Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchQuercetinQuercetin (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

Anti-cytokine Storm Activity of Fraxin, Quercetin, and their Combination on Lipopolysaccharide-Induced Cytokine Storm in Mice: Implications in COVID-19

Shaker et al., Iranian Journal of Medical Sciences, doi:10.30476/ijms.2023.98947.3102
Sep 2023  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Quercetin for COVID-19
24th treatment shown to reduce risk in July 2021, now with p = 0.002 from 12 studies.
No treatment is 100% effective. Protocols combine treatments.
5,100+ studies for 112 treatments. c19early.org
Mouse study showing benefit with quercetin for COVID-19 treatment by reducing proinflammatory cytokines and protecting lung and kidney tissues against lipopolysaccharide-induced damage. Lipopolysaccharide is used to induce cytokine storm resembling the severe inflammation seen in advanced COVID-19. Quercetin reduced IL-1β, IL-6, and TNF-α levels in serum of lipopolysaccharide-treated mice. Histopathological lung and kidney tissue analysis showed quercetin protected against edema, infiltration, congestion and hemorrhage compared to lipopolysaccharide-only mice. Quercetin performed similarly to the positive control dexamethasone in reducing cytokine levels and tissue damage scores. When combined with fraxin, the quercetin and fraxin combination did not show greater efficacy than either compound individually.
Bioavailability. Quercetin has low bioavailability and studies typically use advanced formulations to improve bioavailability which may be required to reach therapeutic concentrations.
73 preclinical studies support the efficacy of quercetin for COVID-19:
In Silico studies predict inhibition of SARS-CoV-2, or minimization of side effects, with quercetin or metabolites via binding to the spikeA,3,9,10,22,24,25,30,38,39,41,42,62-64, MproB,3,7,9,11,13,15,17,18,20,23,24,30,34,36-38,42,43,45,63-65, RNA-dependent RNA polymeraseC,1,3,9,32,64, PLproD,3,37,45, ACE2E,22,23,28,37,41,63, TMPRSS2F,22, nucleocapsidG,3, helicaseH,3,29,34, endoribonucleaseI,39, NSP16/10J,6, cathepsin LK,26, Wnt-3L,22, FZDM,22, LRP6N,22, ezrinO,40, ADRPP,38, NRP1Q,41, EP300R,16, PTGS2S,23, HSP90AA1T,16,23, matrix metalloproteinase 9U,31, IL-6V,21,35, IL-10W,21, VEGFAX,35, and RELAY,35 proteins. In Vitro studies demonstrate inhibition of the MproB,15,46,51,59 protein, and inhibition of spike-ACE2 interactionZ,47. In Vitro studies demonstrate efficacy in Calu-3AA,50, A549AB,21, HEK293-ACE2+AC,58, Huh-7AD,25, Caco-2AE,49, Vero E6AF,19,42,49, mTECAG,52, and RAW264.7AH,52 cells. Animal studies demonstrate efficacy in K18-hACE2 miceAI,55, db/db miceAJ,52,61, BALB/c miceAK,60, and rats66. Quercetin reduced proinflammatory cytokines and protected lung and kidney tissue against LPS-induced damage in mice60, inhibits LPS-induced cytokine storm by modulating key inflammatory and antioxidant pathways in macrophages5, and inhibits SARS-CoV-2 ORF3a ion channel activity, which contributes to viral pathogenicity and cytotoxicity54.
a. The trimeric spike (S) protein is a glycoprotein that mediates viral entry by binding to the host ACE2 receptor, is critical for SARS-CoV-2's ability to infect host cells, and is a target of neutralizing antibodies. Inhibition of the spike protein prevents viral attachment, halting infection at the earliest stage.
b. The main protease or Mpro, also known as 3CLpro or nsp5, is a cysteine protease that cleaves viral polyproteins into functional units needed for replication. Inhibiting Mpro disrupts the SARS-CoV-2 lifecycle within the host cell, preventing the creation of new copies.
c. RNA-dependent RNA polymerase (RdRp), also called nsp12, is the core enzyme of the viral replicase-transcriptase complex that copies the positive-sense viral RNA genome into negative-sense templates for progeny RNA synthesis. Inhibiting RdRp blocks viral genome replication and transcription.
d. The papain-like protease (PLpro) has multiple functions including cleaving viral polyproteins and suppressing the host immune response by deubiquitination and deISGylation of host proteins. Inhibiting PLpro may block viral replication and help restore normal immune responses.
e. The angiotensin converting enzyme 2 (ACE2) protein is a host cell transmembrane protein that serves as the cellular receptor for the SARS-CoV-2 spike protein. ACE2 is expressed on many cell types, including epithelial cells in the lungs, and allows the virus to enter and infect host cells. Inhibition may affect ACE2's physiological function in blood pressure control.
f. Transmembrane protease serine 2 (TMPRSS2) is a host cell protease that primes the spike protein, facilitating cellular entry. TMPRSS2 activity helps enable cleavage of the spike protein required for membrane fusion and virus entry. Inhibition may especially protect respiratory epithelial cells, buy may have physiological effects.
g. The nucleocapsid (N) protein binds and encapsulates the viral genome by coating the viral RNA. N enables formation and release of infectious virions and plays additional roles in viral replication and pathogenesis. N is also an immunodominant antigen used in diagnostic assays.
h. The helicase, or nsp13, protein unwinds the double-stranded viral RNA, a crucial step in replication and transcription. Inhibition may prevent viral genome replication and the creation of new virus components.
i. The endoribonuclease, also known as NendoU or nsp15, cleaves specific sequences in viral RNA which may help the virus evade detection by the host immune system. Inhibition may hinder the virus's ability to mask itself from the immune system, facilitating a stronger immune response.
j. The NSP16/10 complex consists of non-structural proteins 16 and 10, forming a 2'-O-methyltransferase that modifies the viral RNA cap structure. This modification helps the virus evade host immune detection by mimicking host mRNA, making NSP16/10 a promising antiviral target.
k. Cathepsin L is a host lysosomal cysteine protease that can prime the spike protein through an alternative pathway when TMPRSS2 is unavailable. Dual targeting of cathepsin L and TMPRSS2 may maximize disruption of alternative pathways for virus entry.
l. Wingless-related integration site (Wnt) ligand 3 is a host signaling molecule that activates the Wnt signaling pathway, which is important in development, cell growth, and tissue repair. Some studies suggest that SARS-CoV-2 infection may interfere with the Wnt signaling pathway, and that Wnt3a is involved in SARS-CoV-2 entry.
m. The frizzled (FZD) receptor is a host transmembrane receptor that binds Wnt ligands, initiating the Wnt signaling cascade. FZD serves as a co-receptor, along with ACE2, in some proposed mechanisms of SARS-CoV-2 infection. The virus may take advantage of this pathway as an alternative entry route.
n. Low-density lipoprotein receptor-related protein 6 is a cell surface co-receptor essential for Wnt signaling. LRP6 acts in tandem with FZD for signal transduction and has been discussed as a potential co-receptor for SARS-CoV-2 entry.
o. The ezrin protein links the cell membrane to the cytoskeleton (the cell's internal support structure) and plays a role in cell shape, movement, adhesion, and signaling. Drugs that occupy the same spot on ezrin where the viral spike protein would bind may hindering viral attachment, and drug binding could further stabilize ezrin, strengthening its potential natural capacity to impede viral fusion and entry.
p. The Adipocyte Differentiation-Related Protein (ADRP, also known as Perilipin 2 or PLIN2) is a lipid droplet protein regulating the storage and breakdown of fats in cells. SARS-CoV-2 may hijack the lipid handling machinery of host cells and ADRP may play a role in this process. Disrupting ADRP's interaction with the virus may hinder the virus's ability to use lipids for replication and assembly.
q. Neuropilin-1 (NRP1) is a cell surface receptor with roles in blood vessel development, nerve cell guidance, and immune responses. NRP1 may function as a co-receptor for SARS-CoV-2, facilitating viral entry into cells. Blocking NRP1 may disrupt an alternative route of viral entry.
r. EP300 (E1A Binding Protein P300) is a transcriptional coactivator involved in several cellular processes, including growth, differentiation, and apoptosis, through its acetyltransferase activity that modifies histones and non-histone proteins. EP300 facilitates viral entry into cells and upregulates inflammatory cytokine production.
s. Prostaglandin G/H synthase 2 (PTGS2, also known as COX-2) is an enzyme crucial for the production of inflammatory molecules called prostaglandins. PTGS2 plays a role in the inflammatory response that can become severe in COVID-19 and inhibitors (like some NSAIDs) may have benefits in dampening harmful inflammation, but note that prostaglandins have diverse physiological functions.
t. Heat Shock Protein 90 Alpha Family Class A Member 1 (HSP90AA1) is a chaperone protein that helps other proteins fold correctly and maintains their stability. HSP90AA1 plays roles in cell signaling, survival, and immune responses. HSP90AA1 may interact with numerous viral proteins, but note that it has diverse physiological functions.
u. Matrix metalloproteinase 9 (MMP9), also called gelatinase B, is a zinc-dependent enzyme that breaks down collagen and other components of the extracellular matrix. MMP9 levels increase in severe COVID-19. Overactive MMP9 can damage lung tissue and worsen inflammation. Inhibition of MMP9 may prevent excessive tissue damage and help regulate the inflammatory response.
v. The interleukin-6 (IL-6) pro-inflammatory cytokine (signaling molecule) has a complex role in the immune response and may trigger and perpetuate inflammation. Elevated IL-6 levels are associated with severe COVID-19 cases and cytokine storm. Anti-IL-6 therapies may be beneficial in reducing excessive inflammation in severe COVID-19 cases.
w. The interleukin-10 (IL-10) anti-inflammatory cytokine helps regulate and dampen immune responses, preventing excessive inflammation. IL-10 levels can also be elevated in severe COVID-19. IL-10 could either help control harmful inflammation or potentially contribute to immune suppression.
x. Vascular Endothelial Growth Factor A (VEGFA) promotes the growth of new blood vessels (angiogenesis) and has roles in inflammation and immune responses. VEGFA may contribute to blood vessel leakiness and excessive inflammation associated with severe COVID-19.
y. RELA is a transcription factor subunit of NF-kB and is a key regulator of inflammation, driving pro-inflammatory gene expression. SARS-CoV-2 may hijack and modulate NF-kB pathways.
z. The interaction between the SARS-CoV-2 spike protein and the human ACE2 receptor is a primary method of viral entry, inhibiting this interaction can prevent the virus from attaching to and entering host cells, halting infection at an early stage.
aa. Calu-3 is a human lung adenocarcinoma cell line with moderate ACE2 and TMPRSS2 expression and SARS-CoV-2 susceptibility. It provides a model of the human respiratory epithelium, but many not be ideal for modeling early stages of infection due to the moderate expression levels of ACE2 and TMPRSS2.
ab. A549 is a human lung carcinoma cell line with low ACE2 expression and SARS-CoV-2 susceptibility. Viral entry/replication can be studied but the cells may not replicate all aspects of lung infection.
ac. HEK293-ACE2+ is a human embryonic kidney cell line engineered for high ACE2 expression and SARS-CoV-2 susceptibility.
ad. Huh-7 cells were derived from a liver tumor (hepatoma).
ae. Caco-2 cells come from a colorectal adenocarcinoma (cancer). They are valued for their ability to form a polarized cell layer with properties similar to the intestinal lining.
af. Vero E6 is an African green monkey kidney cell line with low/no ACE2 expression and high SARS-CoV-2 susceptibility. The cell line is easy to maintain and supports robust viral replication, however the monkey origin may not accurately represent human responses.
ag. mTEC is a mouse tubular epithelial cell line.
ah. RAW264.7 is a mouse macrophage cell line.
ai. A mouse model expressing the human ACE2 receptor under the control of the K18 promoter.
aj. A mouse model of obesity and severe insulin resistance leading to type 2 diabetes due to a mutation in the leptin receptor gene that impairs satiety signaling.
ak. A mouse model commonly used in infectious disease and cancer research due to higher immune response and susceptibility to infection.
Shaker et al., 1 Sep 2023, peer-reviewed, 3 authors. Contact: nadasshaker@gmail.com.
This PaperQuercetinAll
Anti-cytokine Storm Activity of Fraxin, Quercetin, and their Combination on Lipopolysaccharide-Induced Cytokine Storm in Mice: Implications in COVID-19
Nada Sahib, PhD Nibras J Tahseen, PhD Nada Shaker
doi:10.30476/ijms.2023.98947.3102
Background: Cytokine release syndrome (CRS) is the leading cause of mortality in advanced stages of coronavirus patients. This study examined the prophylactic effects of fraxin, quercetin, and a combination of fraxin+quercetin (FQ) on lipopolysaccharide-induced mice. Methods: Sixty mice were divided into six groups (n=10) as follows: control, LPS only, fraxin (120 mg/Kg), quercetin (100 mg/Kg), dexamethasone (5 mg/Kg), and FQ. All treatments were administered intraperitoneally (IP) one hour before induction by LPS (5 mg/Kg) IP injection. Twenty-four hours later, the mice were euthanized. Interleukin one beta (IL1-β), interleukin 6 (IL-6), and tumor necrosis factor-alpha (TNF-α) were quantified using an enzyme-linked immunosorbent assay (ELISA), and lung and kidney tissues were examined for histopathological alterations. This study was conducted at Al-Nahrain University, Baghdad, Iraq, in 2022. Results: FQ reduced IL-1β (P<0.001). All treatments significantly suppressed IL-6, fraxin, quercetin, dexamethasone, and FQ, all with P<0.001. The TNF-α level was reduced more with dexamethasone (P<0.001) and quercetin (P<0.001). Histopathological scores were significantly reduced mainly by quercetin and FQ in the lungs with scores of 12.30±0.20 (P=0.093), and 15.70±0.20 (P=0.531), respectively. The scores were 13±0.26 (P=0.074) and 15±0.26 (P=0.222) for quercetin and FQ in the kidneys, respectively. Conclusion: All used treatments reduced proinflammatory cytokine levels and protected against LPS-induced tissue damage.
Authors' Contribution N.Sh and H.S: Study concept, study design, drafting, and critical reviewing; N.T: Study concept, study design, data acquisition, interpretation, and reviewing the manuscript; All authors read and approved the final manuscript and agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work were appropriately investigated and resolved. Conflict of Interest: None declared.
References
An, Sun, Hou, Yang, Chen et al., Protective effect of oxytocin on LPSinduced acute lung injury in mice, Sci Rep, doi:10.1038/s41598-019-39349-1
Baranova, Souza, Bocharov, Vishnyakova, Hu et al., Human SR-BI and SR-BII Potentiate Lipopolysaccharide-Induced Inflammation and Acute Liver and Kidney Injury in Mice, J Immunol, doi:10.4049/jimmu-nol.1501709
Beekmann, Rubio, De Haan, Actis-Goretta, Van Der Burg et al., The effect of quercetin and kaempferol aglycones and glucuronides on peroxisome proliferator-activated receptor-gamma (PPAR-gamma), Iran J Med Sci, doi:10.1039/c5fo00076a
Bhaskar, Quercetin modulates toll-like receptor-mediated protein kinase signaling pathways in oxLDL-challenged human PBMCs and regulates TLR-activated atherosclerotic inflammation in hypercholesterolemic rats, Mol Cell Biochem, doi:10.1007/s11010-016-2824-9
Chang, Jung, Yoon, Oh, Hong et al., Fraxin Prevents Chemically Induced Hepatotoxicity by Reducing Oxidative Stress, Molecules, doi:10.3390/molecules22040587
Cron, Goyal, Chatham, Cytokine Storm Syndrome, Annu Rev Med, doi:10.1146/annurev-med-042921-112837
Cui, Hu, Peng, Mu, Liu et al., Quercetin Exerted Protective Effects in a Rat Model of Sepsis via Inhibition of Reactive Oxygen Species (ROS) and Downregulation of High Mobility Group Box 1 (HMGB1) Protein Expression, Med Sci Monit, doi:10.12659/MSM.916044
Dibal, Garba, Jacks, Acute toxicity of quercetin from onion skin in mice, Pharmaceutical and Biomedical Research, doi:10.18502/pbr.v6i4.5113
Diniz, Souza, Duarte, Sousa, Mechanistic Aspects and Therapeutic Potential of Quercetin against COVID-19-Associated Acute Kidney Injury, Molecules, doi:10.3390/molecules25235772
Ekinci-Akdemi, Ngol, Yildirim, Kandemi, Kucukler et al., The investigation of the effect of fraxin on hepatotoxicity induced by cisplatin in rats, Iran J Basic Med Sci, doi:10.22038/ijbms.2020.38773.9200
Kim, Lee, Yang, Lee, Effenberger et al., Immunopathogenesis and treatment of cytokine storm Iran, Theranostics, doi:10.7150/thno.49713
Lei, Chai, Lin, Chen, Zhao et al., Dihydroquercetin Activates AMPK/Nrf2/ HO-1 Signaling in Macrophages and Attenuates Inflammation in LPS-Induced Endotoxemic Mice, Front Pharmacol, doi:10.3389/fphar.2020.00662
Li, Li, Liu, Liu, Li, Synergistic antiinflammatory effects of quercetin and catechin via inhibiting activation of TLR4-MyD88mediated NF-kappaB and MAPK signaling pathways, Phytother Res, doi:10.1002/ptr.6268
Li, Li, Zang, Liu, Yao et al., Fraxin ameliorates lipopolysaccharideinduced acute lung injury in mice by inhibiting the NF-kappaB and NLRP3 signalling pathways, Int Immunopharmacol, doi:10.1016/j.intimp.2018.12.003
Lopez-Carreras, Fernandez-Vallinas, Miguel, Aleixandre, Long-Term Effect of an Aqueous Fraxinus excelsior L. Seed Extract in Spontaneously Hypertensive Rats, Int J Hypertens, doi:10.1155/2014/565212
Lucida, Primadini, A study on the acute toxicity of quercetin solid dispersion as a potential nephron protector, Rasayan Journal of Chemistry, doi:10.31788/RJC.2019.1224068
Ma, Liu, Feng, Zhang, Huang et al., Fraxin Alleviates LPS-Induced ARDS by Downregulating Inflammatory Responses and Oxidative Damages and Reducing Pulmonary Vascular Permeability, Inflammation, doi:10.1007/s10753-019-01052-8
Meng, Lv, Yu, Xu, Yan, Protective effect of quercetin on acute lung injury in rats with sepsis and its influence on ICAM-1 and MIP-2 expression, Genet Mol Res, doi:10.4238/gmr.15037265
Nam, Thong, Hoa, Quang, Hoang et al., Is natural fraxin an overlooked radical scavenger?, RSC Adv, doi:10.1039/d1ra01360b
Nguemfo, Mbock, Bogning, Fongang, Kedi et al., Acute and sub-acute toxicity assessment of aqueous leaves extract of Crassocephalum crepidioides (Asteraceae) in Wistar rats, J Complement Integr Med, doi:10.1515/jcim-2020-0018
Niu, Liu, Li, Zhi, Yao et al., Hepatoprotective effect of fraxin against carbon tetrachloride-induced hepatotoxicity in vitro and in vivo through regulating hepatic antioxidant, inflammation response and the MAPK-NF-kappaB signaling pathway, Biomed Pharmacother, doi:10.1016/j.biopha.2017.09.029
Peter, Sandeep, Rao, Kalpana, Calming the Storm: Natural Immunosuppressants as Adjuvants to Target the Cytokine Storm in COVID-19, Front Pharmacol, doi:10.3389/fphar.2020.583777
Prasad, Kumar, Singh, Singh, Crosstalk between phytochemicals and inflammatory signaling pathways, Inflammopharmacology, doi:10.1007/s10787-023-01206-z
Rizvi, De Moraes, New Decade, Old Debate: Blocking the Cytokine Pathways in Infection-Induced Cytokine Cascade, Crit Care Explor, doi:10.1097/CCE.0000000000000364
Sahib, Hamid, The Acute Toxicity of Rutin in Mice, Iraqi Journal of Pharmaceutical Sciences, doi:10.31351/vol30iss2
Sahib, Kathum, Alanee, Jawad, Am, The Anti-Cytokine Storm Activity of Quercetin Zinc and Vitamin C Complex, Adv Virol, doi:10.1155/2022/1575605
Sarfraz, Rasul, Jabeen, Younis, Zahoor et al., Fraxinus: A Plant with Versatile Pharmacological and Biological Activities, Evid Based Complement Alternat Med, doi:10.1155/2017/4269868
Tiwari, Siddiqui, Mahmood, Farooqui, Bagga et al., An exploratory analysis on the toxicity & safety profile of Polyherbal combination of curcumin, quercetin and rutin, Clinical Phytoscience, doi:10.1186/s40816-020-00228-2
Topdagi, Tanyeli, Akdemir, Eraslan, Guler et al., Preventive effects of fraxin on ischemia/reperfusion-induced acute kidney injury in rats, Life Sci, doi:10.1016/j.lfs.2019.117217
Yang, Wang, Long, Li, Quercetin: Its Main Pharmacological Activity and Potential Application in Clinical Medicine, Oxid Med Cell Longev, doi:10.1155/2020/8825387
Yang, Yu, Wang, Yuan, Wang et al., The natural product bergenin ameliorates lipopolysaccharide-induced acute lung injury by inhibiting NF-kappaB activition, J Ethnopharmacol, doi:10.1016/j.jep.2017.02.013
Yao, Zhao, Song, Protective effects of fraxin on cerebral ischemia-reperfusion injury by mediating neuroinflammation and oxidative stress through PPAR-gamma/NF-kap-paB pathway, Brain Res Bull, doi:10.1016/j.brainresbull.2022.06.010
Zhang, Virgous, Si, Synergistic antiinflammatory effects and mechanisms of combined phytochemicals, J Nutr Biochem, doi:10.1016/j.jnut-bio.2019.03.009
Zhao, Cen, Tian, Li, Zhang et al., Combination treatment with quercetin and resveratrol attenuates high fat dietinduced obesity and associated inflammation in rats via the AMPKalpha1/SIRT1 signaling pathway, Exp Ther Med, doi:10.3892/etm.2017.5331
Zhao, Wang, Deng, Liao, Zhou et al., Quercetin as a protective agent for liver diseases: A comprehensive descriptive review of the molecular mechanism, Phytother Res, doi:10.1002/ptr.7104
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit