Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchQuercetinQuercetin (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

Bioinformatics and system biology approaches to determine the connection of SARS-CoV-2 infection and intrahepatic cholangiocarcinoma

Zhou et al., PLOS ONE, doi:10.1371/journal.pone.0300441
Apr 2024  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Quercetin for COVID-19
24th treatment shown to reduce risk in July 2021, now with p = 0.002 from 12 studies.
No treatment is 100% effective. Protocols combine treatments.
5,100+ studies for 112 treatments. c19early.org
In Silico study suggesting that quercetin and tetrandrine are potential treatments for COVID-19 and intrahepatic cholangiocarcinoma (ICC). Authors identify 70 shared differentially expressed genes between COVID-19 and ICC, indicating similarities in pathogenesis related to metabolism and immunity. Drug enrichment analysis pinpoints quercetin and tetrandrine as promising candidates that may treat both diseases.
73 preclinical studies support the efficacy of quercetin for COVID-19:
In Silico studies predict inhibition of SARS-CoV-2, or minimization of side effects, with quercetin or metabolites via binding to the spikeA,3,9,10,22,24,25,30,38,39,41,42,62-64, MproB,3,7,9,11,13,15,17,18,20,23,24,30,34,36-38,42,43,45,63-65, RNA-dependent RNA polymeraseC,1,3,9,32,64, PLproD,3,37,45, ACE2E,22,23,28,37,41,63, TMPRSS2F,22, nucleocapsidG,3, helicaseH,3,29,34, endoribonucleaseI,39, NSP16/10J,6, cathepsin LK,26, Wnt-3L,22, FZDM,22, LRP6N,22, ezrinO,40, ADRPP,38, NRP1Q,41, EP300R,16, PTGS2S,23, HSP90AA1T,16,23, matrix metalloproteinase 9U,31, IL-6V,21,35, IL-10W,21, VEGFAX,35, and RELAY,35 proteins. In Vitro studies demonstrate inhibition of the MproB,15,46,51,59 protein, and inhibition of spike-ACE2 interactionZ,47. In Vitro studies demonstrate efficacy in Calu-3AA,50, A549AB,21, HEK293-ACE2+AC,58, Huh-7AD,25, Caco-2AE,49, Vero E6AF,19,42,49, mTECAG,52, and RAW264.7AH,52 cells. Animal studies demonstrate efficacy in K18-hACE2 miceAI,55, db/db miceAJ,52,61, BALB/c miceAK,60, and rats66. Quercetin reduced proinflammatory cytokines and protected lung and kidney tissue against LPS-induced damage in mice60, inhibits LPS-induced cytokine storm by modulating key inflammatory and antioxidant pathways in macrophages5, and inhibits SARS-CoV-2 ORF3a ion channel activity, which contributes to viral pathogenicity and cytotoxicity54.
a. The trimeric spike (S) protein is a glycoprotein that mediates viral entry by binding to the host ACE2 receptor, is critical for SARS-CoV-2's ability to infect host cells, and is a target of neutralizing antibodies. Inhibition of the spike protein prevents viral attachment, halting infection at the earliest stage.
b. The main protease or Mpro, also known as 3CLpro or nsp5, is a cysteine protease that cleaves viral polyproteins into functional units needed for replication. Inhibiting Mpro disrupts the SARS-CoV-2 lifecycle within the host cell, preventing the creation of new copies.
c. RNA-dependent RNA polymerase (RdRp), also called nsp12, is the core enzyme of the viral replicase-transcriptase complex that copies the positive-sense viral RNA genome into negative-sense templates for progeny RNA synthesis. Inhibiting RdRp blocks viral genome replication and transcription.
d. The papain-like protease (PLpro) has multiple functions including cleaving viral polyproteins and suppressing the host immune response by deubiquitination and deISGylation of host proteins. Inhibiting PLpro may block viral replication and help restore normal immune responses.
e. The angiotensin converting enzyme 2 (ACE2) protein is a host cell transmembrane protein that serves as the cellular receptor for the SARS-CoV-2 spike protein. ACE2 is expressed on many cell types, including epithelial cells in the lungs, and allows the virus to enter and infect host cells. Inhibition may affect ACE2's physiological function in blood pressure control.
f. Transmembrane protease serine 2 (TMPRSS2) is a host cell protease that primes the spike protein, facilitating cellular entry. TMPRSS2 activity helps enable cleavage of the spike protein required for membrane fusion and virus entry. Inhibition may especially protect respiratory epithelial cells, buy may have physiological effects.
g. The nucleocapsid (N) protein binds and encapsulates the viral genome by coating the viral RNA. N enables formation and release of infectious virions and plays additional roles in viral replication and pathogenesis. N is also an immunodominant antigen used in diagnostic assays.
h. The helicase, or nsp13, protein unwinds the double-stranded viral RNA, a crucial step in replication and transcription. Inhibition may prevent viral genome replication and the creation of new virus components.
i. The endoribonuclease, also known as NendoU or nsp15, cleaves specific sequences in viral RNA which may help the virus evade detection by the host immune system. Inhibition may hinder the virus's ability to mask itself from the immune system, facilitating a stronger immune response.
j. The NSP16/10 complex consists of non-structural proteins 16 and 10, forming a 2'-O-methyltransferase that modifies the viral RNA cap structure. This modification helps the virus evade host immune detection by mimicking host mRNA, making NSP16/10 a promising antiviral target.
k. Cathepsin L is a host lysosomal cysteine protease that can prime the spike protein through an alternative pathway when TMPRSS2 is unavailable. Dual targeting of cathepsin L and TMPRSS2 may maximize disruption of alternative pathways for virus entry.
l. Wingless-related integration site (Wnt) ligand 3 is a host signaling molecule that activates the Wnt signaling pathway, which is important in development, cell growth, and tissue repair. Some studies suggest that SARS-CoV-2 infection may interfere with the Wnt signaling pathway, and that Wnt3a is involved in SARS-CoV-2 entry.
m. The frizzled (FZD) receptor is a host transmembrane receptor that binds Wnt ligands, initiating the Wnt signaling cascade. FZD serves as a co-receptor, along with ACE2, in some proposed mechanisms of SARS-CoV-2 infection. The virus may take advantage of this pathway as an alternative entry route.
n. Low-density lipoprotein receptor-related protein 6 is a cell surface co-receptor essential for Wnt signaling. LRP6 acts in tandem with FZD for signal transduction and has been discussed as a potential co-receptor for SARS-CoV-2 entry.
o. The ezrin protein links the cell membrane to the cytoskeleton (the cell's internal support structure) and plays a role in cell shape, movement, adhesion, and signaling. Drugs that occupy the same spot on ezrin where the viral spike protein would bind may hindering viral attachment, and drug binding could further stabilize ezrin, strengthening its potential natural capacity to impede viral fusion and entry.
p. The Adipocyte Differentiation-Related Protein (ADRP, also known as Perilipin 2 or PLIN2) is a lipid droplet protein regulating the storage and breakdown of fats in cells. SARS-CoV-2 may hijack the lipid handling machinery of host cells and ADRP may play a role in this process. Disrupting ADRP's interaction with the virus may hinder the virus's ability to use lipids for replication and assembly.
q. Neuropilin-1 (NRP1) is a cell surface receptor with roles in blood vessel development, nerve cell guidance, and immune responses. NRP1 may function as a co-receptor for SARS-CoV-2, facilitating viral entry into cells. Blocking NRP1 may disrupt an alternative route of viral entry.
r. EP300 (E1A Binding Protein P300) is a transcriptional coactivator involved in several cellular processes, including growth, differentiation, and apoptosis, through its acetyltransferase activity that modifies histones and non-histone proteins. EP300 facilitates viral entry into cells and upregulates inflammatory cytokine production.
s. Prostaglandin G/H synthase 2 (PTGS2, also known as COX-2) is an enzyme crucial for the production of inflammatory molecules called prostaglandins. PTGS2 plays a role in the inflammatory response that can become severe in COVID-19 and inhibitors (like some NSAIDs) may have benefits in dampening harmful inflammation, but note that prostaglandins have diverse physiological functions.
t. Heat Shock Protein 90 Alpha Family Class A Member 1 (HSP90AA1) is a chaperone protein that helps other proteins fold correctly and maintains their stability. HSP90AA1 plays roles in cell signaling, survival, and immune responses. HSP90AA1 may interact with numerous viral proteins, but note that it has diverse physiological functions.
u. Matrix metalloproteinase 9 (MMP9), also called gelatinase B, is a zinc-dependent enzyme that breaks down collagen and other components of the extracellular matrix. MMP9 levels increase in severe COVID-19. Overactive MMP9 can damage lung tissue and worsen inflammation. Inhibition of MMP9 may prevent excessive tissue damage and help regulate the inflammatory response.
v. The interleukin-6 (IL-6) pro-inflammatory cytokine (signaling molecule) has a complex role in the immune response and may trigger and perpetuate inflammation. Elevated IL-6 levels are associated with severe COVID-19 cases and cytokine storm. Anti-IL-6 therapies may be beneficial in reducing excessive inflammation in severe COVID-19 cases.
w. The interleukin-10 (IL-10) anti-inflammatory cytokine helps regulate and dampen immune responses, preventing excessive inflammation. IL-10 levels can also be elevated in severe COVID-19. IL-10 could either help control harmful inflammation or potentially contribute to immune suppression.
x. Vascular Endothelial Growth Factor A (VEGFA) promotes the growth of new blood vessels (angiogenesis) and has roles in inflammation and immune responses. VEGFA may contribute to blood vessel leakiness and excessive inflammation associated with severe COVID-19.
y. RELA is a transcription factor subunit of NF-kB and is a key regulator of inflammation, driving pro-inflammatory gene expression. SARS-CoV-2 may hijack and modulate NF-kB pathways.
z. The interaction between the SARS-CoV-2 spike protein and the human ACE2 receptor is a primary method of viral entry, inhibiting this interaction can prevent the virus from attaching to and entering host cells, halting infection at an early stage.
aa. Calu-3 is a human lung adenocarcinoma cell line with moderate ACE2 and TMPRSS2 expression and SARS-CoV-2 susceptibility. It provides a model of the human respiratory epithelium, but many not be ideal for modeling early stages of infection due to the moderate expression levels of ACE2 and TMPRSS2.
ab. A549 is a human lung carcinoma cell line with low ACE2 expression and SARS-CoV-2 susceptibility. Viral entry/replication can be studied but the cells may not replicate all aspects of lung infection.
ac. HEK293-ACE2+ is a human embryonic kidney cell line engineered for high ACE2 expression and SARS-CoV-2 susceptibility.
ad. Huh-7 cells were derived from a liver tumor (hepatoma).
ae. Caco-2 cells come from a colorectal adenocarcinoma (cancer). They are valued for their ability to form a polarized cell layer with properties similar to the intestinal lining.
af. Vero E6 is an African green monkey kidney cell line with low/no ACE2 expression and high SARS-CoV-2 susceptibility. The cell line is easy to maintain and supports robust viral replication, however the monkey origin may not accurately represent human responses.
ag. mTEC is a mouse tubular epithelial cell line.
ah. RAW264.7 is a mouse macrophage cell line.
ai. A mouse model expressing the human ACE2 receptor under the control of the K18 promoter.
aj. A mouse model of obesity and severe insulin resistance leading to type 2 diabetes due to a mutation in the leptin receptor gene that impairs satiety signaling.
ak. A mouse model commonly used in infectious disease and cancer research due to higher immune response and susceptibility to infection.
Zhou et al., 22 Apr 2024, peer-reviewed, 10 authors. Contact: ykf13@163.com.
In Silico studies are an important part of preclinical research, however results may be very different in vivo.
This PaperQuercetinAll
Bioinformatics and system biology approaches to determine the connection of SARS-CoV-2 infection and intrahepatic cholangiocarcinoma
Xinyi Zhou, Tengda Huang, Hongyuan Pan, Ao Du, Tian Wu, Jiang Lan, Yujia Song, Yue Lv, Fang He, Kefei Yuan
PLOS ONE, doi:10.1371/journal.pone.0300441
Introduction Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of coronavirus disease 2019 (COVID-19), has infected millions of individuals worldwide, which poses a severe threat to human health. COVID-19 is a systemic ailment affecting various tissues and organs, including the lungs and liver. Intrahepatic cholangiocarcinoma (ICC) is one of the most common liver cancer, and cancer patients are particularly at high risk of SARS-CoV-2 infection. Nonetheless, few studies have investigated the impact of COVID-19 on ICC patients. Methods With the methods of systems biology and bioinformatics, this study explored the link between COVID-19 and ICC, and searched for potential therapeutic drugs. Results This study identified a total of 70 common differentially expressed genes (DEGs) shared by both diseases, shedding light on their shared functionalities. Enrichment analysis pinpointed metabolism and immunity as the primary areas influenced by these common genes. Subsequently, through protein-protein interaction (PPI) network analysis, we identified SCD, ACSL5, ACAT2, HSD17B4, ALDOA, ACSS1, ACADSB, CYP51A1, PSAT1, and HKDC1 as hub genes. Additionally, 44 transcription factors (TFs) and 112 microRNAs (miRNAs) were forecasted to regulate the hub genes. Most importantly, several drug candidates (Periodateoxidized adenosine, Desipramine, Quercetin, Perfluoroheptanoic acid, Tetrandrine,
Supporting information S1
References
Akalın, Introduction to bioinformatics, Molecular nutrition & food research, doi:10.1002/mnfr.200500273
Al-Mustanjid, Mahmud, Royel, Rahman, Islam et al., Detection of molecular signatures and pathways shared in inflammatory bowel disease and colorectal cancer: A bioinformatics and systems biology approach, Genomics, doi:10.1016/j.ygeno.2020.06.001
Arunachalam, Wimmers, Mok, Perera, Scott et al., Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans, Science, doi:10.1126/science.abc6261
Bardou, Escudie, Djemiel, Klopp, jvenn: an interactive Venn diagram viewer, BMC Bioinformatics, doi:10.1186/1471-2105-15-293
Barrett, Wilhite, Ledoux, Evangelista, Kim et al., NCBI GEO: archive for functional genomics data sets-update, Nucleic Acids Res, doi:10.1093/nar/gks1193
Bridgewater, Galle, Khan, Llovet, Park et al., Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma, J Hepatol, doi:10.1016/j.jhep.2014.01.021
Challenor, Tucker, SARS-CoV-2-induced remission of Hodgkin lymphoma, British Journal of Haematology, doi:10.1111/bjh.17116
Chang, Huang, Huang, Cheng, Liu et al., Desipramine-induced apoptosis in human PC3 prostate cancer cells: activation of JNK kinase and caspase-3 pathways and a protective role of [Ca2+] i elevation, Toxicology, doi:10.1016/j.tox.2008.05.010
Chen, Tan, Kou, Duan, Wang et al., Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool, BMC Bioinformatics, doi:10.1186/1471-2105-14-128
Cory, Mansell, George, Wilkinson, Inhibition of nucleic acid synthesis in Ehrlich tumor cells by periodate-oxidized adenosine and adenylic acid, Archives of Biochemistry and Biophysics, doi:10.1016/0003-9861%2874%2990426-3
Costa-Silva, Domingues, Lopes, RNA-Seq differential expression analysis: An extended review and a software tool, PLoS One, doi:10.1371/journal.pone.0190152
Derosa, Maffioli, Angelo, Pierro, A role for quercetin in coronavirus disease 2019 (COVID-19), Phytotherapy research, doi:10.1002/ptr.6887
Dong, Lu, Chen, Lin, Zhu et al., Proteogenomic characterization identifies clinically relevant subgroups of intrahepatic cholangiocarcinoma, Cancer cell, doi:10.1016/j.ccell.2021.12.006
Ejaz, Alsrhani, Zafar, Javed, Junaid et al., COVID-19 and comorbidities: Deleterious impact on infected patients, Journal of infection and public health, doi:10.1016/j.jiph.2020.07.014
Fauci, Lane, Redfield, Covid-19-navigating the uncharted, Mass Medical Soc
Gao, Hu, Zhang, Li, Zhu et al., Highly pathogenic coronavirus N protein aggravates lung injury by MASP-2-mediated complement over-activation, MedRxiv
Gaziano, Giambartolomei, Pereira, Gaulton, Posner et al., Actionable druggable genome-wide Mendelian randomization identifies repurposing opportunities for COVID-19, Nat Med, doi:10.1038/s41591-021-01310-z
Guan, Liang, -H, Zhao, Liang et al., Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis, European Respiratory Journal
He, Liu, Peng, Li, Li et al., COVID-19 induces new-onset insulin resistance and lipid metabolic dysregulation via regulation of secreted metabolic factors. Signal transduction and targeted therapy, doi:10.1038/s41392-021-00822-x
Heister, Poston, Pharmacological hypothesis: TPC2 antagonist tetrandrine as a potential therapeutic agent for COVID-19, Pharmacology research & perspectives, doi:10.1002/prp2.653
Huang, Jiang, Song, Pan, Yu et al., Bioinformatics and system biology approach to identify the influences of SARS-CoV2 on metabolic unhealthy obese patients, Frontiers in Molecular Biosciences, doi:10.3389/fmolb.2023.1274463
Huang, Wang, Li, Ren, Zhao et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet, doi:10.1016/S0140-6736%2820%2930183-5
Huang, Yu, Zhou, Pan, Du et al., Exploration of the link between COVID-19 and alcoholic hepatitis from the perspective of bioinformatics and systems biology, MedComm-Future Medicine
Huang, Zheng, Song, Pan, Qiu et al., Demonstration of the impact of COVID-19 on metabolic associated fatty liver disease by bioinformatics and system biology approach, Medicine, doi:10.1097/MD.0000000000034570
Kanehisa, Furumichi, Sato, Ishiguro-Watanabe, Tanabe, KEGG: integrating viruses and cellular organisms, Nucleic Acids Res, doi:10.1093/nar/gkaa970
Karagkouni, Paraskevopoulou, Chatzopoulos, Vlachos, Tastsoglou et al., DIANA-TarBase v8: a decade-long collection of experimentally supported miRNA-gene interactions, Nucleic acids research, doi:10.1093/nar/gkx1141
Katoh, Yaguchi, Kubo, Iwata, Morii et al., Inhibition of stearoyl-CoA desaturase 1 (SCD1) enhances the antitumor T cell response through regulating beta-catenin signaling in cancer cells and ER stress in T cells and synergizes with anti-PD-1 antibody, Journal for immunotherapy of cancer, doi:10.1136/jitc-2022-004616
Kelley, Bridgewater, Gores, Zhu, Systemic therapies for intrahepatic cholangiocarcinoma, J Hepatol, doi:10.1016/j.jhep.2019.10.009
Li, Yang, Jiang, Yang, Jiang et al., Interplay and cooperation between SREBF1 and master transcription factors regulate lipid metabolism and tumor-promoting pathways in squamous cancer, Nature Communications, doi:10.1038/s41467-021-24656-x
Liang, Guan, Chen, Li, Xu, Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China, Lancet Oncol, doi:10.1016/S1470-2045%2820%2930096-6
Liu, Gu, Zhu, Niu, Zhang et al., Identification of Hub Genes and Key Pathways Associated With Bipolar Disorder Based on Weighted Gene Co-expression Network Analysis, Front Physiol, doi:10.3389/fphys.2019.01081
Liu, Liu, Rajapakse, Gene Ontology Enrichment Improves Performances of Functional Similarity of Genes, Sci Rep, doi:10.1038/s41598-018-30455-0
Luo, Xin, Zhou, Hu, Sun et al., Tumor-derived exosomes induce immunosuppressive macrophages to foster intrahepatic cholangiocarcinoma progression, Hepatology, doi:10.1002/hep.32387
Maekawa, Minato, Ishifune, Kurihara, Kitamura et al., Notch2 integrates signaling by the transcription factors RBP-J and CREB1 to promote T cell cytotoxicity, Nature immunology, doi:10.1038/ni.1649
Mahmud, Al-Mustanjid, Akter, Rahman, Ahmed et al., Bioinformatics and system biology approach to identify the influences of SARS-CoV-2 infections to idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease patients, Brief Bioinform, doi:10.1093/bib/bbab115
Matricardi, Negro, Nisini, The first, holistic immunological model of COVID-19: Implications for prevention, diagnosis, and public health measures, Pediatr Allergy Immunol, doi:10.1111/pai.13271
Melgaco, Veloso, Pacheco-Moreira, Vitral, Pinto, Complement System as a Target for Therapies to Control Liver Regeneration/Damage in Acute Liver Failure Induced by Viral Hepatitis, Journal of immunology research, doi:10.1155/2018/3917032
Nardo, Schneeweiss-Gleixner, Bakail, Dixon, Lax et al., Pathophysiological mechanisms of liver injury in COVID-19, Liver international: official journal of the International Association for the Study of the Liver, doi:10.1111/liv.14730
Niu, Lin, Sun, Yan, Liang, Loss-of-Function Genetic Screening Identifies Aldolase A as an Essential Driver for Liver Cancer Cell Growth Under Hypoxia, Hepatology, doi:10.1002/hep.31846
Pinero, Ramirez-Anguita, Sauch-Pitarch, Ronzano, Centeno et al., The DisGeNET knowledge platform for disease genomics: 2019 update, Nucleic Acids Res, doi:10.1093/nar/gkz1021
Pratap, Vadlamudi, PERK promotes immunosuppressive M2 macrophage phenotype by metabolic reprogramming and epigenetic modifications through the PERK-ATF4-PSAT1 axis. Immunometabolism, doi:10.1097/IN9.0000000000000007
Quan, Bode, Luo, ACSL family: The regulatory mechanisms and therapeutic implications in cancer, European journal of pharmacology, doi:10.1016/j.ejphar.2021.174397
Raggi, Taddei, Braconi, Marra, Metabolic reprogramming in cholangiocarcinoma, J Hepatol, doi:10.1016/j.jhep.2022.04.038
Raines, Zhao, Wang, Chen, Gallart-Ayala et al., PERK is a critical metabolic hub for immunosuppressive function in macrophages, Nature immunology, doi:10.1038/s41590-022-01145-x
Rc, Tetrandrine and cancer-An overview on the molecular approach, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, doi:10.1016/j.biopha.2017.10.116
Reyes-Farias, Carrasco-Pozo, The Anti-Cancer Effect of Quercetin: Molecular Implications in Cancer Metabolism, International journal of molecular sciences, doi:10.3390/ijms20133177
Ritchie, Phipson, Wu, Hu, Law et al., limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Res, doi:10.1093/nar/gkv007
Sandelin, Alkema, Engstrom, Wasserman, Lenhard, JASPAR: an open-access database for eukaryotic transcription factor binding profiles, Nucleic Acids Research, doi:10.1093/nar/gkh012
Shannon, Markiel, Ozier, Baliga, Wang et al., Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res, doi:10.1101/gr.1239303
Shen, Yi, Sun, Bi, Du et al., Proteomic and Metabolomic Characterization of COVID-19 Patient Sera, Cell, doi:10.1016/j.cell.2020.05.032
Song, Huang, Pan, Du, Wu et al., The influence of COVID-19 on colorectal cancer was investigated using bioinformatics and systems biology techniques, Frontiers in Medicine, doi:10.3389/fmed.2023.1169562
Subramanian, Tamayo, Mootha, Mukherjee, Ebert et al., Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, Proc Natl Acad Sci, doi:10.1073/pnas.0506580102
Sung, Ferlay, Siegel, Laversanne, Soerjomataram et al., Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries, CA Cancer J Clin, doi:10.3322/caac.21660
Szklarczyk, Gable, Lyon, Junge, Wyder et al., STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets, Nucleic Acids Res, doi:10.1093/nar/gky1131
Tay, Poh, Renia, Macary, Ng, The trinity of COVID-19: immunity, inflammation and intervention, Nature reviews Immunology, doi:10.1038/s41577-020-0311-8
Vriens, Christen, Parik, Broekaert, Yoshinaga et al., Evidence for an alternative fatty acid desaturation pathway increasing cancer plasticity, Nature, doi:10.1038/s41586-019-0904-1
Xu, Shi, Wang, Zhang, Huang et al., Pathological findings of COVID-19 associated with acute respiratory distress syndrome, Lancet Respir Med, doi:10.1016/S2213-2600%2820%2930076-X
Yoo, Shin, Kim, Ryall, Lee et al., DSigDB: drug signatures database for gene set analysis, Bioinformatics, doi:10.1093/bioinformatics/btv313
Zhang, Shi, Wang, Liver injury in COVID-19: management and challenges, Lancet Gastroenterol Hepatol, doi:10.1016/S2468-1253%2820%2930057-1
Zhang, Zhang, Meng, Ge, Comprehensive analysis of DNA methylation and gene expression profiles in cholangiocarcinoma, Cancer cell international, doi:10.1186/s12935-019-1080-y
Zhang, Zhou, Xiao, Li, Guo et al., KDM5C Represses FASN-Mediated Lipid Metabolism to Exert Tumor Suppressor Activity in Intrahepatic Cholangiocarcinoma, Front Oncol, doi:10.3389/fonc.2020.01025
Zhou, Soufan, Ewald, Hancock, Basu et al., NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis, Nucleic Acids Res, doi:10.1093/nar/gkz240
Zhou, Zhu, Li, Li, Ye et al., Stearoyl-CoA Desaturase-Mediated Monounsaturated Fatty Acid Availability Supports Humoral Immunity, Cell Rep, doi:10.1016/j.celrep.2020.108601
{ 'indexed': {'date-parts': [[2024, 4, 23]], 'date-time': '2024-04-23T00:35:25Z', 'timestamp': 1713832525903}, 'reference-count': 64, 'publisher': 'Public Library of Science (PLoS)', 'issue': '4', 'license': [ { 'start': { 'date-parts': [[2024, 4, 22]], 'date-time': '2024-04-22T00:00:00Z', 'timestamp': 1713744000000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'http://creativecommons.org/licenses/by/4.0/'}], 'funder': [ { 'DOI': '10.13039/501100001809', 'name': 'the Natural Science Foundation of China', 'doi-asserted-by': 'crossref', 'award': ['82370645']}, { 'DOI': '10.13039/501100001809', 'name': 'the Natural Science Foundation of China', 'doi-asserted-by': 'crossref', 'award': ['82270643']}, { 'DOI': '10.13039/501100001809', 'name': 'the Natural Science Foundation of China', 'doi-asserted-by': 'crossref', 'award': ['82070644']}, { 'DOI': '10.13039/501100001809', 'name': 'the Natural Science Foundation of China', 'doi-asserted-by': 'crossref', 'award': ['82170621']}, { 'name': 'the National multidisciplinary collaborative diagnosis and treatment capacity ' 'building project for major diseases', 'award': ['TJZ202104']}, { 'name': 'the Science and Technology Major Program of Sichuan Province', 'award': ['2022ZDZX0019']}, { 'name': '1.3.5 project for disciplines of excellence, West China Hospital, Sichuan ' 'University', 'award': ['ZYJC18008']}, { 'name': '1.3.5 project for disciplines of excellence, West China Hospital, Sichuan ' 'University', 'award': ['ZYGD22006']}], 'content-domain': {'domain': ['www.plosone.org'], 'crossmark-restriction': False}, 'abstract': '<jats:sec id="sec001">\n' '<jats:title>Introduction</jats:title>\n' '<jats:p>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of ' 'coronavirus disease 2019 (COVID-19), has infected millions of individuals worldwide, which ' 'poses a severe threat to human health. COVID-19 is a systemic ailment affecting various ' 'tissues and organs, including the lungs and liver. Intrahepatic cholangiocarcinoma (ICC) is ' 'one of the most common liver cancer, and cancer patients are particularly at high risk of ' 'SARS-CoV-2 infection. Nonetheless, few studies have investigated the impact of COVID-19 on ' 'ICC patients.</jats:p>\n' '</jats:sec>\n' '<jats:sec id="sec002">\n' '<jats:title>Methods</jats:title>\n' '<jats:p>With the methods of systems biology and bioinformatics, this study explored the link ' 'between COVID-19 and ICC, and searched for potential therapeutic drugs.</jats:p>\n' '</jats:sec>\n' '<jats:sec id="sec003">\n' '<jats:title>Results</jats:title>\n' '<jats:p>This study identified a total of 70 common differentially expressed genes (DEGs) ' 'shared by both diseases, shedding light on their shared functionalities. Enrichment analysis ' 'pinpointed metabolism and immunity as the primary areas influenced by these common genes. ' 'Subsequently, through protein-protein interaction (PPI) network analysis, we identified ' '<jats:italic>SCD</jats:italic>, <jats:italic>ACSL5</jats:italic>, ' '<jats:italic>ACAT2</jats:italic>, <jats:italic>HSD17B4</jats:italic>, ' '<jats:italic>ALDOA</jats:italic>, <jats:italic>ACSS1</jats:italic>, ' '<jats:italic>ACADSB</jats:italic>, <jats:italic>CYP51A1</jats:italic>, ' '<jats:italic>PSAT1</jats:italic>, and <jats:italic>HKDC1</jats:italic> as hub genes. ' 'Additionally, 44 transcription factors (TFs) and 112 microRNAs (miRNAs) were forecasted to ' 'regulate the hub genes. Most importantly, several drug candidates (Periodate-oxidized ' 'adenosine, Desipramine, Quercetin, Perfluoroheptanoic acid, Tetrandrine, ' 'Pentadecafluorooctanoic acid, Benzo[a]pyrene, SARIN, Dorzolamide, 8-Bromo-cAMP) may prove ' 'effective in treating ICC and COVID-19.</jats:p>\n' '</jats:sec>\n' '<jats:sec id="sec004">\n' '<jats:title>Conclusion</jats:title>\n' '<jats:p>This study is expected to provide valuable references and potential drugs for future ' 'research and treatment of COVID-19 and ICC.</jats:p>\n' '</jats:sec>', 'DOI': '10.1371/journal.pone.0300441', 'type': 'journal-article', 'created': {'date-parts': [[2024, 4, 22]], 'date-time': '2024-04-22T17:27:45Z', 'timestamp': 1713806865000}, 'page': 'e0300441', 'update-policy': 'http://dx.doi.org/10.1371/journal.pone.corrections_policy', 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': 'Bioinformatics and system biology approaches to determine the connection of SARS-CoV-2 infection ' 'and intrahepatic cholangiocarcinoma', 'prefix': '10.1371', 'volume': '19', 'author': [ {'given': 'Xinyi', 'family': 'Zhou', 'sequence': 'first', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0002-4056-7584', 'authenticated-orcid': True, 'given': 'Tengda', 'family': 'Huang', 'sequence': 'additional', 'affiliation': []}, {'given': 'Hongyuan', 'family': 'Pan', 'sequence': 'additional', 'affiliation': []}, {'given': 'Ao', 'family': 'Du', 'sequence': 'additional', 'affiliation': []}, {'given': 'Tian', 'family': 'Wu', 'sequence': 'additional', 'affiliation': []}, {'given': 'Jiang', 'family': 'Lan', 'sequence': 'additional', 'affiliation': []}, {'given': 'Yujia', 'family': 'Song', 'sequence': 'additional', 'affiliation': []}, {'given': 'Yue', 'family': 'Lv', 'sequence': 'additional', 'affiliation': []}, {'given': 'Fang', 'family': 'He', 'sequence': 'additional', 'affiliation': []}, {'given': 'Kefei', 'family': 'Yuan', 'sequence': 'additional', 'affiliation': []}], 'member': '340', 'published-online': {'date-parts': [[2024, 4, 22]]}, 'reference': [ { 'key': 'pone.0300441.ref001', 'first-page': '1268', 'volume-title': 'Covid-19—navigating the uncharted', 'author': 'AS Fauci', 'year': '2020'}, { 'issue': '4', 'key': 'pone.0300441.ref002', 'doi-asserted-by': 'crossref', 'first-page': '420', 'DOI': '10.1016/S2213-2600(20)30076-X', 'article-title': 'Pathological findings of COVID-19 associated with acute respiratory ' 'distress syndrome', 'volume': '8', 'author': 'Z Xu', 'year': '2020', 'journal-title': 'Lancet Respir Med'}, { 'key': 'pone.0300441.ref003', 'unstructured': 'Weekly Epidemiological Update on COVID‐19 [updated 2023]. Available ' 'from: ' 'https://www.who.int/publications/m/item/weekly-epidemiologicalupdate-on-covid-19—14-december-2022.'}, { 'key': 'pone.0300441.ref004', 'doi-asserted-by': 'crossref', 'first-page': '1274463', 'DOI': '10.3389/fmolb.2023.1274463', 'article-title': 'Bioinformatics and system biology approach to identify the influences ' 'of SARS-CoV2 on metabolic unhealthy obese patients.', 'volume': '10', 'author': 'T Huang', 'journal-title': 'Frontiers in Molecular Biosciences.'}, { 'issue': '4', 'key': 'pone.0300441.ref005', 'doi-asserted-by': 'crossref', 'first-page': '668', 'DOI': '10.1038/s41591-021-01310-z', 'article-title': 'Actionable druggable genome-wide Mendelian randomization identifies ' 'repurposing opportunities for COVID-19', 'volume': '27', 'author': 'L Gaziano', 'year': '2021', 'journal-title': 'Nat Med'}, { 'issue': '5', 'key': 'pone.0300441.ref006', 'doi-asserted-by': 'crossref', 'first-page': '428', 'DOI': '10.1016/S2468-1253(20)30057-1', 'article-title': 'Liver injury in COVID-19: management and challenges.', 'volume': '5', 'author': 'C Zhang', 'year': '2020', 'journal-title': 'Lancet Gastroenterol Hepatol.'}, { 'issue': '35', 'key': 'pone.0300441.ref007', 'doi-asserted-by': 'crossref', 'first-page': 'e34570', 'DOI': '10.1097/MD.0000000000034570', 'article-title': 'Demonstration of the impact of COVID-19 on metabolic associated fatty ' 'liver disease by bioinformatics and system biology approach', 'volume': '102', 'author': 'T Huang', 'year': '2023', 'journal-title': 'Medicine'}, { 'issue': '2', 'key': 'pone.0300441.ref008', 'doi-asserted-by': 'crossref', 'first-page': 'e42', 'DOI': '10.1002/mef2.42', 'article-title': 'Exploration of the link between COVID‐19 and alcoholic hepatitis from ' 'the perspective of bioinformatics and systems biology', 'volume': '2', 'author': 'T Huang', 'year': '2023', 'journal-title': 'MedComm–Future Medicine'}, { 'issue': '5', 'key': 'pone.0300441.ref009', 'article-title': 'Comorbidity and its impact on 1590 patients with COVID-19 in China: a ' 'nationwide analysis', 'volume': '55', 'author': 'W-j Guan', 'year': '2020', 'journal-title': 'European Respiratory Journal'}, { 'issue': '12', 'key': 'pone.0300441.ref010', 'doi-asserted-by': 'crossref', 'first-page': '1833', 'DOI': '10.1016/j.jiph.2020.07.014', 'article-title': 'COVID-19 and comorbidities: Deleterious impact on infected patients', 'volume': '13', 'author': 'H Ejaz', 'year': '2020', 'journal-title': 'Journal of infection and public health'}, { 'issue': '3', 'key': 'pone.0300441.ref011', 'doi-asserted-by': 'crossref', 'first-page': '335', 'DOI': '10.1016/S1470-2045(20)30096-6', 'article-title': 'Cancer patients in SARS-CoV-2 infection: a nationwide analysis in ' 'China.', 'volume': '21', 'author': 'W Liang', 'year': '2020', 'journal-title': 'Lancet Oncol.'}, { 'key': 'pone.0300441.ref012', 'doi-asserted-by': 'crossref', 'DOI': '10.3389/fmed.2023.1169562', 'article-title': 'The influence of COVID-19 on colorectal cancer was investigated using ' 'bioinformatics and systems biology techniques', 'volume': '10', 'author': 'Y Song', 'year': '2023', 'journal-title': 'Frontiers in Medicine'}, { 'issue': '3', 'key': 'pone.0300441.ref013', 'doi-asserted-by': 'crossref', 'first-page': '209', 'DOI': '10.3322/caac.21660', 'article-title': 'Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and ' 'Mortality Worldwide for 36 Cancers in 185 Countries.', 'volume': '71', 'author': 'H Sung', 'year': '2021', 'journal-title': 'CA Cancer J Clin.'}, { 'issue': '6', 'key': 'pone.0300441.ref014', 'doi-asserted-by': 'crossref', 'first-page': '1268', 'DOI': '10.1016/j.jhep.2014.01.021', 'article-title': 'Guidelines for the diagnosis and management of intrahepatic ' 'cholangiocarcinoma', 'volume': '60', 'author': 'J Bridgewater', 'year': '2014', 'journal-title': 'J Hepatol'}, { 'issue': '2', 'key': 'pone.0300441.ref015', 'doi-asserted-by': 'crossref', 'first-page': '353', 'DOI': '10.1016/j.jhep.2019.10.009', 'article-title': 'Systemic therapies for intrahepatic cholangiocarcinoma', 'volume': '72', 'author': 'RK Kelley', 'year': '2020', 'journal-title': 'J Hepatol'}, { 'issue': 'Database issue', 'key': 'pone.0300441.ref016', 'first-page': 'D991', 'article-title': 'NCBI GEO: archive for functional genomics data sets—update', 'volume': '41', 'author': 'T Barrett', 'year': '2013', 'journal-title': 'Nucleic Acids Res'}, { 'issue': '6508', 'key': 'pone.0300441.ref017', 'doi-asserted-by': 'crossref', 'first-page': '1210', 'DOI': '10.1126/science.abc6261', 'article-title': 'Systems biological assessment of immunity to mild versus severe ' 'COVID-19 infection in humans', 'volume': '369', 'author': 'PS Arunachalam', 'year': '2020', 'journal-title': 'Science'}, { 'key': 'pone.0300441.ref018', 'doi-asserted-by': 'crossref', 'first-page': '352', 'DOI': '10.1186/s12935-019-1080-y', 'article-title': 'Comprehensive analysis of DNA methylation and gene expression profiles ' 'in cholangiocarcinoma', 'volume': '19', 'author': 'C Zhang', 'year': '2019', 'journal-title': 'Cancer cell international'}, { 'issue': '12', 'key': 'pone.0300441.ref019', 'doi-asserted-by': 'crossref', 'first-page': 'e0190152', 'DOI': '10.1371/journal.pone.0190152', 'article-title': 'RNA-Seq differential expression analysis: An extended review and a ' 'software tool.', 'volume': '12', 'author': 'J Costa-Silva', 'year': '2017', 'journal-title': 'PLoS One.'}, { 'issue': '7', 'key': 'pone.0300441.ref020', 'doi-asserted-by': 'crossref', 'first-page': 'e47', 'DOI': '10.1093/nar/gkv007', 'article-title': 'limma powers differential expression analyses for RNA-sequencing and ' 'microarray studies', 'volume': '43', 'author': 'ME Ritchie', 'year': '2015', 'journal-title': 'Nucleic Acids Res'}, { 'issue': '1', 'key': 'pone.0300441.ref021', 'doi-asserted-by': 'crossref', 'first-page': '293', 'DOI': '10.1186/1471-2105-15-293', 'article-title': 'jvenn: an interactive Venn diagram viewer', 'volume': '15', 'author': 'P Bardou', 'year': '2014', 'journal-title': 'BMC Bioinformatics'}, { 'issue': '43', 'key': 'pone.0300441.ref022', 'doi-asserted-by': 'crossref', 'first-page': '15545', 'DOI': '10.1073/pnas.0506580102', 'article-title': 'Gene set enrichment analysis: a knowledge-based approach for ' 'interpreting genome-wide expression profiles', 'volume': '102', 'author': 'A Subramanian', 'year': '2005', 'journal-title': 'Proc Natl Acad Sci U S A'}, { 'key': 'pone.0300441.ref023', 'doi-asserted-by': 'crossref', 'first-page': '128', 'DOI': '10.1186/1471-2105-14-128', 'article-title': 'Enrichr: interactive and collaborative HTML5 gene list enrichment ' 'analysis tool', 'volume': '14', 'author': 'EY Chen', 'year': '2013', 'journal-title': 'BMC Bioinformatics'}, { 'issue': 'D1', 'key': 'pone.0300441.ref024', 'doi-asserted-by': 'crossref', 'first-page': 'D607', 'DOI': '10.1093/nar/gky1131', 'article-title': 'STRING v11: protein-protein association networks with increased ' 'coverage, supporting functional discovery in genome-wide experimental ' 'datasets', 'volume': '47', 'author': 'D Szklarczyk', 'year': '2019', 'journal-title': 'Nucleic Acids Res'}, { 'issue': '11', 'key': 'pone.0300441.ref025', 'doi-asserted-by': 'crossref', 'first-page': '2498', 'DOI': '10.1101/gr.1239303', 'article-title': 'Cytoscape: a software environment for integrated models of biomolecular ' 'interaction networks', 'volume': '13', 'author': 'P Shannon', 'year': '2003', 'journal-title': 'Genome Res'}, { 'key': 'pone.0300441.ref026', 'doi-asserted-by': 'crossref', 'first-page': '1081', 'DOI': '10.3389/fphys.2019.01081', 'article-title': 'Identification of Hub Genes and Key Pathways Associated With Bipolar ' 'Disorder Based on Weighted Gene Co-expression Network Analysis.', 'volume': '10', 'author': 'Y Liu', 'year': '2019', 'journal-title': 'Front Physiol'}, { 'issue': 'W1', 'key': 'pone.0300441.ref027', 'doi-asserted-by': 'crossref', 'first-page': 'W234', 'DOI': '10.1093/nar/gkz240', 'article-title': 'NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene ' 'expression profiling and meta-analysis', 'volume': '47', 'author': 'G Zhou', 'year': '2019', 'journal-title': 'Nucleic Acids Res'}, { 'issue': 'suppl_1', 'key': 'pone.0300441.ref028', 'doi-asserted-by': 'crossref', 'first-page': 'D91', 'DOI': '10.1093/nar/gkh012', 'article-title': 'JASPAR: an open-access database for eukaryotic transcription factor ' 'binding profiles', 'volume': '32', 'author': 'A Sandelin', 'year': '2004', 'journal-title': 'Nucleic Acids Research'}, { 'issue': 'D1', 'key': 'pone.0300441.ref029', 'doi-asserted-by': 'crossref', 'first-page': 'D239', 'DOI': '10.1093/nar/gkx1141', 'article-title': 'DIANA-TarBase v8: a decade-long collection of experimentally supported ' 'miRNA–gene interactions', 'volume': '46', 'author': 'D Karagkouni', 'year': '2018', 'journal-title': 'Nucleic acids research'}, { 'issue': 'D1', 'key': 'pone.0300441.ref030', 'first-page': 'D845', 'article-title': 'The DisGeNET knowledge platform for disease genomics: 2019 update', 'volume': '48', 'author': 'J Pinero', 'year': '2020', 'journal-title': 'Nucleic Acids Res'}, { 'issue': '18', 'key': 'pone.0300441.ref031', 'doi-asserted-by': 'crossref', 'first-page': '3069', 'DOI': '10.1093/bioinformatics/btv313', 'article-title': 'DSigDB: drug signatures database for gene set analysis', 'volume': '31', 'author': 'M Yoo', 'year': '2015', 'journal-title': 'Bioinformatics'}, { 'issue': '1', 'key': 'pone.0300441.ref032', 'doi-asserted-by': 'crossref', 'first-page': '12100', 'DOI': '10.1038/s41598-018-30455-0', 'article-title': 'Gene Ontology Enrichment Improves Performances of Functional Similarity ' 'of Genes.', 'volume': '8', 'author': 'W Liu', 'year': '2018', 'journal-title': 'Sci Rep'}, { 'issue': 'D1', 'key': 'pone.0300441.ref033', 'doi-asserted-by': 'crossref', 'first-page': 'D545', 'DOI': '10.1093/nar/gkaa970', 'article-title': 'KEGG: integrating viruses and cellular organisms', 'volume': '49', 'author': 'M Kanehisa', 'year': '2021', 'journal-title': 'Nucleic Acids Res'}, { 'issue': '5', 'key': 'pone.0300441.ref034', 'doi-asserted-by': 'crossref', 'first-page': '3416', 'DOI': '10.1016/j.ygeno.2020.06.001', 'article-title': 'Detection of molecular signatures and pathways shared in inflammatory ' 'bowel disease and colorectal cancer: A bioinformatics and systems ' 'biology approach', 'volume': '112', 'author': 'M Al-Mustanjid', 'year': '2020', 'journal-title': 'Genomics'}, { 'issue': '5', 'key': 'pone.0300441.ref035', 'doi-asserted-by': 'crossref', 'first-page': 'bbab115', 'DOI': '10.1093/bib/bbab115', 'article-title': 'Bioinformatics and system biology approach to identify the influences ' 'of SARS-CoV-2 infections to idiopathic pulmonary fibrosis and chronic ' 'obstructive pulmonary disease patients', 'volume': '22', 'author': 'SMH Mahmud', 'year': '2021', 'journal-title': 'Brief Bioinform'}, { 'issue': '1', 'key': 'pone.0300441.ref036', 'doi-asserted-by': 'crossref', 'first-page': '20', 'DOI': '10.1111/liv.14730', 'article-title': 'Pathophysiological mechanisms of liver injury in COVID-19.', 'volume': '41', 'author': 'AD Nardo', 'year': '2021', 'journal-title': 'Liver international: official journal of the International Association ' 'for the Study of the Liver.'}, { 'issue': '1', 'key': 'pone.0300441.ref037', 'first-page': '59', 'article-title': 'Proteomic and Metabolomic Characterization of COVID-19', 'volume': '182', 'author': 'B Shen', 'year': '2020', 'journal-title': 'Patient Sera. Cell'}, { 'issue': '1', 'key': 'pone.0300441.ref038', 'doi-asserted-by': 'crossref', 'first-page': '427', 'DOI': '10.1038/s41392-021-00822-x', 'article-title': 'COVID-19 induces new-onset insulin resistance and lipid metabolic ' 'dysregulation via regulation of secreted metabolic factors.', 'volume': '6', 'author': 'X He', 'year': '2021', 'journal-title': 'Signal transduction and targeted therapy.'}, { 'issue': '7744', 'key': 'pone.0300441.ref039', 'doi-asserted-by': 'crossref', 'first-page': '403', 'DOI': '10.1038/s41586-019-0904-1', 'article-title': 'Evidence for an alternative fatty acid desaturation pathway increasing ' 'cancer plasticity', 'volume': '566', 'author': 'K Vriens', 'year': '2019', 'journal-title': 'Nature'}, { 'key': 'pone.0300441.ref040', 'doi-asserted-by': 'crossref', 'first-page': '1025', 'DOI': '10.3389/fonc.2020.01025', 'article-title': 'KDM5C Represses FASN-Mediated Lipid Metabolism to Exert Tumor ' 'Suppressor Activity in Intrahepatic Cholangiocarcinoma.', 'volume': '10', 'author': 'B Zhang', 'year': '2020', 'journal-title': 'Front Oncol'}, { 'issue': '3', 'key': 'pone.0300441.ref041', 'doi-asserted-by': 'crossref', 'first-page': '849', 'DOI': '10.1016/j.jhep.2022.04.038', 'article-title': 'Metabolic reprogramming in cholangiocarcinoma', 'volume': '77', 'author': 'C Raggi', 'year': '2022', 'journal-title': 'J Hepatol'}, { 'issue': '6', 'key': 'pone.0300441.ref042', 'doi-asserted-by': 'crossref', 'first-page': '363', 'DOI': '10.1038/s41577-020-0311-8', 'article-title': 'The trinity of COVID-19: immunity, inflammation and intervention', 'volume': '20', 'author': 'MZ Tay', 'year': '2020', 'journal-title': 'Nature reviews Immunology'}, { 'issue': '10223', 'key': 'pone.0300441.ref043', 'doi-asserted-by': 'crossref', 'first-page': '497', 'DOI': '10.1016/S0140-6736(20)30183-5', 'article-title': 'Clinical features of patients infected with 2019 novel coronavirus in ' 'Wuhan, China.', 'volume': '395', 'author': 'C Huang', 'year': '2020', 'journal-title': 'Lancet'}, { 'issue': '4', 'key': 'pone.0300441.ref044', 'doi-asserted-by': 'crossref', 'first-page': '982', 'DOI': '10.1002/hep.32387', 'article-title': 'Tumor-derived exosomes induce immunosuppressive macrophages to foster ' 'intrahepatic cholangiocarcinoma progression', 'volume': '76', 'author': 'C Luo', 'year': '2022', 'journal-title': 'Hepatology'}, { 'issue': '5', 'key': 'pone.0300441.ref045', 'doi-asserted-by': 'crossref', 'first-page': '454', 'DOI': '10.1111/pai.13271', 'article-title': 'The first, holistic immunological model of COVID-19: Implications for ' 'prevention, diagnosis, and public health measures', 'volume': '31', 'author': 'PM Matricardi', 'year': '2020', 'journal-title': 'Pediatr Allergy Immunol'}, {'key': 'pone.0300441.ref046', 'author': 'T Gao', 'year': '2020'}, { 'key': 'pone.0300441.ref047', 'doi-asserted-by': 'crossref', 'first-page': '3917032', 'DOI': '10.1155/2018/3917032', 'article-title': 'Complement System as a Target for Therapies to Control Liver ' 'Regeneration/Damage in Acute Liver Failure Induced by Viral Hepatitis', 'volume': '2018', 'author': 'JG Melgaco', 'year': '2018', 'journal-title': 'Journal of immunology research'}, { 'issue': '1', 'key': 'pone.0300441.ref048', 'doi-asserted-by': 'crossref', 'first-page': '108601', 'DOI': '10.1016/j.celrep.2020.108601', 'article-title': 'Stearoyl-CoA Desaturase-Mediated Monounsaturated Fatty Acid ' 'Availability Supports Humoral Immunity.', 'volume': '34', 'author': 'X Zhou', 'year': '2021', 'journal-title': 'Cell Rep'}, { 'issue': '7', 'key': 'pone.0300441.ref049', 'doi-asserted-by': 'crossref', 'DOI': '10.1136/jitc-2022-004616', 'article-title': 'Inhibition of stearoyl-CoA desaturase 1 (SCD1) enhances the antitumor T ' 'cell response through regulating beta-catenin signaling in cancer cells ' 'and ER stress in T cells and synergizes with anti-PD-1 antibody.', 'volume': '10', 'author': 'Y Katoh', 'year': '2022', 'journal-title': 'Journal for immunotherapy of cancer.'}, { 'issue': '3', 'key': 'pone.0300441.ref050', 'doi-asserted-by': 'crossref', 'first-page': '431', 'DOI': '10.1038/s41590-022-01145-x', 'article-title': 'PERK is a critical metabolic hub for immunosuppressive function in ' 'macrophages', 'volume': '23', 'author': 'LN Raines', 'year': '2022', 'journal-title': 'Nature immunology'}, { 'issue': '3', 'key': 'pone.0300441.ref051', 'doi-asserted-by': 'crossref', 'first-page': 'e00007', 'DOI': '10.1097/IN9.0000000000000007', 'article-title': 'PERK promotes immunosuppressive M2 macrophage phenotype by metabolic ' 'reprogramming and epigenetic modifications through the PERK-ATF4-PSAT1 ' 'axis.', 'volume': '4', 'author': 'UP Pratap', 'year': '2022', 'journal-title': 'Immunometabolism (Cobham (Surrey, England)).'}, { 'issue': '10', 'key': 'pone.0300441.ref052', 'doi-asserted-by': 'crossref', 'first-page': '1140', 'DOI': '10.1038/ni.1649', 'article-title': 'Notch2 integrates signaling by the transcription factors RBP-J and ' 'CREB1 to promote T cell cytotoxicity', 'volume': '9', 'author': 'Y Maekawa', 'year': '2008', 'journal-title': 'Nature immunology'}, { 'issue': '3', 'key': 'pone.0300441.ref053', 'doi-asserted-by': 'crossref', 'first-page': '415', 'DOI': '10.1111/bjh.17116', 'article-title': 'SARS-CoV-2-induced remission of Hodgkin lymphoma', 'volume': '192', 'author': 'S Challenor', 'year': '2021', 'journal-title': 'British Journal of Haematology'}, { 'key': 'pone.0300441.ref054', 'doi-asserted-by': 'crossref', 'first-page': '174397', 'DOI': '10.1016/j.ejphar.2021.174397', 'article-title': 'ACSL family: The regulatory mechanisms and therapeutic implications in ' 'cancer', 'volume': '909', 'author': 'J Quan', 'year': '2021', 'journal-title': 'European journal of pharmacology'}, { 'issue': '3', 'key': 'pone.0300441.ref055', 'doi-asserted-by': 'crossref', 'first-page': '1461', 'DOI': '10.1002/hep.31846', 'article-title': 'Loss-of-Function Genetic Screening Identifies Aldolase A as an ' 'Essential Driver for Liver Cancer Cell Growth Under Hypoxia', 'volume': '74', 'author': 'Y Niu', 'year': '2021', 'journal-title': 'Hepatology'}, { 'issue': '1', 'key': 'pone.0300441.ref056', 'doi-asserted-by': 'crossref', 'first-page': '70', 'DOI': '10.1016/j.ccell.2021.12.006', 'article-title': 'Proteogenomic characterization identifies clinically relevant subgroups ' 'of intrahepatic cholangiocarcinoma', 'volume': '40', 'author': 'L Dong', 'year': '2022', 'journal-title': 'Cancer cell'}, { 'issue': '1', 'key': 'pone.0300441.ref057', 'first-page': '1', 'article-title': 'Interplay and cooperation between SREBF1 and master transcription ' 'factors regulate lipid metabolism and tumor-promoting pathways in ' 'squamous cancer', 'volume': '12', 'author': 'LY Li', 'year': '2021', 'journal-title': 'Nature Communications'}, { 'issue': '3', 'key': 'pone.0300441.ref058', 'doi-asserted-by': 'crossref', 'first-page': '1230', 'DOI': '10.1002/ptr.6887', 'article-title': 'A role for quercetin in coronavirus disease 2019 (COVID-19).', 'volume': '35', 'author': 'G Derosa', 'year': '2021', 'journal-title': 'Phytotherapy research: PTR.'}, { 'issue': '5', 'key': 'pone.0300441.ref059', 'doi-asserted-by': 'crossref', 'first-page': 'e00653', 'DOI': '10.1002/prp2.653', 'article-title': 'Pharmacological hypothesis: TPC2 antagonist tetrandrine as a potential ' 'therapeutic agent for COVID-19', 'volume': '8', 'author': 'PM Heister', 'year': '2020', 'journal-title': 'Pharmacology research & perspectives'}, { 'issue': '13', 'key': 'pone.0300441.ref060', 'doi-asserted-by': 'crossref', 'DOI': '10.3390/ijms20133177', 'article-title': 'The Anti-Cancer Effect of Quercetin: Molecular Implications in Cancer ' 'Metabolism', 'volume': '20', 'author': 'M Reyes-Farias', 'year': '2019', 'journal-title': 'International journal of molecular sciences'}, { 'key': 'pone.0300441.ref061', 'doi-asserted-by': 'crossref', 'first-page': '624', 'DOI': '10.1016/j.biopha.2017.10.116', 'article-title': 'Tetrandrine and cancer—An overview on the molecular approach.', 'volume': '97', 'author': 'B N', 'year': '2018', 'journal-title': 'Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.'}, { 'issue': '2', 'key': 'pone.0300441.ref062', 'doi-asserted-by': 'crossref', 'first-page': '495', 'DOI': '10.1016/0003-9861(74)90426-3', 'article-title': 'Inhibition of nucleic acid synthesis in Ehrlich tumor cells by ' 'periodate-oxidized adenosine and adenylic acid', 'volume': '160', 'author': 'JG Cory', 'year': '1974', 'journal-title': 'Archives of Biochemistry and Biophysics'}, { 'issue': '1', 'key': 'pone.0300441.ref063', 'doi-asserted-by': 'crossref', 'first-page': '9', 'DOI': '10.1016/j.tox.2008.05.010', 'article-title': 'Desipramine-induced apoptosis in human PC3 prostate cancer cells: ' 'activation of JNK kinase and caspase-3 pathways and a protective role ' 'of [Ca2+] i elevation', 'volume': '250', 'author': 'H-C Chang', 'year': '2008', 'journal-title': 'Toxicology'}, { 'issue': '7', 'key': 'pone.0300441.ref064', 'doi-asserted-by': 'crossref', 'first-page': '610', 'DOI': '10.1002/mnfr.200500273', 'article-title': 'Introduction to bioinformatics.', 'volume': '50', 'author': 'PK Akalın', 'year': '2006', 'journal-title': 'Molecular nutrition & food research'}], 'container-title': 'PLOS ONE', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://dx.plos.org/10.1371/journal.pone.0300441', 'content-type': 'unspecified', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2024, 4, 22]], 'date-time': '2024-04-22T17:28:33Z', 'timestamp': 1713806913000}, 'score': 1, 'resource': {'primary': {'URL': 'https://dx.plos.org/10.1371/journal.pone.0300441'}}, 'subtitle': [], 'editor': [{'given': 'Gurudeeban', 'family': 'Selvaraj', 'sequence': 'first', 'affiliation': []}], 'short-title': [], 'issued': {'date-parts': [[2024, 4, 22]]}, 'references-count': 64, 'journal-issue': {'issue': '4', 'published-online': {'date-parts': [[2024, 4, 22]]}}, 'URL': 'http://dx.doi.org/10.1371/journal.pone.0300441', 'relation': {}, 'ISSN': ['1932-6203'], 'subject': [], 'container-title-short': 'PLoS ONE', 'published': {'date-parts': [[2024, 4, 22]]}}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit