Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchQuercetinQuercetin (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

Exploring the Binding Effects of Natural Products and Antihypertensive Drugs on SARS-CoV-2: An In Silico Investigation of Main Protease and Spike Protein

Moschovou et al., International Journal of Molecular Sciences, doi:10.3390/ijms242115894
Nov 2023  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Quercetin for COVID-19
24th treatment shown to reduce risk in July 2021, now with p = 0.002 from 12 studies.
No treatment is 100% effective. Protocols combine treatments.
5,100+ studies for 112 treatments. c19early.org
In Silico molecular docking and molecular dynamics analysis identifying curcumin, quercetin, rosmarinic acid, and salvianolic acid B as having favorable binding to Mpro and three distinct sites on the S protein. Molecular dynamics simulations confirmed rosmarinic acid and quercetin's stable binding to Mpro. At the S protein sites, salvianolic acid B and rosmarinic acid formed robust complexes. A similarity search yielded compounds structurally related to the top binders, with two analogs of salvianolic acid emerging as promising multi-target inhibitors against both Mpro and S proteins.
73 preclinical studies support the efficacy of quercetin for COVID-19:
In Silico studies predict inhibition of SARS-CoV-2, or minimization of side effects, with quercetin or metabolites via binding to the spikeA,3,9,10,22,24,25,30,38,39,41,42,62-64, MproB,3,7,9,11,13,15,17,18,20,23,24,30,34,36-38,42,43,45,63-65, RNA-dependent RNA polymeraseC,1,3,9,32,64, PLproD,3,37,45, ACE2E,22,23,28,37,41,63, TMPRSS2F,22, nucleocapsidG,3, helicaseH,3,29,34, endoribonucleaseI,39, NSP16/10J,6, cathepsin LK,26, Wnt-3L,22, FZDM,22, LRP6N,22, ezrinO,40, ADRPP,38, NRP1Q,41, EP300R,16, PTGS2S,23, HSP90AA1T,16,23, matrix metalloproteinase 9U,31, IL-6V,21,35, IL-10W,21, VEGFAX,35, and RELAY,35 proteins. In Vitro studies demonstrate inhibition of the MproB,15,46,51,59 protein, and inhibition of spike-ACE2 interactionZ,47. In Vitro studies demonstrate efficacy in Calu-3AA,50, A549AB,21, HEK293-ACE2+AC,58, Huh-7AD,25, Caco-2AE,49, Vero E6AF,19,42,49, mTECAG,52, and RAW264.7AH,52 cells. Animal studies demonstrate efficacy in K18-hACE2 miceAI,55, db/db miceAJ,52,61, BALB/c miceAK,60, and rats66. Quercetin reduced proinflammatory cytokines and protected lung and kidney tissue against LPS-induced damage in mice60, inhibits LPS-induced cytokine storm by modulating key inflammatory and antioxidant pathways in macrophages5, and inhibits SARS-CoV-2 ORF3a ion channel activity, which contributes to viral pathogenicity and cytotoxicity54.
Study covers quercetin and curcumin.
a. The trimeric spike (S) protein is a glycoprotein that mediates viral entry by binding to the host ACE2 receptor, is critical for SARS-CoV-2's ability to infect host cells, and is a target of neutralizing antibodies. Inhibition of the spike protein prevents viral attachment, halting infection at the earliest stage.
b. The main protease or Mpro, also known as 3CLpro or nsp5, is a cysteine protease that cleaves viral polyproteins into functional units needed for replication. Inhibiting Mpro disrupts the SARS-CoV-2 lifecycle within the host cell, preventing the creation of new copies.
c. RNA-dependent RNA polymerase (RdRp), also called nsp12, is the core enzyme of the viral replicase-transcriptase complex that copies the positive-sense viral RNA genome into negative-sense templates for progeny RNA synthesis. Inhibiting RdRp blocks viral genome replication and transcription.
d. The papain-like protease (PLpro) has multiple functions including cleaving viral polyproteins and suppressing the host immune response by deubiquitination and deISGylation of host proteins. Inhibiting PLpro may block viral replication and help restore normal immune responses.
e. The angiotensin converting enzyme 2 (ACE2) protein is a host cell transmembrane protein that serves as the cellular receptor for the SARS-CoV-2 spike protein. ACE2 is expressed on many cell types, including epithelial cells in the lungs, and allows the virus to enter and infect host cells. Inhibition may affect ACE2's physiological function in blood pressure control.
f. Transmembrane protease serine 2 (TMPRSS2) is a host cell protease that primes the spike protein, facilitating cellular entry. TMPRSS2 activity helps enable cleavage of the spike protein required for membrane fusion and virus entry. Inhibition may especially protect respiratory epithelial cells, buy may have physiological effects.
g. The nucleocapsid (N) protein binds and encapsulates the viral genome by coating the viral RNA. N enables formation and release of infectious virions and plays additional roles in viral replication and pathogenesis. N is also an immunodominant antigen used in diagnostic assays.
h. The helicase, or nsp13, protein unwinds the double-stranded viral RNA, a crucial step in replication and transcription. Inhibition may prevent viral genome replication and the creation of new virus components.
i. The endoribonuclease, also known as NendoU or nsp15, cleaves specific sequences in viral RNA which may help the virus evade detection by the host immune system. Inhibition may hinder the virus's ability to mask itself from the immune system, facilitating a stronger immune response.
j. The NSP16/10 complex consists of non-structural proteins 16 and 10, forming a 2'-O-methyltransferase that modifies the viral RNA cap structure. This modification helps the virus evade host immune detection by mimicking host mRNA, making NSP16/10 a promising antiviral target.
k. Cathepsin L is a host lysosomal cysteine protease that can prime the spike protein through an alternative pathway when TMPRSS2 is unavailable. Dual targeting of cathepsin L and TMPRSS2 may maximize disruption of alternative pathways for virus entry.
l. Wingless-related integration site (Wnt) ligand 3 is a host signaling molecule that activates the Wnt signaling pathway, which is important in development, cell growth, and tissue repair. Some studies suggest that SARS-CoV-2 infection may interfere with the Wnt signaling pathway, and that Wnt3a is involved in SARS-CoV-2 entry.
m. The frizzled (FZD) receptor is a host transmembrane receptor that binds Wnt ligands, initiating the Wnt signaling cascade. FZD serves as a co-receptor, along with ACE2, in some proposed mechanisms of SARS-CoV-2 infection. The virus may take advantage of this pathway as an alternative entry route.
n. Low-density lipoprotein receptor-related protein 6 is a cell surface co-receptor essential for Wnt signaling. LRP6 acts in tandem with FZD for signal transduction and has been discussed as a potential co-receptor for SARS-CoV-2 entry.
o. The ezrin protein links the cell membrane to the cytoskeleton (the cell's internal support structure) and plays a role in cell shape, movement, adhesion, and signaling. Drugs that occupy the same spot on ezrin where the viral spike protein would bind may hindering viral attachment, and drug binding could further stabilize ezrin, strengthening its potential natural capacity to impede viral fusion and entry.
p. The Adipocyte Differentiation-Related Protein (ADRP, also known as Perilipin 2 or PLIN2) is a lipid droplet protein regulating the storage and breakdown of fats in cells. SARS-CoV-2 may hijack the lipid handling machinery of host cells and ADRP may play a role in this process. Disrupting ADRP's interaction with the virus may hinder the virus's ability to use lipids for replication and assembly.
q. Neuropilin-1 (NRP1) is a cell surface receptor with roles in blood vessel development, nerve cell guidance, and immune responses. NRP1 may function as a co-receptor for SARS-CoV-2, facilitating viral entry into cells. Blocking NRP1 may disrupt an alternative route of viral entry.
r. EP300 (E1A Binding Protein P300) is a transcriptional coactivator involved in several cellular processes, including growth, differentiation, and apoptosis, through its acetyltransferase activity that modifies histones and non-histone proteins. EP300 facilitates viral entry into cells and upregulates inflammatory cytokine production.
s. Prostaglandin G/H synthase 2 (PTGS2, also known as COX-2) is an enzyme crucial for the production of inflammatory molecules called prostaglandins. PTGS2 plays a role in the inflammatory response that can become severe in COVID-19 and inhibitors (like some NSAIDs) may have benefits in dampening harmful inflammation, but note that prostaglandins have diverse physiological functions.
t. Heat Shock Protein 90 Alpha Family Class A Member 1 (HSP90AA1) is a chaperone protein that helps other proteins fold correctly and maintains their stability. HSP90AA1 plays roles in cell signaling, survival, and immune responses. HSP90AA1 may interact with numerous viral proteins, but note that it has diverse physiological functions.
u. Matrix metalloproteinase 9 (MMP9), also called gelatinase B, is a zinc-dependent enzyme that breaks down collagen and other components of the extracellular matrix. MMP9 levels increase in severe COVID-19. Overactive MMP9 can damage lung tissue and worsen inflammation. Inhibition of MMP9 may prevent excessive tissue damage and help regulate the inflammatory response.
v. The interleukin-6 (IL-6) pro-inflammatory cytokine (signaling molecule) has a complex role in the immune response and may trigger and perpetuate inflammation. Elevated IL-6 levels are associated with severe COVID-19 cases and cytokine storm. Anti-IL-6 therapies may be beneficial in reducing excessive inflammation in severe COVID-19 cases.
w. The interleukin-10 (IL-10) anti-inflammatory cytokine helps regulate and dampen immune responses, preventing excessive inflammation. IL-10 levels can also be elevated in severe COVID-19. IL-10 could either help control harmful inflammation or potentially contribute to immune suppression.
x. Vascular Endothelial Growth Factor A (VEGFA) promotes the growth of new blood vessels (angiogenesis) and has roles in inflammation and immune responses. VEGFA may contribute to blood vessel leakiness and excessive inflammation associated with severe COVID-19.
y. RELA is a transcription factor subunit of NF-kB and is a key regulator of inflammation, driving pro-inflammatory gene expression. SARS-CoV-2 may hijack and modulate NF-kB pathways.
z. The interaction between the SARS-CoV-2 spike protein and the human ACE2 receptor is a primary method of viral entry, inhibiting this interaction can prevent the virus from attaching to and entering host cells, halting infection at an early stage.
aa. Calu-3 is a human lung adenocarcinoma cell line with moderate ACE2 and TMPRSS2 expression and SARS-CoV-2 susceptibility. It provides a model of the human respiratory epithelium, but many not be ideal for modeling early stages of infection due to the moderate expression levels of ACE2 and TMPRSS2.
ab. A549 is a human lung carcinoma cell line with low ACE2 expression and SARS-CoV-2 susceptibility. Viral entry/replication can be studied but the cells may not replicate all aspects of lung infection.
ac. HEK293-ACE2+ is a human embryonic kidney cell line engineered for high ACE2 expression and SARS-CoV-2 susceptibility.
ad. Huh-7 cells were derived from a liver tumor (hepatoma).
ae. Caco-2 cells come from a colorectal adenocarcinoma (cancer). They are valued for their ability to form a polarized cell layer with properties similar to the intestinal lining.
af. Vero E6 is an African green monkey kidney cell line with low/no ACE2 expression and high SARS-CoV-2 susceptibility. The cell line is easy to maintain and supports robust viral replication, however the monkey origin may not accurately represent human responses.
ag. mTEC is a mouse tubular epithelial cell line.
ah. RAW264.7 is a mouse macrophage cell line.
ai. A mouse model expressing the human ACE2 receptor under the control of the K18 promoter.
aj. A mouse model of obesity and severe insulin resistance leading to type 2 diabetes due to a mutation in the leptin receptor gene that impairs satiety signaling.
ak. A mouse model commonly used in infectious disease and cancer research due to higher immune response and susceptibility to infection.
Moschovou et al., 2 Nov 2023, peer-reviewed, 7 authors.
In Silico studies are an important part of preclinical research, however results may be very different in vivo.
This PaperQuercetinAll
Exploring the Binding Effects of Natural Products and Antihypertensive Drugs on SARS-CoV-2: An In Silico Investigation of Main Protease and Spike Protein
Kalliopi Moschovou, Maria Antoniou, Eleni Chontzopoulou, Konstantinos D Papavasileiou, Georgia Melagraki, Antreas Afantitis, Thomas Mavromoustakos
International Journal of Molecular Sciences, doi:10.3390/ijms242115894
In this in silico study, we conducted an in-depth exploration of the potential of natural products and antihypertensive molecules that could serve as inhibitors targeting the key proteins of the SARS-CoV-2 virus: the main protease (Mpro) and the spike (S) protein. By utilizing Induced Fit Docking (IFD), we assessed the binding affinities of the molecules under study to these crucial viral components. To further comprehend the stability and molecular interactions of the "proteinligand" complexes that derived from docking studies, we performed molecular dynamics (MD) simulations, shedding light on the molecular basis of potential drug candidates for COVID-19 treatment. Moreover, we employed Molecular Mechanics Generalized Born Surface Area (MM-GBSA) calculations on all "protein-ligand" complexes, underscoring the robust binding capabilities of rosmarinic acid, curcumin, and quercetin against Mpro, and salvianolic acid b, rosmarinic acid, and quercetin toward the S protein. Furthermore, in order to expand our search for potent inhibitors, we conducted a structure similarity analysis, using the Enalos Suite, based on the molecules that indicated the most favored results in the in silico studies. The Enalos Suite generated 115 structurally similar compounds to salvianolic acid, rosmarinic acid, and quercetin. These compounds underwent IFD calculations, leading to the identification of two salvianolic acid analogues that exhibited strong binding to all the examined binding sites in both proteins, showcasing their potential as multi-target inhibitors. These findings introduce exciting possibilities for the development of novel therapeutic agents aiming to effectively disrupt the SARS-CoV-2 virus lifecycle.
References
Adem, Eyupoglu, Sarfraz, Rasul, Ali, Identification of Potent COVID-19 Main Protease (Mpro) Inhibitors from Natural Polyphenols: An in Silico Strategy Unveils a Hope against CORONA, doi:10.20944/preprints202003.0333.v1
Adem, Eyupoglu, Sarfraz, Rasul, Zahoor et al., Caffeic acid derivatives (CAFDs) as inhibitors of SARS-CoV-2: CAFDs-based functional foods as a potential alternative approach to combat COVID-19, Phytomedicine, doi:10.1016/j.phymed.2020.153310
Afantitis, Tsoumanis, Melagraki, Enalos suite of tools: Enhance cheminformatics and nanoinformat-ics through knime, Curr. Med. Chem, doi:10.2174/0929867327666200727114410
Ali, Vijayan, Dynamics of the ACE2-SARS-CoV-2/SARS-CoV spike protein interface reveal unique mechanisms, Sci. Rep, doi:10.1038/s41598-020-71188-3
Alzaabi, Hamdy, Ashmawy, Hamoda, Alkhayat et al., Flavonoids are promising safe therapy against COVID-19, Phytochem. Rev, doi:10.1007/s11101-021-09759-z
Amin, Tabari, Iranpanah, Bahramsoltani, Rahimi, Flavonoids as Promising Antiviral Agents against SARS-CoV-2 Infection: A Mechanistic Review, Molecules, doi:10.3390/molecules26133900
Armstrong, Soltoff, Rieu-Werden, Metlay, Haas, Use of angiotensin converting enzyme inhibitors and angiotensin receptor blockers associated with lower risk of COVID-19 in household contacts, PLoS ONE, doi:10.1371/journal.pone.0247548
Bahun, Jukić, Oblak, Kranjc, Bajc et al., Inhibition of the SARS-CoV-2 3CLpro main protease by plant polyphenols, Food Chemistry, doi:10.1016/j.foodchem.2021.131594
Behloul, Baha, Guo, Yang, Shi et al., In silico identification of strong binders of the SARS-CoV-2 receptorbinding domain, Eur. J. Pharmacol, doi:10.1016/j.ejphar.2020.173701
Bhati, Kaushik, Singh, Rational design of flavonoid based potential inhibitors targeting SARS-CoV 3CL protease for the treatment of COVID-19, J. Mol. Struct, doi:10.1016/j.molstruc.2021.130380
Bojadzic, Alcazar, Chen, Chuang, Condor Capcha et al., Small-Molecule Inhibitors of the Coronavirus Spike: ACE2 Protein-Protein Interaction as Blockers of Viral Attachment and Entry for SARS-CoV-2, ACS Infect. Dis, doi:10.1021/acsinfecdis.1c00070
Chakravarti, Singh, Ghosh, Dey, Sharma et al., A review on potential of natural products in the management of COVID-19, RSC Adv, doi:10.1039/D1RA00644D
Cherrak, Merzouk, Mokhtari-Soulimane, Potential bioactive glycosylated flavonoids as SARS-CoV-2 main protease inhibitors: A molecular docking and simulation studies, PLoS ONE, doi:10.1371/journal.pone.0240653
Dai, Zhang, Jiang, Su, Li et al., Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease, Science, doi:10.1126/science.abb4489
Dhar, Prasad, Tiwari, Pankaj, Bano et al., An In-Silico Study to Identify Hidden Features of Spike Protein and Main Protease of SARS-CoV-2, Preprints
Duarte, Pelorosso, Nicolosi, Victoria Salgado, Vetulli et al., Telmisartan for treatment of COVID-19 patients: An open multicenter randomized clinical trial, EClinicalMedicine, doi:10.1016/j.eclinm.2021.100962
Durdagi, Avsar, Orhan, Serhatli, Balcioglu et al., The neutralization effect of montelukaston SARS-CoV-2 is shown by multiscale in silico simulations and combined in vitro studies, Mol. Ther, doi:10.1016/j.ymthe.2021.10.014
Elebeedy, Elkhatib, Kandeil, Ghanem, Kutkat et al., Anti-SARS-CoV-2 activities of tanshinone IIA, carnosic acid, rosmarinic acid, salvianolic acid, baicalein, and glycyrrhetinic acid between computational andin vitroinsights, RSC Adv, doi:10.1039/D1RA05268C
Forrester, Booz, Sigmund, Coffman, Kawai et al., Angiotensin II signal transduction: An update on mechanisms of physiology and pathophysiology, Physiol. Rev, doi:10.1152/physrev.00038.2017
Han, Král, Computational Design of ACE2-Based Peptide Inhibitors of SARS-CoV-2, ACS Nano, doi:10.1021/acsnano.0c02857
Hoffmann, Kleine-Weber, Schroeder, Krüger, Herrler et al., SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor, Cell, doi:10.1016/j.cell.2020.02.052
Hu, Wang, Zhang, Bai, Wang et al., Three salvianolic acids inhibit 2019-nCoV spike pseudovirus viropexis by binding to both its RBD and receptor ACE2, J. Med. Virol, doi:10.1002/jmv.26874
Huang, Yang, Xu, Xu, Liu, Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19, Acta Pharmacol. Sin, doi:10.1038/s41401-020-0485-4
Jain, Mujwar, Repurposing metocurine as main protease inhibitor to develop novel antiviral therapy for COVID-19, Struct. Chem, doi:10.1007/s11224-020-01605-w
Jeon, Ko, Lee, Choi, Byun et al., Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs, Antimicrob. Agents Chemother, doi:10.1128/AAC.00819-20
Jin, Du, Xu, Deng, Liu et al., Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors, Nature, doi:10.1038/s41586-020-2223-y
Jorgensen, Chandrasekhar, Madura, Impey, Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys, doi:10.1063/1.445869
Jorgensen, Maxwell, Tirado-Rives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids, J. Am. Chem. Soc, doi:10.1021/ja9621760
Kaminski, Friesner, Tirado-Rives, Jorgensen, Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides, J. Phys. Chem, doi:10.1021/jp003919d
Khan, Heng, Wang, Qiu, Wei et al., In silico and in vitro evaluation of kaempferol as a potential inhibitor of the SARS-CoV-2 main protease (3CLpro), Phyther. Res, doi:10.1002/ptr.6998
Lan, Ge, Yu, Shan, Zhou et al., Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor, Nature, doi:10.1038/s41586-020-2180-5
Li, Abel, Zhu, Cao, Zhao et al., The VSGB 2.0 model: A next generation energy model for high resolution protein structure modeling, Proteins Struct. Funct. Bioinform, doi:10.1002/prot.23106
Li, Zhou, Guo, Xie, He et al., Potential inhibitors for blocking the interaction of the coronavirus SARS-CoV-2 spike protein and its host cell receptor ACE2, J. Transl. Med, doi:10.1186/s12967-022-03501-9
Lu, Stratton, Tang, Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle, J. Med. Virol, doi:10.1002/jmv.25678
Lyne, Lamb, Saeh, Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring, J. Med. Chem, doi:10.1021/jm060522a
Mavromoustakos, Agelis, Durdagi, AT1 antagonists: A patent review (2008-2012, Expert Opin. Ther. Pat, doi:10.1517/13543776.2013.830104
Merarchi, Dudha, Das, Garg, Natural products and phytochemicals as potential anti-SARS-CoV-2 drugs, Phytother. Res, doi:10.1002/ptr.7151
Onweni, Zhang, Caulfield, Hopkins, Fairweather et al., ACEI/ARB therapy in COVID-19: The double-edged sword of ACE2 and SARS-CoV-2 viral docking, Crit. Care, doi:10.1186/s13054-020-03195-9
Ou, Liu, Lei, Li, Mi et al., Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV, Nat. Commun, doi:10.1038/s41467-020-15562-9
Qian, Ou, Góes, Osborne, Castano et al., Identification of the Receptor-Binding Domain of the Spike Glycoprotein of Human Betacoronavirus HKU1, J. Virol, doi:10.1128/JVI.03737-14
Qiu, Shenkin, Hollinger, Still, The GB/SA continuum model for solvation. A fast analytical method for the calculation of approximate Born radii, J. Phys. Chem. A, doi:10.1021/jp961992r
Rashid, Xie, Suleman, Shah, Khan et al., Roles and functions of SARS-CoV-2 proteins in host immune evasion, Front. Immunol, doi:10.3389/fimmu.2022.940756
Roy, Sk, Tanwar, Kar, Computational studies indicated the effectiveness of human metabolites against SARS-CoV-2 main protease, Mol. Divers, doi:10.1007/s11030-022-10513-6
Rungruangmaitree, Phoochaijaroen, Chimprasit, Saparpakorn, Pootanakit et al., Structural analysis of the coronavirus main protease for the design of pan-variant inhibitors, Sci. Rep, doi:10.1038/s41598-023-34305-6
Russo, Tedesco, Spagnuolo, Russo, Antioxidant polyphenols in cancer treatment: Friend, foe or foil? Semin, Cancer Biol, doi:10.1016/j.semcancer.2017.05.005
Samy, Karunanithi, Sheshadhri, Rengarajan, Srinivasan et al., R)-(+)-Rosmarinic Acid as an Inhibitor of Herpes and Dengue Virus Replication: An In Silico Assessment, Rev. Bras. Farmacogn, doi:10.1007/s43450-023-00381-y
Schwantes, Pande, Bowers, Chow, Xu et al., Will Cannabis or Cannabinoids Protect You from SARS-CoV-2 Infection or Treat COVID-19?, J. Chem. Theory Comput, doi:10.1159/000522472
Shahhamzehei, Abdelfatah, Efferth, In Silico and In Vitro Identification of Pan-Coronaviral Main Protease Inhibitors from a Large Natural Product Library, Pharmaceuticals, doi:10.3390/ph15030308
Shinoda, Mikami, Rigid-body dynamics in the isothermal-isobaric ensemble: A test on the accuracy and computational efficiency, J. Comput. Chem, doi:10.1002/jcc.10249
Spagnuolo, Moccia, Russo, Anti-inflammatory effects of flavonoids in neurodegenerative disorders, Eur. J. Med. Chem, doi:10.1016/j.ejmech.2017.09.001
Sriram, Insel, A hypothesis for pathobiology and treatment of COVID-19: The centrality of ACE1/ACE2 imbalance, Br. J. Pharmacol, doi:10.1111/bph.15082
Still, Tempczyk, Hawley, Hendrickson, Semianalytical Treatment of Solvation for Molecular Mechanics and Dynamics, J. Am. Chem. Soc, doi:10.1021/ja00172a038
Suite, Protein Preparation Wizard; Epik Version 2.3
Van Breemen, Muchiri, Bates, Weinstein, Leier et al., Cannabinoids Block Cellular Entry of SARS-CoV-2 and the Emerging Variants, J. Nat. Prod, doi:10.1021/acs.jnatprod.1c00946
Varsou, Nikolakopoulos, Tsoumanis, Melagraki, Afantitis et al., Suite: New Cheminformatics Platform for Drug Discovery and Computational Toxicology
Xu, Gao, Liang, Chen, In silico screening of potential anti-COVID-19 bioactive natural constituents from food sources by molecular docking, Nutrition, doi:10.1016/j.nut.2020.111049
Yang, Pan, Xu, Cheng, Huang et al., Salvianolic acid C potently inhibits SARS-CoV-2 infection by blocking the formation of six-helix bundle core of spike protein, Signal Transduct. Target. Ther, doi:10.1038/s41392-020-00325-1
Zhang, Lin, Sun, Curth, Drosten et al., Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors, Science, doi:10.1126/science.abb3405
Zhu, Zhang, Wang, Li, Yang et al., A Novel Coronavirus from Patients with Pneumonia in China, N. Engl. J. Med, doi:10.1056/NEJMoa2001017
{ 'indexed': {'date-parts': [[2023, 11, 3]], 'date-time': '2023-11-03T01:03:47Z', 'timestamp': 1698973427065}, 'reference-count': 64, 'publisher': 'MDPI AG', 'issue': '21', 'license': [ { 'start': { 'date-parts': [[2023, 11, 2]], 'date-time': '2023-11-02T00:00:00Z', 'timestamp': 1698883200000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by/4.0/'}], 'funder': [{'name': 'Greece'}], 'content-domain': {'domain': [], 'crossmark-restriction': False}, 'abstract': '<jats:p>In this in silico study, we conducted an in-depth exploration of the potential of ' 'natural products and antihypertensive molecules that could serve as inhibitors targeting the ' 'key proteins of the SARS-CoV-2 virus: the main protease (Mpro) and the spike (S) protein. By ' 'utilizing Induced Fit Docking (IFD), we assessed the binding affinities of the molecules ' 'under study to these crucial viral components. To further comprehend the stability and ' 'molecular interactions of the “protein-ligand” complexes that derived from docking studies, ' 'we performed molecular dynamics (MD) simulations, shedding light on the molecular basis of ' 'potential drug candidates for COVID-19 treatment. Moreover, we employed Molecular Mechanics ' 'Generalized Born Surface Area (MM-GBSA) calculations on all “protein-ligand” complexes, ' 'underscoring the robust binding capabilities of rosmarinic acid, curcumin, and quercetin ' 'against Mpro, and salvianolic acid b, rosmarinic acid, and quercetin toward the S protein. ' 'Furthermore, in order to expand our search for potent inhibitors, we conducted a structure ' 'similarity analysis, using the Enalos Suite, based on the molecules that indicated the most ' 'favored results in the in silico studies. The Enalos Suite generated 115 structurally similar ' 'compounds to salvianolic acid, rosmarinic acid, and quercetin. These compounds underwent IFD ' 'calculations, leading to the identification of two salvianolic acid analogues that exhibited ' 'strong binding to all the examined binding sites in both proteins, showcasing their potential ' 'as multi-target inhibitors. These findings introduce exciting possibilities for the ' 'development of novel therapeutic agents aiming to effectively disrupt the SARS-CoV-2 virus ' 'lifecycle.</jats:p>', 'DOI': '10.3390/ijms242115894', 'type': 'journal-article', 'created': {'date-parts': [[2023, 11, 2]], 'date-time': '2023-11-02T13:16:21Z', 'timestamp': 1698930981000}, 'page': '15894', 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': 'Exploring the Binding Effects of Natural Products and Antihypertensive Drugs on SARS-CoV-2: An ' 'In Silico Investigation of Main Protease and Spike Protein', 'prefix': '10.3390', 'volume': '24', 'author': [ { 'given': 'Kalliopi', 'family': 'Moschovou', 'sequence': 'first', 'affiliation': [ { 'name': 'Department of Chemistry, National and Kapodistrian University of ' 'Athens, 15771 Athens, Greece'}]}, { 'given': 'Maria', 'family': 'Antoniou', 'sequence': 'additional', 'affiliation': [ { 'name': 'Department of ChemoInformatics, NovaMechanics Ltd., 1046 ' 'Nicosia, Cyprus'}, { 'name': 'Department of Chemoinformatics, NovaMechanics MIKE, 18536 ' 'Piraeus, Greece'}]}, { 'given': 'Eleni', 'family': 'Chontzopoulou', 'sequence': 'additional', 'affiliation': [ { 'name': 'Department of Chemistry, National and Kapodistrian University of ' 'Athens, 15771 Athens, Greece'}]}, { 'ORCID': 'http://orcid.org/0000-0002-2322-7422', 'authenticated-orcid': False, 'given': 'Konstantinos D.', 'family': 'Papavasileiou', 'sequence': 'additional', 'affiliation': [ { 'name': 'Department of ChemoInformatics, NovaMechanics Ltd., 1046 ' 'Nicosia, Cyprus'}, { 'name': 'Department of Chemoinformatics, NovaMechanics MIKE, 18536 ' 'Piraeus, Greece'}]}, { 'given': 'Georgia', 'family': 'Melagraki', 'sequence': 'additional', 'affiliation': [ { 'name': 'Division of Physical Sciences & Applications, Hellenic Military ' 'Academy, 16672 Vari, Greece'}]}, { 'ORCID': 'http://orcid.org/0000-0002-0977-8180', 'authenticated-orcid': False, 'given': 'Antreas', 'family': 'Afantitis', 'sequence': 'additional', 'affiliation': [ { 'name': 'Department of ChemoInformatics, NovaMechanics Ltd., 1046 ' 'Nicosia, Cyprus'}, { 'name': 'Department of Chemoinformatics, NovaMechanics MIKE, 18536 ' 'Piraeus, Greece'}]}, { 'ORCID': 'http://orcid.org/0000-0001-5309-992X', 'authenticated-orcid': False, 'given': 'Thomas', 'family': 'Mavromoustakos', 'sequence': 'additional', 'affiliation': [ { 'name': 'Department of Chemistry, National and Kapodistrian University of ' 'Athens, 15771 Athens, Greece'}]}], 'member': '1968', 'published-online': {'date-parts': [[2023, 11, 2]]}, 'reference': [ { 'key': 'ref_1', 'doi-asserted-by': 'crossref', 'first-page': '727', 'DOI': '10.1056/NEJMoa2001017', 'article-title': 'A Novel Coronavirus from Patients with Pneumonia in China, 2019', 'volume': '382', 'author': 'Zhu', 'year': '2020', 'journal-title': 'N. Engl. J. Med.'}, { 'key': 'ref_2', 'doi-asserted-by': 'crossref', 'first-page': '401', 'DOI': '10.1002/jmv.25678', 'article-title': 'Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery ' 'and the miracle', 'volume': '92', 'author': 'Lu', 'year': '2020', 'journal-title': 'J. Med. Virol.'}, { 'key': 'ref_3', 'doi-asserted-by': 'crossref', 'first-page': '8816', 'DOI': '10.1128/JVI.03737-14', 'article-title': 'Identification of the Receptor-Binding Domain of the Spike Glycoprotein ' 'of Human Betacoronavirus HKU1', 'volume': '89', 'author': 'Qian', 'year': '2015', 'journal-title': 'J. Virol.'}, { 'key': 'ref_4', 'doi-asserted-by': 'crossref', 'first-page': '1620', 'DOI': '10.1038/s41467-020-15562-9', 'article-title': 'Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and ' 'its immune cross-reactivity with SARS-CoV', 'volume': '11', 'author': 'Ou', 'year': '2020', 'journal-title': 'Nat. Commun.'}, { 'key': 'ref_5', 'unstructured': 'Dhar, Y.V., Prasad, P., Tiwari, N., Pankaj, V., Bano, N., Bag, S.K., and ' 'Asif, M.H. (2020). An In-Silico Study to Identify Hidden Features of ' 'Spike Protein and Main Protease of SARS-CoV-2. Preprints, 2020060191.'}, { 'key': 'ref_6', 'doi-asserted-by': 'crossref', 'first-page': '409', 'DOI': '10.1126/science.abb3405', 'article-title': 'Crystal structure of SARS-CoV-2 main protease provides a basis for ' 'design of improved α-ketoamide inhibitors', 'volume': '368', 'author': 'Zhang', 'year': '2020', 'journal-title': 'Science'}, { 'key': 'ref_7', 'doi-asserted-by': 'crossref', 'first-page': '940756', 'DOI': '10.3389/fimmu.2022.940756', 'article-title': 'Roles and functions of SARS-CoV-2 proteins in host immune evasion', 'volume': '13', 'author': 'Rashid', 'year': '2022', 'journal-title': 'Front. Immunol.'}, { 'key': 'ref_8', 'doi-asserted-by': 'crossref', 'unstructured': 'Adem, S., Eyupoglu, V., Sarfraz, I., Rasul, A., and Ali, M. (2020). ' 'Identification of Potent COVID-19 Main Protease (Mpro) Inhibitors from ' 'Natural Polyphenols: An in Silico Strategy Unveils a Hope against ' 'CORONA. Preprints.', 'DOI': '10.20944/preprints202003.0333.v1'}, { 'key': 'ref_9', 'doi-asserted-by': 'crossref', 'first-page': '2841', 'DOI': '10.1002/ptr.6998', 'article-title': 'In silico and in vitro evaluation of kaempferol as a potential ' 'inhibitor of the SARS-CoV-2 main protease (3CLpro)', 'volume': '35', 'author': 'Khan', 'year': '2021', 'journal-title': 'Phyther. Res.'}, { 'key': 'ref_10', 'doi-asserted-by': 'crossref', 'first-page': '271', 'DOI': '10.1016/j.cell.2020.02.052', 'article-title': 'SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a ' 'Clinically Proven Protease Inhibitor', 'volume': '181', 'author': 'Hoffmann', 'year': '2020', 'journal-title': 'Cell'}, { 'key': 'ref_11', 'doi-asserted-by': 'crossref', 'first-page': '1141', 'DOI': '10.1038/s41401-020-0485-4', 'article-title': 'Structural and functional properties of SARS-CoV-2 spike protein: ' 'Potential antivirus drug development for COVID-19', 'volume': '41', 'author': 'Huang', 'year': '2020', 'journal-title': 'Acta Pharmacol. Sin.'}, { 'key': 'ref_12', 'doi-asserted-by': 'crossref', 'first-page': '289', 'DOI': '10.1038/s41586-020-2223-y', 'article-title': 'Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors', 'volume': '582', 'author': 'Jin', 'year': '2020', 'journal-title': 'Nature'}, { 'key': 'ref_13', 'doi-asserted-by': 'crossref', 'first-page': '1331', 'DOI': '10.1126/science.abb4489', 'article-title': 'Structure-based design of antiviral drug candidates targeting the ' 'SARS-CoV-2 main protease', 'volume': '368', 'author': 'Dai', 'year': '2020', 'journal-title': 'Science'}, { 'key': 'ref_14', 'doi-asserted-by': 'crossref', 'first-page': '2487', 'DOI': '10.1007/s11224-020-01605-w', 'article-title': 'Repurposing metocurine as main protease inhibitor to develop novel ' 'antiviral therapy for COVID-19', 'volume': '31', 'author': 'Jain', 'year': '2020', 'journal-title': 'Struct. Chem.'}, { 'key': 'ref_15', 'doi-asserted-by': 'crossref', 'first-page': '1587', 'DOI': '10.1007/s11030-022-10513-6', 'article-title': 'Computational studies indicated the effectiveness of human metabolites ' 'against SARS-CoV-2 main protease', 'volume': '27', 'author': 'Roy', 'year': '2022', 'journal-title': 'Mol. Divers.'}, { 'key': 'ref_16', 'doi-asserted-by': 'crossref', 'first-page': '14214', 'DOI': '10.1038/s41598-020-71188-3', 'article-title': 'Dynamics of the ACE2–SARS-CoV-2/SARS-CoV spike protein interface reveal ' 'unique mechanisms', 'volume': '10', 'author': 'Ali', 'year': '2020', 'journal-title': 'Sci. Rep.'}, { 'key': 'ref_17', 'doi-asserted-by': 'crossref', 'first-page': '7055', 'DOI': '10.1038/s41598-023-34305-6', 'article-title': 'Structural analysis of the coronavirus main protease for the design of ' 'pan-variant inhibitors', 'volume': '13', 'author': 'Rungruangmaitree', 'year': '2023', 'journal-title': 'Sci. Rep.'}, { 'key': 'ref_18', 'doi-asserted-by': 'crossref', 'first-page': '1519', 'DOI': '10.1021/acsinfecdis.1c00070', 'article-title': 'Small-Molecule Inhibitors of the Coronavirus Spike: ACE2 ' 'Protein-Protein Interaction as Blockers of Viral Attachment and Entry ' 'for SARS-CoV-2', 'volume': '7', 'author': 'Bojadzic', 'year': '2021', 'journal-title': 'ACS Infect. Dis.'}, { 'key': 'ref_19', 'doi-asserted-by': 'crossref', 'first-page': '314', 'DOI': '10.1186/s12967-022-03501-9', 'article-title': 'Potential inhibitors for blocking the interaction of the coronavirus ' 'SARS-CoV-2 spike protein and its host cell receptor ACE2', 'volume': '20', 'author': 'Li', 'year': '2022', 'journal-title': 'J. Transl. Med.'}, { 'key': 'ref_20', 'doi-asserted-by': 'crossref', 'first-page': '5143', 'DOI': '10.1021/acsnano.0c02857', 'article-title': 'Computational Design of ACE2-Based Peptide Inhibitors of SARS-CoV-2', 'volume': '14', 'author': 'Han', 'year': '2020', 'journal-title': 'ACS Nano'}, { 'key': 'ref_21', 'doi-asserted-by': 'crossref', 'first-page': '963', 'DOI': '10.1016/j.ymthe.2021.10.014', 'article-title': 'The neutralization effect of montelukaston SARS-CoV-2 is shown by ' 'multiscale in silico simulations and combined in vitro studies', 'volume': '30', 'author': 'Durdagi', 'year': '2021', 'journal-title': 'Mol. Ther.'}, { 'key': 'ref_22', 'doi-asserted-by': 'crossref', 'unstructured': 'Shahhamzehei, N., Abdelfatah, S., and Efferth, T. (2022). In Silico and ' 'In Vitro Identification of Pan-Coronaviral Main Protease Inhibitors from ' 'a Large Natural Product Library. Pharmaceuticals, 15.', 'DOI': '10.3390/ph15030308'}, { 'key': 'ref_23', 'doi-asserted-by': 'crossref', 'first-page': '131594', 'DOI': '10.1016/j.foodchem.2021.131594', 'article-title': 'Inhibition of the SARS-CoV-2 3CLpro main protease by plant polyphenols', 'volume': '373', 'author': 'Bahun', 'year': '2022', 'journal-title': 'Food Chemistry'}, { 'key': 'ref_24', 'doi-asserted-by': 'crossref', 'first-page': '130380', 'DOI': '10.1016/j.molstruc.2021.130380', 'article-title': 'Rational design of flavonoid based potential inhibitors targeting ' 'SARS-CoV 3CL protease for the treatment of COVID-19', 'volume': '1237', 'author': 'Bhati', 'year': '2021', 'journal-title': 'J. Mol. Struct.'}, { 'key': 'ref_25', 'doi-asserted-by': 'crossref', 'first-page': '1', 'DOI': '10.1016/j.semcancer.2017.05.005', 'article-title': 'Antioxidant polyphenols in cancer treatment: Friend, foe or foil?', 'volume': '46', 'author': 'Russo', 'year': '2017', 'journal-title': 'Semin. Cancer Biol.'}, { 'key': 'ref_26', 'doi-asserted-by': 'crossref', 'first-page': '105', 'DOI': '10.1016/j.ejmech.2017.09.001', 'article-title': 'Anti-inflammatory effects of flavonoids in neurodegenerative disorders', 'volume': '153', 'author': 'Spagnuolo', 'year': '2018', 'journal-title': 'Eur. J. Med. Chem.'}, { 'key': 'ref_27', 'doi-asserted-by': 'crossref', 'unstructured': 'Cherrak, S.A., Merzouk, H., and Mokhtari-Soulimane, N. (2020). Potential ' 'bioactive glycosylated flavonoids as SARS-CoV-2 main protease ' 'inhibitors: A molecular docking and simulation studies. PLoS ONE, 15.', 'DOI': '10.31219/osf.io/k4h5f'}, { 'key': 'ref_28', 'doi-asserted-by': 'crossref', 'first-page': '5384', 'DOI': '10.1002/ptr.7151', 'article-title': 'Natural products and phytochemicals as potential anti-SARS-CoV-2 drugs', 'volume': '35', 'author': 'Merarchi', 'year': '2021', 'journal-title': 'Phytother. Res.'}, { 'key': 'ref_29', 'doi-asserted-by': 'crossref', 'first-page': '16711', 'DOI': '10.1039/D1RA00644D', 'article-title': 'A review on potential of natural products in the management of COVID-19', 'volume': '27', 'author': 'Chakravarti', 'year': '2021', 'journal-title': 'RSC Adv.'}, { 'key': 'ref_30', 'doi-asserted-by': 'crossref', 'unstructured': 'Amin, M., Tabari, K., Iranpanah, A., Bahramsoltani, R., and Rahimi, R. ' '(2021). Flavonoids as Promising Antiviral Agents against SARS-CoV-2 ' 'Infection: A Mechanistic Review. Molecules, 26.', 'DOI': '10.3390/molecules26133900'}, { 'key': 'ref_31', 'doi-asserted-by': 'crossref', 'first-page': '291', 'DOI': '10.1007/s11101-021-09759-z', 'article-title': 'Flavonoids are promising safe therapy against COVID-19', 'volume': '21', 'author': 'Alzaabi', 'year': '2022', 'journal-title': 'Phytochem. Rev.'}, { 'key': 'ref_32', 'doi-asserted-by': 'crossref', 'first-page': '111049', 'DOI': '10.1016/j.nut.2020.111049', 'article-title': 'In silico screening of potential anti–COVID-19 bioactive natural ' 'constituents from food sources by molecular docking', 'volume': '82', 'author': 'Xu', 'year': '2021', 'journal-title': 'Nutrition'}, { 'key': 'ref_33', 'doi-asserted-by': 'crossref', 'first-page': '543', 'DOI': '10.1007/s43450-023-00381-y', 'article-title': '(R)-(+)-Rosmarinic Acid as an Inhibitor of Herpes and Dengue Virus ' 'Replication: An In Silico Assessment', 'volume': '33', 'author': 'Samy', 'year': '2023', 'journal-title': 'Rev. Bras. Farmacogn.'}, { 'key': 'ref_34', 'doi-asserted-by': 'crossref', 'first-page': '29267', 'DOI': '10.1039/D1RA05268C', 'article-title': 'Anti-SARS-CoV-2 activities of tanshinone IIA, carnosic acid, rosmarinic ' 'acid, salvianolic acid, baicalein, and glycyrrhetinic acid between ' 'computational andin vitroinsights', 'volume': '11', 'author': 'Elebeedy', 'year': '2021', 'journal-title': 'RSC Adv.'}, { 'key': 'ref_35', 'doi-asserted-by': 'crossref', 'first-page': '153310', 'DOI': '10.1016/j.phymed.2020.153310', 'article-title': 'Caffeic acid derivatives (CAFDs) as inhibitors of SARS-CoV-2: ' 'CAFDs-based functional foods as a potential alternative approach to ' 'combat COVID-19', 'volume': '85', 'author': 'Adem', 'year': '2021', 'journal-title': 'Phytomedicine'}, { 'key': 'ref_36', 'first-page': '2', 'article-title': 'Salvianolic acid C potently inhibits SARS-CoV-2 infection by blocking ' 'the formation of six-helix bundle core of spike protein', 'volume': '5', 'author': 'Yang', 'year': '2020', 'journal-title': 'Signal Transduct. Target. Ther.'}, { 'key': 'ref_37', 'doi-asserted-by': 'crossref', 'first-page': '3143', 'DOI': '10.1002/jmv.26874', 'article-title': 'Three salvianolic acids inhibit 2019-nCoV spike pseudovirus viropexis ' 'by binding to both its RBD and receptor ACE2', 'volume': '93', 'author': 'Hu', 'year': '2021', 'journal-title': 'J. Med. Virol.'}, { 'key': 'ref_38', 'first-page': '101554', 'article-title': 'Will Cannabis or Cannabinoids Protect You from SARS-CoV-2 Infection or ' 'Treat COVID-19?', 'volume': '85', 'author': 'Schwantes', 'year': '2022', 'journal-title': 'J. Chem. Theory Comput.'}, { 'key': 'ref_39', 'doi-asserted-by': 'crossref', 'first-page': '176', 'DOI': '10.1021/acs.jnatprod.1c00946', 'article-title': 'Cannabinoids Block Cellular Entry of SARS-CoV-2 and the Emerging ' 'Variants', 'volume': '85', 'author': 'Muchiri', 'year': '2022', 'journal-title': 'J. Nat. Prod.'}, { 'key': 'ref_40', 'doi-asserted-by': 'crossref', 'unstructured': 'Armstrong, K.A., Soltoff, A., Rieu-Werden, M., Metlay, J., and Haas, J. ' '(2021). Use of angiotensin converting enzyme inhibitors and angiotensin ' 'receptor blockers associated with lower risk of COVID-19 in household ' 'contacts. PLoS ONE, 16.', 'DOI': '10.1371/journal.pone.0247548'}, { 'key': 'ref_41', 'doi-asserted-by': 'crossref', 'first-page': '4825', 'DOI': '10.1111/bph.15082', 'article-title': 'A hypothesis for pathobiology and treatment of COVID-19: The centrality ' 'of ACE1/ACE2 imbalance', 'volume': '177', 'author': 'Sriram', 'year': '2020', 'journal-title': 'Br. J. Pharmacol.'}, { 'key': 'ref_42', 'doi-asserted-by': 'crossref', 'first-page': 'e00819-20', 'DOI': '10.1128/AAC.00819-20', 'article-title': 'Identification of antiviral drug candidates against SARS-CoV-2 from ' 'FDA-approved drugs', 'volume': '64', 'author': 'Jeon', 'year': '2020', 'journal-title': 'Antimicrob. Agents Chemother.'}, { 'key': 'ref_43', 'doi-asserted-by': 'crossref', 'first-page': '1627', 'DOI': '10.1152/physrev.00038.2017', 'article-title': 'Angiotensin II signal transduction: An update on mechanisms of ' 'physiology and pathophysiology', 'volume': '98', 'author': 'Forrester', 'year': '2018', 'journal-title': 'Physiol. Rev.'}, { 'key': 'ref_44', 'doi-asserted-by': 'crossref', 'first-page': '1483', 'DOI': '10.1517/13543776.2013.830104', 'article-title': 'AT1 antagonists: A patent review (2008–2012)', 'volume': '23', 'author': 'Mavromoustakos', 'year': '2013', 'journal-title': 'Expert Opin. Ther. Pat.'}, { 'key': 'ref_45', 'first-page': '2020', 'article-title': 'ACEI/ARB therapy in COVID-19: The double-edged sword of ACE2 and ' 'SARS-CoV-2 viral docking', 'volume': '475', 'author': 'Onweni', 'year': '2020', 'journal-title': 'Crit. Care'}, { 'key': 'ref_46', 'doi-asserted-by': 'crossref', 'first-page': '100962', 'DOI': '10.1016/j.eclinm.2021.100962', 'article-title': 'Telmisartan for treatment of COVID-19 patients: An open multicenter ' 'randomized clinical trial', 'volume': '37', 'author': 'Duarte', 'year': '2021', 'journal-title': 'EClinicalMedicine'}, { 'key': 'ref_47', 'unstructured': 'Schrödinger Suite (2012). Protein Preparation Wizard, Schrödinger, LLC.. ' 'Epik Version 2.3; Impact Version 5.8; Prime Version 3.1.'}, { 'key': 'ref_48', 'doi-asserted-by': 'crossref', 'first-page': '215', 'DOI': '10.1038/s41586-020-2180-5', 'article-title': 'Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ' 'ACE2 receptor', 'volume': '581', 'author': 'Lan', 'year': '2020', 'journal-title': 'Nature'}, {'key': 'ref_49', 'unstructured': '(Prime, 2015). Prime, version 4.0.'}, { 'key': 'ref_50', 'doi-asserted-by': 'crossref', 'first-page': '6474', 'DOI': '10.1021/jp003919d', 'article-title': 'Evaluation and Reparametrization of the OPLS-AA Force Field for ' 'Proteins via Comparison with Accurate Quantum Chemical Calculations on ' 'Peptides', 'volume': '105', 'author': 'Kaminski', 'year': '2001', 'journal-title': 'J. Phys. Chem.'}, {'key': 'ref_51', 'unstructured': '(LigPrep, 2017). LigPrep, version 3.4.'}, {'key': 'ref_52', 'unstructured': '(Glide, 2012). Glide, version 5.8.'}, { 'key': 'ref_53', 'unstructured': '(Induced Fit Docking, Schrödinger Software Release 2017-1, 2017). ' 'Induced Fit Docking, Schrödinger Software Release 2017-1.'}, { 'key': 'ref_54', 'doi-asserted-by': 'crossref', 'first-page': '173701', 'DOI': '10.1016/j.ejphar.2020.173701', 'article-title': 'In silico identification of strong binders of the SARS-CoV-2 ' 'receptor-binding domain', 'volume': '890', 'author': 'Behloul', 'year': '2021', 'journal-title': 'Eur. J. Pharmacol.'}, { 'key': 'ref_55', 'doi-asserted-by': 'crossref', 'first-page': '11225', 'DOI': '10.1021/ja9621760', 'article-title': 'Development and testing of the OPLS all-atom force field on ' 'conformational energetics and properties of organic liquids', 'volume': '118', 'author': 'Jorgensen', 'year': '1996', 'journal-title': 'J. Am. Chem. Soc.'}, { 'key': 'ref_56', 'doi-asserted-by': 'crossref', 'first-page': '926', 'DOI': '10.1063/1.445869', 'article-title': 'Comparison of simple potential functions for simulating liquid water', 'volume': '79', 'author': 'Jorgensen', 'year': '1983', 'journal-title': 'J. Chem. Phys.'}, { 'key': 'ref_57', 'unstructured': '(Schrödinger Release 2017-1: Desmond Molecular Dynamics System, 2017). ' 'Schrödinger Release 2017-1: Desmond Molecular Dynamics System, ' 'Maestro-Desmond Interoperability Tools.'}, { 'key': 'ref_58', 'doi-asserted-by': 'crossref', 'first-page': '920', 'DOI': '10.1002/jcc.10249', 'article-title': 'Rigid-body dynamics in the isothermal-isobaric ensemble: A test on the ' 'accuracy and computational efficiency', 'volume': '24', 'author': 'Shinoda', 'year': '2003', 'journal-title': 'J. Comput. Chem.'}, { 'key': 'ref_59', 'doi-asserted-by': 'crossref', 'first-page': '4805', 'DOI': '10.1021/jm060522a', 'article-title': 'Accurate prediction of the relative potencies of members of a series of ' 'kinase inhibitors using molecular docking and MM-GBSA scoring', 'volume': '49', 'author': 'Lyne', 'year': '2006', 'journal-title': 'J. Med. Chem.'}, { 'key': 'ref_60', 'doi-asserted-by': 'crossref', 'first-page': '2794', 'DOI': '10.1002/prot.23106', 'article-title': 'The VSGB 2.0 model: A next generation energy model for high resolution ' 'protein structure modeling', 'volume': '79', 'author': 'Li', 'year': '2011', 'journal-title': 'Proteins Struct. Funct. Bioinform.'}, { 'key': 'ref_61', 'doi-asserted-by': 'crossref', 'first-page': '6127', 'DOI': '10.1021/ja00172a038', 'article-title': 'Semianalytical Treatment of Solvation for Molecular Mechanics and ' 'Dynamics', 'volume': '112', 'author': 'Tempczyk', 'year': '1990', 'journal-title': 'J. Am. Chem. Soc.'}, { 'key': 'ref_62', 'doi-asserted-by': 'crossref', 'first-page': '3005', 'DOI': '10.1021/jp961992r', 'article-title': 'The GB/SA continuum model for solvation. A fast analytical method for ' 'the calculation of approximate Born radii', 'volume': '101', 'author': 'Qiu', 'year': '1997', 'journal-title': 'J. Phys. Chem. A'}, { 'key': 'ref_63', 'unstructured': 'Varsou, D.-D., Nikolakopoulos, S., Tsoumanis, A., Melagraki, G., and ' 'Afantitis, A. (2018). Methods in Molecular Biology, Springer.'}, { 'key': 'ref_64', 'doi-asserted-by': 'crossref', 'first-page': '6523', 'DOI': '10.2174/0929867327666200727114410', 'article-title': 'Enalos suite of tools: Enhance cheminformatics and nanoinformat-ics ' 'through knime', 'volume': '27', 'author': 'Afantitis', 'year': '2020', 'journal-title': 'Curr. Med. Chem.'}], 'container-title': 'International Journal of Molecular Sciences', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://www.mdpi.com/1422-0067/24/21/15894/pdf', 'content-type': 'unspecified', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2023, 11, 2]], 'date-time': '2023-11-02T13:20:26Z', 'timestamp': 1698931226000}, 'score': 1, 'resource': {'primary': {'URL': 'https://www.mdpi.com/1422-0067/24/21/15894'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2023, 11, 2]]}, 'references-count': 64, 'journal-issue': {'issue': '21', 'published-online': {'date-parts': [[2023, 11]]}}, 'alternative-id': ['ijms242115894'], 'URL': 'http://dx.doi.org/10.3390/ijms242115894', 'relation': {}, 'ISSN': ['1422-0067'], 'subject': [ 'Inorganic Chemistry', 'Organic Chemistry', 'Physical and Theoretical Chemistry', 'Computer Science Applications', 'Spectroscopy', 'Molecular Biology', 'General Medicine', 'Catalysis'], 'container-title-short': 'IJMS', 'published': {'date-parts': [[2023, 11, 2]]}}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit