Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchQuercetinQuercetin (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

Decoding the mechanism of Qingjie formula in the prevention of COVID-19 based on network pharmacology and molecular docking

Oct 2024  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Quercetin for COVID-19
24th treatment shown to reduce risk in July 2021, now with p = 0.002 from 12 studies.
No treatment is 100% effective. Protocols combine treatments.
5,100+ studies for 112 treatments. c19early.org
In Silico study showing potential benefits of quercetin for COVID-19 prevention through network pharmacology and molecular docking. Authors identified quercetin as one of the key active ingredients in Qingjie formula (QJF). Quercetin was found to have the highest frequency of interaction with potential target proteins. The results suggest that quercetin may be beneficial for COVID-19 by inhibiting viral replication, reducing inflammatory responses, and decreasing reactive oxygen species production. Molecular docking results showed quercetin had good binding affinity with hub genes including AKT1, TP53, TNF, IL6, VEGFA, IL1B, and CASP3. These target proteins are involved in host immunity, inflammatory responses, and cellular stress processes. Authors propose that quercetin in QJF may act through multiple pathways including PI3K-Akt signaling, AGE-RAGE signaling, and IL-17 signaling to prevent COVID-19.
73 preclinical studies support the efficacy of quercetin for COVID-19:
In Silico studies predict inhibition of SARS-CoV-2, or minimization of side effects, with quercetin or metabolites via binding to the spikeA,3,9,10,22,24,25,30,38,39,41,42,62-64, MproB,3,7,9,11,13,15,17,18,20,23,24,30,34,36-38,42,43,45,63-65, RNA-dependent RNA polymeraseC,1,3,9,32,64, PLproD,3,37,45, ACE2E,22,23,28,37,41,63, TMPRSS2F,22, nucleocapsidG,3, helicaseH,3,29,34, endoribonucleaseI,39, NSP16/10J,6, cathepsin LK,26, Wnt-3L,22, FZDM,22, LRP6N,22, ezrinO,40, ADRPP,38, NRP1Q,41, EP300R,16, PTGS2S,23, HSP90AA1T,16,23, matrix metalloproteinase 9U,31, IL-6V,21,35, IL-10W,21, VEGFAX,35, and RELAY,35 proteins. In Vitro studies demonstrate inhibition of the MproB,15,46,51,59 protein, and inhibition of spike-ACE2 interactionZ,47. In Vitro studies demonstrate efficacy in Calu-3AA,50, A549AB,21, HEK293-ACE2+AC,58, Huh-7AD,25, Caco-2AE,49, Vero E6AF,19,42,49, mTECAG,52, and RAW264.7AH,52 cells. Animal studies demonstrate efficacy in K18-hACE2 miceAI,55, db/db miceAJ,52,61, BALB/c miceAK,60, and rats66. Quercetin reduced proinflammatory cytokines and protected lung and kidney tissue against LPS-induced damage in mice60, inhibits LPS-induced cytokine storm by modulating key inflammatory and antioxidant pathways in macrophages5, and inhibits SARS-CoV-2 ORF3a ion channel activity, which contributes to viral pathogenicity and cytotoxicity54.
a. The trimeric spike (S) protein is a glycoprotein that mediates viral entry by binding to the host ACE2 receptor, is critical for SARS-CoV-2's ability to infect host cells, and is a target of neutralizing antibodies. Inhibition of the spike protein prevents viral attachment, halting infection at the earliest stage.
b. The main protease or Mpro, also known as 3CLpro or nsp5, is a cysteine protease that cleaves viral polyproteins into functional units needed for replication. Inhibiting Mpro disrupts the SARS-CoV-2 lifecycle within the host cell, preventing the creation of new copies.
c. RNA-dependent RNA polymerase (RdRp), also called nsp12, is the core enzyme of the viral replicase-transcriptase complex that copies the positive-sense viral RNA genome into negative-sense templates for progeny RNA synthesis. Inhibiting RdRp blocks viral genome replication and transcription.
d. The papain-like protease (PLpro) has multiple functions including cleaving viral polyproteins and suppressing the host immune response by deubiquitination and deISGylation of host proteins. Inhibiting PLpro may block viral replication and help restore normal immune responses.
e. The angiotensin converting enzyme 2 (ACE2) protein is a host cell transmembrane protein that serves as the cellular receptor for the SARS-CoV-2 spike protein. ACE2 is expressed on many cell types, including epithelial cells in the lungs, and allows the virus to enter and infect host cells. Inhibition may affect ACE2's physiological function in blood pressure control.
f. Transmembrane protease serine 2 (TMPRSS2) is a host cell protease that primes the spike protein, facilitating cellular entry. TMPRSS2 activity helps enable cleavage of the spike protein required for membrane fusion and virus entry. Inhibition may especially protect respiratory epithelial cells, buy may have physiological effects.
g. The nucleocapsid (N) protein binds and encapsulates the viral genome by coating the viral RNA. N enables formation and release of infectious virions and plays additional roles in viral replication and pathogenesis. N is also an immunodominant antigen used in diagnostic assays.
h. The helicase, or nsp13, protein unwinds the double-stranded viral RNA, a crucial step in replication and transcription. Inhibition may prevent viral genome replication and the creation of new virus components.
i. The endoribonuclease, also known as NendoU or nsp15, cleaves specific sequences in viral RNA which may help the virus evade detection by the host immune system. Inhibition may hinder the virus's ability to mask itself from the immune system, facilitating a stronger immune response.
j. The NSP16/10 complex consists of non-structural proteins 16 and 10, forming a 2'-O-methyltransferase that modifies the viral RNA cap structure. This modification helps the virus evade host immune detection by mimicking host mRNA, making NSP16/10 a promising antiviral target.
k. Cathepsin L is a host lysosomal cysteine protease that can prime the spike protein through an alternative pathway when TMPRSS2 is unavailable. Dual targeting of cathepsin L and TMPRSS2 may maximize disruption of alternative pathways for virus entry.
l. Wingless-related integration site (Wnt) ligand 3 is a host signaling molecule that activates the Wnt signaling pathway, which is important in development, cell growth, and tissue repair. Some studies suggest that SARS-CoV-2 infection may interfere with the Wnt signaling pathway, and that Wnt3a is involved in SARS-CoV-2 entry.
m. The frizzled (FZD) receptor is a host transmembrane receptor that binds Wnt ligands, initiating the Wnt signaling cascade. FZD serves as a co-receptor, along with ACE2, in some proposed mechanisms of SARS-CoV-2 infection. The virus may take advantage of this pathway as an alternative entry route.
n. Low-density lipoprotein receptor-related protein 6 is a cell surface co-receptor essential for Wnt signaling. LRP6 acts in tandem with FZD for signal transduction and has been discussed as a potential co-receptor for SARS-CoV-2 entry.
o. The ezrin protein links the cell membrane to the cytoskeleton (the cell's internal support structure) and plays a role in cell shape, movement, adhesion, and signaling. Drugs that occupy the same spot on ezrin where the viral spike protein would bind may hindering viral attachment, and drug binding could further stabilize ezrin, strengthening its potential natural capacity to impede viral fusion and entry.
p. The Adipocyte Differentiation-Related Protein (ADRP, also known as Perilipin 2 or PLIN2) is a lipid droplet protein regulating the storage and breakdown of fats in cells. SARS-CoV-2 may hijack the lipid handling machinery of host cells and ADRP may play a role in this process. Disrupting ADRP's interaction with the virus may hinder the virus's ability to use lipids for replication and assembly.
q. Neuropilin-1 (NRP1) is a cell surface receptor with roles in blood vessel development, nerve cell guidance, and immune responses. NRP1 may function as a co-receptor for SARS-CoV-2, facilitating viral entry into cells. Blocking NRP1 may disrupt an alternative route of viral entry.
r. EP300 (E1A Binding Protein P300) is a transcriptional coactivator involved in several cellular processes, including growth, differentiation, and apoptosis, through its acetyltransferase activity that modifies histones and non-histone proteins. EP300 facilitates viral entry into cells and upregulates inflammatory cytokine production.
s. Prostaglandin G/H synthase 2 (PTGS2, also known as COX-2) is an enzyme crucial for the production of inflammatory molecules called prostaglandins. PTGS2 plays a role in the inflammatory response that can become severe in COVID-19 and inhibitors (like some NSAIDs) may have benefits in dampening harmful inflammation, but note that prostaglandins have diverse physiological functions.
t. Heat Shock Protein 90 Alpha Family Class A Member 1 (HSP90AA1) is a chaperone protein that helps other proteins fold correctly and maintains their stability. HSP90AA1 plays roles in cell signaling, survival, and immune responses. HSP90AA1 may interact with numerous viral proteins, but note that it has diverse physiological functions.
u. Matrix metalloproteinase 9 (MMP9), also called gelatinase B, is a zinc-dependent enzyme that breaks down collagen and other components of the extracellular matrix. MMP9 levels increase in severe COVID-19. Overactive MMP9 can damage lung tissue and worsen inflammation. Inhibition of MMP9 may prevent excessive tissue damage and help regulate the inflammatory response.
v. The interleukin-6 (IL-6) pro-inflammatory cytokine (signaling molecule) has a complex role in the immune response and may trigger and perpetuate inflammation. Elevated IL-6 levels are associated with severe COVID-19 cases and cytokine storm. Anti-IL-6 therapies may be beneficial in reducing excessive inflammation in severe COVID-19 cases.
w. The interleukin-10 (IL-10) anti-inflammatory cytokine helps regulate and dampen immune responses, preventing excessive inflammation. IL-10 levels can also be elevated in severe COVID-19. IL-10 could either help control harmful inflammation or potentially contribute to immune suppression.
x. Vascular Endothelial Growth Factor A (VEGFA) promotes the growth of new blood vessels (angiogenesis) and has roles in inflammation and immune responses. VEGFA may contribute to blood vessel leakiness and excessive inflammation associated with severe COVID-19.
y. RELA is a transcription factor subunit of NF-kB and is a key regulator of inflammation, driving pro-inflammatory gene expression. SARS-CoV-2 may hijack and modulate NF-kB pathways.
z. The interaction between the SARS-CoV-2 spike protein and the human ACE2 receptor is a primary method of viral entry, inhibiting this interaction can prevent the virus from attaching to and entering host cells, halting infection at an early stage.
aa. Calu-3 is a human lung adenocarcinoma cell line with moderate ACE2 and TMPRSS2 expression and SARS-CoV-2 susceptibility. It provides a model of the human respiratory epithelium, but many not be ideal for modeling early stages of infection due to the moderate expression levels of ACE2 and TMPRSS2.
ab. A549 is a human lung carcinoma cell line with low ACE2 expression and SARS-CoV-2 susceptibility. Viral entry/replication can be studied but the cells may not replicate all aspects of lung infection.
ac. HEK293-ACE2+ is a human embryonic kidney cell line engineered for high ACE2 expression and SARS-CoV-2 susceptibility.
ad. Huh-7 cells were derived from a liver tumor (hepatoma).
ae. Caco-2 cells come from a colorectal adenocarcinoma (cancer). They are valued for their ability to form a polarized cell layer with properties similar to the intestinal lining.
af. Vero E6 is an African green monkey kidney cell line with low/no ACE2 expression and high SARS-CoV-2 susceptibility. The cell line is easy to maintain and supports robust viral replication, however the monkey origin may not accurately represent human responses.
ag. mTEC is a mouse tubular epithelial cell line.
ah. RAW264.7 is a mouse macrophage cell line.
ai. A mouse model expressing the human ACE2 receptor under the control of the K18 promoter.
aj. A mouse model of obesity and severe insulin resistance leading to type 2 diabetes due to a mutation in the leptin receptor gene that impairs satiety signaling.
ak. A mouse model commonly used in infectious disease and cancer research due to higher immune response and susceptibility to infection.
Pan et al., 11 Oct 2024, peer-reviewed, 5 authors. Contact: dongyihua@126.com.
In Silico studies are an important part of preclinical research, however results may be very different in vivo.
This PaperQuercetinAll
Decoding the mechanism of Qingjie formula in the prevention of COVID-19 based on network pharmacology and molecular docking
Yu Pan, Wanchun Lin, Yueyue Huang, Jingye Pan, Yihua Dong
Heliyon, doi:10.1016/j.heliyon.2024.e39167
Traditional Chinese medicine (TCM) has played a positive role in preventing and controlling the coronavirus disease 2019 (COVID-19) epidemic. Qingjie formula (QJF) developed to prevent COVID-19 is widely used in Wenzhou, Zhejiang province, China. However, the biological active ingredients of QJF and their specific mechanisms for preventing COVID-19 remain unclear. The study focused on exploring the pharmacological mechanism of QJF for the prevention of COVID-19 based on network pharmacology and molecular docking. The active ingredients of QJF were screened by TCMSP database. Databases such as Genecards and Swiss Target Prediction predicted potential targets of QJF against COVID-19. The "drug-active ingredient-potential target" network was constructed by Cytoscape software. We used STRING database to construct the proteinprotein interaction (PPI) network. Enrichment of biological functions and signaling pathways were analyzed by using the DAVID database and R language. Then AutoDock Vina and Python software were used for molecular docking of hub targets and active ingredients. 147 active ingredients interacted with 316 potential targets of COVID-19. A PPI network consisting of 30 hub genes was constructed, and the top 10 hub genes were ALB, AKT1, TP53, TNF, IL6, VEGFA, IL1B, CASP3, JUN and STAT3. The results of GO analysis showed that these targets were mainly enriched in cell responses to oxidative stress, chemical stress, and other functions. KEGG analysis revealed that viral protein interactions with cytokines (e.g., human cytomegalovirus infection), endocrine resistance pathways (e.g., AGE-RAGE signaling pathway), PI3K-Akt signaling pathway, and lipid and atherosclerosis signaling pathway were the major signaling pathways. Moreover, the core active ingredients of QJF had good binding affinity with hub genes by molecular docking. QJF plays an important role in the prevention of COVID-19 by regulating host immune inflammatory response and oxidative stress response, inhibiting virus, improving immune function, regulating the hypoxia-cytokine storm, and inhibiting cell migration. Introduction Coronavirus disease 2019 (COVID-19) was first discovered in Wuhan, China, and is a highly contagious disease caused by severe
Ethics statement Not applicable. Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Abbreviation
References
Araf, Akter, Tang, Fatemi, Parvez et al., Omicron variant of SARS-cov-2: genomics, transmissibility, and responses to current covid-19 vaccines, J. Med. Virol, doi:10.1002/jmv.27588
Asselah, Durantel, Pasmant, Lau, Schinazi, Covid-19: discovery, diagnostics and drug development, J. Hepatol, doi:10.1016/j.jhep.2020.09.031
Campbell, Kahwash, Will complement inhibition be the new target in treating covid-19-related systemic thrombosis?, Circulation, doi:10.1161/CIRCULATIONAHA.120.047419
Chen, Zhang, Wang, Ye, Huang, Differential ability of formononetin to stimulate proliferation of endothelial cells and breast cancer cells via a feedback loop involving MicroRNA-375, RASD1, and ERα, Mol. Carcinog, doi:10.1002/mc.22531
Chowdhury, In silico investigation of phytoconstituents from indian medicinal herb 'tinospora cordifolia (giloy)' against SARS-cov-2 (covid-19) by molecular dynamics approach, J. Biomol. Struct. Dyn, doi:10.1080/07391102.2020.1803968
Colunga, Berrill, Catravas, Marik, Quercetin and vitamin c: an experimental, synergistic therapy for the prevention and treatment of SARS-cov-2 related disease (covid-19), Front. Immunol, doi:10.3389/fimmu.2020.01451
Devaraj, Roy, Royapuram, Magesh, Varikalam et al., Beta-sitosterol attenuates carbon tetrachloride-induced oxidative stress and chronic liver injury in rats, Naunyn-Schmiedeberg's, Arch. Pharmacol, doi:10.1007/s00210-020-01810-8
Doncheva, Morris, Gorodkin, Jensen, Cytoscape stringapp: network analysis and visualization of proteomics data, J. Proteome Res, doi:10.1021/acs.jproteome.8b00702
Fang, Liu, Li, Zhang, Song et al., Advances in covid-19 mrna vaccine development, Signal Transduct. Targeted Ther, doi:10.1038/s41392-022-00950-y
Feng, Ao, Yue, Peng, Systems pharmacology reveals the unique mechanism features of shenzhu capsule for treatment of ulcerative colitis in comparison with synthetic drugs, Sci. Rep, doi:10.1038/s41598-018-34509-1
Gansukh, Nile, Kim, Oh, Nile, New insights into antiviral and cytotoxic potential of quercetin and its derivatives -a biochemical perspective, Food Chem, doi:10.1016/j.foodchem.2020.127508
Huang, Wang, Li, Ren, Zhao et al., Clinical features of patients infected with 2019 novel coronavirus in wuhan, China, Lancet, doi:10.1016/S0140-6736(20)30183-5
Huang, Zhang, Huang, Huang, Huang et al., A network pharmacology strategy to investigate the anti-inflammatory mechanism of luteolin combined with in vitro transcriptomics and proteomics, Int. Immunopharm, doi:10.1016/j.intimp.2020.106727
Lai, Han, Lao, Li, Xiao et al., Phillyrin for covid-19 and influenza co-infection: a potential therapeutic strategy targeting host based on bioinformatics analysis, Front. Pharmacol, doi:10.3389/fphar.2021.754241
Li, Du, Liu, Liu, Zhi et al., A systems pharmacology approach for identifying the multiple mechanisms of action for the rougui-fuzi herb pair in the treatment of cardiocerebral vascular diseases, Evid.-Based Complement Altern. Med, doi:10.1155/2020/5196302
Li, Fan, Jia, Lu, Zhang, Network pharmacology in traditional Chinese medicine, Evid. Based Complement. Alternat. Med, doi:10.1155/2014/138460
Li, Yu, Zhang, Ren, Peluffo et al., Network bioinformatics analysis provides insight into drug repurposing for covid-19, Med Drug Discov, doi:10.1016/j.medidd.2021.100090
Lipsitch, Swerdlow, Finelli, Defining the epidemiology of covid-19 studies needed, N. Engl. J. Med, doi:10.1056/NEJMp2002125
Liu, Cooley, Jarnicki, Borghuis, Nair et al., Fibulin-1c regulates transforming growth factor-beta activation in pulmonary tissue fibrosis, Jci Insight, doi:10.1172/jci.insight.124529
Liu, Gao, Yuan, Yang, Shi et al., Efficacy and safety of integrated traditional Chinese and western medicine for corona virus disease 2019 (covid-19): a systematic review and meta-analysis, Pharmacol. Res, doi:10.1016/j.phrs.2020.104896
Malviya, Fuloria, Verma, Subramaniyan, Sathasivam et al., Commercial utilities and future perspective of nanomedicines, PeerJ, doi:10.7717/peerj.12392
Misawa, Tanaka, Nomaguchi, Nabeshima, Yamada et al., Oral ingestion of aloe vera phytosterols alters hepatic gene expression profiles and ameliorates obesity-associated metabolic disorders in zucker diabetic fatty rats, J. Agric. Food Chem, doi:10.1021/jf204465j
Motallebi, Bhia, Rajani, Bhia, Tabarraei et al., Naringenin: a potential flavonoid phytochemical for cancer therapy, Life Sci, doi:10.1016/j.lfs.2022.120752
Mou, Zhou, Zhou, Liu, Chen et al., A bioinformatics and network pharmacology approach to the mechanisms of action of shenxiao decoction for the treatment of diabetic nephropathy, Phytomedicine, doi:10.1016/j.phymed.2020.153192
Nishikawa, Shimoda, Fereig, Moritaka, Umeda et al., Neospora caninum dense granule protein 7 regulates the pathogenesis of neosporosis by modulating host immune response, Appl. Environ. Microbiol, doi:10.1128/AEM.01350-18
Pan, None, Heliyon
Qin, Cao, Massey, Role of pi3k/akt signaling pathway in cardiac fibrosis, Mol. Cell. Biochem, doi:10.1007/s11010-021-04219-w
Ren, Lu, Qian, Chen, Wu et al., Recent progress regarding kaempferol for the treatment of various diseases, Exp. Ther. Med, doi:10.3892/etm.2019.7886
Ren, Zhang, Wang, Traditional Chinese medicine for covid-19 treatment, Pharmacol. Res, doi:10.1016/j.phrs.2020.104743
Sathasivam, Haris, Fuloria, Fuloria, Malviya et al., Chemical modification of banana trunk fibers for the production of green composites, Polymers, doi:10.3390/polym13121943
Schultheiss, Willscher, Paschold, Gottschick, Klee et al., The il-1beta, il-6, and tnf cytokine triad is associated with post-acute sequelae of covid-19, Cell Rep. Med, doi:10.1016/j.xcrm.2022.100663
Sharmila, Sindhu, Modulation of angiogenesis, proliferative response and apoptosis by beta-sitosterol in rat model of renal carcinogenesis, Indian J. Clin. Biochem, doi:10.1007/s12291-016-0583-8
Shen, Kong, Qiu, Yang, Wang et al., Identification of core genes and outcomes in hepatocellular carcinoma by bioinformatics analysis, J. Cell. Biochem, doi:10.1002/jcb.28290
Song, Zhao, Li, Su, Jiang et al., Interpretation of the traditional Chinese medicine portion of the diagnosis and treatment protocol for corona virus disease 2019 (trial version 7), J. Tradit. Chin. Med, doi:10.19852/j.cnki.jtcm.2020.03.019
Tay, Poh, Renia, Macary, Ng, The trinity of covid-19: immunity, inflammation and intervention, Nat. Rev. Immunol, doi:10.1038/s41577-020-0311-8
Van Der Lugt, Weseler, Vrolijk, Opperhuizen, Bast, Dietary advanced glycation endproducts decrease glucocorticoid sensitivity in vitro, Nutrients, doi:10.3390/nu12020441
Wadman, Couzin-Frankel, Kaiser, Matacic, A rampage through the body, Science, doi:10.1126/science.368.6489.356
Xu, Han, Li, Sun, Wang et al., Effective treatment of severe covid-19 patients with tocilizumab, Proc. Natl. Acad. Sci. U. S. A, doi:10.1073/pnas.2005615117
Xu, Xu, Jiang, Dua, Hansbro et al., SARS-cov-2 induces transcriptional signatures in human lung epithelial cells that promote lung fibrosis, Respir. Res, doi:10.1186/s12931-020-01445-6
Xue, Li, Lu, Li, Crosstalk between circrnas and the pi3k/akt signaling pathway in cancer progression, Signal Transduct. Targeted Ther, doi:10.1038/s41392-021-00788-w
Yang, Li, Lv, Qian, Chen et al., Study on the multitarget mechanism and key active ingredients of herba siegesbeckiae and volatile oil against rheumatoid arthritis based on network pharmacology, Evid. Based Complement. Alternat. Med, doi:10.1155/2019/8957245
Young, Ong, Ng, Anderson, Chia et al., Viral dynamics and immune correlates of coronavirus disease 2019 (covid-19) severity, Clin. Infect. Dis, doi:10.1093/cid/ciaa1280
Zhang, Zhao, Zhang, Wang, Li et al., The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (covid-19): the perspectives of clinical immunologists from China, Clin, Immunol, doi:10.1016/j.clim.2020.108393
Zhao, Lv, Wu, Zeng, Guo et al., Computational systems pharmacology reveals an antiplatelet and neuroprotective mechanism of deng-zhan-xi-xin injection in the treatment of ischemic stroke, Pharmacol. Res, doi:10.1016/j.phrs.2019.104365
Zhao, Tian, Lu, Yang, Zeng et al., Systems pharmacological study illustrates the immune regulation, anti-infection, anti-inflammation, and multi-organ protection mechanism of qing-fei-pai-du decoction in the treatment of covid-19, Phytomedicine, doi:10.1016/j.phymed.2020.153315
{ 'indexed': { 'date-parts': [[2024, 10, 14]], 'date-time': '2024-10-14T03:10:24Z', 'timestamp': 1728875424186}, 'reference-count': 44, 'publisher': 'Elsevier BV', 'issue': '20', 'license': [ { 'start': { 'date-parts': [[2024, 10, 1]], 'date-time': '2024-10-01T00:00:00Z', 'timestamp': 1727740800000}, 'content-version': 'tdm', 'delay-in-days': 0, 'URL': 'https://www.elsevier.com/tdm/userlicense/1.0/'}, { 'start': { 'date-parts': [[2024, 10, 1]], 'date-time': '2024-10-01T00:00:00Z', 'timestamp': 1727740800000}, 'content-version': 'tdm', 'delay-in-days': 0, 'URL': 'https://www.elsevier.com/legal/tdmrep-license'}, { 'start': { 'date-parts': [[2024, 10, 8]], 'date-time': '2024-10-08T00:00:00Z', 'timestamp': 1728345600000}, 'content-version': 'vor', 'delay-in-days': 7, 'URL': 'http://creativecommons.org/licenses/by-nc-nd/4.0/'}], 'content-domain': { 'domain': ['cell.com', 'elsevier.com', 'sciencedirect.com'], 'crossmark-restriction': True}, 'published-print': {'date-parts': [[2024, 10]]}, 'DOI': '10.1016/j.heliyon.2024.e39167', 'type': 'journal-article', 'created': { 'date-parts': [[2024, 10, 11]], 'date-time': '2024-10-11T23:16:33Z', 'timestamp': 1728688593000}, 'page': 'e39167', 'update-policy': 'http://dx.doi.org/10.1016/elsevier_cm_policy', 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': 'Decoding the mechanism of Qingjie formula in the prevention of COVID-19 based on network ' 'pharmacology and molecular docking', 'prefix': '10.1016', 'volume': '10', 'author': [ {'given': 'Yu', 'family': 'Pan', 'sequence': 'first', 'affiliation': []}, {'given': 'Wanchun', 'family': 'Lin', 'sequence': 'additional', 'affiliation': []}, {'given': 'Yueyue', 'family': 'Huang', 'sequence': 'additional', 'affiliation': []}, {'given': 'Jingye', 'family': 'Pan', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0001-7828-4945', 'authenticated-orcid': False, 'given': 'Yihua', 'family': 'Dong', 'sequence': 'additional', 'affiliation': []}], 'member': '78', 'reference': [ { 'issue': '13', 'key': '10.1016/j.heliyon.2024.e39167_bib1', 'doi-asserted-by': 'crossref', 'first-page': '1194', 'DOI': '10.1056/NEJMp2002125', 'article-title': 'Defining the epidemiology of covid-19 studies needed', 'volume': '382', 'author': 'Lipsitch', 'year': '2020', 'journal-title': 'N. Engl. J. Med.'}, { 'issue': '1', 'key': '10.1016/j.heliyon.2024.e39167_bib2', 'doi-asserted-by': 'crossref', 'first-page': '94', 'DOI': '10.1038/s41392-022-00950-y', 'article-title': 'Advances in covid-19 mrna vaccine development', 'volume': '7', 'author': 'Fang', 'year': '2022', 'journal-title': 'Signal Transduct. Targeted Ther.'}, { 'issue': '5', 'key': '10.1016/j.heliyon.2024.e39167_bib3', 'doi-asserted-by': 'crossref', 'first-page': '1825', 'DOI': '10.1002/jmv.27588', 'article-title': 'Omicron variant of SARS-cov-2: genomics, transmissibility, and ' 'responses to current covid-19 vaccines', 'volume': '94', 'author': 'Araf', 'year': '2022', 'journal-title': 'J. Med. Virol.'}, { 'issue': '6', 'key': '10.1016/j.heliyon.2024.e39167_bib4', 'doi-asserted-by': 'crossref', 'first-page': '363', 'DOI': '10.1038/s41577-020-0311-8', 'article-title': 'The trinity of covid-19: immunity, inflammation and intervention', 'volume': '20', 'author': 'Tay', 'year': '2020', 'journal-title': 'Nat. Rev. Immunol.'}, { 'issue': '10223', 'key': '10.1016/j.heliyon.2024.e39167_bib5', 'doi-asserted-by': 'crossref', 'first-page': '497', 'DOI': '10.1016/S0140-6736(20)30183-5', 'article-title': 'Clinical features of patients infected with 2019 novel coronavirus in ' 'wuhan, China', 'volume': '395', 'author': 'Huang', 'year': '2020', 'journal-title': 'Lancet'}, { 'issue': '22', 'key': '10.1016/j.heliyon.2024.e39167_bib6', 'doi-asserted-by': 'crossref', 'first-page': '1739', 'DOI': '10.1161/CIRCULATIONAHA.120.047419', 'article-title': 'Will complement inhibition be the new target in treating ' 'covid-19-related systemic thrombosis?', 'volume': '141', 'author': 'Campbell', 'year': '2020', 'journal-title': 'Circulation'}, { 'issue': '6489', 'key': '10.1016/j.heliyon.2024.e39167_bib7', 'doi-asserted-by': 'crossref', 'first-page': '356', 'DOI': '10.1126/science.368.6489.356', 'article-title': 'A rampage through the body', 'volume': '368', 'author': 'Wadman', 'year': '2020', 'journal-title': 'Science'}, { 'key': '10.1016/j.heliyon.2024.e39167_bib8', 'article-title': 'The use of anti-inflammatory drugs in the treatment of people with ' 'severe coronavirus disease 2019 (covid-19): the perspectives of ' 'clinical immunologists from China, Clin', 'volume': '214', 'author': 'Zhang', 'year': '2020', 'journal-title': 'Immunol.'}, { 'key': '10.1016/j.heliyon.2024.e39167_bib9', 'doi-asserted-by': 'crossref', 'DOI': '10.7717/peerj.12392', 'article-title': 'Commercial utilities and future perspective of nanomedicines', 'volume': '9', 'author': 'Malviya', 'year': '2021', 'journal-title': 'PeerJ'}, { 'key': '10.1016/j.heliyon.2024.e39167_bib10', 'article-title': 'Traditional Chinese medicine for covid-19 treatment', 'volume': '155', 'author': 'Ren', 'year': '2020', 'journal-title': 'Pharmacol. Res.'}, { 'issue': '3', 'key': '10.1016/j.heliyon.2024.e39167_bib11', 'first-page': '497', 'article-title': 'Interpretation of the traditional Chinese medicine portion of the ' 'diagnosis and treatment protocol for corona virus disease 2019 (trial ' 'version 7)', 'volume': '40', 'author': 'Song', 'year': '2020', 'journal-title': 'J. Tradit. Chin. Med.'}, { 'key': '10.1016/j.heliyon.2024.e39167_bib12', 'article-title': 'Network pharmacology in traditional Chinese medicine', 'volume': '2014', 'author': 'Li', 'year': '2014', 'journal-title': 'Evid. Based Complement. Alternat. Med.'}, { 'key': '10.1016/j.heliyon.2024.e39167_bib13', 'doi-asserted-by': 'crossref', 'DOI': '10.1016/j.phymed.2020.153192', 'article-title': 'A bioinformatics and network pharmacology approach to the mechanisms of ' 'action of shenxiao decoction for the treatment of diabetic nephropathy', 'volume': '69', 'author': 'Mou', 'year': '2020', 'journal-title': 'Phytomedicine'}, { 'key': '10.1016/j.heliyon.2024.e39167_bib14', 'doi-asserted-by': 'crossref', 'DOI': '10.1016/j.phrs.2019.104365', 'article-title': 'Computational systems pharmacology reveals an antiplatelet and ' 'neuroprotective mechanism of deng-zhan-xi-xin injection in the ' 'treatment of ischemic stroke', 'volume': '147', 'author': 'Zhao', 'year': '2019', 'journal-title': 'Pharmacol. Res.'}, { 'issue': '1', 'key': '10.1016/j.heliyon.2024.e39167_bib15', 'doi-asserted-by': 'crossref', 'DOI': '10.1038/s41598-018-34509-1', 'article-title': 'Systems pharmacology reveals the unique mechanism features of shenzhu ' 'capsule for treatment of ulcerative colitis in comparison with ' 'synthetic drugs', 'volume': '8', 'author': 'Feng', 'year': '2018', 'journal-title': 'Sci. Rep.'}, { 'issue': '1', 'key': '10.1016/j.heliyon.2024.e39167_bib16', 'doi-asserted-by': 'crossref', 'first-page': '182', 'DOI': '10.1186/s12931-020-01445-6', 'article-title': 'SARS-cov-2 induces transcriptional signatures in human lung epithelial ' 'cells that promote lung fibrosis', 'volume': '21', 'author': 'Xu', 'year': '2020', 'journal-title': 'Respir. Res.'}, { 'key': '10.1016/j.heliyon.2024.e39167_bib17', 'doi-asserted-by': 'crossref', 'DOI': '10.1016/j.phymed.2020.153315', 'article-title': 'Systems pharmacological study illustrates the immune regulation, ' 'anti-infection, anti-inflammation, and multi-organ protection mechanism ' 'of qing-fei-pai-du decoction in the treatment of covid-19', 'volume': '85', 'author': 'Zhao', 'year': '2021', 'journal-title': 'Phytomedicine'}, { 'key': '10.1016/j.heliyon.2024.e39167_bib18', 'article-title': 'Network bioinformatics analysis provides insight into drug repurposing ' 'for covid-19', 'volume': '10', 'author': 'Li', 'year': '2021', 'journal-title': 'Med Drug Discov'}, { 'issue': '2', 'key': '10.1016/j.heliyon.2024.e39167_bib19', 'doi-asserted-by': 'crossref', 'first-page': '623', 'DOI': '10.1021/acs.jproteome.8b00702', 'article-title': 'Cytoscape stringapp: network analysis and visualization of proteomics ' 'data', 'volume': '18', 'author': 'Doncheva', 'year': '2019', 'journal-title': 'J. Proteome Res.'}, { 'key': '10.1016/j.heliyon.2024.e39167_bib20', 'doi-asserted-by': 'crossref', 'DOI': '10.1155/2019/8957245', 'article-title': 'Study on the multitarget mechanism and key active ingredients of herba ' 'siegesbeckiae and volatile oil against rheumatoid arthritis based on ' 'network pharmacology', 'volume': '2019', 'author': 'Yang', 'year': '2019', 'journal-title': 'Evid. Based Complement. Alternat. Med.'}, { 'issue': '6', 'key': '10.1016/j.heliyon.2024.e39167_bib21', 'doi-asserted-by': 'crossref', 'first-page': '10069', 'DOI': '10.1002/jcb.28290', 'article-title': 'Identification of core genes and outcomes in hepatocellular carcinoma ' 'by bioinformatics analysis', 'volume': '120', 'author': 'Shen', 'year': '2019', 'journal-title': 'J. Cell. Biochem.'}, { 'key': '10.1016/j.heliyon.2024.e39167_bib22', 'article-title': 'A systems pharmacology approach for identifying the multiple mechanisms ' 'of action for the rougui-fuzi herb pair in the treatment of ' 'cardiocerebral vascular diseases', 'volume': '2020', 'author': 'Li', 'year': '2020', 'journal-title': 'Evid.-Based Complement Altern. Med.'}, { 'key': '10.1016/j.heliyon.2024.e39167_bib23', 'doi-asserted-by': 'crossref', 'DOI': '10.1016/j.phrs.2020.104896', 'article-title': 'Efficacy and safety of integrated traditional Chinese and western ' 'medicine for corona virus disease 2019 (covid-19): a systematic review ' 'and meta-analysis', 'volume': '158', 'author': 'Liu', 'year': '2020', 'journal-title': 'Pharmacol. Res.'}, { 'key': '10.1016/j.heliyon.2024.e39167_bib24', 'doi-asserted-by': 'crossref', 'DOI': '10.1016/j.foodchem.2020.127508', 'article-title': 'New insights into antiviral and cytotoxic potential of quercetin and ' 'its derivatives - a biochemical perspective', 'volume': '334', 'author': 'Gansukh', 'year': '2021', 'journal-title': 'Food Chem.'}, { 'key': '10.1016/j.heliyon.2024.e39167_bib25', 'doi-asserted-by': 'crossref', 'first-page': '1451', 'DOI': '10.3389/fimmu.2020.01451', 'article-title': 'Quercetin and vitamin c: an experimental, synergistic therapy for the ' 'prevention and treatment of SARS-cov-2 related disease (covid-19)', 'volume': '11', 'author': 'Colunga', 'year': '2020', 'journal-title': 'Front. Immunol.'}, { 'issue': '2', 'key': '10.1016/j.heliyon.2024.e39167_bib26', 'doi-asserted-by': 'crossref', 'DOI': '10.3390/nu12020441', 'article-title': 'Dietary advanced glycation endproducts decrease glucocorticoid ' 'sensitivity in vitro', 'volume': '12', 'author': 'van der Lugt', 'year': '2020', 'journal-title': 'Nutrients'}, { 'issue': '17', 'key': '10.1016/j.heliyon.2024.e39167_bib27', 'doi-asserted-by': 'crossref', 'first-page': '6792', 'DOI': '10.1080/07391102.2020.1803968', 'article-title': 'In silico investigation of phytoconstituents from indian medicinal herb ' "'tinospora cordifolia (giloy)' against SARS-cov-2 (covid-19) by " 'molecular dynamics approach', 'volume': '39', 'author': 'Chowdhury', 'year': '2021', 'journal-title': 'J. Biomol. Struct. Dyn.'}, { 'issue': '11', 'key': '10.1016/j.heliyon.2024.e39167_bib28', 'doi-asserted-by': 'crossref', 'first-page': '2799', 'DOI': '10.1021/jf204465j', 'article-title': 'Oral ingestion of aloe vera phytosterols alters hepatic gene expression ' 'profiles and ameliorates obesity-associated metabolic disorders in ' 'zucker diabetic fatty rats', 'volume': '60', 'author': 'Misawa', 'year': '2012', 'journal-title': 'J. Agric. Food Chem.'}, { 'issue': '6', 'key': '10.1016/j.heliyon.2024.e39167_bib29', 'doi-asserted-by': 'crossref', 'first-page': '1067', 'DOI': '10.1007/s00210-020-01810-8', 'article-title': 'Beta-sitosterol attenuates carbon tetrachloride-induced oxidative ' 'stress and chronic liver injury in rats', 'volume': '393', 'author': 'Devaraj', 'year': '2020', 'journal-title': 'Naunyn-Schmiedeberg’s Arch. Pharmacol.'}, { 'issue': '2', 'key': '10.1016/j.heliyon.2024.e39167_bib30', 'doi-asserted-by': 'crossref', 'first-page': '142', 'DOI': '10.1007/s12291-016-0583-8', 'article-title': 'Modulation of angiogenesis, proliferative response and apoptosis by ' 'beta-sitosterol in rat model of renal carcinogenesis', 'volume': '32', 'author': 'Sharmila', 'year': '2017', 'journal-title': 'Indian J. Clin. Biochem.'}, { 'issue': '4', 'key': '10.1016/j.heliyon.2024.e39167_bib31', 'first-page': '2759', 'article-title': 'Recent progress regarding kaempferol for the treatment of various ' 'diseases', 'volume': '18', 'author': 'Ren', 'year': '2019', 'journal-title': 'Exp. Ther. Med.'}, { 'issue': '16', 'key': '10.1016/j.heliyon.2024.e39167_bib32', 'doi-asserted-by': 'crossref', 'DOI': '10.1172/jci.insight.124529', 'article-title': 'Fibulin-1c regulates transforming growth factor-beta activation in ' 'pulmonary tissue fibrosis', 'volume': '5', 'author': 'Liu', 'year': '2019', 'journal-title': 'Jci Insight'}, { 'issue': '7', 'key': '10.1016/j.heliyon.2024.e39167_bib33', 'doi-asserted-by': 'crossref', 'first-page': '817', 'DOI': '10.1002/mc.22531', 'article-title': 'Differential ability of formononetin to stimulate proliferation of ' 'endothelial cells and breast cancer cells via a feedback loop involving ' 'MicroRNA-375, RASD1, and ERα', 'volume': '57', 'author': 'Chen', 'year': '2018', 'journal-title': 'Mol. Carcinog.'}, { 'key': '10.1016/j.heliyon.2024.e39167_bib34', 'doi-asserted-by': 'crossref', 'DOI': '10.1016/j.lfs.2022.120752', 'article-title': 'Naringenin: a potential flavonoid phytochemical for cancer therapy', 'volume': '305', 'author': 'Motallebi', 'year': '2022', 'journal-title': 'Life Sci.'}, { 'issue': '12', 'key': '10.1016/j.heliyon.2024.e39167_bib35', 'doi-asserted-by': 'crossref', 'DOI': '10.3390/polym13121943', 'article-title': 'Chemical modification of banana trunk fibers for the production of ' 'green composites', 'volume': '13', 'author': 'Sathasivam', 'year': '2021', 'journal-title': 'Polymers'}, { 'key': '10.1016/j.heliyon.2024.e39167_bib36', 'doi-asserted-by': 'crossref', 'DOI': '10.1016/j.intimp.2020.106727', 'article-title': 'A network pharmacology strategy to investigate the anti-inflammatory ' 'mechanism of luteolin combined with in vitro transcriptomics and ' 'proteomics', 'volume': '86', 'author': 'Huang', 'year': '2020', 'journal-title': 'Int. Immunopharm.'}, { 'issue': '20', 'key': '10.1016/j.heliyon.2024.e39167_bib37', 'doi-asserted-by': 'crossref', 'first-page': '10970', 'DOI': '10.1073/pnas.2005615117', 'article-title': 'Effective treatment of severe covid-19 patients with tocilizumab', 'volume': '117', 'author': 'Xu', 'year': '2020', 'journal-title': 'Proc. Natl. Acad. Sci. U. S. A.'}, { 'issue': '6', 'key': '10.1016/j.heliyon.2024.e39167_bib38', 'article-title': 'The il-1beta, il-6, and tnf cytokine triad is associated with ' 'post-acute sequelae of covid-19', 'volume': '3', 'author': 'Schultheiss', 'year': '2022', 'journal-title': 'Cell Rep. Med'}, { 'issue': '9', 'key': '10.1016/j.heliyon.2024.e39167_bib39', 'doi-asserted-by': 'crossref', 'first-page': 'e2932', 'DOI': '10.1093/cid/ciaa1280', 'article-title': 'Viral dynamics and immune correlates of coronavirus disease 2019 ' '(covid-19) severity', 'volume': '73', 'author': 'Young', 'year': '2021', 'journal-title': 'Clin. Infect. Dis.'}, { 'issue': '1', 'key': '10.1016/j.heliyon.2024.e39167_bib40', 'doi-asserted-by': 'crossref', 'first-page': '168', 'DOI': '10.1016/j.jhep.2020.09.031', 'article-title': 'Covid-19: discovery, diagnostics and drug development', 'volume': '74', 'author': 'Asselah', 'year': '2021', 'journal-title': 'J. Hepatol.'}, { 'issue': '11', 'key': '10.1016/j.heliyon.2024.e39167_bib41', 'doi-asserted-by': 'crossref', 'first-page': '4045', 'DOI': '10.1007/s11010-021-04219-w', 'article-title': 'Role of pi3k/akt signaling pathway in cardiac fibrosis', 'volume': '476', 'author': 'Qin', 'year': '2021', 'journal-title': 'Mol. Cell. Biochem.'}, { 'issue': '1', 'key': '10.1016/j.heliyon.2024.e39167_bib42', 'doi-asserted-by': 'crossref', 'first-page': '400', 'DOI': '10.1038/s41392-021-00788-w', 'article-title': 'Crosstalk between circrnas and the pi3k/akt signaling pathway in cancer ' 'progression', 'volume': '6', 'author': 'Xue', 'year': '2021', 'journal-title': 'Signal Transduct. Targeted Ther.'}, { 'key': '10.1016/j.heliyon.2024.e39167_bib43', 'doi-asserted-by': 'crossref', 'DOI': '10.3389/fphar.2021.754241', 'article-title': 'Phillyrin for covid-19 and influenza co-infection: a potential ' 'therapeutic strategy targeting host based on bioinformatics analysis', 'volume': '12', 'author': 'Lai', 'year': '2021', 'journal-title': 'Front. Pharmacol.'}, { 'issue': '18', 'key': '10.1016/j.heliyon.2024.e39167_bib44', 'doi-asserted-by': 'crossref', 'DOI': '10.1128/AEM.01350-18', 'article-title': 'Neospora caninum dense granule protein 7 regulates the pathogenesis of ' 'neosporosis by modulating host immune response', 'volume': '84', 'author': 'Nishikawa', 'year': '2018', 'journal-title': 'Appl. Environ. Microbiol.'}], 'container-title': 'Heliyon', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://api.elsevier.com/content/article/PII:S2405844024151985?httpAccept=text/xml', 'content-type': 'text/xml', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://api.elsevier.com/content/article/PII:S2405844024151985?httpAccept=text/plain', 'content-type': 'text/plain', 'content-version': 'vor', 'intended-application': 'text-mining'}], 'deposited': { 'date-parts': [[2024, 10, 14]], 'date-time': '2024-10-14T02:53:50Z', 'timestamp': 1728874430000}, 'score': 1, 'resource': {'primary': {'URL': 'https://linkinghub.elsevier.com/retrieve/pii/S2405844024151985'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2024, 10]]}, 'references-count': 44, 'journal-issue': {'issue': '20', 'published-print': {'date-parts': [[2024, 10]]}}, 'alternative-id': ['S2405844024151985'], 'URL': 'http://dx.doi.org/10.1016/j.heliyon.2024.e39167', 'relation': {}, 'ISSN': ['2405-8440'], 'subject': [], 'container-title-short': 'Heliyon', 'published': {'date-parts': [[2024, 10]]}, 'assertion': [ {'value': 'Elsevier', 'name': 'publisher', 'label': 'This article is maintained by'}, { 'value': 'Decoding the mechanism of Qingjie formula in the prevention of COVID-19 based ' 'on network pharmacology and molecular docking', 'name': 'articletitle', 'label': 'Article Title'}, {'value': 'Heliyon', 'name': 'journaltitle', 'label': 'Journal Title'}, { 'value': 'https://doi.org/10.1016/j.heliyon.2024.e39167', 'name': 'articlelink', 'label': 'CrossRef DOI link to publisher maintained version'}, {'value': 'article', 'name': 'content_type', 'label': 'Content Type'}, {'value': '© 2024 Published by Elsevier Ltd.', 'name': 'copyright', 'label': 'Copyright'}], 'article-number': 'e39167'}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit