding domain in the S1 subunit, while S2 subunit is responsible for membrane fusion 8 . The E protein belongs to the class of viroporins, integral membrane proteins functioning as ion channels and promoting virus release. It was found to be expressed in the ER and the Golgi apparatus forming an ion channel allowing the efflux of cations Na + , K + and Ca 2+ , and is required for pathogenesis and..
Author contributions M.S.F.: design of work, data acquisition and analysis, interpretation of data, revising the manuscript. C.A.S.: data acquisition and analysis, interpretation of data, revising the manuscript. N.O.T.: data acquisition and analysis, interpretation of data, revising the manuscript. H.G.B.: conception, design of work, data acquisition and analysis, interpretation of data, drafting and revising the manuscript. U.B.: conception, design of work, data acquisition and analysis, interpretation of data, drafting, writing and revising the manuscript. All authors have read and approved the submitted manuscript.
Competing interests The authors declare no competing interests.
References
Abba, Hassim, Hamzah, Noordin, Antiviral activity of resveratrol against human and animal viruses, Adv. Virol
Aboubakr, In vitro antiviral activity of clove and ginger aqueous extracts against feline calicivirus, a surrogate for human norovirus, J. Food Prot,
doi:10.4315/0362-028X.JFP-15-593
Agrawal, Agrawal, Blunden, Quercetin: antiviral significance and possible COVID-19 integrative considerations, Nat. Prod. Comm,
doi:10.1177/1934578X20976293
Arshad, SARS-CoV-2 accessory proteins ORF7a and ORF3a use distinct mechanisms to downregulate MHC-I surface expression, bioRxiv
Bhowmik, Identification of potential inhibitors against SARS-CoV-2 by targeting proteins responsible for envelope formation and virion assembly using docking based virtual screening, and pharmacokinetics approaches, Infect. Genet. Evol,
doi:10.1016/j.meegid.2020.104451
Breitinger, Ali, Sticht, Breitinger, Inhibition of SARS CoV envelope protein by flavonoids and classical viroporin inhibitors, Front. Microbiol,
doi:10.3389/fmicb.2021.692423
Breitinger, Cell viability assay as a tool to study activity and inhibition of hepatitis C p7 channels, J. Gen. Virol,
doi:10.1099/jgv.0.001571
Breitinger, Farag, Ali, Breitinger, Patch-clamp study of hepatitis C p7 channels reveals genotype-specific sensitivity to inhibitors, Biophys. J
Breitinger, Farag, Sticht, Breitinger, Viroporins, Structure, function, and their role in the life cycle of SARS-CoV-2, Int. J. Biochem. Cell Biol,
doi:10.1016/j.biocel.2022.106185
Castano-Rodriguez, Role of severe acute respiratory syndrome coronavirus viroporins E, 3a, and 8a in replication and pathogenesis,
doi:10.1128/mBio.02325-17
Chan, The ion channel activity of the SARS-coronavirus 3a protein is linked to its pro-apoptotic function, Int. J. Biochem. Cell Biol,
doi:10.1016/j.biocel.2009.04.019
Chang, Wang, Yeh, Shieh, Chiang, Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines, J. Ethnopharmacol,
doi:10.1016/j.jep.2012.10.043
Chen, Insights into the anti-inflammatory and antiviral mechanisms of resveratrol, Mediat. Inflamm,
doi:10.1155/2022/7138756
Chen, Lo, Ma, Li, Expression and membrane integration of SARS-CoV E protein and its interaction with M protein, Virus Genes,
doi:10.1007/s11262-009-0341-6
Chen, Moriyama, Chang, Ichinohe, Severe acute respiratory syndrome coronavirus viroporin 3a activates the NLRP3 inflammasome, Front. Microbiol,
doi:10.3389/fmicb.2019.00050
Cione, Quercetin, epigallocatechin gallate, curcumin, and resveratrol: from dietary sources to human MicroRNA modulation, Molecules,
doi:10.3390/molecules25010063
De Wit, Van Doremalen, Falzarano, Munster, SARS and MERS: recent insights into emerging coronaviruses, Nat. Rev. Microbiol,
doi:10.1038/nrmicro.2016.81
Drago, Nicola, Ossola, De Vecchi, In vitro antiviral activity of resveratrol against respiratory viruses, J. Chemother,
doi:10.1179/joc.2008.20.3.393
Duff, Ashley, The transmembrane domain of influenza A M2 protein forms amantadine-sensitive proton channels in planar lipid bilayers, Virology,
doi:10.1016/0042-6822(92)91239-q
Farag, Breitinger, El-Azizi, Breitinger, The p7 viroporin of the hepatitis C virus contributes to liver inflammation by stimulating production of Interleukin-1β, Biochim. Biophys. Acta Mol. Basis Dis
Fleming, Managing influenza: amantadine, rimantadine and beyond, Int. J. Clin. Pract
Freundt, The open reading frame 3a protein of severe acute respiratory syndrome-associated coronavirus promotes membrane rearrangement and cell death, J. Virol,
doi:10.1128/JVI.01662-09
Gligorijevic, Molecular mechanisms of possible action of phenolic compounds in COVID-19 protection and prevention, Int. J. Mol. Sci
Gonzalez, Carrasco, Viroporins, None, FEBS Lett
Gorbalenya, The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2, Nat. Microbiol,
doi:10.1038/s41564-020-0695-z
Griffin, Genotype-dependent sensitivity of hepatitis C virus to inhibitors of the p7 ion channel, Hepatology
Griffin, The p7 protein of hepatitis C virus forms an ion channel that is blocked by the antiviral drug Amantadine, FEBS Lett
Hayati, 6]-Gingerol inhibits chikungunya virus infection by suppressing viral replication, Biomed. Res. Int,
doi:10.1155/2021/6623400
Issa, Merhi, Panossian, Salloum, Tokajian, SARS-CoV-2 and ORF3a: nonsynonymous mutations, functional domains, and viral pathogenesis,
doi:10.1128/mSystems.00266-20
Jennings, Parks, Curcumin as an antiviral agent, Viruses
Jimenez-Guardeno, The PDZ-binding motif of severe acute respiratory syndrome coronavirus envelope protein is a determinant of viral pathogenesis, PLoS Pathog,
doi:10.1371/journal.ppat.1004320
Jing, Functional studies indicate amantadine binds to the pore of the influenza A virus M2 proton-selective ion channel, Proc. Natl. Acad. Sci. U. S. A,
doi:10.1073/pnas.0804958105
Kanjanasirirat, High-content screening of Thai medicinal plants reveals Boesenbergia rotunda extract and its component Panduratin A as anti-SARS-CoV-2 agents, Sci. Rep
Kanzawa, Augmentation of chemokine production by severe acute respiratory syndrome coronavirus 3a/X1 and 7a/X4 proteins through NF-kappaB activation, FEBS Lett,
doi:10.1016/j.febslet.2006.11.046
Kaushik, Jangra, Kundu, Yadav, Kaushik, Anti-viral activity of Zingiber officinale (Ginger) ingredients against the Chikungunya virus, Virusdisease,
doi:10.1007/s13337-020-00584-0
Kern, Cryo-EM structure of the SARS-CoV-2 3a ion channel in lipid nanodiscs, bioRxiv
Kien, Ma, Gaisenband, Nal, Microbial Pathogenesis: Infection and Immunity
Kongpichitchoke, Hsu, Huang, Number of hydroxyl groups on the B-ring of flavonoids affects their antioxidant activity and interaction with phorbol ester binding site of PKCδ C1B domain: in vitro and in silico studies, J. Agric. Food Chem,
doi:10.1021/acs.jafc.5b00312
Law, The 3a protein of severe acute respiratory syndrome-associated coronavirus induces apoptosis in Vero E6 cells, J. Gen. Virol,
doi:10.1099/vir.0.80813-0
Lebedeva, Theoretical and experimental study of interaction of macroheterocyclic compounds with ORF3a of SARS-CoV-2, Sci. Rep,
doi:10.1038/s41598-021-99072-8
Lim, Ng, Tam, Liu, Human coronaviruses: a review of virus-host interactions, Diseases
Mahrosh, Mustafa, An in silico approach to target RNA-dependent RNA polymerase of COVID-19 with naturally occurring phytochemicals, Environ. Dev. Sustain,
doi:10.1007/s10668-021-01373-5
Miao, ORF3a of the COVID-19 virus SARS-CoV-2 blocks HOPS complex-mediated assembly of the SNARE complex required for autolysosome formation, Dev. Cell,
doi:10.1016/j.devcel.2020.12.010
Moghadamtousi, A review on antibacterial, antiviral, and antifungal activity of curcumin, Biomed. Res. Int,
doi:10.1155/2014/186864
Naqvi, Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: structural genomics approach, Biochim. Biophys. Acta Mol. Basis Dis,
doi:10.1016/j.bbadis.2020.165878
Nieto-Torres, Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome, Virology,
doi:10.1016/j.virol.2015.08.010
Nieva, Madan, Carrasco, Viroporins: structure and biological functions, Nat. Rev. Microbiol,
doi:10.1038/nrmicro2820
Oso, Adeoye, Olaoye, Pharmacoinformatics and hypothetical studies on allicin, curcumin, and gingerol as potential candidates against COVID-19-associated proteases, J. Biomol. Struct. Dyn,
doi:10.1080/07391102.2020.1813630
Padhan, Minakshi, Towheed, Jameel, Severe acute respiratory syndrome coronavirus 3a protein activates the mitochondrial death pathway through p38 MAP kinase activation, J. Gen. Virol,
doi:10.1099/vir.0.83665-0
Padhan, Severe acute respiratory syndrome coronavirus ORF3a protein interacts with caveolin, J. Gen. Virol,
doi:10.1099/vir.0.82856-0
Panche, Diwan, Chandra, Flavonoids: an overview, J. Nutr. Sci
Qu, ORF3a-mediated incomplete autophagy facilitates severe acute respiratory syndrome coronavirus-2 replication, Front. Cell Dev. Biol,
doi:10.3389/fcell.2021.716208
Redondo, Zaldívar-López, Garrido, Montoya, SARS-CoV-2 accessory proteins in viral pathogenesis: knowns and unknowns, Front. Immunol
Regla-Nava, Severe acute respiratory syndrome coronaviruses with mutations in the E protein are attenuated and promising vaccine candidates, J. Virol,
doi:10.1128/JVI.03566-14
Salom, Hill, Lear, Degrado, pH-dependent tetramerization and amantadine binding of the transmembrane helix of M2 from the influenza A virus, Biochemistry,
doi:10.1021/bi001799u
Schwarz, Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus, Planta Med,
doi:10.1055/s-0033-1360277
Scott, Griffin, Viroporins: structure, function and potential as antiviral targets, J. Gen. Virol,
doi:10.1099/vir.0.000201
Siu, Severe acute respiratory syndrome coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC, FASEB J,
doi:10.1096/fj.201802418R
Su, Yu, Zhou, SARS-CoV-2 ORF3a induces incomplete autophagy via the unfolded protein response, Viruses
Tahmasebi, Immunomodulatory effects of nanocurcumin on Th17 cell responses in mild and severe COVID-19 patients, J. Cell Physiol
Teoh, The SARS coronavirus E protein interacts with PALS1 and alters tight junction formation and epithelial morphogenesis, Mol. Biol. Cell,
doi:10.1091/mbc.E10-04-0338
Torres, Conductance and amantadine binding of a pore formed by a lysine-flanked transmembrane domain of SARS coronavirus envelope protein, Protein Sci,
doi:10.1110/ps.062730007
Tungmunnithum, Thongboonyou, Pholboon, Yangsabai, Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: an overview, Medicines (Basel)
Vakulenko, Deviatkin, Drexler, Lukashev, Modular evolution of coronavirus genomes, Viruses
Verdia-Baguena, Coronavirus E protein forms ion channels with functionally and structurally-involved membrane lipids, Virology,
doi:10.1016/j.virol.2012.07.005
Zhou, Efficacy of ion-channel inhibitors amantadine, memantine and rimantadine for the treatment of SARS-CoV-2 in vitro, Viruses,
doi:10.3390/v13102082
DOI record:
{
"DOI": "10.1038/s41598-023-31764-9",
"ISSN": [
"2045-2322"
],
"URL": "http://dx.doi.org/10.1038/s41598-023-31764-9",
"abstract": "<jats:title>Abstract</jats:title><jats:p>SARS-CoV-2 has been responsible for the major worldwide pandemic of COVID-19. Despite the enormous success of vaccination campaigns, virus infections are still prevalent and effective antiviral therapies are urgently needed. Viroporins are essential for virus replication and release, and are thus promising therapeutic targets. Here, we studied the expression and function of recombinant ORF3a viroporin of SARS-CoV-2 using a combination of cell viability assays and patch-clamp electrophysiology. ORF3a was expressed in HEK293 cells and transport to the plasma membrane verified by a dot blot assay. Incorporation of a membrane-directing signal peptide increased plasma membrane expression. Cell viability tests were carried out to measure cell damage associated with ORF3a activity, and voltage-clamp recordings verified its channel activity. The classical viroporin inhibitors amantadine and rimantadine inhibited ORF3a channels. A series of ten flavonoids and polyphenolics were studied. Kaempferol, quercetin, epigallocatechin gallate, nobiletin, resveratrol and curcumin were ORF3a inhibitors, with IC<jats:sub>50</jats:sub> values ranging between 1 and 6 µM, while 6-gingerol, apigenin, naringenin and genistein were inactive. For flavonoids, inhibitory activity could be related to the pattern of OH groups on the chromone ring system. Thus, the ORF3a viroporin of SARS-CoV-2 may indeed be a promising target for antiviral drugs.</jats:p>",
"alternative-id": [
"31764"
],
"article-number": "5328",
"assertion": [
{
"group": {
"label": "Article History",
"name": "ArticleHistory"
},
"label": "Received",
"name": "received",
"order": 1,
"value": "28 September 2022"
},
{
"group": {
"label": "Article History",
"name": "ArticleHistory"
},
"label": "Accepted",
"name": "accepted",
"order": 2,
"value": "16 March 2023"
},
{
"group": {
"label": "Article History",
"name": "ArticleHistory"
},
"label": "First Online",
"name": "first_online",
"order": 3,
"value": "1 April 2023"
},
{
"group": {
"label": "Competing interests",
"name": "EthicsHeading"
},
"name": "Ethics",
"order": 1,
"value": "The authors declare no competing interests."
}
],
"author": [
{
"affiliation": [],
"family": "Fam",
"given": "Marina Sherif",
"sequence": "first"
},
{
"affiliation": [],
"family": "Sedky",
"given": "Christine Adel",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Turky",
"given": "Nancy Osama",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Breitinger",
"given": "Hans-Georg",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Breitinger",
"given": "Ulrike",
"sequence": "additional"
}
],
"container-title": "Scientific Reports",
"container-title-short": "Sci Rep",
"content-domain": {
"crossmark-restriction": false,
"domain": [
"link.springer.com"
]
},
"created": {
"date-parts": [
[
2023,
4,
3
]
],
"date-time": "2023-04-03T05:50:55Z",
"timestamp": 1680501055000
},
"deposited": {
"date-parts": [
[
2023,
4,
3
]
],
"date-time": "2023-04-03T05:58:06Z",
"timestamp": 1680501486000
},
"funder": [
{
"DOI": "10.13039/501100003009",
"award": [
"45420"
],
"doi-asserted-by": "publisher",
"name": "Science and Technology Development Fund"
},
{
"DOI": "10.13039/501100007637",
"doi-asserted-by": "crossref",
"name": "German University in Cairo"
}
],
"indexed": {
"date-parts": [
[
2023,
4,
4
]
],
"date-time": "2023-04-04T05:31:46Z",
"timestamp": 1680586306786
},
"is-referenced-by-count": 0,
"issue": "1",
"issued": {
"date-parts": [
[
2023,
4,
1
]
]
},
"journal-issue": {
"issue": "1",
"published-online": {
"date-parts": [
[
2023,
12
]
]
}
},
"language": "en",
"license": [
{
"URL": "https://creativecommons.org/licenses/by/4.0",
"content-version": "tdm",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2023,
4,
1
]
],
"date-time": "2023-04-01T00:00:00Z",
"timestamp": 1680307200000
}
},
{
"URL": "https://creativecommons.org/licenses/by/4.0",
"content-version": "vor",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2023,
4,
1
]
],
"date-time": "2023-04-01T00:00:00Z",
"timestamp": 1680307200000
}
}
],
"link": [
{
"URL": "https://www.nature.com/articles/s41598-023-31764-9.pdf",
"content-type": "application/pdf",
"content-version": "vor",
"intended-application": "text-mining"
},
{
"URL": "https://www.nature.com/articles/s41598-023-31764-9",
"content-type": "text/html",
"content-version": "vor",
"intended-application": "text-mining"
},
{
"URL": "https://www.nature.com/articles/s41598-023-31764-9.pdf",
"content-type": "application/pdf",
"content-version": "vor",
"intended-application": "similarity-checking"
}
],
"member": "297",
"original-title": [],
"prefix": "10.1038",
"published": {
"date-parts": [
[
2023,
4,
1
]
]
},
"published-online": {
"date-parts": [
[
2023,
4,
1
]
]
},
"publisher": "Springer Science and Business Media LLC",
"reference": [
{
"DOI": "10.1038/s41564-020-0695-z",
"author": "AE Gorbalenya",
"doi-asserted-by": "publisher",
"first-page": "536",
"issue": "4",
"journal-title": "Nat. Microbiol.",
"key": "31764_CR1",
"unstructured": "Gorbalenya, A. E. et al. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 5(4), 536–544. https://doi.org/10.1038/s41564-020-0695-z (2020).",
"volume": "5",
"year": "2020"
},
{
"DOI": "10.1007/978-1-0716-0900-2_1",
"author": "Y Wang",
"doi-asserted-by": "publisher",
"first-page": "1",
"key": "31764_CR2",
"unstructured": "Wang, Y., Grunewald, M. & Perlman, S. coronaviruses: an updated overview of their replication and pathogenesis. In Coronaviruses: Methods and Protocols (eds Maier, H. J. & Bickerton, E.) 1–29 (Springer US, 2020). https://doi.org/10.1007/978-1-0716-0900-2_1.",
"volume-title": "Coronaviruses: Methods and Protocols",
"year": "2020"
},
{
"DOI": "10.1038/nrmicro.2016.81",
"author": "E de Wit",
"doi-asserted-by": "publisher",
"first-page": "523",
"journal-title": "Nat. Rev. Microbiol.",
"key": "31764_CR3",
"unstructured": "de Wit, E., van Doremalen, N., Falzarano, D. & Munster, V. J. SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 14, 523–534. https://doi.org/10.1038/nrmicro.2016.81 (2016).",
"volume": "14",
"year": "2016"
},
{
"DOI": "10.3390/diseases4030026",
"author": "YX Lim",
"doi-asserted-by": "publisher",
"first-page": "26",
"journal-title": "Diseases",
"key": "31764_CR4",
"unstructured": "Lim, Y. X., Ng, Y. L., Tam, J. P. & Liu, D. X. Human coronaviruses: a review of virus-host interactions. Diseases 4, 26 (2016).",
"volume": "4",
"year": "2016"
},
{
"DOI": "10.1007/s12098-020-03263-6",
"author": "T Singhal",
"doi-asserted-by": "publisher",
"first-page": "281",
"journal-title": "Indian J. Pediatr.",
"key": "31764_CR5",
"unstructured": "Singhal, T. A review of coronavirus disease-2019 (COVID-19). Indian J. Pediatr. 87, 281–286. https://doi.org/10.1007/s12098-020-03263-6 (2020).",
"volume": "87",
"year": "2020"
},
{
"DOI": "10.1097/CM9.0000000000000722",
"author": "LL Ren",
"doi-asserted-by": "publisher",
"first-page": "1015",
"journal-title": "Chin. Med. J. (Engl.)",
"key": "31764_CR6",
"unstructured": "Ren, L. L. et al. Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. Chin. Med. J. (Engl.) 133, 1015–1024. https://doi.org/10.1097/CM9.0000000000000722 (2020).",
"volume": "133",
"year": "2020"
},
{
"DOI": "10.1016/j.ijsu.2020.07.032",
"author": "J Liu",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "Int. J. Surg.",
"key": "31764_CR7",
"unstructured": "Liu, J. et al. A comparative overview of COVID-19, MERS and SARS: review article. Int. J. Surg. 81, 1–8. https://doi.org/10.1016/j.ijsu.2020.07.032 (2020).",
"volume": "81",
"year": "2020"
},
{
"DOI": "10.1016/j.bbadis.2020.165878",
"author": "AAT Naqvi",
"doi-asserted-by": "publisher",
"first-page": "165878",
"journal-title": "Biochim. Biophys. Acta Mol. Basis Dis.",
"key": "31764_CR8",
"unstructured": "Naqvi, A. A. T. et al. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: structural genomics approach. Biochim. Biophys. Acta Mol. Basis Dis. 1866, 165878. https://doi.org/10.1016/j.bbadis.2020.165878 (2020).",
"volume": "1866",
"year": "2020"
},
{
"DOI": "10.3389/fimmu.2021.708264",
"author": "N Redondo",
"doi-asserted-by": "publisher",
"first-page": "708264",
"journal-title": "Front. Immunol.",
"key": "31764_CR9",
"unstructured": "Redondo, N., Zaldívar-López, S., Garrido, J. J. & Montoya, M. SARS-CoV-2 accessory proteins in viral pathogenesis: knowns and unknowns. Front. Immunol. 12, 708264 (2021).",
"volume": "12",
"year": "2021"
},
{
"DOI": "10.1126/science.1085953",
"author": "MA Marra",
"doi-asserted-by": "publisher",
"first-page": "1399",
"journal-title": "Science",
"key": "31764_CR10",
"unstructured": "Marra, M. A. et al. The Genome sequence of the SARS-associated coronavirus. Science 300, 1399–1404. https://doi.org/10.1126/science.1085953 (2003).",
"volume": "300",
"year": "2003"
},
{
"DOI": "10.3390/v13071270",
"author": "Y Vakulenko",
"doi-asserted-by": "publisher",
"first-page": "1270",
"journal-title": "Viruses",
"key": "31764_CR11",
"unstructured": "Vakulenko, Y., Deviatkin, A., Drexler, J. F. & Lukashev, A. Modular evolution of coronavirus genomes. Viruses 13, 1270 (2021).",
"volume": "13",
"year": "2021"
},
{
"DOI": "10.1016/j.biocel.2022.106185",
"author": "U Breitinger",
"doi-asserted-by": "publisher",
"first-page": "106185",
"journal-title": "Int. J. Biochem. Cell Biol.",
"key": "31764_CR12",
"unstructured": "Breitinger, U., Farag, N. S., Sticht, H. & Breitinger, H. G. Viroporins: Structure, function, and their role in the life cycle of SARS-CoV-2. Int. J. Biochem. Cell Biol. 145, 106185. https://doi.org/10.1016/j.biocel.2022.106185 (2022).",
"volume": "145",
"year": "2022"
},
{
"DOI": "10.1016/S0014-5793(03)00780-4",
"author": "ME Gonzalez",
"doi-asserted-by": "publisher",
"first-page": "28",
"journal-title": "FEBS Lett.",
"key": "31764_CR13",
"unstructured": "Gonzalez, M. E. & Carrasco, L. Viroporins. FEBS Lett. 552, 28–34 (2003).",
"volume": "552",
"year": "2003"
},
{
"DOI": "10.1038/nrmicro2820",
"author": "JL Nieva",
"doi-asserted-by": "publisher",
"first-page": "563",
"journal-title": "Nat. Rev. Microbiol.",
"key": "31764_CR14",
"unstructured": "Nieva, J. L., Madan, V. & Carrasco, L. Viroporins: structure and biological functions. Nat. Rev. Microbiol. 10, 563–574. https://doi.org/10.1038/nrmicro2820 (2012).",
"volume": "10",
"year": "2012"
},
{
"DOI": "10.1099/vir.0.000201",
"author": "C Scott",
"doi-asserted-by": "publisher",
"first-page": "2000",
"journal-title": "J. Gen. Virol.",
"key": "31764_CR15",
"unstructured": "Scott, C. & Griffin, S. Viroporins: structure, function and potential as antiviral targets. J. Gen. Virol. 96, 2000–2027. https://doi.org/10.1099/vir.0.000201 (2015).",
"volume": "96",
"year": "2015"
},
{
"DOI": "10.1007/s11262-009-0341-6",
"author": "SC Chen",
"doi-asserted-by": "publisher",
"first-page": "365",
"journal-title": "Virus Genes",
"key": "31764_CR16",
"unstructured": "Chen, S. C., Lo, S. Y., Ma, H. C. & Li, H. C. Expression and membrane integration of SARS-CoV E protein and its interaction with M protein. Virus Genes 38, 365–371. https://doi.org/10.1007/s11262-009-0341-6 (2009).",
"volume": "38",
"year": "2009"
},
{
"DOI": "10.1371/journal.ppat.1004320",
"author": "JM Jimenez-Guardeno",
"doi-asserted-by": "publisher",
"first-page": "e1004320",
"journal-title": "PLoS Pathog.",
"key": "31764_CR17",
"unstructured": "Jimenez-Guardeno, J. M. et al. The PDZ-binding motif of severe acute respiratory syndrome coronavirus envelope protein is a determinant of viral pathogenesis. PLoS Pathog. 10, e1004320. https://doi.org/10.1371/journal.ppat.1004320 (2014).",
"volume": "10",
"year": "2014"
},
{
"DOI": "10.1007/978-0-387-33012-9_34",
"author": "Y Liao",
"doi-asserted-by": "publisher",
"first-page": "199",
"journal-title": "Adv. Exp. Med. Biol.",
"key": "31764_CR18",
"unstructured": "Liao, Y., Tam, J. P. & Liu, D. X. Viroporin activity of SARS-CoV E protein. Adv. Exp. Med. Biol. 581, 199–202. https://doi.org/10.1007/978-0-387-33012-9_34 (2006).",
"volume": "581",
"year": "2006"
},
{
"DOI": "10.1128/JVI.03566-14",
"author": "JA Regla-Nava",
"doi-asserted-by": "publisher",
"first-page": "3870",
"journal-title": "J. Virol.",
"key": "31764_CR19",
"unstructured": "Regla-Nava, J. A. et al. Severe acute respiratory syndrome coronaviruses with mutations in the E protein are attenuated and promising vaccine candidates. J. Virol. 89, 3870–3887. https://doi.org/10.1128/JVI.03566-14 (2015).",
"volume": "89",
"year": "2015"
},
{
"DOI": "10.3390/v4030363",
"author": "TR Ruch",
"doi-asserted-by": "publisher",
"first-page": "363",
"journal-title": "Viruses",
"key": "31764_CR20",
"unstructured": "Ruch, T. R. & Machamer, C. E. The coronavirus E protein: assembly and beyond. Viruses 4, 363–382. https://doi.org/10.3390/v4030363 (2012).",
"volume": "4",
"year": "2012"
},
{
"DOI": "10.1091/mbc.E10-04-0338",
"author": "KT Teoh",
"doi-asserted-by": "publisher",
"first-page": "3838",
"journal-title": "Mol. Biol. Cell",
"key": "31764_CR21",
"unstructured": "Teoh, K. T. et al. The SARS coronavirus E protein interacts with PALS1 and alters tight junction formation and epithelial morphogenesis. Mol. Biol. Cell 21, 3838–3852. https://doi.org/10.1091/mbc.E10-04-0338 (2010).",
"volume": "21",
"year": "2010"
},
{
"DOI": "10.1016/j.virol.2012.07.005",
"author": "C Verdia-Baguena",
"doi-asserted-by": "publisher",
"first-page": "485",
"journal-title": "Virology",
"key": "31764_CR22",
"unstructured": "Verdia-Baguena, C. et al. Coronavirus E protein forms ion channels with functionally and structurally-involved membrane lipids. Virology 432, 485–494. https://doi.org/10.1016/j.virol.2012.07.005 (2012).",
"volume": "432",
"year": "2012"
},
{
"DOI": "10.1016/j.virol.2006.05.028",
"author": "L Wilson",
"doi-asserted-by": "publisher",
"first-page": "294",
"journal-title": "Virology",
"key": "31764_CR23",
"unstructured": "Wilson, L., Gage, P. & Ewart, G. Hexamethylene amiloride blocks E protein ion channels and inhibits coronavirus replication. Virology 353, 294–306. https://doi.org/10.1016/j.virol.2006.05.028 (2006).",
"volume": "353",
"year": "2006"
},
{
"DOI": "10.1038/s41586-020-2286-9",
"author": "DE Gordon",
"doi-asserted-by": "publisher",
"first-page": "459",
"journal-title": "Nature",
"key": "31764_CR24",
"unstructured": "Gordon, D. E. et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 583, 459–468. https://doi.org/10.1038/s41586-020-2286-9 (2020).",
"volume": "583",
"year": "2020"
},
{
"DOI": "10.1186/s12985-020-01402-1",
"author": "CJ Michel",
"doi-asserted-by": "publisher",
"first-page": "131",
"journal-title": "Virol. J.",
"key": "31764_CR25",
"unstructured": "Michel, C. J., Mayer, C., Poch, O. & Thompson, J. D. Characterization of accessory genes in coronavirus genomes. Virol. J. 17, 131. https://doi.org/10.1186/s12985-020-01402-1 (2020).",
"volume": "17",
"year": "2020"
},
{
"DOI": "10.3389/fmicb.2022.854567",
"author": "J Zhang",
"doi-asserted-by": "publisher",
"first-page": "854567",
"journal-title": "Front Microbiol",
"key": "31764_CR26",
"unstructured": "Zhang, J. et al. Understanding the role of SARS-CoV-2 ORF3a in viral pathogenesis and COVID-19. Front Microbiol 13, 854567. https://doi.org/10.3389/fmicb.2022.854567 (2022).",
"volume": "13",
"year": "2022"
},
{
"DOI": "10.1128/mBio.02325-17",
"author": "C Castano-Rodriguez",
"doi-asserted-by": "publisher",
"journal-title": "mBio",
"key": "31764_CR27",
"unstructured": "Castano-Rodriguez, C. et al. Role of severe acute respiratory syndrome coronavirus viroporins E, 3a, and 8a in replication and pathogenesis. mBio https://doi.org/10.1128/mBio.02325-17 (2018).",
"year": "2018"
},
{
"author": "DM Kern",
"first-page": "439",
"journal-title": "bioRxiv",
"key": "31764_CR28",
"unstructured": "Kern, D. M. et al. Cryo-EM structure of the SARS-CoV-2 3a ion channel in lipid nanodiscs. bioRxiv 9, 439 (2021).",
"volume": "9",
"year": "2021"
},
{
"DOI": "10.1016/j.biocel.2009.04.019",
"author": "CM Chan",
"doi-asserted-by": "publisher",
"first-page": "2232",
"journal-title": "Int. J. Biochem. Cell Biol.",
"key": "31764_CR29",
"unstructured": "Chan, C. M. et al. The ion channel activity of the SARS-coronavirus 3a protein is linked to its pro-apoptotic function. Int. J. Biochem. Cell Biol. 41, 2232–2239. https://doi.org/10.1016/j.biocel.2009.04.019 (2009).",
"volume": "41",
"year": "2009"
},
{
"DOI": "10.3389/fmicb.2019.00050",
"author": "IY Chen",
"doi-asserted-by": "publisher",
"first-page": "50",
"journal-title": "Front. Microbiol.",
"key": "31764_CR30",
"unstructured": "Chen, I. Y., Moriyama, M., Chang, M. F. & Ichinohe, T. Severe acute respiratory syndrome coronavirus viroporin 3a activates the NLRP3 inflammasome. Front. Microbiol. 10, 50. https://doi.org/10.3389/fmicb.2019.00050 (2019).",
"volume": "10",
"year": "2019"
},
{
"DOI": "10.1099/vir.0.80813-0",
"author": "PTW Law",
"doi-asserted-by": "publisher",
"first-page": "1921",
"journal-title": "J. Gen. Virol.",
"key": "31764_CR31",
"unstructured": "Law, P. T. W. et al. The 3a protein of severe acute respiratory syndrome-associated coronavirus induces apoptosis in Vero E6 cells. J. Gen. Virol. 86, 1921–1930. https://doi.org/10.1099/vir.0.80813-0 (2005).",
"volume": "86",
"year": "2005"
},
{
"DOI": "10.1016/j.febslet.2006.11.046",
"author": "N Kanzawa",
"doi-asserted-by": "publisher",
"first-page": "6807",
"journal-title": "FEBS Lett.",
"key": "31764_CR32",
"unstructured": "Kanzawa, N. et al. Augmentation of chemokine production by severe acute respiratory syndrome coronavirus 3a/X1 and 7a/X4 proteins through NF-kappaB activation. FEBS Lett. 580, 6807–6812. https://doi.org/10.1016/j.febslet.2006.11.046 (2006).",
"volume": "580",
"year": "2006"
},
{
"DOI": "10.1099/vir.0.83665-0",
"author": "K Padhan",
"doi-asserted-by": "publisher",
"first-page": "1960",
"journal-title": "J. Gen. Virol.",
"key": "31764_CR33",
"unstructured": "Padhan, K., Minakshi, R., Towheed, M. A. B. & Jameel, S. Severe acute respiratory syndrome coronavirus 3a protein activates the mitochondrial death pathway through p38 MAP kinase activation. J. Gen. Virol. 89, 1960–1969. https://doi.org/10.1099/vir.0.83665-0 (2008).",
"volume": "89",
"year": "2008"
},
{
"DOI": "10.1128/JVI.01662-09",
"author": "EC Freundt",
"doi-asserted-by": "publisher",
"first-page": "1097",
"journal-title": "J. Virol.",
"key": "31764_CR34",
"unstructured": "Freundt, E. C. et al. The open reading frame 3a protein of severe acute respiratory syndrome-associated coronavirus promotes membrane rearrangement and cell death. J. Virol. 84, 1097–1109. https://doi.org/10.1128/JVI.01662-09 (2010).",
"volume": "84",
"year": "2010"
},
{
"key": "31764_CR35",
"unstructured": "Kien, F., Ma, H., Gaisenband, S. D. & Nal, B. in Microbial Pathogenesis: Infection and Immunity (ed Uday Kishore and Annapurna Nayak) Ch. 3, 38–62 (Landes Bioscience and Springer Science+Business Media, 2013)."
},
{
"DOI": "10.1055/s-0033-1360277",
"author": "S Schwarz",
"doi-asserted-by": "publisher",
"first-page": "177",
"journal-title": "Planta Med.",
"key": "31764_CR36",
"unstructured": "Schwarz, S. et al. Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus. Planta Med. 80, 177–182. https://doi.org/10.1055/s-0033-1360277 (2014).",
"volume": "80",
"year": "2014"
},
{
"DOI": "10.1016/j.antiviral.2011.02.008",
"author": "S Schwarz",
"doi-asserted-by": "publisher",
"first-page": "64",
"journal-title": "Antiviral Res.",
"key": "31764_CR37",
"unstructured": "Schwarz, S., Wang, K., Yu, W., Sun, B. & Schwarz, W. Emodin inhibits current through SARS-associated coronavirus 3a protein. Antiviral Res. 90, 64–69. https://doi.org/10.1016/j.antiviral.2011.02.008 (2011).",
"volume": "90",
"year": "2011"
},
{
"DOI": "10.1016/j.devcel.2020.12.010",
"author": "G Miao",
"doi-asserted-by": "publisher",
"first-page": "427",
"journal-title": "Dev. Cell",
"key": "31764_CR38",
"unstructured": "Miao, G. et al. ORF3a of the COVID-19 virus SARS-CoV-2 blocks HOPS complex-mediated assembly of the SNARE complex required for autolysosome formation. Dev. Cell 56, 427–442. https://doi.org/10.1016/j.devcel.2020.12.010 (2021).",
"volume": "56",
"year": "2021"
},
{
"DOI": "10.3389/fcell.2021.716208",
"author": "Y Qu",
"doi-asserted-by": "publisher",
"first-page": "716208",
"journal-title": "Front. Cell Dev. Biol.",
"key": "31764_CR39",
"unstructured": "Qu, Y. et al. ORF3a-mediated incomplete autophagy facilitates severe acute respiratory syndrome coronavirus-2 replication. Front. Cell Dev. Biol. 9, 716208. https://doi.org/10.3389/fcell.2021.716208 (2021).",
"volume": "9",
"year": "2021"
},
{
"DOI": "10.1038/s41421-021-00268-z",
"author": "Y Zhang",
"doi-asserted-by": "publisher",
"first-page": "31",
"journal-title": "Cell Discov.",
"key": "31764_CR40",
"unstructured": "Zhang, Y. et al. The SARS-CoV-2 protein ORF3a inhibits fusion of autophagosomes with lysosomes. Cell Discov. 7, 31. https://doi.org/10.1038/s41421-021-00268-z (2021).",
"volume": "7",
"year": "2021"
},
{
"DOI": "10.3390/v13122467",
"author": "WQ Su",
"doi-asserted-by": "publisher",
"first-page": "2467",
"journal-title": "Viruses",
"key": "31764_CR41",
"unstructured": "Su, W. Q., Yu, X. J. & Zhou, C. M. SARS-CoV-2 ORF3a induces incomplete autophagy via the unfolded protein response. Viruses 13, 2467 (2021).",
"volume": "13",
"year": "2021"
},
{
"DOI": "10.1016/j.virol.2022.01.003",
"author": "H Xu",
"doi-asserted-by": "publisher",
"first-page": "13",
"journal-title": "Virology",
"key": "31764_CR42",
"unstructured": "Xu, H. et al. SARS-CoV-2 viroporin encoded by ORF3a triggers the NLRP3 inflammatory pathway. Virology 568, 13–22. https://doi.org/10.1016/j.virol.2022.01.003 (2022).",
"volume": "568",
"year": "2022"
},
{
"DOI": "10.1038/s41423-020-0485-9",
"author": "Y Ren",
"doi-asserted-by": "publisher",
"first-page": "881",
"journal-title": "Cell Mol. Immunol.",
"key": "31764_CR43",
"unstructured": "Ren, Y. et al. The ORF3a protein of SARS-CoV-2 induces apoptosis in cells. Cell Mol. Immunol. 17, 881–883. https://doi.org/10.1038/s41423-020-0485-9 (2020).",
"volume": "17",
"year": "2020"
},
{
"author": "N Arshad",
"first-page": "8",
"journal-title": "bioRxiv",
"key": "31764_CR44",
"unstructured": "Arshad, N. et al. SARS-CoV-2 accessory proteins ORF7a and ORF3a use distinct mechanisms to downregulate MHC-I surface expression. bioRxiv 204, 8 (2022).",
"volume": "204",
"year": "2022"
},
{
"DOI": "10.1016/j.csbj.2022.01.017",
"author": "S Gupta",
"doi-asserted-by": "publisher",
"first-page": "766",
"journal-title": "Comput. Struct. Biotechnol. J.",
"key": "31764_CR45",
"unstructured": "Gupta, S. et al. D155Y substitution of SARS-CoV-2 ORF3a weakens binding with Caveolin-1. Comput. Struct. Biotechnol. J. 20, 766–778. https://doi.org/10.1016/j.csbj.2022.01.017 (2022).",
"volume": "20",
"year": "2022"
},
{
"DOI": "10.1099/vir.0.82856-0",
"author": "K Padhan",
"doi-asserted-by": "publisher",
"first-page": "3067",
"journal-title": "J. Gen. Virol.",
"key": "31764_CR46",
"unstructured": "Padhan, K. et al. Severe acute respiratory syndrome coronavirus ORF3a protein interacts with caveolin. J. Gen. Virol. 88, 3067–3077. https://doi.org/10.1099/vir.0.82856-0 (2007).",
"volume": "88",
"year": "2007"
},
{
"DOI": "10.1038/s41419-018-0917-y",
"author": "Y Yue",
"doi-asserted-by": "publisher",
"first-page": "904",
"journal-title": "Cell Death Dis.",
"key": "31764_CR47",
"unstructured": "Yue, Y. et al. SARS-coronavirus open reading frame-3a drives multimodal necrotic cell death. Cell Death Dis. 9, 904. https://doi.org/10.1038/s41419-018-0917-y (2018).",
"volume": "9",
"year": "2018"
},
{
"DOI": "10.1016/j.bbrep.2021.100933",
"author": "GK Azad",
"doi-asserted-by": "publisher",
"first-page": "100933",
"journal-title": "Biochem. Biophys. Rep.",
"key": "31764_CR48",
"unstructured": "Azad, G. K. & Khan, P. K. Variations in ORF3a protein of SARS-CoV-2 alter its structure and function. Biochem. Biophys. Rep. 26, 100933. https://doi.org/10.1016/j.bbrep.2021.100933 (2021).",
"volume": "26",
"year": "2021"
},
{
"DOI": "10.1016/j.ijbiomac.2020.12.142",
"author": "M Bianchi",
"doi-asserted-by": "publisher",
"first-page": "820",
"journal-title": "Int. J. Biol. Macromol.",
"key": "31764_CR49",
"unstructured": "Bianchi, M., Borsetti, A., Ciccozzi, M. & Pascarella, S. SARS-CoV-2 ORF3a: mutability and function. Int. J. Biol. Macromol. 170, 820–826. https://doi.org/10.1016/j.ijbiomac.2020.12.142 (2021).",
"volume": "170",
"year": "2021"
},
{
"DOI": "10.1016/j.virusres.2021.198441",
"author": "SS Hassan",
"doi-asserted-by": "publisher",
"first-page": "198441",
"journal-title": "Virus Res.",
"key": "31764_CR50",
"unstructured": "Hassan, S. S., Attrish, D., Ghosh, S., Choudhury, P. P. & Roy, B. Pathogenic perspective of missense mutations of ORF3a protein of SARS-CoV-2. Virus Res. 300, 198441. https://doi.org/10.1016/j.virusres.2021.198441 (2021).",
"volume": "300",
"year": "2021"
},
{
"DOI": "10.1128/mSystems.00266-20",
"author": "E Issa",
"doi-asserted-by": "publisher",
"journal-title": "Msystems",
"key": "31764_CR51",
"unstructured": "Issa, E., Merhi, G., Panossian, B., Salloum, T. & Tokajian, S. SARS-CoV-2 and ORF3a: nonsynonymous mutations, functional domains, and viral pathogenesis. Msystems https://doi.org/10.1128/mSystems.00266-20 (2020).",
"year": "2020"
},
{
"DOI": "10.1017/S0950268820002599",
"author": "P Majumdar",
"doi-asserted-by": "publisher",
"first-page": "e262",
"journal-title": "Epidemiol. Infect.",
"key": "31764_CR52",
"unstructured": "Majumdar, P. & Niyogi, S. ORF3a mutation associated with higher mortality rate in SARS-CoV-2 infection. Epidemiol. Infect. 148, e262. https://doi.org/10.1017/S0950268820002599 (2020).",
"volume": "148",
"year": "2020"
},
{
"DOI": "10.3390/v13102082",
"author": "Y Zhou",
"doi-asserted-by": "publisher",
"first-page": "2082",
"journal-title": "Viruses",
"key": "31764_CR53",
"unstructured": "Zhou, Y. et al. Efficacy of ion-channel inhibitors amantadine, memantine and rimantadine for the treatment of SARS-CoV-2 in vitro. Viruses 13, 2082. https://doi.org/10.3390/v13102082 (2021).",
"volume": "13",
"year": "2021"
},
{
"DOI": "10.1038/s41598-021-99072-8",
"author": "NS Lebedeva",
"doi-asserted-by": "publisher",
"first-page": "19481",
"journal-title": "Sci. Rep.",
"key": "31764_CR54",
"unstructured": "Lebedeva, N. S. et al. Theoretical and experimental study of interaction of macroheterocyclic compounds with ORF3a of SARS-CoV-2. Sci. Rep. 11, 19481. https://doi.org/10.1038/s41598-021-99072-8 (2021).",
"volume": "11",
"year": "2021"
},
{
"DOI": "10.1371/journal.pntd.0007548",
"author": "D Dey",
"doi-asserted-by": "publisher",
"first-page": "e0007548",
"journal-title": "PLoS Negl. Trop. Dis.",
"key": "31764_CR55",
"unstructured": "Dey, D. et al. The effect of amantadine on an ion channel protein from Chikungunya virus. PLoS Negl. Trop. Dis. 13, e0007548. https://doi.org/10.1371/journal.pntd.0007548 (2019).",
"volume": "13",
"year": "2019"
},
{
"DOI": "10.1016/0042-6822(92)91239-q",
"author": "KC Duff",
"doi-asserted-by": "publisher",
"first-page": "485",
"journal-title": "Virology",
"key": "31764_CR56",
"unstructured": "Duff, K. C. & Ashley, R. H. The transmembrane domain of influenza A M2 protein forms amantadine-sensitive proton channels in planar lipid bilayers. Virology 190, 485–489. https://doi.org/10.1016/0042-6822(92)91239-q (1992).",
"volume": "190",
"year": "1992"
},
{
"author": "DM Fleming",
"first-page": "189",
"journal-title": "Int. J. Clin. Pract.",
"key": "31764_CR57",
"unstructured": "Fleming, D. M. Managing influenza: amantadine, rimantadine and beyond. Int. J. Clin. Pract. 55, 189–195 (2001).",
"volume": "55",
"year": "2001"
},
{
"DOI": "10.1016/S0014-5793(02)03851-6",
"author": "SD Griffin",
"doi-asserted-by": "publisher",
"first-page": "34",
"journal-title": "FEBS Lett.",
"key": "31764_CR58",
"unstructured": "Griffin, S. D. et al. The p7 protein of hepatitis C virus forms an ion channel that is blocked by the antiviral drug Amantadine. FEBS Lett. 535, 34–38 (2003).",
"volume": "535",
"year": "2003"
},
{
"DOI": "10.1016/j.jmgm.2008.06.002",
"author": "P Intharathep",
"doi-asserted-by": "publisher",
"first-page": "342",
"journal-title": "J. Mol. Graph Model.",
"key": "31764_CR59",
"unstructured": "Intharathep, P. et al. How amantadine and rimantadine inhibit proton transport in the M2 protein channel. J. Mol. Graph Model. 27, 342–348. https://doi.org/10.1016/j.jmgm.2008.06.002 (2008).",
"volume": "27",
"year": "2008"
},
{
"DOI": "10.1073/pnas.0804958105",
"author": "X Jing",
"doi-asserted-by": "publisher",
"first-page": "10967",
"journal-title": "Proc. Natl. Acad. Sci. U. S. A.",
"key": "31764_CR60",
"unstructured": "Jing, X. et al. Functional studies indicate amantadine binds to the pore of the influenza A virus M2 proton-selective ion channel. Proc. Natl. Acad. Sci. U. S. A. 105, 10967–10972. https://doi.org/10.1073/pnas.0804958105 (2008).",
"volume": "105",
"year": "2008"
},
{
"DOI": "10.1110/ps.062730007",
"author": "J Torres",
"doi-asserted-by": "publisher",
"first-page": "2065",
"journal-title": "Protein Sci.",
"key": "31764_CR61",
"unstructured": "Torres, J. et al. Conductance and amantadine binding of a pore formed by a lysine-flanked transmembrane domain of SARS coronavirus envelope protein. Protein Sci. 16, 2065–2071. https://doi.org/10.1110/ps.062730007 (2007).",
"volume": "16",
"year": "2007"
},
{
"DOI": "10.3390/molecules25010063",
"author": "E Cione",
"doi-asserted-by": "publisher",
"first-page": "63",
"journal-title": "Molecules",
"key": "31764_CR62",
"unstructured": "Cione, E. et al. Quercetin, epigallocatechin gallate, curcumin, and resveratrol: from dietary sources to human MicroRNA modulation. Molecules 25, 63. https://doi.org/10.3390/molecules25010063 (2019).",
"volume": "25",
"year": "2019"
},
{
"DOI": "10.1017/jns.2016.41",
"author": "AN Panche",
"doi-asserted-by": "publisher",
"first-page": "e47",
"journal-title": "J. Nutr. Sci.",
"key": "31764_CR63",
"unstructured": "Panche, A. N., Diwan, A. D. & Chandra, S. R. Flavonoids: an overview. J. Nutr. Sci. 5, e47 (2016).",
"volume": "5",
"year": "2016"
},
{
"DOI": "10.3390/ijms222212385",
"author": "N Gligorijevic",
"doi-asserted-by": "publisher",
"first-page": "12385",
"journal-title": "Int. J. Mol. Sci.",
"key": "31764_CR64",
"unstructured": "Gligorijevic, N. et al. Molecular mechanisms of possible action of phenolic compounds in COVID-19 protection and prevention. Int. J. Mol. Sci. 22, 12385 (2021).",
"volume": "22",
"year": "2021"
},
{
"DOI": "10.3390/medicines5030093",
"author": "D Tungmunnithum",
"doi-asserted-by": "publisher",
"first-page": "93",
"journal-title": "Medicines (Basel)",
"key": "31764_CR65",
"unstructured": "Tungmunnithum, D., Thongboonyou, A., Pholboon, A. & Yangsabai, A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: an overview. Medicines (Basel) 5, 93 (2018).",
"volume": "5",
"year": "2018"
},
{
"DOI": "10.1155/2015/184241",
"author": "Y Abba",
"doi-asserted-by": "publisher",
"first-page": "184241",
"journal-title": "Adv. Virol.",
"key": "31764_CR66",
"unstructured": "Abba, Y., Hassim, H., Hamzah, H. & Noordin, M. M. Antiviral activity of resveratrol against human and animal viruses. Adv. Virol. 2015, 184241 (2015).",
"volume": "2015",
"year": "2015"
},
{
"DOI": "10.1042/BST0380050",
"author": "M Campagna",
"doi-asserted-by": "publisher",
"first-page": "50",
"journal-title": "Biochem. Soc. Trans.",
"key": "31764_CR67",
"unstructured": "Campagna, M. & Rivas, C. Antiviral activity of resveratrol. Biochem. Soc. Trans. 38, 50–53. https://doi.org/10.1042/BST0380050 (2010).",
"volume": "38",
"year": "2010"
},
{
"DOI": "10.1155/2022/7138756",
"author": "X Chen",
"doi-asserted-by": "publisher",
"first-page": "7138756",
"journal-title": "Mediat. Inflamm.",
"key": "31764_CR68",
"unstructured": "Chen, X. et al. Insights into the anti-inflammatory and antiviral mechanisms of resveratrol. Mediat. Inflamm. 2022, 7138756. https://doi.org/10.1155/2022/7138756 (2022).",
"volume": "2022",
"year": "2022"
},
{
"DOI": "10.1179/joc.2008.20.3.393",
"author": "L Drago",
"doi-asserted-by": "publisher",
"first-page": "393",
"journal-title": "J. Chemother.",
"key": "31764_CR69",
"unstructured": "Drago, L., Nicola, L., Ossola, F. & De Vecchi, E. In vitro antiviral activity of resveratrol against respiratory viruses. J. Chemother. 20, 393–394. https://doi.org/10.1179/joc.2008.20.3.393 (2008).",
"volume": "20",
"year": "2008"
},
{
"DOI": "10.3390/v12111242",
"author": "MR Jennings",
"doi-asserted-by": "publisher",
"first-page": "1242",
"journal-title": "Viruses",
"key": "31764_CR70",
"unstructured": "Jennings, M. R. & Parks, R. J. Curcumin as an antiviral agent. Viruses 12, 1242 (2020).",
"volume": "12",
"year": "2020"
},
{
"DOI": "10.1155/2014/186864",
"author": "SZ Moghadamtousi",
"doi-asserted-by": "publisher",
"first-page": "186864",
"journal-title": "Biomed. Res. Int.",
"key": "31764_CR71",
"unstructured": "Moghadamtousi, S. Z. et al. A review on antibacterial, antiviral, and antifungal activity of curcumin. Biomed. Res. Int. 2014, 186864. https://doi.org/10.1155/2014/186864 (2014).",
"volume": "2014",
"year": "2014"
},
{
"DOI": "10.1136/gutjnl-2013-305646",
"author": "EI Pecheur",
"doi-asserted-by": "publisher",
"first-page": "1035",
"journal-title": "Gut",
"key": "31764_CR72",
"unstructured": "Pecheur, E. I. Curcumin against hepatitis C virus infection: Spicing up antiviral therapies with ‘nutraceuticals’?. Gut 63, 1035–1037. https://doi.org/10.1136/gutjnl-2013-305646 (2014).",
"volume": "63",
"year": "2014"
},
{
"DOI": "10.1016/j.heliyon.2021.e06350",
"author": "RK Thimmulappa",
"doi-asserted-by": "publisher",
"first-page": "e06350",
"journal-title": "Heliyon",
"key": "31764_CR73",
"unstructured": "Thimmulappa, R. K. et al. Antiviral and immunomodulatory activity of curcumin: a case for prophylactic therapy for COVID-19. Heliyon 7, e06350. https://doi.org/10.1016/j.heliyon.2021.e06350 (2021).",
"volume": "7",
"year": "2021"
},
{
"DOI": "10.1155/2021/6623400",
"author": "RF Hayati",
"doi-asserted-by": "publisher",
"first-page": "6623400",
"journal-title": "Biomed. Res. Int.",
"key": "31764_CR74",
"unstructured": "Hayati, R. F. et al. [6]-Gingerol inhibits chikungunya virus infection by suppressing viral replication. Biomed. Res. Int. 2021, 6623400. https://doi.org/10.1155/2021/6623400 (2021).",
"volume": "2021",
"year": "2021"
},
{
"DOI": "10.1080/07391102.2020.1813630",
"author": "BJ Oso",
"doi-asserted-by": "publisher",
"first-page": "389",
"journal-title": "J. Biomol. Struct. Dyn.",
"key": "31764_CR75",
"unstructured": "Oso, B. J., Adeoye, A. O. & Olaoye, I. F. Pharmacoinformatics and hypothetical studies on allicin, curcumin, and gingerol as potential candidates against COVID-19-associated proteases. J. Biomol. Struct. Dyn. 40, 389–400. https://doi.org/10.1080/07391102.2020.1813630 (2022).",
"volume": "40",
"year": "2022"
},
{
"DOI": "10.4315/0362-028X.JFP-15-593",
"author": "HA Aboubakr",
"doi-asserted-by": "publisher",
"first-page": "1001",
"journal-title": "J. Food Prot.",
"key": "31764_CR76",
"unstructured": "Aboubakr, H. A. et al. In vitro antiviral activity of clove and ginger aqueous extracts against feline calicivirus, a surrogate for human norovirus. J. Food Prot. 79, 1001–1012. https://doi.org/10.4315/0362-028X.JFP-15-593 (2016).",
"volume": "79",
"year": "2016"
},
{
"DOI": "10.1016/j.jep.2012.10.043",
"author": "JS Chang",
"doi-asserted-by": "publisher",
"first-page": "146",
"journal-title": "J. Ethnopharmacol.",
"key": "31764_CR77",
"unstructured": "Chang, J. S., Wang, K. C., Yeh, C. F., Shieh, D. E. & Chiang, L. C. Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. J. Ethnopharmacol. 145, 146–151. https://doi.org/10.1016/j.jep.2012.10.043 (2013).",
"volume": "145",
"year": "2013"
},
{
"DOI": "10.1007/s13337-020-00584-0",
"author": "S Kaushik",
"doi-asserted-by": "publisher",
"first-page": "270",
"journal-title": "Virusdisease",
"key": "31764_CR78",
"unstructured": "Kaushik, S., Jangra, G., Kundu, V., Yadav, J. P. & Kaushik, S. Anti-viral activity of Zingiber officinale (Ginger) ingredients against the Chikungunya virus. Virusdisease 31, 270–276. https://doi.org/10.1007/s13337-020-00584-0 (2020).",
"volume": "31",
"year": "2020"
},
{
"DOI": "10.1099/jgv.0.001571",
"author": "U Breitinger",
"doi-asserted-by": "publisher",
"journal-title": "J. Gen. Virol.",
"key": "31764_CR79",
"unstructured": "Breitinger, U. et al. Cell viability assay as a tool to study activity and inhibition of hepatitis C p7 channels. J. Gen. Virol. https://doi.org/10.1099/jgv.0.001571 (2021).",
"year": "2021"
},
{
"DOI": "10.3389/fmicb.2021.692423",
"author": "U Breitinger",
"doi-asserted-by": "publisher",
"first-page": "692423",
"journal-title": "Front. Microbiol.",
"key": "31764_CR80",
"unstructured": "Breitinger, U., Ali, N. K. M., Sticht, H. & Breitinger, H. G. Inhibition of SARS CoV envelope protein by flavonoids and classical viroporin inhibitors. Front. Microbiol. 12, 692423. https://doi.org/10.3389/fmicb.2021.692423 (2021).",
"volume": "12",
"year": "2021"
},
{
"DOI": "10.1021/bi001799u",
"author": "D Salom",
"doi-asserted-by": "publisher",
"first-page": "14160",
"journal-title": "Biochemistry",
"key": "31764_CR81",
"unstructured": "Salom, D., Hill, B. R., Lear, J. D. & DeGrado, W. F. pH-dependent tetramerization and amantadine binding of the transmembrane helix of M2 from the influenza A virus. Biochemistry 39, 14160–14170. https://doi.org/10.1021/bi001799u (2000).",
"volume": "39",
"year": "2000"
},
{
"DOI": "10.1016/j.bpj.2016.04.018",
"author": "U Breitinger",
"doi-asserted-by": "publisher",
"first-page": "2419",
"journal-title": "Biophys. J.",
"key": "31764_CR82",
"unstructured": "Breitinger, U., Farag, N. S., Ali, N. K. & Breitinger, H. G. Patch-clamp study of hepatitis C p7 channels reveals genotype-specific sensitivity to inhibitors. Biophys. J. 110, 2419–2429 (2016).",
"volume": "110",
"year": "2016"
},
{
"DOI": "10.1016/j.virol.2015.08.010",
"author": "JL Nieto-Torres",
"doi-asserted-by": "publisher",
"first-page": "330",
"journal-title": "Virology",
"key": "31764_CR83",
"unstructured": "Nieto-Torres, J. L. et al. Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome. Virology 485, 330–339. https://doi.org/10.1016/j.virol.2015.08.010 (2015).",
"volume": "485",
"year": "2015"
},
{
"DOI": "10.1096/fj.201802418R",
"author": "KL Siu",
"doi-asserted-by": "publisher",
"first-page": "8865",
"journal-title": "FASEB J.",
"key": "31764_CR84",
"unstructured": "Siu, K. L. et al. Severe acute respiratory syndrome coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC. FASEB J. 33, 8865–8877. https://doi.org/10.1096/fj.201802418R (2019).",
"volume": "33",
"year": "2019"
},
{
"DOI": "10.1002/hep.22555",
"author": "SD Griffin",
"doi-asserted-by": "publisher",
"first-page": "1779",
"journal-title": "Hepatology",
"key": "31764_CR85",
"unstructured": "Griffin, S. D. et al. Genotype-dependent sensitivity of hepatitis C virus to inhibitors of the p7 ion channel. Hepatology 48, 1779–1790 (2008).",
"volume": "48",
"year": "2008"
},
{
"DOI": "10.1021/acs.jafc.5b00312",
"author": "T Kongpichitchoke",
"doi-asserted-by": "publisher",
"first-page": "4580",
"issue": "18",
"journal-title": "J. Agric. Food Chem.",
"key": "31764_CR86",
"unstructured": "Kongpichitchoke, T., Hsu, J.-L. & Huang, T.-C. Number of hydroxyl groups on the B-ring of flavonoids affects their antioxidant activity and interaction with phorbol ester binding site of PKCδ C1B domain: in vitro and in silico studies. J. Agric. Food Chem. 63(18), 4580–4586. https://doi.org/10.1021/acs.jafc.5b00312 (2015).",
"volume": "63",
"year": "2015"
},
{
"DOI": "10.1155/2013/162750",
"author": "S Kumar",
"doi-asserted-by": "publisher",
"first-page": "162750",
"journal-title": "Sci.WorldJ.",
"key": "31764_CR87",
"unstructured": "Kumar, S. & Pandey, A. K. Chemistry and biological activities of flavonoids: an overview. Sci.WorldJ. 2013, 162750. https://doi.org/10.1155/2013/162750 (2013).",
"volume": "2013",
"year": "2013"
},
{
"DOI": "10.1016/j.bbadis.2016.12.006",
"author": "NS Farag",
"doi-asserted-by": "publisher",
"first-page": "712",
"journal-title": "Biochim. Biophys. Acta Mol. Basis Dis.",
"key": "31764_CR88",
"unstructured": "Farag, N. S., Breitinger, U., El-Azizi, M. & Breitinger, H. G. The p7 viroporin of the hepatitis C virus contributes to liver inflammation by stimulating production of Interleukin-1β. Biochim. Biophys. Acta Mol. Basis Dis. 1863, 712–720 (2017).",
"volume": "1863",
"year": "2017"
},
{
"DOI": "10.3389/fphar.2021.675287",
"author": "BAC Rattis",
"doi-asserted-by": "publisher",
"first-page": "675287",
"journal-title": "Front. Pharmacol.",
"key": "31764_CR89",
"unstructured": "Rattis, B. A. C., Ramos, S. G. & Celes, M. R. N. Curcumin as a potential treatment for COVID-19. Front. Pharmacol. 12, 675287. https://doi.org/10.3389/fphar.2021.675287 (2021).",
"volume": "12",
"year": "2021"
},
{
"DOI": "10.1038/s41598-020-77003-3",
"author": "P Kanjanasirirat",
"doi-asserted-by": "publisher",
"first-page": "19963",
"journal-title": "Sci. Rep.",
"key": "31764_CR90",
"unstructured": "Kanjanasirirat, P. et al. High-content screening of Thai medicinal plants reveals Boesenbergia rotunda extract and its component Panduratin A as anti-SARS-CoV-2 agents. Sci. Rep. 10, 19963 (2020).",
"volume": "10",
"year": "2020"
},
{
"DOI": "10.1177/1934578X20976293",
"author": "PK Agrawal",
"doi-asserted-by": "publisher",
"journal-title": "Nat. Prod. Comm.",
"key": "31764_CR91",
"unstructured": "Agrawal, P. K., Agrawal, C. & Blunden, G. Quercetin: antiviral significance and possible COVID-19 integrative considerations. Nat. Prod. Comm. https://doi.org/10.1177/1934578X20976293 (2020).",
"year": "2020"
},
{
"DOI": "10.1002/jcp.30233",
"author": "S Tahmasebi",
"doi-asserted-by": "publisher",
"first-page": "5325",
"journal-title": "J. Cell Physiol.",
"key": "31764_CR92",
"unstructured": "Tahmasebi, S. et al. Immunomodulatory effects of nanocurcumin on Th17 cell responses in mild and severe COVID-19 patients. J. Cell Physiol. 236, 5325–5338 (2020).",
"volume": "236",
"year": "2020"
},
{
"DOI": "10.1016/j.meegid.2020.104451",
"author": "D Bhowmik",
"doi-asserted-by": "publisher",
"first-page": "104451",
"journal-title": "Infect. Genet. Evol.",
"key": "31764_CR93",
"unstructured": "Bhowmik, D. et al. Identification of potential inhibitors against SARS-CoV-2 by targeting proteins responsible for envelope formation and virion assembly using docking based virtual screening, and pharmacokinetics approaches. Infect. Genet. Evol. 84, 104451. https://doi.org/10.1016/j.meegid.2020.104451 (2020).",
"volume": "84",
"year": "2020"
},
{
"DOI": "10.1007/s10668-021-01373-5",
"author": "HS Mahrosh",
"doi-asserted-by": "publisher",
"first-page": "16674",
"journal-title": "Environ. Dev. Sustain.",
"key": "31764_CR94",
"unstructured": "Mahrosh, H. S. & Mustafa, G. An in silico approach to target RNA-dependent RNA polymerase of COVID-19 with naturally occurring phytochemicals. Environ. Dev. Sustain. 23, 16674–16687. https://doi.org/10.1007/s10668-021-01373-5 (2021).",
"volume": "23",
"year": "2021"
}
],
"reference-count": 94,
"references-count": 94,
"relation": {},
"resource": {
"primary": {
"URL": "https://www.nature.com/articles/s41598-023-31764-9"
}
},
"score": 1,
"short-title": [],
"source": "Crossref",
"subject": [
"Multidisciplinary"
],
"subtitle": [],
"title": "Channel activity of SARS-CoV-2 viroporin ORF3a inhibited by adamantanes and phenolic plant metabolites",
"type": "journal-article",
"update-policy": "http://dx.doi.org/10.1007/springer_crossmark_policy",
"volume": "13"
}