Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchQuercetinQuercetin (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

Docking and molecular dynamics studies of human ezrin protein with a modelled SARS-CoV-2 endodomain and their interaction with potential invasion inhibitors

Chellasamy et al., Journal of King Saud University - Science, doi:10.1016/j.jksus.2022.102277
Aug 2022  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Quercetin for COVID-19
24th treatment shown to reduce risk in July 2021, now with p = 0.002 from 12 studies.
No treatment is 100% effective. Protocols combine treatments.
5,200+ studies for 112 treatments. c19early.org
In Silico study of SARS-CoV-1&2 endodomains and ezrin docking, identifying ivermectin, quercetin, calcifediol, calcitriol, selamectin, and minocycline as potential therapeutic drugs with strong ezrin binding which may restrict viral endodomain interaction while also stabilizing ezrin, thereby reducing virus fusion and infection.
73 preclinical studies support the efficacy of quercetin for COVID-19:
In Silico studies predict inhibition of SARS-CoV-2, or minimization of side effects, with quercetin or metabolites via binding to the spikeA,2,3,9,10,22,24,25,27,30,38,39,41,42,62, MproB,2,3,7,9,11,13,15,17,18,20,23,24,27,30,34,36-38,42-45, RNA-dependent RNA polymeraseC,1-3,9,32, PLproD,3,37,45, ACE2E,22,23,27,28,37,41, TMPRSS2F,22, nucleocapsidG,3, helicaseH,3,29,34, endoribonucleaseI,39, NSP16/10J,6, cathepsin LK,26, Wnt-3L,22, FZDM,22, LRP6N,22, ezrinO,40, ADRPP,38, NRP1Q,41, EP300R,16, PTGS2S,23, HSP90AA1T,16,23, matrix metalloproteinase 9U,31, IL-6V,21,35, IL-10W,21, VEGFAX,35, and RELAY,35 proteins. In Vitro studies demonstrate inhibition of the MproB,15,46,51,59 protein, and inhibition of spike-ACE2 interactionZ,47. In Vitro studies demonstrate efficacy in Calu-3AA,50, A549AB,21, HEK293-ACE2+AC,58, Huh-7AD,25, Caco-2AE,49, Vero E6AF,19,42,49, mTECAG,52, and RAW264.7AH,52 cells. Animal studies demonstrate efficacy in K18-hACE2 miceAI,55, db/db miceAJ,52,61, BALB/c miceAK,60, and rats19. Quercetin reduced proinflammatory cytokines and protected lung and kidney tissue against LPS-induced damage in mice60, inhibits LPS-induced cytokine storm by modulating key inflammatory and antioxidant pathways in macrophages5, and inhibits SARS-CoV-2 ORF3a ion channel activity, which contributes to viral pathogenicity and cytotoxicity54.
Study covers quercetin, vitamin D, and ivermectin.
a. The trimeric spike (S) protein is a glycoprotein that mediates viral entry by binding to the host ACE2 receptor, is critical for SARS-CoV-2's ability to infect host cells, and is a target of neutralizing antibodies. Inhibition of the spike protein prevents viral attachment, halting infection at the earliest stage.
b. The main protease or Mpro, also known as 3CLpro or nsp5, is a cysteine protease that cleaves viral polyproteins into functional units needed for replication. Inhibiting Mpro disrupts the SARS-CoV-2 lifecycle within the host cell, preventing the creation of new copies.
c. RNA-dependent RNA polymerase (RdRp), also called nsp12, is the core enzyme of the viral replicase-transcriptase complex that copies the positive-sense viral RNA genome into negative-sense templates for progeny RNA synthesis. Inhibiting RdRp blocks viral genome replication and transcription.
d. The papain-like protease (PLpro) has multiple functions including cleaving viral polyproteins and suppressing the host immune response by deubiquitination and deISGylation of host proteins. Inhibiting PLpro may block viral replication and help restore normal immune responses.
e. The angiotensin converting enzyme 2 (ACE2) protein is a host cell transmembrane protein that serves as the cellular receptor for the SARS-CoV-2 spike protein. ACE2 is expressed on many cell types, including epithelial cells in the lungs, and allows the virus to enter and infect host cells. Inhibition may affect ACE2's physiological function in blood pressure control.
f. Transmembrane protease serine 2 (TMPRSS2) is a host cell protease that primes the spike protein, facilitating cellular entry. TMPRSS2 activity helps enable cleavage of the spike protein required for membrane fusion and virus entry. Inhibition may especially protect respiratory epithelial cells, buy may have physiological effects.
g. The nucleocapsid (N) protein binds and encapsulates the viral genome by coating the viral RNA. N enables formation and release of infectious virions and plays additional roles in viral replication and pathogenesis. N is also an immunodominant antigen used in diagnostic assays.
h. The helicase, or nsp13, protein unwinds the double-stranded viral RNA, a crucial step in replication and transcription. Inhibition may prevent viral genome replication and the creation of new virus components.
i. The endoribonuclease, also known as NendoU or nsp15, cleaves specific sequences in viral RNA which may help the virus evade detection by the host immune system. Inhibition may hinder the virus's ability to mask itself from the immune system, facilitating a stronger immune response.
j. The NSP16/10 complex consists of non-structural proteins 16 and 10, forming a 2'-O-methyltransferase that modifies the viral RNA cap structure. This modification helps the virus evade host immune detection by mimicking host mRNA, making NSP16/10 a promising antiviral target.
k. Cathepsin L is a host lysosomal cysteine protease that can prime the spike protein through an alternative pathway when TMPRSS2 is unavailable. Dual targeting of cathepsin L and TMPRSS2 may maximize disruption of alternative pathways for virus entry.
l. Wingless-related integration site (Wnt) ligand 3 is a host signaling molecule that activates the Wnt signaling pathway, which is important in development, cell growth, and tissue repair. Some studies suggest that SARS-CoV-2 infection may interfere with the Wnt signaling pathway, and that Wnt3a is involved in SARS-CoV-2 entry.
m. The frizzled (FZD) receptor is a host transmembrane receptor that binds Wnt ligands, initiating the Wnt signaling cascade. FZD serves as a co-receptor, along with ACE2, in some proposed mechanisms of SARS-CoV-2 infection. The virus may take advantage of this pathway as an alternative entry route.
n. Low-density lipoprotein receptor-related protein 6 is a cell surface co-receptor essential for Wnt signaling. LRP6 acts in tandem with FZD for signal transduction and has been discussed as a potential co-receptor for SARS-CoV-2 entry.
o. The ezrin protein links the cell membrane to the cytoskeleton (the cell's internal support structure) and plays a role in cell shape, movement, adhesion, and signaling. Drugs that occupy the same spot on ezrin where the viral spike protein would bind may hindering viral attachment, and drug binding could further stabilize ezrin, strengthening its potential natural capacity to impede viral fusion and entry.
p. The Adipocyte Differentiation-Related Protein (ADRP, also known as Perilipin 2 or PLIN2) is a lipid droplet protein regulating the storage and breakdown of fats in cells. SARS-CoV-2 may hijack the lipid handling machinery of host cells and ADRP may play a role in this process. Disrupting ADRP's interaction with the virus may hinder the virus's ability to use lipids for replication and assembly.
q. Neuropilin-1 (NRP1) is a cell surface receptor with roles in blood vessel development, nerve cell guidance, and immune responses. NRP1 may function as a co-receptor for SARS-CoV-2, facilitating viral entry into cells. Blocking NRP1 may disrupt an alternative route of viral entry.
r. EP300 (E1A Binding Protein P300) is a transcriptional coactivator involved in several cellular processes, including growth, differentiation, and apoptosis, through its acetyltransferase activity that modifies histones and non-histone proteins. EP300 facilitates viral entry into cells and upregulates inflammatory cytokine production.
s. Prostaglandin G/H synthase 2 (PTGS2, also known as COX-2) is an enzyme crucial for the production of inflammatory molecules called prostaglandins. PTGS2 plays a role in the inflammatory response that can become severe in COVID-19 and inhibitors (like some NSAIDs) may have benefits in dampening harmful inflammation, but note that prostaglandins have diverse physiological functions.
t. Heat Shock Protein 90 Alpha Family Class A Member 1 (HSP90AA1) is a chaperone protein that helps other proteins fold correctly and maintains their stability. HSP90AA1 plays roles in cell signaling, survival, and immune responses. HSP90AA1 may interact with numerous viral proteins, but note that it has diverse physiological functions.
u. Matrix metalloproteinase 9 (MMP9), also called gelatinase B, is a zinc-dependent enzyme that breaks down collagen and other components of the extracellular matrix. MMP9 levels increase in severe COVID-19. Overactive MMP9 can damage lung tissue and worsen inflammation. Inhibition of MMP9 may prevent excessive tissue damage and help regulate the inflammatory response.
v. The interleukin-6 (IL-6) pro-inflammatory cytokine (signaling molecule) has a complex role in the immune response and may trigger and perpetuate inflammation. Elevated IL-6 levels are associated with severe COVID-19 cases and cytokine storm. Anti-IL-6 therapies may be beneficial in reducing excessive inflammation in severe COVID-19 cases.
w. The interleukin-10 (IL-10) anti-inflammatory cytokine helps regulate and dampen immune responses, preventing excessive inflammation. IL-10 levels can also be elevated in severe COVID-19. IL-10 could either help control harmful inflammation or potentially contribute to immune suppression.
x. Vascular Endothelial Growth Factor A (VEGFA) promotes the growth of new blood vessels (angiogenesis) and has roles in inflammation and immune responses. VEGFA may contribute to blood vessel leakiness and excessive inflammation associated with severe COVID-19.
y. RELA is a transcription factor subunit of NF-kB and is a key regulator of inflammation, driving pro-inflammatory gene expression. SARS-CoV-2 may hijack and modulate NF-kB pathways.
z. The interaction between the SARS-CoV-2 spike protein and the human ACE2 receptor is a primary method of viral entry, inhibiting this interaction can prevent the virus from attaching to and entering host cells, halting infection at an early stage.
aa. Calu-3 is a human lung adenocarcinoma cell line with moderate ACE2 and TMPRSS2 expression and SARS-CoV-2 susceptibility. It provides a model of the human respiratory epithelium, but many not be ideal for modeling early stages of infection due to the moderate expression levels of ACE2 and TMPRSS2.
ab. A549 is a human lung carcinoma cell line with low ACE2 expression and SARS-CoV-2 susceptibility. Viral entry/replication can be studied but the cells may not replicate all aspects of lung infection.
ac. HEK293-ACE2+ is a human embryonic kidney cell line engineered for high ACE2 expression and SARS-CoV-2 susceptibility.
ad. Huh-7 cells were derived from a liver tumor (hepatoma).
ae. Caco-2 cells come from a colorectal adenocarcinoma (cancer). They are valued for their ability to form a polarized cell layer with properties similar to the intestinal lining.
af. Vero E6 is an African green monkey kidney cell line with low/no ACE2 expression and high SARS-CoV-2 susceptibility. The cell line is easy to maintain and supports robust viral replication, however the monkey origin may not accurately represent human responses.
ag. mTEC is a mouse tubular epithelial cell line.
ah. RAW264.7 is a mouse macrophage cell line.
ai. A mouse model expressing the human ACE2 receptor under the control of the K18 promoter.
aj. A mouse model of obesity and severe insulin resistance leading to type 2 diabetes due to a mutation in the leptin receptor gene that impairs satiety signaling.
ak. A mouse model commonly used in infectious disease and cancer research due to higher immune response and susceptibility to infection.
Chellasamy et al., 10 Aug 2022, peer-reviewed, 2 authors. Contact: selvaakumar.c@dypatil.edu, eleanorwatson@connect.glos.ac.uk.
In Silico studies are an important part of preclinical research, however results may be very different in vivo.
This PaperQuercetinAll
Docking and molecular dynamics studies of human ezrin protein with a modelled SARS-CoV-2 endodomain and their interaction with potential invasion inhibitors
Selvaa Kumar Chellasamy, Eleanor Watson
Journal of King Saud University - Science, doi:10.1016/j.jksus.2022.102277
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Conflicts of Interest: The authors declare no competing or conflicting interests.
References
Bairoch, Apweiler, The Swiss-Prot protein sequence database: its relevance to human molecular medical research, J. Mol. Med
Berendsen, GROMACS: A message-passing parallel molecular dynamics implementation, Comp. Phys. Comm
Berman, Westbrook, Feng, Gilliland, Bhat et al., The protein data bank, Nucleic Acids Res
Biovia, Systèmes, None
Bretscher, Edwards, Fehon, ERM proteins and merlin: integrators at the cell cortex, Nat. Rev. Mol. Cell Biol
Bulut, Hong, Chen, Beauchamp, Rahim et al., Small molecule inhibitors of ezrin inhibit the invasive phenotype of osteosarcoma cells, Oncogene Jan, doi:10.1038/onc.2011.245
Chen, Sawaya, Phillips, Reisler, Quinlan, Multiple Forms of Spire-Actin Complexes and their Functional Consequences, J. Biol. Chem
Ehsani, COVID-19 and iron dysregulation: distant sequence similarity between hepcidin and the novel coronavirus spike glycoprotein, Biol Direct, doi:10.1186/s13062-020-00275-2
Fehon, Mcclatchey, Bretscher, Organizing the cell cortex: the role of
Fehr, Perlman, Coronaviruses: an overview of their replication and 15. pathogenesis, Methods Mol. Biol
Fievet, Louvard, Arpin, ERM proteins in epithelial cell organization and 13. functions, Biochim Biophys Acta
Gautreau, Poullet, Louvard, Arpin, Ezrin, a plasma membrane-microfilament linker, signals cell survival through the phosphatidylinositol 3-kinase/Akt pathway
Jorgensen, Chandrasekhar, Madura, Impey, Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys
Kim, Thiessen, Bolton, Chen, Fu et al., PubChem Substance and Compound databases, Nucleic Acids Res
Kumar, Kumar, Wei, Comparative docking studies to understand the binding affinity of nicotine with soluble ACE2 (sACE2)-SARS-CoV-2 complex over sACE2, Toxicology Reports
Laskowski, Macarthur, Moss, Thornton, PROCHECK -a program to check the stereochemical quality of protein structures, J. App. Cryst
Li, Li, Farzan, Harrison, Structure of SARS coronavirus spike receptor binding domain complexed with receptor, Science
Lu, Hu, Wang, Qi, Gao et al., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor. CD26, Nature
Lu, Zhao, Li, Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding, Lancet
Millet, Kien, Cheung, Siu, Chan et al., Ezrin interacts with the SARS coronavirus spike protein and restrains infection at the entry stage, PLoS One, doi:10.1371/journal.pone.0049566
Miteva, Guyon, Tufféry, Frog2: Efficient 3D conformation ensemble generator for small compounds, Nucleic Acids Res. Jul
Morris, Huey, Lindstrom, Sanner, Belew et al., Autodock4 and AutoDockTools4: automated docking with selective receptor flexibility, J. Computational Chemistry
Nose, A unified formulation of the constant temperature molecular dynamics methods, The Journal of Chemical Physics
Paules, Marston, Fauci, Coronavirus infections-more than just the common cold, JAMA
Petit, Chouljenko, Iyer, Colgrove, Farzan et al., Palmitoylation of the cysteine-rich endodomain of the SARS-coronavirus spike glycoprotein is important for spike-mediated cell fusion, Virology Apr
Phang, Harrop, Duff, Sokolova, Crossett et al., Structural characterization suggests models for monomeric and dimeric forms of full length ezrin, Biochem. J
Ramadan, Mayilsamy, Mcgill, Ghosh, Giulianotti et al., Identification of SARS-CoV-2 Spike Palmitoylation Inhibitors That Results in Release of Attenuated Virus with Reduced Infectivity, Viruses
Schwede, Kopp, Guex, Peitsch, SWISS-MODEL: an automated protein homology-modelling server, Nucleic Acids Res. Jul
Shaw Research, Maestro-Desmond Interoperability Tools, version 3.6
Smith, Nassar, Bretscher, Cerione, Andrew et al., Structure of the active N-terminal domain of Ezrin. Conformational and mobility changes identify keystone interactions, J. Biol. Chem. Feb, doi:10.1074/jbc.M210601200
Turunen, Wahlström, Vaheri, Ezrin has a COOH-terminal actin-binding site that is conserved in the ezrin protein family, J. Cell Biol
Van Zundert, Melquiond, Bonvin, Integrative Modeling of Biomolecular Complexes: HADDOCKing with Cryo-Electron Microscopy Data, Structure
Wiederstein, Sippl, ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins, Nucleic Acids Research
Xia, Domains and Functions of Spike Protein in Sars-Cov-2 in the Context of Vaccine Design, Viruses, doi:10.3390/v1301010
Xue, Rodrigues, Kastritis, Bonvin, Vangone, PRODIGY: a web server for predicting the binding affinity of protein-protein complexes, Bioinformatics
Zhang, Holmes, A genomic perspective on the origin and emergence of SARS-CoV 2, Cell
{ 'indexed': {'date-parts': [[2022, 8, 10]], 'date-time': '2022-08-10T22:42:29Z', 'timestamp': 1660171349293}, 'reference-count': 37, 'publisher': 'Elsevier BV', 'license': [ { 'start': { 'date-parts': [[2022, 8, 1]], 'date-time': '2022-08-01T00:00:00Z', 'timestamp': 1659312000000}, 'content-version': 'tdm', 'delay-in-days': 0, 'URL': 'https://www.elsevier.com/tdm/userlicense/1.0/'}, { 'start': { 'date-parts': [[2022, 8, 8]], 'date-time': '2022-08-08T00:00:00Z', 'timestamp': 1659916800000}, 'content-version': 'vor', 'delay-in-days': 7, 'URL': 'http://creativecommons.org/licenses/by-nc-nd/4.0/'}], 'content-domain': {'domain': ['elsevier.com', 'sciencedirect.com'], 'crossmark-restriction': True}, 'published-print': {'date-parts': [[2022, 8]]}, 'DOI': '10.1016/j.jksus.2022.102277', 'type': 'journal-article', 'created': {'date-parts': [[2022, 8, 10]], 'date-time': '2022-08-10T22:02:31Z', 'timestamp': 1660168951000}, 'page': '102277', 'update-policy': 'http://dx.doi.org/10.1016/elsevier_cm_policy', 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': 'Docking and molecular dynamics studies of human ezrin protein with a modelled SARS-CoV-2 ' 'endodomain and their interaction with potential invasion inhibitors', 'prefix': '10.1016', 'author': [ {'given': 'Selvaa Kumar', 'family': 'Chellasamy', 'sequence': 'first', 'affiliation': []}, {'given': 'Eleanor', 'family': 'Watson', 'sequence': 'additional', 'affiliation': []}], 'member': '78', 'reference': [ { 'key': '10.1016/j.jksus.2022.102277_b0005', 'first-page': '312', 'article-title': 'The Swiss-Prot protein sequence database: its relevance to human ' 'molecular medical research', 'volume': '75', 'author': 'Bairoch', 'year': '1997', 'journal-title': 'J. Mol. Med.'}, { 'issue': '1-3', 'key': '10.1016/j.jksus.2022.102277_b0010', 'doi-asserted-by': 'crossref', 'first-page': '43', 'DOI': '10.1016/0010-4655(95)00042-E', 'article-title': 'GROMACS: A message-passing parallel molecular dynamics implementation', 'volume': '91', 'author': 'Berendsen', 'year': '1995', 'journal-title': 'Comp. Phys. Comm.'}, { 'issue': '1', 'key': '10.1016/j.jksus.2022.102277_b0015', 'doi-asserted-by': 'crossref', 'first-page': '235', 'DOI': '10.1093/nar/28.1.235', 'article-title': 'The protein data bank', 'volume': '28', 'author': 'Berman', 'year': '2000', 'journal-title': 'Nucleic Acids Res.'}, { 'key': '10.1016/j.jksus.2022.102277_b0020', 'article-title': 'Discovery Studio', 'author': 'BIOVIA,', 'year': '2019', 'journal-title': 'San Diego: Dassault Systèmes'}, { 'issue': '2002', 'key': '10.1016/j.jksus.2022.102277_b0025', 'doi-asserted-by': 'crossref', 'first-page': '586', 'DOI': '10.1038/nrm882', 'article-title': 'ERM proteins and merlin: integrators at the cell cortex', 'volume': '3', 'author': 'Bretscher', 'year': '2002', 'journal-title': 'Nat. Rev. Mol. Cell Biol.'}, { 'issue': '3', 'key': '10.1016/j.jksus.2022.102277_b0030', 'doi-asserted-by': 'crossref', 'first-page': '269', 'DOI': '10.1038/onc.2011.245', 'article-title': 'Small molecule inhibitors of ezrin inhibit the invasive phenotype of ' 'osteosarcoma cells', 'volume': '31', 'author': 'Bulut', 'year': '2012', 'journal-title': 'Oncogene'}, { 'key': '10.1016/j.jksus.2022.102277_b0035', 'doi-asserted-by': 'crossref', 'first-page': '10684', 'DOI': '10.1074/jbc.M111.317792', 'article-title': 'Multiple Forms of Spire-Actin Complexes and their Functional ' 'Consequences', 'volume': '287', 'author': 'Chen', 'year': '2012', 'journal-title': 'J. Biol. Chem.'}, { 'key': '10.1016/j.jksus.2022.102277_b0040', 'unstructured': 'D. E. Shaw Research 2013.Desmond Molecular Dynamics System, version 3.6. ' 'New York, NY,2013. Maestro-Desmond Interoperability Tools, version 3.6, ' 'Schrodinger, New York, NY,2013.'}, { 'issue': '1', 'key': '10.1016/j.jksus.2022.102277_b0045', 'doi-asserted-by': 'crossref', 'first-page': '19', 'DOI': '10.1186/s13062-020-00275-2', 'article-title': 'COVID-19 and iron dysregulation: distant sequence similarity between ' 'hepcidin and the novel coronavirus spike glycoprotein', 'volume': '15', 'author': 'Ehsani', 'year': '2020', 'journal-title': 'Biol Direct'}, { 'key': '10.1016/j.jksus.2022.102277_b0050', 'doi-asserted-by': 'crossref', 'first-page': '276', 'DOI': '10.1038/nrm2866', 'article-title': 'Organizing the cell cortex: the role of ERM proteins', 'volume': '11', 'author': 'Fehon', 'year': '2010', 'journal-title': 'Nat. Rev. Mol. Cell Biol.'}, { 'issue': '5', 'key': '10.1016/j.jksus.2022.102277_b0055', 'doi-asserted-by': 'crossref', 'first-page': '653', 'DOI': '10.1016/j.bbamcr.2006.06.013', 'article-title': 'ERM proteins in epithelial cell organization and functions', 'volume': '1773', 'author': 'Fiévet', 'year': '2007', 'journal-title': 'Biochim Biophys Acta'}, { 'issue': '2015', 'key': '10.1016/j.jksus.2022.102277_b0060', 'first-page': '1', 'article-title': 'Coronaviruses: an overview of their replication and pathogenesis', 'volume': '1282', 'author': 'Fehr', 'year': '2015', 'journal-title': 'Methods Mol. Biol.'}, { 'issue': '13', 'key': '10.1016/j.jksus.2022.102277_b0065', 'doi-asserted-by': 'crossref', 'first-page': '7300', 'DOI': '10.1073/pnas.96.13.7300', 'article-title': 'Ezrin, a plasma membrane-microfilament linker, signals cell survival ' 'through the phosphatidylinositol 3-kinase/Akt pathway', 'volume': '96', 'author': 'Gautreau', 'year': '1999', 'journal-title': 'Proc. Natl. Acad. Sci. USA'}, { 'issue': '2020', 'key': '10.1016/j.jksus.2022.102277_b0070', 'first-page': '1366', 'article-title': 'Comparative docking studies to understand the binding affinity of ' 'nicotine with soluble ACE2 (sACE2)-SARS-CoV-2 complex over sACE2', 'volume': '7', 'author': 'Kumar', 'year': '2020', 'journal-title': 'Toxicology Reports'}, { 'issue': '2', 'key': '10.1016/j.jksus.2022.102277_b0075', 'doi-asserted-by': 'crossref', 'first-page': '926', 'DOI': '10.1063/1.445869', 'article-title': 'Comparison of simple potential functions for simulating liquid water', 'volume': '79', 'author': 'Jorgensen', 'year': '1983', 'journal-title': 'J. Chem. Phys'}, { 'key': '10.1016/j.jksus.2022.102277_b0080', 'doi-asserted-by': 'crossref', 'first-page': '283', 'DOI': '10.1107/S0021889892009944', 'article-title': 'PROCHECK - a program to check the stereochemical quality of protein ' 'structures', 'volume': '26', 'author': 'Laskowski', 'year': '1993', 'journal-title': 'J. App. Cryst.'}, { 'issue': '5742', 'key': '10.1016/j.jksus.2022.102277_b0085', 'doi-asserted-by': 'crossref', 'first-page': '1864', 'DOI': '10.1126/science.1116480', 'article-title': 'Structure of SARS coronavirus spike receptor binding domain complexed ' 'with receptor', 'volume': '309', 'author': 'Li', 'year': '2005', 'journal-title': 'Science'}, { 'key': '10.1016/j.jksus.2022.102277_b0090', 'doi-asserted-by': 'crossref', 'first-page': '565', 'DOI': '10.1016/S0140-6736(20)30251-8', 'article-title': 'Genomic characterization and epidemiology of 2019 novel coronavirus: ' 'implications for virus origins and receptor binding', 'volume': '395', 'author': 'Lu', 'year': '2020', 'journal-title': 'Lancet'}, { 'issue': '7461', 'key': '10.1016/j.jksus.2022.102277_b0095', 'doi-asserted-by': 'crossref', 'first-page': '227', 'DOI': '10.1038/nature12328', 'article-title': 'Molecular basis of binding between novel human coronavirus MERS-CoV and ' 'its receptor. CD26', 'volume': '500', 'author': 'Lu', 'year': '2013', 'journal-title': 'Nature'}, { 'issue': 'Database issue', 'key': '10.1016/j.jksus.2022.102277_b0100', 'doi-asserted-by': 'crossref', 'first-page': 'D1202', 'DOI': '10.1093/nar/gkv951', 'article-title': 'PubChem Substance and Compound databases', 'volume': '44', 'author': 'Kim', 'year': '2016', 'journal-title': 'Nucleic Acids Res.'}, { 'key': '10.1016/j.jksus.2022.102277_b0105', 'doi-asserted-by': 'crossref', 'unstructured': 'J.K. Millet F. Kien C.-Y. Cheung Y.-L. Siu W.-L. Chan H. Li H.-L. Leung ' 'M. Jaume R. Bruzzone J.S. Malik Peiris R.M. Altmeyer B. Nal S. Pöhlmann ' 'Ezrin Interacts with the SARS Coronavirus Spike Protein and Restrains ' 'Infection at the Entry Stage PLoS One 7 11 e49566', 'DOI': '10.1371/journal.pone.0049566'}, { 'issue': 'Web Server', 'key': '10.1016/j.jksus.2022.102277_b0110', 'doi-asserted-by': 'crossref', 'first-page': 'W622', 'DOI': '10.1093/nar/gkq325', 'article-title': 'Frog2: Efficient 3D conformation ensemble generator for small compounds', 'volume': '38', 'author': 'Miteva', 'year': '2010', 'journal-title': 'Nucleic Acids Research'}, { 'issue': '16', 'key': '10.1016/j.jksus.2022.102277_b0115', 'doi-asserted-by': 'crossref', 'first-page': '2785', 'DOI': '10.1002/jcc.21256', 'article-title': 'Autodock4 and AutoDockTools4: automated docking with selective receptor ' 'flexibility', 'volume': '30', 'author': 'Morris', 'year': '2009', 'journal-title': 'J. Computational Chemistry'}, { 'issue': '1', 'key': '10.1016/j.jksus.2022.102277_b0120', 'doi-asserted-by': 'crossref', 'first-page': '511', 'DOI': '10.1063/1.447334', 'article-title': 'A unified formulation of the constant temperature molecular dynamics ' 'methods', 'volume': '81', 'author': 'Nosé', 'year': '1984', 'journal-title': 'The Journal of Chemical Physics'}, { 'key': '10.1016/j.jksus.2022.102277_b0125', 'doi-asserted-by': 'crossref', 'first-page': '707', 'DOI': '10.1001/jama.2020.0757', 'article-title': 'Coronavirus infections-more than just the common cold', 'volume': '323', 'author': 'Paules', 'year': '2020', 'journal-title': 'JAMA'}, { 'issue': '2', 'key': '10.1016/j.jksus.2022.102277_b0130', 'doi-asserted-by': 'crossref', 'first-page': '264', 'DOI': '10.1016/j.virol.2006.10.034', 'article-title': 'Palmitoylation of the cysteine-rich endodomain of the SARS-coronavirus ' 'spike glycoprotein is important for spike-mediated cell fusion', 'volume': '360', 'author': 'Petit', 'year': '2007', 'journal-title': 'Virology Apr 10'}, { 'key': '10.1016/j.jksus.2022.102277_b0135', 'doi-asserted-by': 'crossref', 'first-page': '2763', 'DOI': '10.1042/BCJ20160541', 'article-title': 'Structural characterization suggests models for monomeric and dimeric ' 'forms of full length ezrin', 'volume': '473', 'author': 'Phang', 'year': '2016', 'journal-title': 'Biochem. J.'}, { 'key': '10.1016/j.jksus.2022.102277_b0140', 'doi-asserted-by': 'crossref', 'first-page': '531', 'DOI': '10.3390/v14030531', 'article-title': 'Identification of SARS-CoV-2 Spike Palmitoylation Inhibitors That ' 'Results in Release of Attenuated Virus with Reduced Infectivity', 'volume': '14', 'author': 'Ramadan', 'year': '2022', 'journal-title': 'Viruses'}, { 'issue': '13', 'key': '10.1016/j.jksus.2022.102277_b0145', 'doi-asserted-by': 'crossref', 'first-page': '3381', 'DOI': '10.1093/nar/gkg520', 'article-title': 'SWISS-MODEL: an automated protein homology-modelling server', 'volume': '31', 'author': 'Schwede', 'year': '2003', 'journal-title': 'Nucleic Acids Res. Jul 1'}, { 'issue': '7', 'key': '10.1016/j.jksus.2022.102277_b0150', 'doi-asserted-by': 'crossref', 'first-page': '4949', 'DOI': '10.1074/jbc.M210601200', 'article-title': 'Structure of the Active N-terminal Domain of Ezrin', 'volume': '278', 'author': 'Smith', 'year': '2003', 'journal-title': 'Journal of Biological Chemistry'}, { 'key': '10.1016/j.jksus.2022.102277_b0155', 'doi-asserted-by': 'crossref', 'first-page': '1445', 'DOI': '10.1083/jcb.126.6.1445', 'article-title': 'Ezrin has a COOH-terminal actin-binding site that is conserved in the ' 'ezrin protein family', 'volume': '126', 'author': 'Turunen', 'year': '1994', 'journal-title': 'J. Cell Biol.'}, { 'issue': '2007', 'key': '10.1016/j.jksus.2022.102277_b0160', 'doi-asserted-by': 'crossref', 'first-page': 'W407', 'DOI': '10.1093/nar/gkm290', 'article-title': 'ProSA-web: interactive web service for the recognition of errors in ' 'three-dimensional structures of proteins', 'volume': '35', 'author': 'Wiederstein', 'year': '2007', 'journal-title': 'Nucleic Acids Research'}, { 'key': '10.1016/j.jksus.2022.102277_b0165', 'unstructured': 'WHO Dashboard https://covid19.who.int'}, { 'key': '10.1016/j.jksus.2022.102277_b0170', 'first-page': '109', 'volume': 'Viruses,13(1)', 'author': 'Xia', 'year': '2021', 'journal-title': 'Domains and Functions of Spike Protein in Sars-Cov-2 in the Context of ' 'Vaccine Design.'}, { 'issue': '23', 'key': '10.1016/j.jksus.2022.102277_b0175', 'first-page': '3676', 'article-title': 'PRODIGY: a web server for predicting the binding affinity of ' 'protein-protein complexes', 'volume': '32', 'author': 'Xue', 'year': '2016', 'journal-title': 'Bioinformatics (Oxford, England)'}, { 'issue': '2', 'key': '10.1016/j.jksus.2022.102277_b0180', 'doi-asserted-by': 'crossref', 'first-page': '223', 'DOI': '10.1016/j.cell.2020.03.035', 'article-title': 'A genomic perspective on the origin and emergence of SARS-CoV 2', 'volume': '181', 'author': 'Zhang', 'year': '2020', 'journal-title': 'Cell'}, { 'issue': '5', 'key': '10.1016/j.jksus.2022.102277_b0185', 'doi-asserted-by': 'crossref', 'first-page': '949', 'DOI': '10.1016/j.str.2015.03.014', 'article-title': 'Integrative Modeling of Biomolecular Complexes: HADDOCKing with ' 'Cryo-Electron Microscopy Data', 'volume': '23', 'author': 'van Zundert', 'year': '2015', 'journal-title': 'Structure'}], 'container-title': 'Journal of King Saud University - Science', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://api.elsevier.com/content/article/PII:S101836472200458X?httpAccept=text/xml', 'content-type': 'text/xml', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://api.elsevier.com/content/article/PII:S101836472200458X?httpAccept=text/plain', 'content-type': 'text/plain', 'content-version': 'vor', 'intended-application': 'text-mining'}], 'deposited': { 'date-parts': [[2022, 8, 10]], 'date-time': '2022-08-10T22:03:10Z', 'timestamp': 1660168990000}, 'score': 1, 'resource': {'primary': {'URL': 'https://linkinghub.elsevier.com/retrieve/pii/S101836472200458X'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2022, 8]]}, 'references-count': 37, 'alternative-id': ['S101836472200458X'], 'URL': 'http://dx.doi.org/10.1016/j.jksus.2022.102277', 'relation': {}, 'ISSN': ['1018-3647'], 'subject': ['Multidisciplinary'], 'container-title-short': 'Journal of King Saud University - Science', 'published': {'date-parts': [[2022, 8]]}, 'assertion': [ {'value': 'Elsevier', 'name': 'publisher', 'label': 'This article is maintained by'}, { 'value': 'Docking and molecular dynamics studies of human ezrin protein with a modelled ' 'SARS-CoV-2 endodomain and their interaction with potential invasion inhibitors', 'name': 'articletitle', 'label': 'Article Title'}, { 'value': 'Journal of King Saud University - Science', 'name': 'journaltitle', 'label': 'Journal Title'}, { 'value': 'https://doi.org/10.1016/j.jksus.2022.102277', 'name': 'articlelink', 'label': 'CrossRef DOI link to publisher maintained version'}, {'value': 'article', 'name': 'content_type', 'label': 'Content Type'}, { 'value': '© 2022 Published by Elsevier B.V. on behalf of King Saud University.', 'name': 'copyright', 'label': 'Copyright'}], 'article-number': '102277'}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit