Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
Abstract
All quercetin studies
Meta analysis
 
Feedback
Home
next
study
previous
study
c19early.org COVID-19 treatment researchQuercetinQuercetin (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

Quercetin inhibited LPS-induced cytokine storm by interacting with the AKT1-FoxO1 and Keap1-Nrf2 signaling pathway in macrophages

Xu et al., Scientific Reports, doi:10.1038/s41598-024-71569-y
Sep 2024  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Quercetin for COVID-19
24th treatment shown to reduce risk in July 2021, now with p = 0.0031 from 11 studies.
No treatment is 100% effective. Protocols combine treatments.
5,100+ studies for 109 treatments. c19early.org
In Silico, In Vitro, and mouse study showing that quercetin inhibits LPS-induced cytokine storm by interacting with the AKT1-FoxO1 and Keap1-Nrf2 signaling pathways in macrophages. Authors found quercetin effectively suppressed the overexpression of pro-inflammatory mediators like IL-6, TNF-α, IL-1β, and MCP-1 in LPS-stimulated Raw264.7 cells and in vivo in C57BL/6 mice. Quercetin regulated the AKT1-FoxO1 pathway by increasing AKT1 phosphorylation and inhibiting FoxO1 nuclear translocation, thereby reducing inflammatory gene expression. It also activated the Keap1-Nrf2 pathway, decreasing intracellular reactive oxygen species (ROS) levels and oxidative stress. Molecular docking showed quercetin had the strongest binding affinity to AKT1 among potential targets. In mice, quercetin pretreatment reduced inflammatory factors in bronchoalveolar lavage fluid and ameliorated LPS-induced lung tissue damage. The study suggests quercetin's potential as a therapeutic agent for cytokine storm, by modulating key inflammatory and antioxidant pathways in macrophages.
Bioavailability. Quercetin has low bioavailability and studies typically use advanced formulations to improve bioavailability which may be required to reach therapeutic concentrations.
68 preclinical studies support the efficacy of quercetin for COVID-19:
In Silico studies predict inhibition of SARS-CoV-2, or minimization of side effects, with quercetin or metabolites via binding to the spikeA,6,7,19,21,22,27,35,36,38,39,59,60, MproB,4,6,8,10,12,14,15,17,20,21,27,31,33-35,39,40,42,60,61, RNA-dependent RNA polymeraseC,6,29, PLproD,34,42, ACE2E,19,20,25,34,38,60, TMPRSS2F,19, helicaseG,26,31, endoribonucleaseH,36, NSP16/10I,3, cathepsin LJ,23, Wnt-3K,19, FZDL,19, LRP6M,19, ezrinN,37, ADRPO,35, NRP1P,38, EP300Q,13, PTGS2R,20, HSP90AA1S,13,20, matrix metalloproteinase 9T,28, IL-6U,18,32, IL-10V,18, VEGFAW,32, and RELAX,32 proteins. In Vitro studies demonstrate inhibition of the MproB,12,43,48,56 protein, and inhibition of spike-ACE2 interactionY,44. In Vitro studies demonstrate efficacy in Calu-3Z,47, A549AA,18, HEK293-ACE2+AB,55, Huh-7AC,22, Caco-2AD,46, Vero E6AE,16,39,46, mTECAF,49, and RAW264.7AG,49 cells. Animal studies demonstrate efficacy in K18-hACE2 miceAH,52, db/db miceAI,49,58, BALB/c miceAJ,57, and rats62. Quercetin reduced proinflammatory cytokines and protected lung and kidney tissue against LPS-induced damage in mice57, inhibits LPS-induced cytokine storm by modulating key inflammatory and antioxidant pathways in macrophages2, and inhibits SARS-CoV-2 ORF3a ion channel activity, which contributes to viral pathogenicity and cytotoxicity51.
Xu et al., 8 Sep 2024, China, peer-reviewed, 11 authors. Contact: yicheng6834@126.com, lzjradiotherapy@163.com, huangying68@163.com.
This PaperQuercetinAll
Quercetin inhibited LPS-induced cytokine storm by interacting with the AKT1-FoxO1 and Keap1-Nrf2 signaling pathway in macrophages
Jingyi Xu, Yue Li, Xi Yang, Hong Li, Xi Xiao, Jia You, Huawei Li, Lingnan Zheng, Cheng Yi, Zhaojun Li, Ying Huang
Scientific Reports, doi:10.1038/s41598-024-71569-y
Cytokine storm (CS) emerges as an exacerbated inflammatory response triggered by various factors such as pathogens and excessive immunotherapy, posing a significant threat to life if left unchecked. Quercetin, a monomer found in traditional Chinese medicine, exhibits notable anti-inflammatory and antiviral properties. This study endeavors to explore whether quercetin intervention could mitigate CS through a combination of network pharmacology analysis and experimental validation. First, common target genes and potential mechanisms affected by quercetin and CS were identified through network pharmacology, and molecular docking experiments confirmed quercetin and core targets. Subsequently, in vitro experiments of Raw264.7 cells stimulated by lipopolysaccharide (LPS) showed that quercetin could effectively inhibit the overexpression of pro-inflammatory mediators and regulate the AKT1-FoxO1 signaling pathway. At the same time, quercetin can reduce ROS through the Keap1-Nrf2 signaling pathway. In addition, in vivo studies of C57BL/6 mice injected with LPS further confirmed quercetin's inhibitory effect on CS. In conclusion, this investigation elucidated novel target genes and signaling pathways implicated in the therapeutic effects of quercetin on CS. Moreover, it provided compelling evidence supporting the efficacy of quercetin in reversing LPS-induced CS, primarily through the regulation of the AKT1-FoxO1 and Keap1-Nrf2 signaling pathways.
Author contributions Xu, Li, Yang, Li, Xiao, You, Li, Zheng, Li, Yi, and Huang contributed to this study. Xu, Li,ang contributed equally to this study. Yi, Li andHuang directed the design of this study, supervised its implementation and revised draft. Competing interests The authors declare no competing interests.
References
Addeo, Obeid, Friedlaender, COVID-19 and lung cancer: Risks, mechanisms and treatment interactions, J. Immuno-Therapy Cancer
Ansari, Abdul, Joshi, Opii, Butterfield, Protective effect of quercetin in primary neurons against Aβ(1-42): Relevance to Alzheimer's disease, J. Nutr. Biochem
Arranz, Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization, Proc. Natl. Acad. Sci
Brahmer, Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American society of clinical oncology clinical practice guideline, J. Clin. Oncol
Cai, The neutrophil-to-lymphocyte ratio determines clinical efficacy of corticosteroid therapy in patients with COVID-19, Cell Metabol
Chan, Murphy, Reactive oxygen species mediate endotoxin-induced human dermal endothelial NF-κB Activation, J. Surg. Res
Cheng, Gu, CircRNA_09505 aggravates inflammation and joint damage in collagen-induced arthritis mice via miR-6089/AKT1/NF-κBaxis, Cell Death & Disease, doi:10.1038/s41419-020-03038-z
Das, Quercetin alleviates inflammation after short-term treatment in high-fat-fed mice, Food Funct
Fajgenbaum, Longo, June, Cytokine storm, N. Engl. J. Med
Fan, FoxO1 regulates Tlr4 inflammatory pathway signalling in macrophages, EMBO J
Granato, Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways, J. Nutr. Biochem
Han, FoxO1 regulates TLR4/MyD88/MD2-NF-κB inflammatory signalling in mucosal barrier injury of inflammatory bowel disease, J. Cell Mol. Med
Ip, Hydroxychloroquine and tocilizumab therapy in COVID-19 patients-An observational study, Plos One
Jarczak, Nierhaus, Cytokine storm-definition, causes, and implications, Int. J. Mol. Sci
Kanehisa, Furumichi, Sato, Kawashima, Ishiguro-Watanabe, KEGG for taxonomy-based analysis of pathways and genomes, Nucleic Acids Res
Kanehisa, Goto, KEGG: Kyoto encyclopedia of genes and genomes, Nucleic Acids Res
Kanehisa, Toward understanding the origin and evolution of cellular organisms, Scientific Reports, doi:10.1038/s41598-024-71569-ywww.nature.com/scientificreports/
Kang, Melatonin attenuates LPS-induced pyroptosis in acute lung injury by inhibiting NLRP3-GSDMD pathway via activating Nrf2/HO-1 signaling axis, Int. Immunopharmacol
Karki, Kanneganti, The 'cytokine storm': Molecular mechanisms and therapeutic prospects, Trends Immunol
Kim, Rengyolone inhibits inducible nitric oxide synthase expression and nitric oxide production by down-regulation of NF-κB and p38 MAP kinase activity in LPS-stimulated RAW 264.7 cells, Biochem. Pharmacol
Knoll, Schultze, Schulte-Schrepping, Monocytes and Macrophages in COVID-19, Front. Immunol
Lee, Current concepts in the diagnosis and management of cytokine release syndrome, Blood
Lee, Jang, Park, Yang, An update on the role of Nrf2 in respiratory disease: Molecular mechanisms and therapeutic approaches, Int. J. Mol. Sci
Li, Glycyrrhetinic acid: A potential drug for the treatment of COVID-19 cytokine storm, Phytomedicine
Lin, Curcumin attenuates oxidative stress in RAW264.7 cells by increasing the activity of antioxidant enzymes and activating the Nrf2-Keap1 pathway, PloS one
Lin, Zhao, Fu, Xiong, Zhang et al., ISOC1 Modulates Inflammatory Responses in Macrophages through the AKT1/PEX11B/Peroxisome Pathway, Molecules
Liu, Cheng, Roberts, Zhao, Targeting the phosphoinositide 3-kinase pathway in cancer, Nat. Rev. Drug Discov
Liu, Mollugin prevents CLP-induced sepsis in mice by inhibiting TAK1-NF-κB/MAPKs pathways and activating Keap1-Nrf2 pathway in macrophages, Int. Immunopharmacol
Luo, Astaxanthin attenuates ferroptosis via Keap1-Nrf2/HO-1 signaling pathways in LPS-induced acute lung injury, Scientific Reports, doi:10.1038/s41598-024-71569-ywww.nature.com/scientificreports/
Martin, Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3, Nat. Immunol
Poojary, Penberthy, Buckley, Arandjelovic, Ravichandran, Ex vivo modulation of the Foxo1 phosphorylation state does not lead to dysfunction of T regulatory cells, Plos One
Pooladanda, Thatikonda, Muvvala, Devabattula, Godugu, BRD4 targeting nanotherapy prevents lipopolysaccharide induced acute respiratory distress syndrome, Int. J. Pharmaceut
Prescott, Rice, Corticosteroids in COVID-19 ARDS: Evidence and hope during the pandemic, Jama
Puzanov, Managing toxicities associated with immune checkpoint inhibitors: Consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group, J. ImmunoTherapy Cancer
Ramos-Casals, Immune-related adverse events of checkpoint inhibitors, Nat. Rev. Dis. Prim
Riol-Blanco, Immunological synapse formation inhibits, via NF-κB and FOXO1, the apoptosis of dendritic cells, Nat. Immunol
Rosas, Tocilizumab in hospitalized patients with severe Covid-19 pneumonia, N. Engl. J. Med
Savai, Pro-proliferative and inflammatory signaling converge on FoxO1 transcription factor in pulmonary hypertension, Nat. Med
Seiler, FOXO transcription factors regulate innate immune mechanisms in respiratory epithelial cells, J. Immunol
Shapouri-Moghaddam, Macrophage plasticity, polarization, and function in health and disease, J. Cell. Physiol
Simon, Fernández, Early lipopolysaccharide-induced reactive oxygen species production evokes necrotic cell death in human umbilical vein endothelial cells, J. Hypertens
Su, FoxO1 links insulin resistance to proinflammatory cytokine IL-1β production in macrophages, Diabetes
Sul, Ra, Quercetin prevents LPS-induced oxidative stress and inflammation by modulating NOX2/ROS/NF-kB in lung epithelial cells, Molecules, doi:10.3390/molecules26226949
Sullivan, FoxO1 integrates direct and indirect effects of insulin on hepatic glucose production and glucose utilization, Nat. Commun
Sun, Schisandrin attenuates lipopolysaccharide-induced lung injury by regulating TLR-4 and Akt/FoxO1 signaling pathways, Front. Physiol
Suryavanshi, Zaiachuk, Pryimak, Kovalchuk, Kovalchuk, Cannabinoids alleviate the LPS-induced cytokine storm via attenuating NLRP3 inflammasome signaling and TYK2-mediated STAT3 signaling pathways in vitro, Cells
Tan, The reactive oxygen species in macrophage polarization: Reflecting its dual role in progression and treatment of human diseases, Oxid. Med. Cell. Longevity
Tay, Cytokine release syndrome in cancer patients receiving immune checkpoint inhibitors: A case series of 25 patients and review of the literature, Front. Immunol
Wang, Wu, Zhang, Resveratrol Targets AKT1 to Inhibit Inflammasome Activation in Cardiomyocytes Under Acute Sympathetic Stress, Frontiers in Pharmacology, doi:10.3389/fphar.2022.818127
Webb, Brunet, FOXO transcription factors: Key regulators of cellular quality control, Trends Biochem. Sci
Wu, Quercetin as an antiviral agent inhibits influenza A virus (IAV) entry, Viruses
Xu, Yang, None
Yamamoto, Kensler, Motohashi, The KEAP1-NRF2 system: A thiol-based sensor-effector apparatus for maintaining redox homeostasis, Physiol. Rev
Yang, Myrsine seguinii ethanolic extract and its active component quercetin inhibit macrophage activation and peritonitis induced by LPS by targeting to Syk/Src/IRAK-1, J. Ethnopharmacol
Yang, TLR3-triggered reactive oxygen species contribute to inflammatory responses by activating signal transducer and activator of transcription-1, J. Immunol
You, Inspiration for COVID-19 treatment: Network analysis and experimental validation of baicalin for cytokine storm, Front. Pharmacol
Zhu, Brd4 inhibition ameliorates Pyocyanin-mediated macrophage dysfunction via transcriptional repression of reactive oxygen and nitrogen free radical pathways, Cell Death Dis
Zhu, Clinical value of immune-inflammatory parameters to assess the severity of coronavirus disease 2019, Int. J. Infect. Dis
{ 'indexed': {'date-parts': [[2024, 9, 9]], 'date-time': '2024-09-09T00:22:36Z', 'timestamp': 1725841356755}, 'reference-count': 57, 'publisher': 'Springer Science and Business Media LLC', 'issue': '1', 'license': [ { 'start': { 'date-parts': [[2024, 9, 8]], 'date-time': '2024-09-08T00:00:00Z', 'timestamp': 1725753600000}, 'content-version': 'tdm', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by-nc-nd/4.0'}, { 'start': { 'date-parts': [[2024, 9, 8]], 'date-time': '2024-09-08T00:00:00Z', 'timestamp': 1725753600000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by-nc-nd/4.0'}], 'funder': [ { 'DOI': '10.13039/501100013365', 'name': 'West China Hospital, Sichuan University', 'doi-asserted-by': 'publisher', 'award': ['2022NSFSC1379', 'HX-2019-nCoV-069'], 'id': [{'id': '10.13039/501100013365', 'id-type': 'DOI', 'asserted-by': 'publisher'}]}, {'name': '四川大学华西医院,中国', 'award': ['2022YFSY0054']}, { 'name': 'Hainan Affiliated Hospital of Hainan Medical University, China', 'award': ['NO.82260490']}, {'name': 'Hainan Affiliated Hospital of Hainan Medical University', 'award': ['NO.821QN394']}, { 'DOI': '10.13039/501100004912', 'name': 'Sichuan University', 'doi-asserted-by': 'publisher', 'award': ['2020-YF05-00059-SN'], 'id': [{'id': '10.13039/501100004912', 'id-type': 'DOI', 'asserted-by': 'publisher'}]}], 'content-domain': {'domain': ['link.springer.com'], 'crossmark-restriction': False}, 'DOI': '10.1038/s41598-024-71569-y', 'type': 'journal-article', 'created': {'date-parts': [[2024, 9, 8]], 'date-time': '2024-09-08T11:01:49Z', 'timestamp': 1725793309000}, 'update-policy': 'http://dx.doi.org/10.1007/springer_crossmark_policy', 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': 'Quercetin inhibited LPS-induced cytokine storm by interacting with the AKT1-FoxO1 and Keap1-Nrf2 ' 'signaling pathway in macrophages', 'prefix': '10.1038', 'volume': '14', 'author': [ {'given': 'Jingyi', 'family': 'Xu', 'sequence': 'first', 'affiliation': []}, {'given': 'Yue', 'family': 'Li', 'sequence': 'additional', 'affiliation': []}, {'given': 'Xi', 'family': 'Yang', 'sequence': 'additional', 'affiliation': []}, {'given': 'Hong', 'family': 'Li', 'sequence': 'additional', 'affiliation': []}, {'given': 'Xi', 'family': 'Xiao', 'sequence': 'additional', 'affiliation': []}, {'given': 'Jia', 'family': 'You', 'sequence': 'additional', 'affiliation': []}, {'given': 'Huawei', 'family': 'Li', 'sequence': 'additional', 'affiliation': []}, {'given': 'Lingnan', 'family': 'Zheng', 'sequence': 'additional', 'affiliation': []}, {'given': 'Cheng', 'family': 'Yi', 'sequence': 'additional', 'affiliation': []}, {'given': 'Zhaojun', 'family': 'Li', 'sequence': 'additional', 'affiliation': []}, {'given': 'Ying', 'family': 'Huang', 'sequence': 'additional', 'affiliation': []}], 'member': '297', 'published-online': {'date-parts': [[2024, 9, 8]]}, 'reference': [ { 'issue': '23', 'key': '71569_CR1', 'doi-asserted-by': 'publisher', 'first-page': '2255', 'DOI': '10.1056/NEJMra2026131', 'volume': '383', 'author': 'DC Fajgenbaum', 'year': '2020', 'unstructured': 'Fajgenbaum, D. C., Longo, D. L. & June, C. H. Cytokine storm. N. Engl. ' 'J. Med. 383(23), 2255–2273 (2020).', 'journal-title': 'N. Engl. J. Med.'}, { 'issue': '8', 'key': '71569_CR2', 'doi-asserted-by': 'publisher', 'first-page': '681', 'DOI': '10.1016/j.it.2021.06.001', 'volume': '42', 'author': 'R Karki', 'year': '2021', 'unstructured': 'Karki, R. & Kanneganti, T.-D. The ‘cytokine storm’: Molecular mechanisms ' 'and therapeutic prospects. Trends Immunol. 42(8), 681–705 (2021).', 'journal-title': 'Trends Immunol.'}, { 'issue': '9', 'key': '71569_CR3', 'doi-asserted-by': 'publisher', 'first-page': '6425', 'DOI': '10.1002/jcp.26429', 'volume': '233', 'author': 'A Shapouri-Moghaddam', 'year': '2018', 'unstructured': 'Shapouri-Moghaddam, A. et al. Macrophage plasticity, polarization, and ' 'function in health and disease. J. Cell. Physiol. 233(9), 6425–6440 ' '(2018).', 'journal-title': 'J. Cell. Physiol.'}, { 'issue': '4', 'key': '71569_CR4', 'doi-asserted-by': 'publisher', 'first-page': '269', 'DOI': '10.1016/j.jnutbio.2008.03.002', 'volume': '20', 'author': 'MA Ansari', 'year': '2009', 'unstructured': 'Ansari, M. A., Abdul, H. M., Joshi, G., Opii, W. O. & Butterfield, D. A. ' 'Protective effect of quercetin in primary neurons against Aβ(1–42): ' 'Relevance to Alzheimer’s disease. J. Nutr. Biochem. 20(4), 269–275 ' '(2009).', 'journal-title': 'J. Nutr. Biochem.'}, { 'key': '71569_CR5', 'doi-asserted-by': 'publisher', 'first-page': '6', 'DOI': '10.1039/c3fo30241e', 'volume': '4', 'author': 'N Das', 'year': '2013', 'unstructured': 'Das, N. et al. Quercetin alleviates inflammation after short-term ' 'treatment in high-fat-fed mice. Food Funct. 4, 6 (2013).', 'journal-title': 'Food Funct.'}, { 'key': '71569_CR6', 'doi-asserted-by': 'publisher', 'first-page': '124', 'DOI': '10.1016/j.jnutbio.2016.12.011', 'volume': '41', 'author': 'M Granato', 'year': '2017', 'unstructured': 'Granato, M. et al. Quercetin induces apoptosis and autophagy in primary ' 'effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling ' 'pathways. J. Nutr. Biochem. 41, 124–136 (2017).', 'journal-title': 'J. Nutr. Biochem.'}, { 'key': '71569_CR7', 'doi-asserted-by': 'publisher', 'first-page': '1', 'DOI': '10.3390/v8010006', 'volume': '8', 'author': 'W Wu', 'year': '2015', 'unstructured': 'Wu, W. et al. Quercetin as an antiviral agent inhibits influenza A virus ' '(IAV) entry. Viruses 8, 1 (2015).', 'journal-title': 'Viruses'}, { 'key': '71569_CR8', 'first-page': '1165', 'volume': '15', 'author': 'WS Yang', 'year': '2015', 'unstructured': 'Yang, W. S. et al. Myrsine seguinii ethanolic extract and its active ' 'component quercetin inhibit macrophage activation and peritonitis ' 'induced by LPS by targeting to Syk/Src/IRAK-1. J. Ethnopharmacol. 15, ' '1165–1174 (2015).', 'journal-title': 'J. Ethnopharmacol.'}, { 'key': '71569_CR9', 'doi-asserted-by': 'publisher', 'first-page': '6949', 'DOI': '10.3390/molecules26226949', 'volume': '26', 'author': 'OA-O Sul', 'year': '2021', 'unstructured': 'Sul, O.A.-O. & Ra, S.A.-O. Quercetin prevents LPS-induced oxidative ' 'stress and inflammation by modulating NOX2/ROS/NF-kB in lung epithelial ' 'cells. Molecules 26, 6949. https://doi.org/10.3390/molecules26226949 ' '(2021).', 'journal-title': 'Molecules'}, { 'key': '71569_CR10', 'first-page': '1', 'volume': '6', 'author': 'IO Sullivan', 'year': '2015', 'unstructured': 'Sullivan, I. O. et al. FoxO1 integrates direct and indirect effects of ' 'insulin on hepatic glucose production and glucose utilization. Nat. ' 'Commun. 6, 1 (2015).', 'journal-title': 'Nat. Commun.'}, { 'issue': '11', 'key': '71569_CR11', 'doi-asserted-by': 'publisher', 'first-page': '1289', 'DOI': '10.1038/nm.3695', 'volume': '20', 'author': 'R Savai', 'year': '2014', 'unstructured': 'Savai, R. et al. Pro-proliferative and inflammatory signaling converge ' 'on FoxO1 transcription factor in pulmonary hypertension. Nat. Med. ' '20(11), 1289–1300 (2014).', 'journal-title': 'Nat. Med.'}, { 'key': '71569_CR12', 'first-page': '3', 'volume': '12', 'author': 'VK Poojary', 'year': '2017', 'unstructured': 'Poojary, V. K., Penberthy, K. K., Buckley, M. W., Arandjelovic, S. & ' 'Ravichandran, K. Ex vivo modulation of the Foxo1 phosphorylation state ' 'does not lead to dysfunction of T regulatory cells. Plos One 12, 3 ' '(2017).', 'journal-title': 'Plos One'}, { 'key': '71569_CR13', 'doi-asserted-by': 'publisher', 'first-page': '159', 'DOI': '10.1016/j.tibs.2014.02.003', 'volume': '39', 'author': 'AE Webb', 'year': '2014', 'unstructured': 'Webb, A. E. & Brunet, A. FOXO transcription factors: Key regulators of ' 'cellular quality control. Trends Biochem. Sci. 39, 159–169 (2014).', 'journal-title': 'Trends Biochem. Sci.'}, { 'issue': '7', 'key': '71569_CR14', 'doi-asserted-by': 'publisher', 'first-page': '753', 'DOI': '10.1038/ni.1750', 'volume': '10', 'author': 'L Riol-Blanco', 'year': '2009', 'unstructured': 'Riol-Blanco, L. et al. Immunological synapse formation inhibits, via ' 'NF-κB and FOXO1, the apoptosis of dendritic cells. Nat. Immunol. 10(7), ' '753–760 (2009).', 'journal-title': 'Nat. Immunol.'}, { 'issue': '6', 'key': '71569_CR15', 'doi-asserted-by': 'publisher', 'first-page': '3712', 'DOI': '10.1111/jcmm.15075', 'volume': '24', 'author': 'C Han', 'year': '2020', 'unstructured': 'Han, C. et al. FoxO1 regulates TLR4/MyD88/MD2-NF-κB inflammatory ' 'signalling in mucosal barrier injury of inflammatory bowel disease. J. ' 'Cell Mol. Med. 24(6), 3712–3723 (2020).', 'journal-title': 'J. Cell Mol. Med.'}, { 'issue': '11', 'key': '71569_CR16', 'doi-asserted-by': 'publisher', 'first-page': '2624', 'DOI': '10.2337/db09-0232', 'volume': '58', 'author': 'D Su', 'year': '2009', 'unstructured': 'Su, D. et al. FoxO1 links insulin resistance to proinflammatory cytokine ' 'IL-1β production in macrophages. Diabetes 58(11), 2624–2633 (2009).', 'journal-title': 'Diabetes'}, { 'issue': '24', 'key': '71569_CR17', 'doi-asserted-by': 'publisher', 'first-page': '4223', 'DOI': '10.1038/emboj.2010.268', 'volume': '29', 'author': 'W Fan', 'year': '2010', 'unstructured': 'Fan, W. et al. FoxO1 regulates Tlr4 inflammatory pathway signalling in ' 'macrophages. EMBO J. 29(24), 4223–4236 (2010).', 'journal-title': 'EMBO J.'}, { 'issue': '3', 'key': '71569_CR18', 'doi-asserted-by': 'publisher', 'first-page': '1169', 'DOI': '10.1152/physrev.00023.2017', 'volume': '98', 'author': 'MA-O Yamamoto', 'year': '2018', 'unstructured': 'Yamamoto, M.A.-O., Kensler, T. W. & Motohashi, H. The KEAP1-NRF2 system: ' 'A thiol-based sensor-effector apparatus for maintaining redox ' 'homeostasis. Physiol. Rev. 98(3), 1169–1203 (2018).', 'journal-title': 'Physiol. Rev.'}, { 'key': '71569_CR19', 'doi-asserted-by': 'publisher', 'first-page': '27', 'DOI': '10.1093/nar/28.1.27', 'volume': '28', 'author': 'M Kanehisa', 'year': '2000', 'unstructured': 'Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. ' 'Nucleic Acids Res. 28, 27–30 (2000).', 'journal-title': 'Nucleic Acids Res.'}, { 'key': '71569_CR20', 'doi-asserted-by': 'publisher', 'first-page': '1947', 'DOI': '10.1002/pro.3715', 'volume': '28', 'author': 'MA-OX Kanehisa', 'year': '2019', 'unstructured': 'Kanehisa, M.A.-O.X. Toward understanding the origin and evolution of ' 'cellular organisms. Protein Sci. 28, 1947–1951 (2019).', 'journal-title': 'Protein Sci.'}, { 'key': '71569_CR21', 'doi-asserted-by': 'publisher', 'first-page': 'D587', 'DOI': '10.1093/nar/gkac963', 'volume': '51', 'author': 'MA-OX Kanehisa', 'year': '2023', 'unstructured': 'Kanehisa, M.A.-O.X., Furumichi, M., Sato, Y., Kawashima, M. & ' 'Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and ' 'genomes. Nucleic Acids Res. 51, D587–D592 (2023).', 'journal-title': 'Nucleic Acids Res.'}, { 'key': '71569_CR22', 'first-page': '601', 'volume': '2021', 'author': 'V Pooladanda', 'year': '2021', 'unstructured': 'Pooladanda, V., Thatikonda, S., Muvvala, S. P., Devabattula, G. & ' 'Godugu, C. BRD4 targeting nanotherapy prevents lipopolysaccharide ' 'induced acute respiratory distress syndrome. Int. J. Pharmaceut. 2021, ' '601 (2021).', 'journal-title': 'Int. J. Pharmaceut.'}, { 'issue': '1', 'key': '71569_CR23', 'doi-asserted-by': 'publisher', 'first-page': '120', 'DOI': '10.1016/S0022-4804(03)00050-7', 'volume': '111', 'author': 'EL Chan', 'year': '2003', 'unstructured': 'Chan, E. L. & Murphy, J. T. Reactive oxygen species mediate ' 'endotoxin-induced human dermal endothelial NF-κB Activation. J. Surg. ' 'Res. 111(1), 120–126 (2003).', 'journal-title': 'J. Surg. Res.'}, { 'issue': '6', 'key': '71569_CR24', 'doi-asserted-by': 'publisher', 'first-page': '1202', 'DOI': '10.1097/HJH.0b013e328329e31c', 'volume': '27', 'author': 'F Simon', 'year': '2009', 'unstructured': 'Simon, F. & Fernández, R. Early lipopolysaccharide-induced reactive ' 'oxygen species production evokes necrotic cell death in human umbilical ' 'vein endothelial cells. J. Hypertens. 27(6), 1202–1216 (2009).', 'journal-title': 'J. Hypertens.'}, { 'key': '71569_CR25', 'doi-asserted-by': 'publisher', 'first-page': '1', 'DOI': '10.1155/2016/2795090', 'volume': '2016', 'author': 'H-Y Tan', 'year': '2016', 'unstructured': 'Tan, H.-Y. et al. The reactive oxygen species in macrophage ' 'polarization: Reflecting its dual role in progression and treatment of ' 'human diseases. Oxid. Med. Cell. Longevity 2016, 1–16 (2016).', 'journal-title': 'Oxid. Med. Cell. Longevity'}, { 'key': '71569_CR26', 'doi-asserted-by': 'publisher', 'first-page': '459', 'DOI': '10.1038/s41419-020-2672-0', 'volume': '11', 'author': 'F Zhu', 'year': '2020', 'unstructured': 'Zhu, F. et al. Brd4 inhibition ameliorates Pyocyanin-mediated macrophage ' 'dysfunction via transcriptional repression of reactive oxygen and ' 'nitrogen free radical pathways. Cell Death Dis. 11, 459 (2020).', 'journal-title': 'Cell Death Dis.'}, { 'issue': '8', 'key': '71569_CR27', 'doi-asserted-by': 'publisher', 'first-page': '627', 'DOI': '10.1038/nrd2926', 'volume': '8', 'author': 'P Liu', 'year': '2009', 'unstructured': 'Liu, P., Cheng, H., Roberts, T. M. & Zhao, J. J. Targeting the ' 'phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov. ' '8(8), 627–644 (2009).', 'journal-title': 'Nat. Rev. Drug Discov.'}, { 'issue': '12', 'key': '71569_CR28', 'doi-asserted-by': 'publisher', 'first-page': '6368', 'DOI': '10.4049/jimmunol.1202574', 'volume': '190', 'author': 'C-S Yang', 'year': '2013', 'unstructured': 'Yang, C.-S. et al. TLR3-triggered reactive oxygen species contribute to ' 'inflammatory responses by activating signal transducer and activator of ' 'transcription-1. J. Immunol. 190(12), 6368–6377 (2013).', 'journal-title': 'J. Immunol.'}, { 'key': '71569_CR29', 'doi-asserted-by': 'publisher', 'first-page': '19', 'DOI': '10.3390/ijms231911740', 'volume': '23', 'author': 'D Jarczak', 'year': '2022', 'unstructured': 'Jarczak, D. & Nierhaus, A. Cytokine storm—definition, causes, and ' 'implications. Int. J. Mol. Sci. 23, 19 (2022).', 'journal-title': 'Int. J. Mol. Sci.'}, { 'key': '71569_CR30', 'doi-asserted-by': 'publisher', 'first-page': '1', 'DOI': '10.1136/jitc-2020-000892', 'volume': '8', 'author': 'A Addeo', 'year': '2020', 'unstructured': 'Addeo, A., Obeid, M. & Friedlaender, A. COVID-19 and lung cancer: Risks, ' 'mechanisms and treatment interactions. J. ImmunoTherapy Cancer 8, 1 ' '(2020).', 'journal-title': 'J. ImmunoTherapy Cancer'}, { 'key': '71569_CR31', 'first-page': '12', 'volume': '2021', 'author': 'R Knoll', 'year': '2021', 'unstructured': 'Knoll, R., Schultze, J. L. & Schulte-Schrepping, J. Monocytes and ' 'Macrophages in COVID-19. Front. Immunol. 2021, 12 (2021).', 'journal-title': 'Front. Immunol.'}, { 'issue': '2', 'key': '71569_CR32', 'doi-asserted-by': 'publisher', 'first-page': '188', 'DOI': '10.1182/blood-2014-05-552729', 'volume': '124', 'author': 'DW Lee', 'year': '2014', 'unstructured': 'Lee, D. W. et al. Current concepts in the diagnosis and management of ' 'cytokine release syndrome. Blood 124(2), 188–195 (2014).', 'journal-title': 'Blood'}, { 'key': '71569_CR33', 'first-page': '13', 'volume': '2022', 'author': 'SH Tay', 'year': '2022', 'unstructured': 'Tay, S. H. et al. Cytokine release syndrome in cancer patients receiving ' 'immune checkpoint inhibitors: A case series of 25 patients and review of ' 'the literature. Front. Immunol. 2022, 13 (2022).', 'journal-title': 'Front. Immunol.'}, { 'key': '71569_CR34', 'doi-asserted-by': 'publisher', 'first-page': '332', 'DOI': '10.1016/j.ijid.2020.04.041', 'volume': '95', 'author': 'Z Zhu', 'year': '2020', 'unstructured': 'Zhu, Z. et al. Clinical value of immune-inflammatory parameters to ' 'assess the severity of coronavirus disease 2019. Int. J. Infect. Dis. ' '95, 332–339 (2020).', 'journal-title': 'Int. J. Infect. Dis.'}, { 'issue': '17', 'key': '71569_CR35', 'doi-asserted-by': 'publisher', 'first-page': '1714', 'DOI': '10.1200/JCO.2017.77.6385', 'volume': '36', 'author': 'JR Brahmer', 'year': '2018', 'unstructured': 'Brahmer, J. R. et al. Management of immune-related adverse events in ' 'patients treated with immune checkpoint inhibitor therapy: American ' 'society of clinical oncology clinical practice guideline. J. Clin. ' 'Oncol. 36(17), 1714–1768 (2018).', 'journal-title': 'J. Clin. Oncol.'}, { 'key': '71569_CR36', 'doi-asserted-by': 'publisher', 'first-page': '1', 'DOI': '10.1186/s40425-017-0300-z', 'volume': '5', 'author': 'I Puzanov', 'year': '2017', 'unstructured': 'Puzanov, I. et al. Managing toxicities associated with immune checkpoint ' 'inhibitors: Consensus recommendations from the Society for Immunotherapy ' 'of Cancer (SITC) Toxicity Management Working Group. J. ImmunoTherapy ' 'Cancer 5, 1 (2017).', 'journal-title': 'J. ImmunoTherapy Cancer'}, { 'key': '71569_CR37', 'doi-asserted-by': 'crossref', 'first-page': '1', 'DOI': '10.1038/s41572-019-0135-7', 'volume': '6', 'author': 'M Ramos-Casals', 'year': '2020', 'unstructured': 'Ramos-Casals, M. et al. Immune-related adverse events of checkpoint ' 'inhibitors. Nat. Rev. Dis. Prim. 6, 1 (2020).', 'journal-title': 'Nat. Rev. Dis. Prim.'}, { 'key': '71569_CR38', 'doi-asserted-by': 'publisher', 'first-page': '1292', 'DOI': '10.1001/jama.2020.16747', 'volume': '324', 'author': 'HC Prescott', 'year': '2020', 'unstructured': 'Prescott, H. C. & Rice, T. W. Corticosteroids in COVID-19 ARDS: Evidence ' 'and hope during the pandemic. Jama 324, 1292–1295 (2020).', 'journal-title': 'Jama'}, { 'issue': '2', 'key': '71569_CR39', 'doi-asserted-by': 'publisher', 'first-page': '258', 'DOI': '10.1016/j.cmet.2021.01.002', 'volume': '33', 'author': 'J Cai', 'year': '2021', 'unstructured': 'Cai, J. et al. The neutrophil-to-lymphocyte ratio determines clinical ' 'efficacy of corticosteroid therapy in patients with COVID-19. Cell ' 'Metabol. 33(2), 258-269.e3 (2021).', 'journal-title': 'Cell Metabol.'}, { 'issue': '16', 'key': '71569_CR40', 'doi-asserted-by': 'publisher', 'first-page': '1503', 'DOI': '10.1056/NEJMoa2028700', 'volume': '384', 'author': 'IO Rosas', 'year': '2021', 'unstructured': 'Rosas, I. O. et al. Tocilizumab in hospitalized patients with severe ' 'Covid-19 pneumonia. N. Engl. J. Med. 384(16), 1503–1516 (2021).', 'journal-title': 'N. Engl. J. Med.'}, { 'key': '71569_CR41', 'doi-asserted-by': 'publisher', 'first-page': '8', 'DOI': '10.1371/journal.pone.0237693', 'volume': '15', 'author': 'A Ip', 'year': '2020', 'unstructured': 'Ip, A. et al. Hydroxychloroquine and tocilizumab therapy in COVID-19 ' 'patients-An observational study. Plos One 15, 8 (2020).', 'journal-title': 'Plos One'}, { 'key': '71569_CR42', 'first-page': '109', 'volume': '2022', 'author': 'J-Y Kang', 'year': '2022', 'unstructured': 'Kang, J.-Y. et al. Melatonin attenuates LPS-induced pyroptosis in acute ' 'lung injury by inhibiting NLRP3-GSDMD pathway via activating Nrf2/HO-1 ' 'signaling axis. Int. Immunopharmacol. 2022, 109 (2022).', 'journal-title': 'Int. Immunopharmacol.'}, { 'issue': '8', 'key': '71569_CR43', 'doi-asserted-by': 'publisher', 'first-page': '1198', 'DOI': '10.1016/j.bcp.2005.12.031', 'volume': '71', 'author': 'JH Kim', 'year': '2006', 'unstructured': 'Kim, J. H. et al. Rengyolone inhibits inducible nitric oxide synthase ' 'expression and nitric oxide production by down-regulation of NF-κB and ' 'p38 MAP kinase activity in LPS-stimulated RAW 264.7 cells. Biochem. ' 'Pharmacol. 71(8), 1198–1205 (2006).', 'journal-title': 'Biochem. Pharmacol.'}, { 'key': '71569_CR44', 'doi-asserted-by': 'publisher', 'first-page': '9', 'DOI': '10.3390/cells11091391', 'volume': '11', 'author': 'SV Suryavanshi', 'year': '2022', 'unstructured': 'Suryavanshi, S. V., Zaiachuk, M., Pryimak, N., Kovalchuk, I. & ' 'Kovalchuk, O. Cannabinoids alleviate the LPS-induced cytokine storm via ' 'attenuating NLRP3 inflammasome signaling and TYK2-mediated STAT3 ' 'signaling pathways in vitro. Cells 11, 9 (2022).', 'journal-title': 'Cells'}, { 'key': '71569_CR45', 'first-page': '102', 'volume': '2022', 'author': 'H Li', 'year': '2022', 'unstructured': 'Li, H. et al. Glycyrrhetinic acid: A potential drug for the treatment of ' 'COVID-19 cytokine storm. Phytomedicine 2022, 102 (2022).', 'journal-title': 'Phytomedicine'}, { 'key': '71569_CR46', 'first-page': '13', 'volume': '2022', 'author': 'J You', 'year': '2022', 'unstructured': 'You, J. et al. Inspiration for COVID-19 treatment: Network analysis and ' 'experimental validation of baicalin for cytokine storm. Front. ' 'Pharmacol. 2022, 13 (2022).', 'journal-title': 'Front. Pharmacol.'}, { 'key': '71569_CR47', 'doi-asserted-by': 'crossref', 'unstructured': 'Lin. X, Zhao. Q, Fu. B, Xiong. Y, Zhang. S, Xu. S, Wu. H. ISOC1 ' 'Modulates Inflammatory Responses in Macrophages through the ' 'AKT1/PEX11B/Peroxisome Pathway. Molecules 27(18), 5896 (2022).', 'DOI': '10.3390/molecules27185896'}, { 'key': '71569_CR48', 'doi-asserted-by': 'publisher', 'unstructured': 'Wang. R, Wang. Y, Wu. J, Guo. Y, Xiao. H, Zhang. Y, & Ma. K. Resveratrol ' 'Targets AKT1 to Inhibit Inflammasome Activation in Cardiomyocytes Under ' 'Acute Sympathetic Stress. Frontiers in Pharmacology 13, ' 'https://doi.org/10.3389/fphar.2022.818127 (2022).', 'DOI': '10.3389/fphar.2022.818127'}, { 'key': '71569_CR49', 'doi-asserted-by': 'publisher', 'unstructured': 'Yang. J, Cheng. M, Gu. B, & Wang. J. CircRNA_09505 aggravates ' 'inflammation and joint damage in collagen-induced arthritis mice via ' 'miR-6089/AKT1/NF-κBaxis, Cell Death & Disease 11(10), ' 'https://doi.org/10.1038/s41419-020-03038-z (2020).', 'DOI': '10.1038/s41419-020-03038-z'}, { 'issue': '24', 'key': '71569_CR50', 'doi-asserted-by': 'publisher', 'first-page': '9517', 'DOI': '10.1073/pnas.1119038109', 'volume': '109', 'author': 'A Arranz', 'year': '2012', 'unstructured': 'Arranz, A. et al. Akt1 and Akt2 protein kinases differentially ' 'contribute to macrophage polarization. Proc. Natl. Acad. Sci. 109(24), ' '9517–9522 (2012).', 'journal-title': 'Proc. Natl. Acad. Sci.'}, { 'key': '71569_CR51', 'doi-asserted-by': 'publisher', 'first-page': '777', 'DOI': '10.1038/ni1221', 'volume': '6', 'author': 'M Martin', 'year': '2005', 'unstructured': 'Martin, M. et al. Toll-like receptor-mediated cytokine production is ' 'differentially regulated by glycogen synthase kinase 3. Nat. Immunol. 6, ' '777–784 (2005).', 'journal-title': 'Nat. Immunol.'}, { 'issue': '4', 'key': '71569_CR52', 'doi-asserted-by': 'publisher', 'first-page': '1603', 'DOI': '10.4049/jimmunol.1200596', 'volume': '190', 'author': 'F Seiler', 'year': '2013', 'unstructured': 'Seiler, F. et al. FOXO transcription factors regulate innate immune ' 'mechanisms in respiratory epithelial cells. J. Immunol. 190(4), ' '1603–1613 (2013).', 'journal-title': 'J. Immunol.'}, { 'key': '71569_CR53', 'first-page': '9', 'volume': '2018', 'author': 'K Sun', 'year': '2018', 'unstructured': 'Sun, K. et al. Schisandrin attenuates lipopolysaccharide-induced lung ' 'injury by regulating TLR-4 and Akt/FoxO1 signaling pathways. Front. ' 'Physiol. 2018, 9 (2018).', 'journal-title': 'Front. Physiol.'}, { 'key': '71569_CR54', 'first-page': '16', 'volume': '22', 'author': 'J Lee', 'year': '2021', 'unstructured': 'Lee, J., Jang, J., Park, S.-M. & Yang, S.-R. An update on the role of ' 'Nrf2 in respiratory disease: Molecular mechanisms and therapeutic ' 'approaches. Int. J. Mol. Sci. 22, 16 (2021).', 'journal-title': 'Int. J. Mol. Sci.'}, { 'key': '71569_CR55', 'doi-asserted-by': 'publisher', 'first-page': 'e0216711', 'DOI': '10.1371/journal.pone.0216711', 'volume': '14', 'author': 'X Lin', 'year': '2019', 'unstructured': 'Lin, X. et al. Curcumin attenuates oxidative stress in RAW264.7 cells by ' 'increasing the activity of antioxidant enzymes and activating the ' 'Nrf2-Keap1 pathway. PloS one 14, e0216711 (2019).', 'journal-title': 'PloS one'}, { 'key': '71569_CR56', 'doi-asserted-by': 'publisher', 'first-page': '111079', 'DOI': '10.1016/j.intimp.2023.111079', 'volume': '125', 'author': 'X Liu', 'year': '2023', 'unstructured': 'Liu, X. et al. Mollugin prevents CLP-induced sepsis in mice by ' 'inhibiting TAK1-NF-κB/MAPKs pathways and activating Keap1-Nrf2 pathway ' 'in macrophages. Int. Immunopharmacol. 125, 111079 (2023).', 'journal-title': 'Int. Immunopharmacol.'}, { 'key': '71569_CR57', 'doi-asserted-by': 'publisher', 'first-page': '121091', 'DOI': '10.1016/j.lfs.2022.121091', 'volume': '311', 'author': 'L Luo', 'year': '2022', 'unstructured': 'Luo, L. et al. Astaxanthin attenuates ferroptosis via Keap1-Nrf2/HO-1 ' 'signaling pathways in LPS-induced acute lung injury. Life Sci. 311, ' '121091 (2022).', 'journal-title': 'Life Sci.'}], 'container-title': 'Scientific Reports', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://www.nature.com/articles/s41598-024-71569-y.pdf', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://www.nature.com/articles/s41598-024-71569-y', 'content-type': 'text/html', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://www.nature.com/articles/s41598-024-71569-y.pdf', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2024, 9, 8]], 'date-time': '2024-09-08T12:04:11Z', 'timestamp': 1725797051000}, 'score': 1, 'resource': {'primary': {'URL': 'https://www.nature.com/articles/s41598-024-71569-y'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2024, 9, 8]]}, 'references-count': 57, 'journal-issue': {'issue': '1', 'published-online': {'date-parts': [[2024, 12]]}}, 'alternative-id': ['71569'], 'URL': 'http://dx.doi.org/10.1038/s41598-024-71569-y', 'relation': {}, 'ISSN': ['2045-2322'], 'subject': [], 'container-title-short': 'Sci Rep', 'published': {'date-parts': [[2024, 9, 8]]}, 'assertion': [ { 'value': '10 May 2024', 'order': 1, 'name': 'received', 'label': 'Received', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': '29 August 2024', 'order': 2, 'name': 'accepted', 'label': 'Accepted', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': '8 September 2024', 'order': 3, 'name': 'first_online', 'label': 'First Online', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': 'The authors declare no competing interests.', 'order': 1, 'name': 'Ethics', 'group': {'name': 'EthicsHeading', 'label': 'Competing interests'}}], 'article-number': '20913'}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit