Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchQuercetinQuercetin (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

Channel activity of SARS-CoV-2 viroporin ORF3a inhibited by adamantanes and phenolic plant metabolites

Fam et al., Scientific Reports, doi:10.1038/s41598-023-31764-9
Apr 2023  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Quercetin for COVID-19
24th treatment shown to reduce risk in July 2021, now with p = 0.002 from 12 studies.
No treatment is 100% effective. Protocols combine treatments.
5,100+ studies for 112 treatments. c19early.org
In Vitro study showing that adamantane derivatives and six out of ten tested polyphenols including curcumin and quercetin inhibited the SARS-CoV-2 viroporin ORF3a, which contributes to viral pathogenicity and cytotoxicity. Authors used cell viability assays and patch-clamp electrophysiology to test rimantadine, amantadine, and ten phenolic compounds against recombinant ORF3a expressed in HEK293 cells. Rimantadine, amantadine, epigallocatechin gallate (EGCG), quercetin, nobiletin, kaempferol, curcumin and resveratrol inhibited ORF3a activity, while apigenin, genistein, naringenin and 6-gingerol were inactive. Inhibitory potency of flavonoids appeared to correlate with the pattern of OH groups on the chromone ring system.
Bioavailability. Quercetin has low bioavailability and studies typically use advanced formulations to improve bioavailability which may be required to reach therapeutic concentrations.
73 preclinical studies support the efficacy of quercetin for COVID-19:
In Silico studies predict inhibition of SARS-CoV-2, or minimization of side effects, with quercetin or metabolites via binding to the spikeA,3,9,10,22,24,25,30,38,39,41,42,62-64, MproB,3,7,9,11,13,15,17,18,20,23,24,30,34,36-38,42,43,45,63-65, RNA-dependent RNA polymeraseC,1,3,9,32,64, PLproD,3,37,45, ACE2E,22,23,28,37,41,63, TMPRSS2F,22, nucleocapsidG,3, helicaseH,3,29,34, endoribonucleaseI,39, NSP16/10J,6, cathepsin LK,26, Wnt-3L,22, FZDM,22, LRP6N,22, ezrinO,40, ADRPP,38, NRP1Q,41, EP300R,16, PTGS2S,23, HSP90AA1T,16,23, matrix metalloproteinase 9U,31, IL-6V,21,35, IL-10W,21, VEGFAX,35, and RELAY,35 proteins. In Vitro studies demonstrate inhibition of the MproB,15,46,51,59 protein, and inhibition of spike-ACE2 interactionZ,47. In Vitro studies demonstrate efficacy in Calu-3AA,50, A549AB,21, HEK293-ACE2+AC,58, Huh-7AD,25, Caco-2AE,49, Vero E6AF,19,42,49, mTECAG,52, and RAW264.7AH,52 cells. Animal studies demonstrate efficacy in K18-hACE2 miceAI,55, db/db miceAJ,52,61, BALB/c miceAK,60, and rats66. Quercetin reduced proinflammatory cytokines and protected lung and kidney tissue against LPS-induced damage in mice60, inhibits LPS-induced cytokine storm by modulating key inflammatory and antioxidant pathways in macrophages5, and inhibits SARS-CoV-2 ORF3a ion channel activity, which contributes to viral pathogenicity and cytotoxicity54.
Study covers quercetin and curcumin.
a. The trimeric spike (S) protein is a glycoprotein that mediates viral entry by binding to the host ACE2 receptor, is critical for SARS-CoV-2's ability to infect host cells, and is a target of neutralizing antibodies. Inhibition of the spike protein prevents viral attachment, halting infection at the earliest stage.
b. The main protease or Mpro, also known as 3CLpro or nsp5, is a cysteine protease that cleaves viral polyproteins into functional units needed for replication. Inhibiting Mpro disrupts the SARS-CoV-2 lifecycle within the host cell, preventing the creation of new copies.
c. RNA-dependent RNA polymerase (RdRp), also called nsp12, is the core enzyme of the viral replicase-transcriptase complex that copies the positive-sense viral RNA genome into negative-sense templates for progeny RNA synthesis. Inhibiting RdRp blocks viral genome replication and transcription.
d. The papain-like protease (PLpro) has multiple functions including cleaving viral polyproteins and suppressing the host immune response by deubiquitination and deISGylation of host proteins. Inhibiting PLpro may block viral replication and help restore normal immune responses.
e. The angiotensin converting enzyme 2 (ACE2) protein is a host cell transmembrane protein that serves as the cellular receptor for the SARS-CoV-2 spike protein. ACE2 is expressed on many cell types, including epithelial cells in the lungs, and allows the virus to enter and infect host cells. Inhibition may affect ACE2's physiological function in blood pressure control.
f. Transmembrane protease serine 2 (TMPRSS2) is a host cell protease that primes the spike protein, facilitating cellular entry. TMPRSS2 activity helps enable cleavage of the spike protein required for membrane fusion and virus entry. Inhibition may especially protect respiratory epithelial cells, buy may have physiological effects.
g. The nucleocapsid (N) protein binds and encapsulates the viral genome by coating the viral RNA. N enables formation and release of infectious virions and plays additional roles in viral replication and pathogenesis. N is also an immunodominant antigen used in diagnostic assays.
h. The helicase, or nsp13, protein unwinds the double-stranded viral RNA, a crucial step in replication and transcription. Inhibition may prevent viral genome replication and the creation of new virus components.
i. The endoribonuclease, also known as NendoU or nsp15, cleaves specific sequences in viral RNA which may help the virus evade detection by the host immune system. Inhibition may hinder the virus's ability to mask itself from the immune system, facilitating a stronger immune response.
j. The NSP16/10 complex consists of non-structural proteins 16 and 10, forming a 2'-O-methyltransferase that modifies the viral RNA cap structure. This modification helps the virus evade host immune detection by mimicking host mRNA, making NSP16/10 a promising antiviral target.
k. Cathepsin L is a host lysosomal cysteine protease that can prime the spike protein through an alternative pathway when TMPRSS2 is unavailable. Dual targeting of cathepsin L and TMPRSS2 may maximize disruption of alternative pathways for virus entry.
l. Wingless-related integration site (Wnt) ligand 3 is a host signaling molecule that activates the Wnt signaling pathway, which is important in development, cell growth, and tissue repair. Some studies suggest that SARS-CoV-2 infection may interfere with the Wnt signaling pathway, and that Wnt3a is involved in SARS-CoV-2 entry.
m. The frizzled (FZD) receptor is a host transmembrane receptor that binds Wnt ligands, initiating the Wnt signaling cascade. FZD serves as a co-receptor, along with ACE2, in some proposed mechanisms of SARS-CoV-2 infection. The virus may take advantage of this pathway as an alternative entry route.
n. Low-density lipoprotein receptor-related protein 6 is a cell surface co-receptor essential for Wnt signaling. LRP6 acts in tandem with FZD for signal transduction and has been discussed as a potential co-receptor for SARS-CoV-2 entry.
o. The ezrin protein links the cell membrane to the cytoskeleton (the cell's internal support structure) and plays a role in cell shape, movement, adhesion, and signaling. Drugs that occupy the same spot on ezrin where the viral spike protein would bind may hindering viral attachment, and drug binding could further stabilize ezrin, strengthening its potential natural capacity to impede viral fusion and entry.
p. The Adipocyte Differentiation-Related Protein (ADRP, also known as Perilipin 2 or PLIN2) is a lipid droplet protein regulating the storage and breakdown of fats in cells. SARS-CoV-2 may hijack the lipid handling machinery of host cells and ADRP may play a role in this process. Disrupting ADRP's interaction with the virus may hinder the virus's ability to use lipids for replication and assembly.
q. Neuropilin-1 (NRP1) is a cell surface receptor with roles in blood vessel development, nerve cell guidance, and immune responses. NRP1 may function as a co-receptor for SARS-CoV-2, facilitating viral entry into cells. Blocking NRP1 may disrupt an alternative route of viral entry.
r. EP300 (E1A Binding Protein P300) is a transcriptional coactivator involved in several cellular processes, including growth, differentiation, and apoptosis, through its acetyltransferase activity that modifies histones and non-histone proteins. EP300 facilitates viral entry into cells and upregulates inflammatory cytokine production.
s. Prostaglandin G/H synthase 2 (PTGS2, also known as COX-2) is an enzyme crucial for the production of inflammatory molecules called prostaglandins. PTGS2 plays a role in the inflammatory response that can become severe in COVID-19 and inhibitors (like some NSAIDs) may have benefits in dampening harmful inflammation, but note that prostaglandins have diverse physiological functions.
t. Heat Shock Protein 90 Alpha Family Class A Member 1 (HSP90AA1) is a chaperone protein that helps other proteins fold correctly and maintains their stability. HSP90AA1 plays roles in cell signaling, survival, and immune responses. HSP90AA1 may interact with numerous viral proteins, but note that it has diverse physiological functions.
u. Matrix metalloproteinase 9 (MMP9), also called gelatinase B, is a zinc-dependent enzyme that breaks down collagen and other components of the extracellular matrix. MMP9 levels increase in severe COVID-19. Overactive MMP9 can damage lung tissue and worsen inflammation. Inhibition of MMP9 may prevent excessive tissue damage and help regulate the inflammatory response.
v. The interleukin-6 (IL-6) pro-inflammatory cytokine (signaling molecule) has a complex role in the immune response and may trigger and perpetuate inflammation. Elevated IL-6 levels are associated with severe COVID-19 cases and cytokine storm. Anti-IL-6 therapies may be beneficial in reducing excessive inflammation in severe COVID-19 cases.
w. The interleukin-10 (IL-10) anti-inflammatory cytokine helps regulate and dampen immune responses, preventing excessive inflammation. IL-10 levels can also be elevated in severe COVID-19. IL-10 could either help control harmful inflammation or potentially contribute to immune suppression.
x. Vascular Endothelial Growth Factor A (VEGFA) promotes the growth of new blood vessels (angiogenesis) and has roles in inflammation and immune responses. VEGFA may contribute to blood vessel leakiness and excessive inflammation associated with severe COVID-19.
y. RELA is a transcription factor subunit of NF-kB and is a key regulator of inflammation, driving pro-inflammatory gene expression. SARS-CoV-2 may hijack and modulate NF-kB pathways.
z. The interaction between the SARS-CoV-2 spike protein and the human ACE2 receptor is a primary method of viral entry, inhibiting this interaction can prevent the virus from attaching to and entering host cells, halting infection at an early stage.
aa. Calu-3 is a human lung adenocarcinoma cell line with moderate ACE2 and TMPRSS2 expression and SARS-CoV-2 susceptibility. It provides a model of the human respiratory epithelium, but many not be ideal for modeling early stages of infection due to the moderate expression levels of ACE2 and TMPRSS2.
ab. A549 is a human lung carcinoma cell line with low ACE2 expression and SARS-CoV-2 susceptibility. Viral entry/replication can be studied but the cells may not replicate all aspects of lung infection.
ac. HEK293-ACE2+ is a human embryonic kidney cell line engineered for high ACE2 expression and SARS-CoV-2 susceptibility.
ad. Huh-7 cells were derived from a liver tumor (hepatoma).
ae. Caco-2 cells come from a colorectal adenocarcinoma (cancer). They are valued for their ability to form a polarized cell layer with properties similar to the intestinal lining.
af. Vero E6 is an African green monkey kidney cell line with low/no ACE2 expression and high SARS-CoV-2 susceptibility. The cell line is easy to maintain and supports robust viral replication, however the monkey origin may not accurately represent human responses.
ag. mTEC is a mouse tubular epithelial cell line.
ah. RAW264.7 is a mouse macrophage cell line.
ai. A mouse model expressing the human ACE2 receptor under the control of the K18 promoter.
aj. A mouse model of obesity and severe insulin resistance leading to type 2 diabetes due to a mutation in the leptin receptor gene that impairs satiety signaling.
ak. A mouse model commonly used in infectious disease and cancer research due to higher immune response and susceptibility to infection.
Fam et al., 1 Apr 2023, peer-reviewed, 5 authors. Contact: ulrike.breitinger@guc.edu.eg.
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
This PaperQuercetinAll
Channel activity of SARS-CoV-2 viroporin ORF3a inhibited by adamantanes and phenolic plant metabolites
Marina Sherif Fam, Christine Adel Sedky, Nancy Osama Turky, Hans-Georg Breitinger, Ulrike Breitinger
Scientific Reports, doi:10.1038/s41598-023-31764-9
SARS-CoV-2 has been responsible for the major worldwide pandemic of COVID-19. Despite the enormous success of vaccination campaigns, virus infections are still prevalent and effective antiviral therapies are urgently needed. Viroporins are essential for virus replication and release, and are thus promising therapeutic targets. Here, we studied the expression and function of recombinant ORF3a viroporin of SARS-CoV-2 using a combination of cell viability assays and patch-clamp electrophysiology. ORF3a was expressed in HEK293 cells and transport to the plasma membrane verified by a dot blot assay. Incorporation of a membrane-directing signal peptide increased plasma membrane expression. Cell viability tests were carried out to measure cell damage associated with ORF3a activity, and voltage-clamp recordings verified its channel activity. The classical viroporin inhibitors amantadine and rimantadine inhibited ORF3a channels. A series of ten flavonoids and polyphenolics were studied. Kaempferol, quercetin, epigallocatechin gallate, nobiletin, resveratrol and curcumin were ORF3a inhibitors, with IC 50 values ranging between 1 and 6 µM, while 6-gingerol, apigenin, naringenin and genistein were inactive. For flavonoids, inhibitory activity could be related to the pattern of OH groups on the chromone ring system. Thus, the ORF3a viroporin of SARS-CoV-2 may indeed be a promising target for antiviral drugs. Coronaviruses (CoVs) belong to the order Nidovirales, family Coronaviridae, and subfamily Coronavirinae 1 . They are subdivided into four different genera named α-, β-, γ-, and δ-CoVs 2 . Coronaviruses have been known to infect humans 2-4 , usually causing mild respiratory infections such as a common cold. However, in the past 20 years, two major outbreaks occurred due to crossover of animal β-coronavirus to humans 5 . In 2002-03 humans were infected by bat coronavirus resulting in severe acute respiratory syndrome coronavirus (SARS-CoV) and in 2019, a novel coronavirus of bat origin that had spread to humans, had been discovered in Wuhan, China 6 . This new virus, named SARS-CoV-2, is a member of the β-coronavirus family and is responsible for the ongoing pandemic of COVID-19 1, 7, 8 . SARS-CoVs are enveloped, positive sense single-stranded RNA viruses, with a genome of approximately 30 kb arranged into 14 open reading frames (ORF) encoding 31 proteins [8] [9] [10] [11] . Spike (S), envelope (E), membrane (M) and nucleoprotein (N) are the four structural proteins forming the virus capsid. The S protein binds to the host receptor through the receptor-binding domain in the S1 subunit, while S2 subunit is responsible for membrane fusion 8 . The E protein belongs to the class of viroporins, integral membrane proteins functioning as ion channels and promoting virus release. It was found to be expressed in the ER and the Golgi apparatus forming an ion channel allowing the efflux of cations Na + , K + and Ca 2+ , and is required for pathogenesis and..
Author contributions M.S.F.: design of work, data acquisition and analysis, interpretation of data, revising the manuscript. C.A.S.: data acquisition and analysis, interpretation of data, revising the manuscript. N.O.T.: data acquisition and analysis, interpretation of data, revising the manuscript. H.G.B.: conception, design of work, data acquisition and analysis, interpretation of data, drafting and revising the manuscript. U.B.: conception, design of work, data acquisition and analysis, interpretation of data, drafting, writing and revising the manuscript. All authors have read and approved the submitted manuscript. Competing interests The authors declare no competing interests.
References
Abba, Hassim, Hamzah, Noordin, Antiviral activity of resveratrol against human and animal viruses, Adv. Virol
Aboubakr, In vitro antiviral activity of clove and ginger aqueous extracts against feline calicivirus, a surrogate for human norovirus, J. Food Prot, doi:10.4315/0362-028X.JFP-15-593
Agrawal, Agrawal, Blunden, Quercetin: antiviral significance and possible COVID-19 integrative considerations, Nat. Prod. Comm, doi:10.1177/1934578X20976293
Arshad, SARS-CoV-2 accessory proteins ORF7a and ORF3a use distinct mechanisms to downregulate MHC-I surface expression, bioRxiv
Azad, Khan, Variations in ORF3a protein of SARS-CoV-2 alter its structure and function, Biochem. Biophys. Rep, doi:10.1016/j.bbrep.2021.100933
Bhowmik, Identification of potential inhibitors against SARS-CoV-2 by targeting proteins responsible for envelope formation and virion assembly using docking based virtual screening, and pharmacokinetics approaches, Infect. Genet. Evol, doi:10.1016/j.meegid.2020.104451
Bianchi, Borsetti, Ciccozzi, Pascarella, SARS-CoV-2 ORF3a: mutability and function, Int. J. Biol. Macromol, doi:10.1016/j.ijbiomac.2020.12.142
Breitinger, Ali, Sticht, Breitinger, Inhibition of SARS CoV envelope protein by flavonoids and classical viroporin inhibitors, Front. Microbiol, doi:10.3389/fmicb.2021.692423
Breitinger, Cell viability assay as a tool to study activity and inhibition of hepatitis C p7 channels, J. Gen. Virol, doi:10.1099/jgv.0.001571
Breitinger, Farag, Ali, Breitinger, Patch-clamp study of hepatitis C p7 channels reveals genotype-specific sensitivity to inhibitors, Biophys. J
Breitinger, Farag, Sticht, Breitinger, Viroporins, Structure, function, and their role in the life cycle of SARS-CoV-2, Int. J. Biochem. Cell Biol, doi:10.1016/j.biocel.2022.106185
Campagna, Rivas, Antiviral activity of resveratrol, Biochem. Soc. Trans, doi:10.1042/BST0380050
Castano-Rodriguez, Role of severe acute respiratory syndrome coronavirus viroporins E, 3a, and 8a in replication and pathogenesis, doi:10.1128/mBio.02325-17
Chan, The ion channel activity of the SARS-coronavirus 3a protein is linked to its pro-apoptotic function, Int. J. Biochem. Cell Biol, doi:10.1016/j.biocel.2009.04.019
Chang, Wang, Yeh, Shieh, Chiang, Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines, J. Ethnopharmacol, doi:10.1016/j.jep.2012.10.043
Chen, Insights into the anti-inflammatory and antiviral mechanisms of resveratrol, Mediat. Inflamm, doi:10.1155/2022/7138756
Chen, Lo, Ma, Li, Expression and membrane integration of SARS-CoV E protein and its interaction with M protein, Virus Genes, doi:10.1007/s11262-009-0341-6
Chen, Moriyama, Chang, Ichinohe, Severe acute respiratory syndrome coronavirus viroporin 3a activates the NLRP3 inflammasome, Front. Microbiol, doi:10.3389/fmicb.2019.00050
Cione, Quercetin, epigallocatechin gallate, curcumin, and resveratrol: from dietary sources to human MicroRNA modulation, Molecules, doi:10.3390/molecules25010063
De Wit, Van Doremalen, Falzarano, Munster, SARS and MERS: recent insights into emerging coronaviruses, Nat. Rev. Microbiol, doi:10.1038/nrmicro.2016.81
Dey, The effect of amantadine on an ion channel protein from Chikungunya virus, PLoS Negl. Trop. Dis, doi:10.1371/journal.pntd.0007548
Drago, Nicola, Ossola, De Vecchi, In vitro antiviral activity of resveratrol against respiratory viruses, J. Chemother, doi:10.1179/joc.2008.20.3.393
Duff, Ashley, The transmembrane domain of influenza A M2 protein forms amantadine-sensitive proton channels in planar lipid bilayers, Virology, doi:10.1016/0042-6822(92)91239-q
Farag, Breitinger, El-Azizi, Breitinger, The p7 viroporin of the hepatitis C virus contributes to liver inflammation by stimulating production of Interleukin-1β, Biochim. Biophys. Acta Mol. Basis Dis
Fleming, Managing influenza: amantadine, rimantadine and beyond, Int. J. Clin. Pract
Freundt, The open reading frame 3a protein of severe acute respiratory syndrome-associated coronavirus promotes membrane rearrangement and cell death, J. Virol, doi:10.1128/JVI.01662-09
Gligorijevic, Molecular mechanisms of possible action of phenolic compounds in COVID-19 protection and prevention, Int. J. Mol. Sci
Gonzalez, Carrasco, Viroporins, None, FEBS Lett
Gorbalenya, The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2, Nat. Microbiol, doi:10.1038/s41564-020-0695-z
Gordon, A SARS-CoV-2 protein interaction map reveals targets for drug repurposing, Nature, doi:10.1038/s41586-020-2286-9
Griffin, Genotype-dependent sensitivity of hepatitis C virus to inhibitors of the p7 ion channel, Hepatology
Griffin, The p7 protein of hepatitis C virus forms an ion channel that is blocked by the antiviral drug Amantadine, FEBS Lett
Gupta, D155Y substitution of SARS-CoV-2 ORF3a weakens binding with Caveolin-1, Comput. Struct. Biotechnol. J, doi:10.1016/j.csbj.2022.01.017
Hassan, Attrish, Ghosh, Choudhury, Roy, Pathogenic perspective of missense mutations of ORF3a protein of SARS-CoV-2, Virus Res, doi:10.1016/j.virusres.2021.198441
Hayati, 6]-Gingerol inhibits chikungunya virus infection by suppressing viral replication, Biomed. Res. Int, doi:10.1155/2021/6623400
Intharathep, How amantadine and rimantadine inhibit proton transport in the M2 protein channel, J. Mol. Graph Model, doi:10.1016/j.jmgm.2008.06.002
Issa, Merhi, Panossian, Salloum, Tokajian, SARS-CoV-2 and ORF3a: nonsynonymous mutations, functional domains, and viral pathogenesis, doi:10.1128/mSystems.00266-20
Jennings, Parks, Curcumin as an antiviral agent, Viruses
Jimenez-Guardeno, The PDZ-binding motif of severe acute respiratory syndrome coronavirus envelope protein is a determinant of viral pathogenesis, PLoS Pathog, doi:10.1371/journal.ppat.1004320
Jing, Functional studies indicate amantadine binds to the pore of the influenza A virus M2 proton-selective ion channel, Proc. Natl. Acad. Sci. U. S. A, doi:10.1073/pnas.0804958105
Kanjanasirirat, High-content screening of Thai medicinal plants reveals Boesenbergia rotunda extract and its component Panduratin A as anti-SARS-CoV-2 agents, Sci. Rep
Kanzawa, Augmentation of chemokine production by severe acute respiratory syndrome coronavirus 3a/X1 and 7a/X4 proteins through NF-kappaB activation, FEBS Lett, doi:10.1016/j.febslet.2006.11.046
Kaushik, Jangra, Kundu, Yadav, Kaushik, Anti-viral activity of Zingiber officinale (Ginger) ingredients against the Chikungunya virus, Virusdisease, doi:10.1007/s13337-020-00584-0
Kern, Cryo-EM structure of the SARS-CoV-2 3a ion channel in lipid nanodiscs, bioRxiv
Kien, Ma, Gaisenband, Nal, Microbial Pathogenesis: Infection and Immunity
Kongpichitchoke, Hsu, Huang, Number of hydroxyl groups on the B-ring of flavonoids affects their antioxidant activity and interaction with phorbol ester binding site of PKCδ C1B domain: in vitro and in silico studies, J. Agric. Food Chem, doi:10.1021/acs.jafc.5b00312
Kumar, Pandey, Chemistry and biological activities of flavonoids: an overview, Sci.WorldJ, doi:10.1155/2013/162750
Law, The 3a protein of severe acute respiratory syndrome-associated coronavirus induces apoptosis in Vero E6 cells, J. Gen. Virol, doi:10.1099/vir.0.80813-0
Lebedeva, Theoretical and experimental study of interaction of macroheterocyclic compounds with ORF3a of SARS-CoV-2, Sci. Rep, doi:10.1038/s41598-021-99072-8
Liao, Tam, Liu, Viroporin activity of SARS-CoV E protein, Adv. Exp. Med. Biol, doi:10.1007/978-0-387-33012-9_34
Lim, Ng, Tam, Liu, Human coronaviruses: a review of virus-host interactions, Diseases
Liu, A comparative overview of COVID-19, MERS and SARS: review article, Int. J. Surg, doi:10.1016/j.ijsu.2020.07.032
Mahrosh, Mustafa, An in silico approach to target RNA-dependent RNA polymerase of COVID-19 with naturally occurring phytochemicals, Environ. Dev. Sustain, doi:10.1007/s10668-021-01373-5
Majumdar, Niyogi, ORF3a mutation associated with higher mortality rate in SARS-CoV-2 infection, Epidemiol. Infect, doi:10.1017/S0950268820002599
Marra, The Genome sequence of the SARS-associated coronavirus, Science, doi:10.1126/science.1085953
Miao, ORF3a of the COVID-19 virus SARS-CoV-2 blocks HOPS complex-mediated assembly of the SNARE complex required for autolysosome formation, Dev. Cell, doi:10.1016/j.devcel.2020.12.010
Michel, Mayer, Poch, Thompson, Characterization of accessory genes in coronavirus genomes, Virol. J, doi:10.1186/s12985-020-01402-1
Moghadamtousi, A review on antibacterial, antiviral, and antifungal activity of curcumin, Biomed. Res. Int, doi:10.1155/2014/186864
Naqvi, Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: structural genomics approach, Biochim. Biophys. Acta Mol. Basis Dis, doi:10.1016/j.bbadis.2020.165878
Nieto-Torres, Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome, Virology, doi:10.1016/j.virol.2015.08.010
Nieva, Madan, Carrasco, Viroporins: structure and biological functions, Nat. Rev. Microbiol, doi:10.1038/nrmicro2820
Oso, Adeoye, Olaoye, Pharmacoinformatics and hypothetical studies on allicin, curcumin, and gingerol as potential candidates against COVID-19-associated proteases, J. Biomol. Struct. Dyn, doi:10.1080/07391102.2020.1813630
Padhan, Minakshi, Towheed, Jameel, Severe acute respiratory syndrome coronavirus 3a protein activates the mitochondrial death pathway through p38 MAP kinase activation, J. Gen. Virol, doi:10.1099/vir.0.83665-0
Padhan, Severe acute respiratory syndrome coronavirus ORF3a protein interacts with caveolin, J. Gen. Virol, doi:10.1099/vir.0.82856-0
Panche, Diwan, Chandra, Flavonoids: an overview, J. Nutr. Sci
Pecheur, Curcumin against hepatitis C virus infection: Spicing up antiviral therapies with 'nutraceuticals'?, Gut, doi:10.1136/gutjnl-2013-305646
Qu, ORF3a-mediated incomplete autophagy facilitates severe acute respiratory syndrome coronavirus-2 replication, Front. Cell Dev. Biol, doi:10.3389/fcell.2021.716208
Rattis, Ramos, Celes, Curcumin as a potential treatment for COVID-19, Front. Pharmacol, doi:10.3389/fphar.2021.675287
Redondo, Zaldívar-López, Garrido, Montoya, SARS-CoV-2 accessory proteins in viral pathogenesis: knowns and unknowns, Front. Immunol
Regla-Nava, Severe acute respiratory syndrome coronaviruses with mutations in the E protein are attenuated and promising vaccine candidates, J. Virol, doi:10.1128/JVI.03566-14
Ren, Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study, Chin. Med. J. (Engl.), doi:10.1097/CM9.0000000000000722
Ren, The ORF3a protein of SARS-CoV-2 induces apoptosis in cells, Cell Mol. Immunol, doi:10.1038/s41423-020-0485-9
Ruch, Machamer, The coronavirus E protein: assembly and beyond, Viruses, doi:10.3390/v4030363
Salom, Hill, Lear, Degrado, pH-dependent tetramerization and amantadine binding of the transmembrane helix of M2 from the influenza A virus, Biochemistry, doi:10.1021/bi001799u
Schwarz, Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus, Planta Med, doi:10.1055/s-0033-1360277
Schwarz, Wang, Yu, Sun, Schwarz, Emodin inhibits current through SARS-associated coronavirus 3a protein, Antiviral Res, doi:10.1016/j.antiviral.2011.02.008
Scott, Griffin, Viroporins: structure, function and potential as antiviral targets, J. Gen. Virol, doi:10.1099/vir.0.000201
Singhal, A review of coronavirus disease-2019 (COVID-19), Indian J. Pediatr, doi:10.1007/s12098-020-03263-6
Siu, Severe acute respiratory syndrome coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC, FASEB J, doi:10.1096/fj.201802418R
Su, Yu, Zhou, SARS-CoV-2 ORF3a induces incomplete autophagy via the unfolded protein response, Viruses
Tahmasebi, Immunomodulatory effects of nanocurcumin on Th17 cell responses in mild and severe COVID-19 patients, J. Cell Physiol
Teoh, The SARS coronavirus E protein interacts with PALS1 and alters tight junction formation and epithelial morphogenesis, Mol. Biol. Cell, doi:10.1091/mbc.E10-04-0338
Thimmulappa, Antiviral and immunomodulatory activity of curcumin: a case for prophylactic therapy for COVID-19, Heliyon, doi:10.1016/j.heliyon.2021.e06350
Torres, Conductance and amantadine binding of a pore formed by a lysine-flanked transmembrane domain of SARS coronavirus envelope protein, Protein Sci, doi:10.1110/ps.062730007
Tungmunnithum, Thongboonyou, Pholboon, Yangsabai, Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: an overview, Medicines (Basel)
Vakulenko, Deviatkin, Drexler, Lukashev, Modular evolution of coronavirus genomes, Viruses
Verdia-Baguena, Coronavirus E protein forms ion channels with functionally and structurally-involved membrane lipids, Virology, doi:10.1016/j.virol.2012.07.005
Wang, Grunewald, Perlman, coronaviruses: an updated overview of their replication and pathogenesis, doi:10.1007/978-1-0716-0900-2_1
Wilson, Gage, Ewart, Hexamethylene amiloride blocks E protein ion channels and inhibits coronavirus replication, Virology, doi:10.1016/j.virol.2006.05.028
Xu, SARS-CoV-2 viroporin encoded by ORF3a triggers the NLRP3 inflammatory pathway, Virology, doi:10.1016/j.virol.2022.01.003
Yue, SARS-coronavirus open reading frame-3a drives multimodal necrotic cell death, Cell Death Dis, doi:10.1038/s41419-018-0917-y
Zhang, The SARS-CoV-2 protein ORF3a inhibits fusion of autophagosomes with lysosomes, Cell Discov, doi:10.1038/s41421-021-00268-z
Zhang, Understanding the role of SARS-CoV-2 ORF3a in viral pathogenesis and COVID-19, Front Microbiol, doi:10.3389/fmicb.2022.854567
Zhou, Efficacy of ion-channel inhibitors amantadine, memantine and rimantadine for the treatment of SARS-CoV-2 in vitro, Viruses, doi:10.3390/v13102082
{ 'indexed': {'date-parts': [[2023, 4, 4]], 'date-time': '2023-04-04T05:31:46Z', 'timestamp': 1680586306786}, 'reference-count': 94, 'publisher': 'Springer Science and Business Media LLC', 'issue': '1', 'license': [ { 'start': { 'date-parts': [[2023, 4, 1]], 'date-time': '2023-04-01T00:00:00Z', 'timestamp': 1680307200000}, 'content-version': 'tdm', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by/4.0'}, { 'start': { 'date-parts': [[2023, 4, 1]], 'date-time': '2023-04-01T00:00:00Z', 'timestamp': 1680307200000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by/4.0'}], 'funder': [ { 'DOI': '10.13039/501100003009', 'name': 'Science and Technology Development Fund', 'doi-asserted-by': 'publisher', 'award': ['45420']}, { 'DOI': '10.13039/501100007637', 'name': 'German University in Cairo', 'doi-asserted-by': 'crossref'}], 'content-domain': {'domain': ['link.springer.com'], 'crossmark-restriction': False}, 'abstract': '<jats:title>Abstract</jats:title><jats:p>SARS-CoV-2 has been responsible for the major ' 'worldwide pandemic of COVID-19. Despite the enormous success of vaccination campaigns, virus ' 'infections are still prevalent and effective antiviral therapies are urgently needed. ' 'Viroporins are essential for virus replication and release, and are thus promising ' 'therapeutic targets. Here, we studied the expression and function of recombinant ORF3a ' 'viroporin of SARS-CoV-2 using a combination of cell viability assays and patch-clamp ' 'electrophysiology. ORF3a was expressed in HEK293 cells and transport to the plasma membrane ' 'verified by a dot blot assay. Incorporation of a membrane-directing signal peptide increased ' 'plasma membrane expression. Cell viability tests were carried out to measure cell damage ' 'associated with ORF3a activity, and voltage-clamp\xa0recordings verified its channel ' 'activity. The classical viroporin inhibitors amantadine and rimantadine inhibited ORF3a ' 'channels. A series of ten flavonoids and polyphenolics were studied. Kaempferol, quercetin, ' 'epigallocatechin gallate, nobiletin, resveratrol and curcumin were ORF3a inhibitors, with ' 'IC<jats:sub>50</jats:sub> values ranging between 1 and 6\xa0µM, while 6-gingerol, apigenin, ' 'naringenin and genistein were inactive. For flavonoids, inhibitory activity could be related ' 'to the pattern of OH groups on the chromone ring system. Thus, the ORF3a viroporin of ' 'SARS-CoV-2 may indeed be a promising target for antiviral drugs.</jats:p>', 'DOI': '10.1038/s41598-023-31764-9', 'type': 'journal-article', 'created': {'date-parts': [[2023, 4, 3]], 'date-time': '2023-04-03T05:50:55Z', 'timestamp': 1680501055000}, 'update-policy': 'http://dx.doi.org/10.1007/springer_crossmark_policy', 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': 'Channel activity of SARS-CoV-2 viroporin ORF3a inhibited by adamantanes and phenolic plant ' 'metabolites', 'prefix': '10.1038', 'volume': '13', 'author': [ {'given': 'Marina Sherif', 'family': 'Fam', 'sequence': 'first', 'affiliation': []}, {'given': 'Christine Adel', 'family': 'Sedky', 'sequence': 'additional', 'affiliation': []}, {'given': 'Nancy Osama', 'family': 'Turky', 'sequence': 'additional', 'affiliation': []}, {'given': 'Hans-Georg', 'family': 'Breitinger', 'sequence': 'additional', 'affiliation': []}, {'given': 'Ulrike', 'family': 'Breitinger', 'sequence': 'additional', 'affiliation': []}], 'member': '297', 'published-online': {'date-parts': [[2023, 4, 1]]}, 'reference': [ { 'issue': '4', 'key': '31764_CR1', 'doi-asserted-by': 'publisher', 'first-page': '536', 'DOI': '10.1038/s41564-020-0695-z', 'volume': '5', 'author': 'AE Gorbalenya', 'year': '2020', 'unstructured': 'Gorbalenya, A. E. et al. The species Severe acute respiratory ' 'syndrome-related coronavirus: classifying 2019-nCoV and naming it ' 'SARS-CoV-2. Nat. Microbiol. 5(4), 536–544. ' 'https://doi.org/10.1038/s41564-020-0695-z (2020).', 'journal-title': 'Nat. Microbiol.'}, { 'key': '31764_CR2', 'doi-asserted-by': 'publisher', 'first-page': '1', 'DOI': '10.1007/978-1-0716-0900-2_1', 'volume-title': 'Coronaviruses: Methods and Protocols', 'author': 'Y Wang', 'year': '2020', 'unstructured': 'Wang, Y., Grunewald, M. & Perlman, S. coronaviruses: an updated overview ' 'of their replication and pathogenesis. In Coronaviruses: Methods and ' 'Protocols (eds Maier, H. J. & Bickerton, E.) 1–29 (Springer US, 2020). ' 'https://doi.org/10.1007/978-1-0716-0900-2_1.'}, { 'key': '31764_CR3', 'doi-asserted-by': 'publisher', 'first-page': '523', 'DOI': '10.1038/nrmicro.2016.81', 'volume': '14', 'author': 'E de Wit', 'year': '2016', 'unstructured': 'de Wit, E., van Doremalen, N., Falzarano, D. & Munster, V. J. SARS and ' 'MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol. ' '14, 523–534. https://doi.org/10.1038/nrmicro.2016.81 (2016).', 'journal-title': 'Nat. Rev. Microbiol.'}, { 'key': '31764_CR4', 'doi-asserted-by': 'publisher', 'first-page': '26', 'DOI': '10.3390/diseases4030026', 'volume': '4', 'author': 'YX Lim', 'year': '2016', 'unstructured': 'Lim, Y. X., Ng, Y. L., Tam, J. P. & Liu, D. X. Human coronaviruses: a ' 'review of virus-host interactions. Diseases 4, 26 (2016).', 'journal-title': 'Diseases'}, { 'key': '31764_CR5', 'doi-asserted-by': 'publisher', 'first-page': '281', 'DOI': '10.1007/s12098-020-03263-6', 'volume': '87', 'author': 'T Singhal', 'year': '2020', 'unstructured': 'Singhal, T. A review of coronavirus disease-2019 (COVID-19). Indian J. ' 'Pediatr. 87, 281–286. https://doi.org/10.1007/s12098-020-03263-6 (2020).', 'journal-title': 'Indian J. Pediatr.'}, { 'key': '31764_CR6', 'doi-asserted-by': 'publisher', 'first-page': '1015', 'DOI': '10.1097/CM9.0000000000000722', 'volume': '133', 'author': 'LL Ren', 'year': '2020', 'unstructured': 'Ren, L. L. et al. Identification of a novel coronavirus causing severe ' 'pneumonia in human: a descriptive study. Chin. Med. J. (Engl.) 133, ' '1015–1024. https://doi.org/10.1097/CM9.0000000000000722 (2020).', 'journal-title': 'Chin. Med. J. (Engl.)'}, { 'key': '31764_CR7', 'doi-asserted-by': 'publisher', 'first-page': '1', 'DOI': '10.1016/j.ijsu.2020.07.032', 'volume': '81', 'author': 'J Liu', 'year': '2020', 'unstructured': 'Liu, J. et al. A comparative overview of COVID-19, MERS and SARS: review ' 'article. Int. J. Surg. 81, 1–8. ' 'https://doi.org/10.1016/j.ijsu.2020.07.032 (2020).', 'journal-title': 'Int. J. Surg.'}, { 'key': '31764_CR8', 'doi-asserted-by': 'publisher', 'first-page': '165878', 'DOI': '10.1016/j.bbadis.2020.165878', 'volume': '1866', 'author': 'AAT Naqvi', 'year': '2020', 'unstructured': 'Naqvi, A. A. T. et al. Insights into SARS-CoV-2 genome, structure, ' 'evolution, pathogenesis and therapies: structural genomics approach. ' 'Biochim. Biophys. Acta Mol. Basis Dis. 1866, 165878. ' 'https://doi.org/10.1016/j.bbadis.2020.165878 (2020).', 'journal-title': 'Biochim. Biophys. Acta Mol. Basis Dis.'}, { 'key': '31764_CR9', 'doi-asserted-by': 'publisher', 'first-page': '708264', 'DOI': '10.3389/fimmu.2021.708264', 'volume': '12', 'author': 'N Redondo', 'year': '2021', 'unstructured': 'Redondo, N., Zaldívar-López, S., Garrido, J. J. & Montoya, M. SARS-CoV-2 ' 'accessory proteins in viral pathogenesis: knowns and unknowns. Front. ' 'Immunol. 12, 708264 (2021).', 'journal-title': 'Front. Immunol.'}, { 'key': '31764_CR10', 'doi-asserted-by': 'publisher', 'first-page': '1399', 'DOI': '10.1126/science.1085953', 'volume': '300', 'author': 'MA Marra', 'year': '2003', 'unstructured': 'Marra, M. A. et al. The Genome sequence of the SARS-associated ' 'coronavirus. Science 300, 1399–1404. ' 'https://doi.org/10.1126/science.1085953 (2003).', 'journal-title': 'Science'}, { 'key': '31764_CR11', 'doi-asserted-by': 'publisher', 'first-page': '1270', 'DOI': '10.3390/v13071270', 'volume': '13', 'author': 'Y Vakulenko', 'year': '2021', 'unstructured': 'Vakulenko, Y., Deviatkin, A., Drexler, J. F. & Lukashev, A. Modular ' 'evolution of coronavirus genomes. Viruses 13, 1270 (2021).', 'journal-title': 'Viruses'}, { 'key': '31764_CR12', 'doi-asserted-by': 'publisher', 'first-page': '106185', 'DOI': '10.1016/j.biocel.2022.106185', 'volume': '145', 'author': 'U Breitinger', 'year': '2022', 'unstructured': 'Breitinger, U., Farag, N. S., Sticht, H. & Breitinger, H. G. Viroporins: ' 'Structure, function, and their role in the life cycle of SARS-CoV-2. ' 'Int. J. Biochem. Cell Biol. 145, 106185. ' 'https://doi.org/10.1016/j.biocel.2022.106185 (2022).', 'journal-title': 'Int. J. Biochem. Cell Biol.'}, { 'key': '31764_CR13', 'doi-asserted-by': 'publisher', 'first-page': '28', 'DOI': '10.1016/S0014-5793(03)00780-4', 'volume': '552', 'author': 'ME Gonzalez', 'year': '2003', 'unstructured': 'Gonzalez, M. E. & Carrasco, L. Viroporins. FEBS Lett. 552, 28–34 (2003).', 'journal-title': 'FEBS Lett.'}, { 'key': '31764_CR14', 'doi-asserted-by': 'publisher', 'first-page': '563', 'DOI': '10.1038/nrmicro2820', 'volume': '10', 'author': 'JL Nieva', 'year': '2012', 'unstructured': 'Nieva, J. L., Madan, V. & Carrasco, L. Viroporins: structure and ' 'biological functions. Nat. Rev. Microbiol. 10, 563–574. ' 'https://doi.org/10.1038/nrmicro2820 (2012).', 'journal-title': 'Nat. Rev. Microbiol.'}, { 'key': '31764_CR15', 'doi-asserted-by': 'publisher', 'first-page': '2000', 'DOI': '10.1099/vir.0.000201', 'volume': '96', 'author': 'C Scott', 'year': '2015', 'unstructured': 'Scott, C. & Griffin, S. Viroporins: structure, function and potential as ' 'antiviral targets. J. Gen. Virol. 96, 2000–2027. ' 'https://doi.org/10.1099/vir.0.000201 (2015).', 'journal-title': 'J. Gen. Virol.'}, { 'key': '31764_CR16', 'doi-asserted-by': 'publisher', 'first-page': '365', 'DOI': '10.1007/s11262-009-0341-6', 'volume': '38', 'author': 'SC Chen', 'year': '2009', 'unstructured': 'Chen, S. C., Lo, S. Y., Ma, H. C. & Li, H. C. Expression and membrane ' 'integration of SARS-CoV E protein and its interaction with M protein. ' 'Virus Genes 38, 365–371. https://doi.org/10.1007/s11262-009-0341-6 ' '(2009).', 'journal-title': 'Virus Genes'}, { 'key': '31764_CR17', 'doi-asserted-by': 'publisher', 'first-page': 'e1004320', 'DOI': '10.1371/journal.ppat.1004320', 'volume': '10', 'author': 'JM Jimenez-Guardeno', 'year': '2014', 'unstructured': 'Jimenez-Guardeno, J. M. et al. The PDZ-binding motif of severe acute ' 'respiratory syndrome coronavirus envelope protein is a determinant of ' 'viral pathogenesis. PLoS Pathog. 10, e1004320. ' 'https://doi.org/10.1371/journal.ppat.1004320 (2014).', 'journal-title': 'PLoS Pathog.'}, { 'key': '31764_CR18', 'doi-asserted-by': 'publisher', 'first-page': '199', 'DOI': '10.1007/978-0-387-33012-9_34', 'volume': '581', 'author': 'Y Liao', 'year': '2006', 'unstructured': 'Liao, Y., Tam, J. P. & Liu, D. X. Viroporin activity of SARS-CoV E ' 'protein. Adv. Exp. Med. Biol. 581, 199–202. ' 'https://doi.org/10.1007/978-0-387-33012-9_34 (2006).', 'journal-title': 'Adv. Exp. Med. Biol.'}, { 'key': '31764_CR19', 'doi-asserted-by': 'publisher', 'first-page': '3870', 'DOI': '10.1128/JVI.03566-14', 'volume': '89', 'author': 'JA Regla-Nava', 'year': '2015', 'unstructured': 'Regla-Nava, J. A. et al. Severe acute respiratory syndrome coronaviruses ' 'with mutations in the E protein are attenuated and promising vaccine ' 'candidates. J. Virol. 89, 3870–3887. ' 'https://doi.org/10.1128/JVI.03566-14 (2015).', 'journal-title': 'J. Virol.'}, { 'key': '31764_CR20', 'doi-asserted-by': 'publisher', 'first-page': '363', 'DOI': '10.3390/v4030363', 'volume': '4', 'author': 'TR Ruch', 'year': '2012', 'unstructured': 'Ruch, T. R. & Machamer, C. E. The coronavirus E protein: assembly and ' 'beyond. Viruses 4, 363–382. https://doi.org/10.3390/v4030363 (2012).', 'journal-title': 'Viruses'}, { 'key': '31764_CR21', 'doi-asserted-by': 'publisher', 'first-page': '3838', 'DOI': '10.1091/mbc.E10-04-0338', 'volume': '21', 'author': 'KT Teoh', 'year': '2010', 'unstructured': 'Teoh, K. T. et al. The SARS coronavirus E protein interacts with PALS1 ' 'and alters tight junction formation and epithelial morphogenesis. Mol. ' 'Biol. Cell 21, 3838–3852. https://doi.org/10.1091/mbc.E10-04-0338 ' '(2010).', 'journal-title': 'Mol. Biol. Cell'}, { 'key': '31764_CR22', 'doi-asserted-by': 'publisher', 'first-page': '485', 'DOI': '10.1016/j.virol.2012.07.005', 'volume': '432', 'author': 'C Verdia-Baguena', 'year': '2012', 'unstructured': 'Verdia-Baguena, C. et al. Coronavirus E protein forms ion channels with ' 'functionally and structurally-involved membrane lipids. Virology 432, ' '485–494. https://doi.org/10.1016/j.virol.2012.07.005 (2012).', 'journal-title': 'Virology'}, { 'key': '31764_CR23', 'doi-asserted-by': 'publisher', 'first-page': '294', 'DOI': '10.1016/j.virol.2006.05.028', 'volume': '353', 'author': 'L Wilson', 'year': '2006', 'unstructured': 'Wilson, L., Gage, P. & Ewart, G. Hexamethylene amiloride blocks E ' 'protein ion channels and inhibits coronavirus replication. Virology 353, ' '294–306. https://doi.org/10.1016/j.virol.2006.05.028 (2006).', 'journal-title': 'Virology'}, { 'key': '31764_CR24', 'doi-asserted-by': 'publisher', 'first-page': '459', 'DOI': '10.1038/s41586-020-2286-9', 'volume': '583', 'author': 'DE Gordon', 'year': '2020', 'unstructured': 'Gordon, D. E. et al. A SARS-CoV-2 protein interaction map reveals ' 'targets for drug repurposing. Nature 583, 459–468. ' 'https://doi.org/10.1038/s41586-020-2286-9 (2020).', 'journal-title': 'Nature'}, { 'key': '31764_CR25', 'doi-asserted-by': 'publisher', 'first-page': '131', 'DOI': '10.1186/s12985-020-01402-1', 'volume': '17', 'author': 'CJ Michel', 'year': '2020', 'unstructured': 'Michel, C. J., Mayer, C., Poch, O. & Thompson, J. D. Characterization of ' 'accessory genes in coronavirus genomes. Virol. J. 17, 131. ' 'https://doi.org/10.1186/s12985-020-01402-1 (2020).', 'journal-title': 'Virol. J.'}, { 'key': '31764_CR26', 'doi-asserted-by': 'publisher', 'first-page': '854567', 'DOI': '10.3389/fmicb.2022.854567', 'volume': '13', 'author': 'J Zhang', 'year': '2022', 'unstructured': 'Zhang, J. et al. Understanding the role of SARS-CoV-2 ORF3a in viral ' 'pathogenesis and COVID-19. Front Microbiol 13, 854567. ' 'https://doi.org/10.3389/fmicb.2022.854567 (2022).', 'journal-title': 'Front Microbiol'}, { 'key': '31764_CR27', 'doi-asserted-by': 'publisher', 'author': 'C Castano-Rodriguez', 'year': '2018', 'unstructured': 'Castano-Rodriguez, C. et al. Role of severe acute respiratory syndrome ' 'coronavirus viroporins E, 3a, and 8a in replication and pathogenesis. ' 'mBio https://doi.org/10.1128/mBio.02325-17 (2018).', 'journal-title': 'mBio', 'DOI': '10.1128/mBio.02325-17'}, { 'key': '31764_CR28', 'first-page': '439', 'volume': '9', 'author': 'DM Kern', 'year': '2021', 'unstructured': 'Kern, D. M. et al. Cryo-EM structure of the SARS-CoV-2 3a ion channel in ' 'lipid nanodiscs. bioRxiv 9, 439 (2021).', 'journal-title': 'bioRxiv'}, { 'key': '31764_CR29', 'doi-asserted-by': 'publisher', 'first-page': '2232', 'DOI': '10.1016/j.biocel.2009.04.019', 'volume': '41', 'author': 'CM Chan', 'year': '2009', 'unstructured': 'Chan, C. M. et al. The ion channel activity of the SARS-coronavirus 3a ' 'protein is linked to its pro-apoptotic function. Int. J. Biochem. Cell ' 'Biol. 41, 2232–2239. https://doi.org/10.1016/j.biocel.2009.04.019 ' '(2009).', 'journal-title': 'Int. J. Biochem. Cell Biol.'}, { 'key': '31764_CR30', 'doi-asserted-by': 'publisher', 'first-page': '50', 'DOI': '10.3389/fmicb.2019.00050', 'volume': '10', 'author': 'IY Chen', 'year': '2019', 'unstructured': 'Chen, I. Y., Moriyama, M., Chang, M. F. & Ichinohe, T. Severe acute ' 'respiratory syndrome coronavirus viroporin 3a activates the NLRP3 ' 'inflammasome. Front. Microbiol. 10, 50. ' 'https://doi.org/10.3389/fmicb.2019.00050 (2019).', 'journal-title': 'Front. Microbiol.'}, { 'key': '31764_CR31', 'doi-asserted-by': 'publisher', 'first-page': '1921', 'DOI': '10.1099/vir.0.80813-0', 'volume': '86', 'author': 'PTW Law', 'year': '2005', 'unstructured': 'Law, P. T. W. et al. The 3a protein of severe acute respiratory ' 'syndrome-associated coronavirus induces apoptosis in Vero E6 cells. J. ' 'Gen. Virol. 86, 1921–1930. https://doi.org/10.1099/vir.0.80813-0 (2005).', 'journal-title': 'J. Gen. Virol.'}, { 'key': '31764_CR32', 'doi-asserted-by': 'publisher', 'first-page': '6807', 'DOI': '10.1016/j.febslet.2006.11.046', 'volume': '580', 'author': 'N Kanzawa', 'year': '2006', 'unstructured': 'Kanzawa, N. et al. Augmentation of chemokine production by severe acute ' 'respiratory syndrome coronavirus 3a/X1 and 7a/X4 proteins through ' 'NF-kappaB activation. FEBS Lett. 580, 6807–6812. ' 'https://doi.org/10.1016/j.febslet.2006.11.046 (2006).', 'journal-title': 'FEBS Lett.'}, { 'key': '31764_CR33', 'doi-asserted-by': 'publisher', 'first-page': '1960', 'DOI': '10.1099/vir.0.83665-0', 'volume': '89', 'author': 'K Padhan', 'year': '2008', 'unstructured': 'Padhan, K., Minakshi, R., Towheed, M. A. B. & Jameel, S. Severe acute ' 'respiratory syndrome coronavirus 3a protein activates the mitochondrial ' 'death pathway through p38 MAP kinase activation. J. Gen. Virol. 89, ' '1960–1969. https://doi.org/10.1099/vir.0.83665-0 (2008).', 'journal-title': 'J. Gen. Virol.'}, { 'key': '31764_CR34', 'doi-asserted-by': 'publisher', 'first-page': '1097', 'DOI': '10.1128/JVI.01662-09', 'volume': '84', 'author': 'EC Freundt', 'year': '2010', 'unstructured': 'Freundt, E. C. et al. The open reading frame 3a protein of severe acute ' 'respiratory syndrome-associated coronavirus promotes membrane ' 'rearrangement and cell death. J. Virol. 84, 1097–1109. ' 'https://doi.org/10.1128/JVI.01662-09 (2010).', 'journal-title': 'J. Virol.'}, { 'key': '31764_CR35', 'unstructured': 'Kien, F., Ma, H., Gaisenband, S. D. & Nal, B. in Microbial Pathogenesis: ' 'Infection and Immunity (ed Uday Kishore and Annapurna Nayak) Ch. 3, ' '38–62 (Landes Bioscience and Springer Science+Business Media, 2013).'}, { 'key': '31764_CR36', 'doi-asserted-by': 'publisher', 'first-page': '177', 'DOI': '10.1055/s-0033-1360277', 'volume': '80', 'author': 'S Schwarz', 'year': '2014', 'unstructured': 'Schwarz, S. et al. Kaempferol derivatives as antiviral drugs against the ' '3a channel protein of coronavirus. Planta Med. 80, 177–182. ' 'https://doi.org/10.1055/s-0033-1360277 (2014).', 'journal-title': 'Planta Med.'}, { 'key': '31764_CR37', 'doi-asserted-by': 'publisher', 'first-page': '64', 'DOI': '10.1016/j.antiviral.2011.02.008', 'volume': '90', 'author': 'S Schwarz', 'year': '2011', 'unstructured': 'Schwarz, S., Wang, K., Yu, W., Sun, B. & Schwarz, W. Emodin inhibits ' 'current through SARS-associated coronavirus 3a protein. Antiviral Res. ' '90, 64–69. https://doi.org/10.1016/j.antiviral.2011.02.008 (2011).', 'journal-title': 'Antiviral Res.'}, { 'key': '31764_CR38', 'doi-asserted-by': 'publisher', 'first-page': '427', 'DOI': '10.1016/j.devcel.2020.12.010', 'volume': '56', 'author': 'G Miao', 'year': '2021', 'unstructured': 'Miao, G. et al. ORF3a of the COVID-19 virus SARS-CoV-2 blocks HOPS ' 'complex-mediated assembly of the SNARE complex required for autolysosome ' 'formation. Dev. Cell 56, 427–442. ' 'https://doi.org/10.1016/j.devcel.2020.12.010 (2021).', 'journal-title': 'Dev. Cell'}, { 'key': '31764_CR39', 'doi-asserted-by': 'publisher', 'first-page': '716208', 'DOI': '10.3389/fcell.2021.716208', 'volume': '9', 'author': 'Y Qu', 'year': '2021', 'unstructured': 'Qu, Y. et al. ORF3a-mediated incomplete autophagy facilitates severe ' 'acute respiratory syndrome coronavirus-2 replication. Front. Cell Dev. ' 'Biol. 9, 716208. https://doi.org/10.3389/fcell.2021.716208 (2021).', 'journal-title': 'Front. Cell Dev. Biol.'}, { 'key': '31764_CR40', 'doi-asserted-by': 'publisher', 'first-page': '31', 'DOI': '10.1038/s41421-021-00268-z', 'volume': '7', 'author': 'Y Zhang', 'year': '2021', 'unstructured': 'Zhang, Y. et al. The SARS-CoV-2 protein ORF3a inhibits fusion of ' 'autophagosomes with lysosomes. Cell Discov. 7, 31. ' 'https://doi.org/10.1038/s41421-021-00268-z (2021).', 'journal-title': 'Cell Discov.'}, { 'key': '31764_CR41', 'doi-asserted-by': 'publisher', 'first-page': '2467', 'DOI': '10.3390/v13122467', 'volume': '13', 'author': 'WQ Su', 'year': '2021', 'unstructured': 'Su, W. Q., Yu, X. J. & Zhou, C. M. SARS-CoV-2 ORF3a induces incomplete ' 'autophagy via the unfolded protein response. Viruses 13, 2467 (2021).', 'journal-title': 'Viruses'}, { 'key': '31764_CR42', 'doi-asserted-by': 'publisher', 'first-page': '13', 'DOI': '10.1016/j.virol.2022.01.003', 'volume': '568', 'author': 'H Xu', 'year': '2022', 'unstructured': 'Xu, H. et al. SARS-CoV-2 viroporin encoded by ORF3a triggers the NLRP3 ' 'inflammatory pathway. Virology 568, 13–22. ' 'https://doi.org/10.1016/j.virol.2022.01.003 (2022).', 'journal-title': 'Virology'}, { 'key': '31764_CR43', 'doi-asserted-by': 'publisher', 'first-page': '881', 'DOI': '10.1038/s41423-020-0485-9', 'volume': '17', 'author': 'Y Ren', 'year': '2020', 'unstructured': 'Ren, Y. et al. The ORF3a protein of SARS-CoV-2 induces apoptosis in ' 'cells. Cell Mol. Immunol. 17, 881–883. ' 'https://doi.org/10.1038/s41423-020-0485-9 (2020).', 'journal-title': 'Cell Mol. Immunol.'}, { 'key': '31764_CR44', 'first-page': '8', 'volume': '204', 'author': 'N Arshad', 'year': '2022', 'unstructured': 'Arshad, N. et al. SARS-CoV-2 accessory proteins ORF7a and ORF3a use ' 'distinct mechanisms to downregulate MHC-I surface expression. bioRxiv ' '204, 8 (2022).', 'journal-title': 'bioRxiv'}, { 'key': '31764_CR45', 'doi-asserted-by': 'publisher', 'first-page': '766', 'DOI': '10.1016/j.csbj.2022.01.017', 'volume': '20', 'author': 'S Gupta', 'year': '2022', 'unstructured': 'Gupta, S. et al. D155Y substitution of SARS-CoV-2 ORF3a weakens binding ' 'with Caveolin-1. Comput. Struct. Biotechnol. J. 20, 766–778. ' 'https://doi.org/10.1016/j.csbj.2022.01.017 (2022).', 'journal-title': 'Comput. Struct. Biotechnol. J.'}, { 'key': '31764_CR46', 'doi-asserted-by': 'publisher', 'first-page': '3067', 'DOI': '10.1099/vir.0.82856-0', 'volume': '88', 'author': 'K Padhan', 'year': '2007', 'unstructured': 'Padhan, K. et al. Severe acute respiratory syndrome coronavirus ORF3a ' 'protein interacts with caveolin. J. Gen. Virol. 88, 3067–3077. ' 'https://doi.org/10.1099/vir.0.82856-0 (2007).', 'journal-title': 'J. Gen. Virol.'}, { 'key': '31764_CR47', 'doi-asserted-by': 'publisher', 'first-page': '904', 'DOI': '10.1038/s41419-018-0917-y', 'volume': '9', 'author': 'Y Yue', 'year': '2018', 'unstructured': 'Yue, Y. et al. SARS-coronavirus open reading frame-3a drives multimodal ' 'necrotic cell death. Cell Death Dis. 9, 904. ' 'https://doi.org/10.1038/s41419-018-0917-y (2018).', 'journal-title': 'Cell Death Dis.'}, { 'key': '31764_CR48', 'doi-asserted-by': 'publisher', 'first-page': '100933', 'DOI': '10.1016/j.bbrep.2021.100933', 'volume': '26', 'author': 'GK Azad', 'year': '2021', 'unstructured': 'Azad, G. K. & Khan, P. K. Variations in ORF3a protein of SARS-CoV-2 ' 'alter its structure and function. Biochem. Biophys. Rep. 26, 100933. ' 'https://doi.org/10.1016/j.bbrep.2021.100933 (2021).', 'journal-title': 'Biochem. Biophys. Rep.'}, { 'key': '31764_CR49', 'doi-asserted-by': 'publisher', 'first-page': '820', 'DOI': '10.1016/j.ijbiomac.2020.12.142', 'volume': '170', 'author': 'M Bianchi', 'year': '2021', 'unstructured': 'Bianchi, M., Borsetti, A., Ciccozzi, M. & Pascarella, S. SARS-CoV-2 ' 'ORF3a: mutability and function. Int. J. Biol. Macromol. 170, 820–826. ' 'https://doi.org/10.1016/j.ijbiomac.2020.12.142 (2021).', 'journal-title': 'Int. J. Biol. Macromol.'}, { 'key': '31764_CR50', 'doi-asserted-by': 'publisher', 'first-page': '198441', 'DOI': '10.1016/j.virusres.2021.198441', 'volume': '300', 'author': 'SS Hassan', 'year': '2021', 'unstructured': 'Hassan, S. S., Attrish, D., Ghosh, S., Choudhury, P. P. & Roy, B. ' 'Pathogenic perspective of missense mutations of ORF3a protein of ' 'SARS-CoV-2. Virus Res. 300, 198441. ' 'https://doi.org/10.1016/j.virusres.2021.198441 (2021).', 'journal-title': 'Virus Res.'}, { 'key': '31764_CR51', 'doi-asserted-by': 'publisher', 'author': 'E Issa', 'year': '2020', 'unstructured': 'Issa, E., Merhi, G., Panossian, B., Salloum, T. & Tokajian, S. ' 'SARS-CoV-2 and ORF3a: nonsynonymous mutations, functional domains, and ' 'viral pathogenesis. Msystems https://doi.org/10.1128/mSystems.00266-20 ' '(2020).', 'journal-title': 'Msystems', 'DOI': '10.1128/mSystems.00266-20'}, { 'key': '31764_CR52', 'doi-asserted-by': 'publisher', 'first-page': 'e262', 'DOI': '10.1017/S0950268820002599', 'volume': '148', 'author': 'P Majumdar', 'year': '2020', 'unstructured': 'Majumdar, P. & Niyogi, S. ORF3a mutation associated with higher ' 'mortality rate in SARS-CoV-2 infection. Epidemiol. Infect. 148, e262. ' 'https://doi.org/10.1017/S0950268820002599 (2020).', 'journal-title': 'Epidemiol. Infect.'}, { 'key': '31764_CR53', 'doi-asserted-by': 'publisher', 'first-page': '2082', 'DOI': '10.3390/v13102082', 'volume': '13', 'author': 'Y Zhou', 'year': '2021', 'unstructured': 'Zhou, Y. et al. Efficacy of ion-channel inhibitors amantadine, memantine ' 'and rimantadine for the treatment of SARS-CoV-2 in vitro. Viruses 13, ' '2082. https://doi.org/10.3390/v13102082 (2021).', 'journal-title': 'Viruses'}, { 'key': '31764_CR54', 'doi-asserted-by': 'publisher', 'first-page': '19481', 'DOI': '10.1038/s41598-021-99072-8', 'volume': '11', 'author': 'NS Lebedeva', 'year': '2021', 'unstructured': 'Lebedeva, N. S. et al. Theoretical and experimental study of interaction ' 'of macroheterocyclic compounds with ORF3a of SARS-CoV-2. Sci. Rep. 11, ' '19481. https://doi.org/10.1038/s41598-021-99072-8 (2021).', 'journal-title': 'Sci. Rep.'}, { 'key': '31764_CR55', 'doi-asserted-by': 'publisher', 'first-page': 'e0007548', 'DOI': '10.1371/journal.pntd.0007548', 'volume': '13', 'author': 'D Dey', 'year': '2019', 'unstructured': 'Dey, D. et al. The effect of amantadine on an ion channel protein from ' 'Chikungunya virus. PLoS Negl. Trop. Dis. 13, e0007548. ' 'https://doi.org/10.1371/journal.pntd.0007548 (2019).', 'journal-title': 'PLoS Negl. Trop. Dis.'}, { 'key': '31764_CR56', 'doi-asserted-by': 'publisher', 'first-page': '485', 'DOI': '10.1016/0042-6822(92)91239-q', 'volume': '190', 'author': 'KC Duff', 'year': '1992', 'unstructured': 'Duff, K. C. & Ashley, R. H. The transmembrane domain of influenza A M2 ' 'protein forms amantadine-sensitive proton channels in planar lipid ' 'bilayers. Virology 190, 485–489. ' 'https://doi.org/10.1016/0042-6822(92)91239-q (1992).', 'journal-title': 'Virology'}, { 'key': '31764_CR57', 'first-page': '189', 'volume': '55', 'author': 'DM Fleming', 'year': '2001', 'unstructured': 'Fleming, D. M. Managing influenza: amantadine, rimantadine and beyond. ' 'Int. J. Clin. Pract. 55, 189–195 (2001).', 'journal-title': 'Int. J. Clin. Pract.'}, { 'key': '31764_CR58', 'doi-asserted-by': 'publisher', 'first-page': '34', 'DOI': '10.1016/S0014-5793(02)03851-6', 'volume': '535', 'author': 'SD Griffin', 'year': '2003', 'unstructured': 'Griffin, S. D. et al. The p7 protein of hepatitis C virus forms an ion ' 'channel that is blocked by the antiviral drug Amantadine. FEBS Lett. ' '535, 34–38 (2003).', 'journal-title': 'FEBS Lett.'}, { 'key': '31764_CR59', 'doi-asserted-by': 'publisher', 'first-page': '342', 'DOI': '10.1016/j.jmgm.2008.06.002', 'volume': '27', 'author': 'P Intharathep', 'year': '2008', 'unstructured': 'Intharathep, P. et al. How amantadine and rimantadine inhibit proton ' 'transport in the M2 protein channel. J. Mol. Graph Model. 27, 342–348. ' 'https://doi.org/10.1016/j.jmgm.2008.06.002 (2008).', 'journal-title': 'J. Mol. Graph Model.'}, { 'key': '31764_CR60', 'doi-asserted-by': 'publisher', 'first-page': '10967', 'DOI': '10.1073/pnas.0804958105', 'volume': '105', 'author': 'X Jing', 'year': '2008', 'unstructured': 'Jing, X. et al. Functional studies indicate amantadine binds to the pore ' 'of the influenza A virus M2 proton-selective ion channel. Proc. Natl. ' 'Acad. Sci. U. S. A. 105, 10967–10972. ' 'https://doi.org/10.1073/pnas.0804958105 (2008).', 'journal-title': 'Proc. Natl. Acad. Sci. U. S. A.'}, { 'key': '31764_CR61', 'doi-asserted-by': 'publisher', 'first-page': '2065', 'DOI': '10.1110/ps.062730007', 'volume': '16', 'author': 'J Torres', 'year': '2007', 'unstructured': 'Torres, J. et al. Conductance and amantadine binding of a pore formed by ' 'a lysine-flanked transmembrane domain of SARS coronavirus envelope ' 'protein. Protein Sci. 16, 2065–2071. ' 'https://doi.org/10.1110/ps.062730007 (2007).', 'journal-title': 'Protein Sci.'}, { 'key': '31764_CR62', 'doi-asserted-by': 'publisher', 'first-page': '63', 'DOI': '10.3390/molecules25010063', 'volume': '25', 'author': 'E Cione', 'year': '2019', 'unstructured': 'Cione, E. et al. Quercetin, epigallocatechin gallate, curcumin, and ' 'resveratrol: from dietary sources to human MicroRNA modulation. ' 'Molecules 25, 63. https://doi.org/10.3390/molecules25010063 (2019).', 'journal-title': 'Molecules'}, { 'key': '31764_CR63', 'doi-asserted-by': 'publisher', 'first-page': 'e47', 'DOI': '10.1017/jns.2016.41', 'volume': '5', 'author': 'AN Panche', 'year': '2016', 'unstructured': 'Panche, A. N., Diwan, A. D. & Chandra, S. R. Flavonoids: an overview. J. ' 'Nutr. Sci. 5, e47 (2016).', 'journal-title': 'J. Nutr. Sci.'}, { 'key': '31764_CR64', 'doi-asserted-by': 'publisher', 'first-page': '12385', 'DOI': '10.3390/ijms222212385', 'volume': '22', 'author': 'N Gligorijevic', 'year': '2021', 'unstructured': 'Gligorijevic, N. et al. Molecular mechanisms of possible action of ' 'phenolic compounds in COVID-19 protection and prevention. Int. J. Mol. ' 'Sci. 22, 12385 (2021).', 'journal-title': 'Int. J. Mol. Sci.'}, { 'key': '31764_CR65', 'doi-asserted-by': 'publisher', 'first-page': '93', 'DOI': '10.3390/medicines5030093', 'volume': '5', 'author': 'D Tungmunnithum', 'year': '2018', 'unstructured': 'Tungmunnithum, D., Thongboonyou, A., Pholboon, A. & Yangsabai, A. ' 'Flavonoids and other phenolic compounds from medicinal plants for ' 'pharmaceutical and medical aspects: an overview. Medicines (Basel) 5, 93 ' '(2018).', 'journal-title': 'Medicines (Basel)'}, { 'key': '31764_CR66', 'doi-asserted-by': 'publisher', 'first-page': '184241', 'DOI': '10.1155/2015/184241', 'volume': '2015', 'author': 'Y Abba', 'year': '2015', 'unstructured': 'Abba, Y., Hassim, H., Hamzah, H. & Noordin, M. M. Antiviral activity of ' 'resveratrol against human and animal viruses. Adv. Virol. 2015, 184241 ' '(2015).', 'journal-title': 'Adv. Virol.'}, { 'key': '31764_CR67', 'doi-asserted-by': 'publisher', 'first-page': '50', 'DOI': '10.1042/BST0380050', 'volume': '38', 'author': 'M Campagna', 'year': '2010', 'unstructured': 'Campagna, M. & Rivas, C. Antiviral activity of resveratrol. Biochem. ' 'Soc. Trans. 38, 50–53. https://doi.org/10.1042/BST0380050 (2010).', 'journal-title': 'Biochem. Soc. Trans.'}, { 'key': '31764_CR68', 'doi-asserted-by': 'publisher', 'first-page': '7138756', 'DOI': '10.1155/2022/7138756', 'volume': '2022', 'author': 'X Chen', 'year': '2022', 'unstructured': 'Chen, X. et al. Insights into the anti-inflammatory and antiviral ' 'mechanisms of resveratrol. Mediat. Inflamm. 2022, 7138756. ' 'https://doi.org/10.1155/2022/7138756 (2022).', 'journal-title': 'Mediat. Inflamm.'}, { 'key': '31764_CR69', 'doi-asserted-by': 'publisher', 'first-page': '393', 'DOI': '10.1179/joc.2008.20.3.393', 'volume': '20', 'author': 'L Drago', 'year': '2008', 'unstructured': 'Drago, L., Nicola, L., Ossola, F. & De Vecchi, E. In vitro antiviral ' 'activity of resveratrol against respiratory viruses. J. Chemother. 20, ' '393–394. https://doi.org/10.1179/joc.2008.20.3.393 (2008).', 'journal-title': 'J. Chemother.'}, { 'key': '31764_CR70', 'doi-asserted-by': 'publisher', 'first-page': '1242', 'DOI': '10.3390/v12111242', 'volume': '12', 'author': 'MR Jennings', 'year': '2020', 'unstructured': 'Jennings, M. R. & Parks, R. J. Curcumin as an antiviral agent. Viruses ' '12, 1242 (2020).', 'journal-title': 'Viruses'}, { 'key': '31764_CR71', 'doi-asserted-by': 'publisher', 'first-page': '186864', 'DOI': '10.1155/2014/186864', 'volume': '2014', 'author': 'SZ Moghadamtousi', 'year': '2014', 'unstructured': 'Moghadamtousi, S. Z. et al. A review on antibacterial, antiviral, and ' 'antifungal activity of curcumin. Biomed. Res. Int. 2014, 186864. ' 'https://doi.org/10.1155/2014/186864 (2014).', 'journal-title': 'Biomed. Res. Int.'}, { 'key': '31764_CR72', 'doi-asserted-by': 'publisher', 'first-page': '1035', 'DOI': '10.1136/gutjnl-2013-305646', 'volume': '63', 'author': 'EI Pecheur', 'year': '2014', 'unstructured': 'Pecheur, E. I. Curcumin against hepatitis C virus infection: Spicing up ' 'antiviral therapies with ‘nutraceuticals’?. Gut 63, 1035–1037. ' 'https://doi.org/10.1136/gutjnl-2013-305646 (2014).', 'journal-title': 'Gut'}, { 'key': '31764_CR73', 'doi-asserted-by': 'publisher', 'first-page': 'e06350', 'DOI': '10.1016/j.heliyon.2021.e06350', 'volume': '7', 'author': 'RK Thimmulappa', 'year': '2021', 'unstructured': 'Thimmulappa, R. K. et al. Antiviral and immunomodulatory activity of ' 'curcumin: a case for prophylactic therapy for COVID-19. Heliyon 7, ' 'e06350. https://doi.org/10.1016/j.heliyon.2021.e06350 (2021).', 'journal-title': 'Heliyon'}, { 'key': '31764_CR74', 'doi-asserted-by': 'publisher', 'first-page': '6623400', 'DOI': '10.1155/2021/6623400', 'volume': '2021', 'author': 'RF Hayati', 'year': '2021', 'unstructured': 'Hayati, R. F. et al. [6]-Gingerol inhibits chikungunya virus infection ' 'by suppressing viral replication. Biomed. Res. Int. 2021, 6623400. ' 'https://doi.org/10.1155/2021/6623400 (2021).', 'journal-title': 'Biomed. Res. Int.'}, { 'key': '31764_CR75', 'doi-asserted-by': 'publisher', 'first-page': '389', 'DOI': '10.1080/07391102.2020.1813630', 'volume': '40', 'author': 'BJ Oso', 'year': '2022', 'unstructured': 'Oso, B. J., Adeoye, A. O. & Olaoye, I. F. Pharmacoinformatics and ' 'hypothetical studies on allicin, curcumin, and gingerol as potential ' 'candidates against COVID-19-associated proteases. J. Biomol. Struct. ' 'Dyn. 40, 389–400. https://doi.org/10.1080/07391102.2020.1813630 (2022).', 'journal-title': 'J. Biomol. Struct. Dyn.'}, { 'key': '31764_CR76', 'doi-asserted-by': 'publisher', 'first-page': '1001', 'DOI': '10.4315/0362-028X.JFP-15-593', 'volume': '79', 'author': 'HA Aboubakr', 'year': '2016', 'unstructured': 'Aboubakr, H. A. et al. In vitro antiviral activity of clove and ginger ' 'aqueous extracts against feline calicivirus, a surrogate for human ' 'norovirus. J. Food Prot. 79, 1001–1012. ' 'https://doi.org/10.4315/0362-028X.JFP-15-593 (2016).', 'journal-title': 'J. Food Prot.'}, { 'key': '31764_CR77', 'doi-asserted-by': 'publisher', 'first-page': '146', 'DOI': '10.1016/j.jep.2012.10.043', 'volume': '145', 'author': 'JS Chang', 'year': '2013', 'unstructured': 'Chang, J. S., Wang, K. C., Yeh, C. F., Shieh, D. E. & Chiang, L. C. ' 'Fresh ginger (Zingiber officinale) has anti-viral activity against human ' 'respiratory syncytial virus in human respiratory tract cell lines. J. ' 'Ethnopharmacol. 145, 146–151. https://doi.org/10.1016/j.jep.2012.10.043 ' '(2013).', 'journal-title': 'J. Ethnopharmacol.'}, { 'key': '31764_CR78', 'doi-asserted-by': 'publisher', 'first-page': '270', 'DOI': '10.1007/s13337-020-00584-0', 'volume': '31', 'author': 'S Kaushik', 'year': '2020', 'unstructured': 'Kaushik, S., Jangra, G., Kundu, V., Yadav, J. P. & Kaushik, S. ' 'Anti-viral activity of Zingiber officinale (Ginger) ingredients against ' 'the Chikungunya virus. Virusdisease 31, 270–276. ' 'https://doi.org/10.1007/s13337-020-00584-0 (2020).', 'journal-title': 'Virusdisease'}, { 'key': '31764_CR79', 'doi-asserted-by': 'publisher', 'author': 'U Breitinger', 'year': '2021', 'unstructured': 'Breitinger, U. et al. Cell viability assay as a tool to study activity ' 'and inhibition of hepatitis C p7 channels. J. Gen. Virol. ' 'https://doi.org/10.1099/jgv.0.001571 (2021).', 'journal-title': 'J. Gen. Virol.', 'DOI': '10.1099/jgv.0.001571'}, { 'key': '31764_CR80', 'doi-asserted-by': 'publisher', 'first-page': '692423', 'DOI': '10.3389/fmicb.2021.692423', 'volume': '12', 'author': 'U Breitinger', 'year': '2021', 'unstructured': 'Breitinger, U., Ali, N. K. M., Sticht, H. & Breitinger, H. G. Inhibition ' 'of SARS CoV envelope protein by flavonoids and classical viroporin ' 'inhibitors. Front. Microbiol. 12, 692423. ' 'https://doi.org/10.3389/fmicb.2021.692423 (2021).', 'journal-title': 'Front. Microbiol.'}, { 'key': '31764_CR81', 'doi-asserted-by': 'publisher', 'first-page': '14160', 'DOI': '10.1021/bi001799u', 'volume': '39', 'author': 'D Salom', 'year': '2000', 'unstructured': 'Salom, D., Hill, B. R., Lear, J. D. & DeGrado, W. F. pH-dependent ' 'tetramerization and amantadine binding of the transmembrane helix of M2 ' 'from the influenza A virus. Biochemistry 39, 14160–14170. ' 'https://doi.org/10.1021/bi001799u (2000).', 'journal-title': 'Biochemistry'}, { 'key': '31764_CR82', 'doi-asserted-by': 'publisher', 'first-page': '2419', 'DOI': '10.1016/j.bpj.2016.04.018', 'volume': '110', 'author': 'U Breitinger', 'year': '2016', 'unstructured': 'Breitinger, U., Farag, N. S., Ali, N. K. & Breitinger, H. G. Patch-clamp ' 'study of hepatitis C p7 channels reveals genotype-specific sensitivity ' 'to inhibitors. Biophys. J. 110, 2419–2429 (2016).', 'journal-title': 'Biophys. J.'}, { 'key': '31764_CR83', 'doi-asserted-by': 'publisher', 'first-page': '330', 'DOI': '10.1016/j.virol.2015.08.010', 'volume': '485', 'author': 'JL Nieto-Torres', 'year': '2015', 'unstructured': 'Nieto-Torres, J. L. et al. Severe acute respiratory syndrome coronavirus ' 'E protein transports calcium ions and activates the NLRP3 inflammasome. ' 'Virology 485, 330–339. https://doi.org/10.1016/j.virol.2015.08.010 ' '(2015).', 'journal-title': 'Virology'}, { 'key': '31764_CR84', 'doi-asserted-by': 'publisher', 'first-page': '8865', 'DOI': '10.1096/fj.201802418R', 'volume': '33', 'author': 'KL Siu', 'year': '2019', 'unstructured': 'Siu, K. L. et al. Severe acute respiratory syndrome coronavirus ORF3a ' 'protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ' 'ubiquitination of ASC. FASEB J. 33, 8865–8877. ' 'https://doi.org/10.1096/fj.201802418R (2019).', 'journal-title': 'FASEB J.'}, { 'key': '31764_CR85', 'doi-asserted-by': 'publisher', 'first-page': '1779', 'DOI': '10.1002/hep.22555', 'volume': '48', 'author': 'SD Griffin', 'year': '2008', 'unstructured': 'Griffin, S. D. et al. Genotype-dependent sensitivity of hepatitis C ' 'virus to inhibitors of the p7 ion channel. Hepatology 48, 1779–1790 ' '(2008).', 'journal-title': 'Hepatology'}, { 'issue': '18', 'key': '31764_CR86', 'doi-asserted-by': 'publisher', 'first-page': '4580', 'DOI': '10.1021/acs.jafc.5b00312', 'volume': '63', 'author': 'T Kongpichitchoke', 'year': '2015', 'unstructured': 'Kongpichitchoke, T., Hsu, J.-L. & Huang, T.-C. Number of hydroxyl groups ' 'on the B-ring of flavonoids affects their antioxidant activity and ' 'interaction with phorbol ester binding site of PKCδ C1B domain: in vitro ' 'and in silico studies. J. Agric. Food Chem. 63(18), 4580–4586. ' 'https://doi.org/10.1021/acs.jafc.5b00312 (2015).', 'journal-title': 'J. Agric. Food Chem.'}, { 'key': '31764_CR87', 'doi-asserted-by': 'publisher', 'first-page': '162750', 'DOI': '10.1155/2013/162750', 'volume': '2013', 'author': 'S Kumar', 'year': '2013', 'unstructured': 'Kumar, S. & Pandey, A. K. Chemistry and biological activities of ' 'flavonoids: an overview. Sci.WorldJ. 2013, 162750. ' 'https://doi.org/10.1155/2013/162750 (2013).', 'journal-title': 'Sci.WorldJ.'}, { 'key': '31764_CR88', 'doi-asserted-by': 'publisher', 'first-page': '712', 'DOI': '10.1016/j.bbadis.2016.12.006', 'volume': '1863', 'author': 'NS Farag', 'year': '2017', 'unstructured': 'Farag, N. S., Breitinger, U., El-Azizi, M. & Breitinger, H. G. The p7 ' 'viroporin of the hepatitis C virus contributes to liver inflammation by ' 'stimulating production of Interleukin-1β. Biochim. Biophys. Acta Mol. ' 'Basis Dis. 1863, 712–720 (2017).', 'journal-title': 'Biochim. Biophys. Acta Mol. Basis Dis.'}, { 'key': '31764_CR89', 'doi-asserted-by': 'publisher', 'first-page': '675287', 'DOI': '10.3389/fphar.2021.675287', 'volume': '12', 'author': 'BAC Rattis', 'year': '2021', 'unstructured': 'Rattis, B. A. C., Ramos, S. G. & Celes, M. R. N. Curcumin as a potential ' 'treatment for COVID-19. Front. Pharmacol. 12, 675287. ' 'https://doi.org/10.3389/fphar.2021.675287 (2021).', 'journal-title': 'Front. Pharmacol.'}, { 'key': '31764_CR90', 'doi-asserted-by': 'publisher', 'first-page': '19963', 'DOI': '10.1038/s41598-020-77003-3', 'volume': '10', 'author': 'P Kanjanasirirat', 'year': '2020', 'unstructured': 'Kanjanasirirat, P. et al. High-content screening of Thai medicinal ' 'plants reveals Boesenbergia rotunda extract and its component Panduratin ' 'A as anti-SARS-CoV-2 agents. Sci. Rep. 10, 19963 (2020).', 'journal-title': 'Sci. Rep.'}, { 'key': '31764_CR91', 'doi-asserted-by': 'publisher', 'author': 'PK Agrawal', 'year': '2020', 'unstructured': 'Agrawal, P. K., Agrawal, C. & Blunden, G. Quercetin: antiviral ' 'significance and possible COVID-19 integrative considerations. Nat. ' 'Prod. Comm. https://doi.org/10.1177/1934578X20976293 (2020).', 'journal-title': 'Nat. Prod. Comm.', 'DOI': '10.1177/1934578X20976293'}, { 'key': '31764_CR92', 'doi-asserted-by': 'publisher', 'first-page': '5325', 'DOI': '10.1002/jcp.30233', 'volume': '236', 'author': 'S Tahmasebi', 'year': '2020', 'unstructured': 'Tahmasebi, S. et al. Immunomodulatory effects of nanocurcumin on Th17 ' 'cell responses in mild and severe COVID-19 patients. J. Cell Physiol. ' '236, 5325–5338 (2020).', 'journal-title': 'J. Cell Physiol.'}, { 'key': '31764_CR93', 'doi-asserted-by': 'publisher', 'first-page': '104451', 'DOI': '10.1016/j.meegid.2020.104451', 'volume': '84', 'author': 'D Bhowmik', 'year': '2020', 'unstructured': 'Bhowmik, D. et al. Identification of potential inhibitors against ' 'SARS-CoV-2 by targeting proteins responsible for envelope formation and ' 'virion assembly using docking based virtual screening, and ' 'pharmacokinetics approaches. Infect. Genet. Evol. 84, 104451. ' 'https://doi.org/10.1016/j.meegid.2020.104451 (2020).', 'journal-title': 'Infect. Genet. Evol.'}, { 'key': '31764_CR94', 'doi-asserted-by': 'publisher', 'first-page': '16674', 'DOI': '10.1007/s10668-021-01373-5', 'volume': '23', 'author': 'HS Mahrosh', 'year': '2021', 'unstructured': 'Mahrosh, H. S. & Mustafa, G. An in silico approach to target ' 'RNA-dependent RNA polymerase of COVID-19 with naturally occurring ' 'phytochemicals. Environ. Dev. Sustain. 23, 16674–16687. ' 'https://doi.org/10.1007/s10668-021-01373-5 (2021).', 'journal-title': 'Environ. Dev. Sustain.'}], 'container-title': 'Scientific Reports', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://www.nature.com/articles/s41598-023-31764-9.pdf', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://www.nature.com/articles/s41598-023-31764-9', 'content-type': 'text/html', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://www.nature.com/articles/s41598-023-31764-9.pdf', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2023, 4, 3]], 'date-time': '2023-04-03T05:58:06Z', 'timestamp': 1680501486000}, 'score': 1, 'resource': {'primary': {'URL': 'https://www.nature.com/articles/s41598-023-31764-9'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2023, 4, 1]]}, 'references-count': 94, 'journal-issue': {'issue': '1', 'published-online': {'date-parts': [[2023, 12]]}}, 'alternative-id': ['31764'], 'URL': 'http://dx.doi.org/10.1038/s41598-023-31764-9', 'relation': {}, 'ISSN': ['2045-2322'], 'subject': ['Multidisciplinary'], 'container-title-short': 'Sci Rep', 'published': {'date-parts': [[2023, 4, 1]]}, 'assertion': [ { 'value': '28 September 2022', 'order': 1, 'name': 'received', 'label': 'Received', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': '16 March 2023', 'order': 2, 'name': 'accepted', 'label': 'Accepted', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': '1 April 2023', 'order': 3, 'name': 'first_online', 'label': 'First Online', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': 'The authors declare no competing interests.', 'order': 1, 'name': 'Ethics', 'group': {'name': 'EthicsHeading', 'label': 'Competing interests'}}], 'article-number': '5328'}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit