Conv. Plasma
Nigella Sativa
Nitric Oxide
Peg.. Lambda

Home   COVID-19 treatment studies for Quercetin  COVID-19 treatment studies for Quercetin  C19 studies: Quercetin  Quercetin   Select treatmentSelect treatmentTreatmentsTreatments
Alkalinization Meta Lactoferrin Meta
Melatonin Meta
Bromhexine Meta Metformin Meta
Budesonide Meta Molnupiravir Meta
Cannabidiol Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta Nitric Oxide Meta
Ensovibep Meta Paxlovid Meta
Famotidine Meta Peg.. Lambda Meta
Favipiravir Meta Povidone-Iod.. Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta Remdesivir Meta
Iota-carragee.. Meta
Ivermectin Meta Zinc Meta

Other Treatments Global Adoption
All Studies   Meta Analysis   Recent:  

The spike protein of SARS-CoV-2 virus induces heme oxygenase-1: Pathophysiologic implications

Singh et al., Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, doi:10.1016/j.bbadis.2021.166322 (In Vitro)
Singh et al., The spike protein of SARS-CoV-2 virus induces heme oxygenase-1: Pathophysiologic implications, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, doi:10.1016/j.bbadis.2021.166322 (In Vitro)
Dec 2021   Source   PDF  
  All Studies   Meta
In Vitro study transfecting SARS-CoV-2 viral spike protein in kidney cell lines, showing syncytia formation and upregulation of the cytoprotective gene HO-1, and that quercetin, which induces HO-1, can reduce syncytia formation. Authors conclude that quercetin may be protective for AKI in COVID-19.
7 In Vitro studies support the efficacy of quercetin [Aguado, Bahun, Goc, Kandeil, Munafò, Singh, Xu].
Singh et al., 14 Dec 2021, peer-reviewed, 9 authors.
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
All Studies   Meta Analysis   Submit Updates or Corrections
This PaperQuercetinAll
The spike protein of SARS-CoV-2 induces heme oxygenase-1: Pathophysiologic implications
Ph.D Raman Deep Singh, Ph.D Michael A Barry, Anthony J Croatt, M.S Allan W Ackerman, M.D Joseph P Grande, Ph.D Rosa M Diaz, Ph.D Richard G Vile, M.D Anupam Agarwal, MB. ChB Karl A Nath
Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, doi:10.1016/j.bbadis.2021.166322
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Authors' contributions Raman Deep Singh: Conceptualisation, data curation, formal analysis, investigation, methodology, project administration, resources, software, validation, visualisation, writingoriginal draft, and writingreview & editing. Declaration of interests ☒ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. ☐The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: J o u r n a l P r e -p r o o f
Agarwal, Bolisetty, Adaptive responses to tissue injury: role of heme oxygenase-1, Trans Am Clin Climatol Assoc
Batra, Souza, Batra, Raetz, Yu, The HMOX1 Pathway as a Promising Target for the Treatment and Prevention of SARS-CoV-2 of 2019 (COVID-19), Int J Mol Sci
Bortolotti, Gentili, Rizzo, Rotola, Rizzo, SARS-CoV-2 Spike 1 Protein Controls Natural Killer Cell Activation via the HLA-E/NKG2A Pathway, Cells
Braun, Lutgehetmann, Pfefferle, Wong, Carsten et al., SARS-CoV-2 renal tropism associates with acute kidney injury, Lancet
Buchrieser, Dufloo, Hubert, Monel, Planas et al., Syncytia formation by SARS-CoV-2-infected cells, Embo j
Buzhdygan, Deore, Baldwin-Leclair, Bullock, Mcgary et al., The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in-vitro models of the human blood-brain barrier, Neurobiol Dis
Caceres, Savickas, Murray, Umanath, Uduman et al., High SARS-CoV-2 Viral Load in Urine Sediment Correlates with Acute Kidney Injury and Poor COVID-19
Diniz, Souza, Duarte, Sousa, Mechanistic Aspects and Therapeutic Potential of Quercetin against COVID-19-Associated Acute Kidney Injury, Molecules
Fakhouri, Peterson, Kothari, Shapiro, Abraham, Genetic Polymorphisms Complicate COVID-19 Therapy: Pivotal Role of HO-1 in Cytokine Storm, Antioxidants
Funes, Rios, Fernández-Fierro, Covián, Bueno et al., Naturally Derived Heme-Oxygenase 1 Inducers and Their Therapeutic Application to Immune-Mediated Diseases, Front Immunol
Furuichi, Wada, Iwata, Kitagawa, Kobayashi et al., CCR2 signaling contributes to ischemia-reperfusion injury in kidney, J Am Soc Nephrol
Furuichi, Wada, Iwata, Kitagawa, Kobayashi et al., Gene therapy expressing amino-terminal truncated monocyte chemoattractant protein-1 prevents renal ischemia-reperfusion injury, J Am Soc Nephrol
Gao, Zeng, Jia, Stavenhagen, Matsumoto et al., SARS-CoV-2 Spike Protein Interacts with Multiple Innate Immune Receptors
George, Pal, Gagnon, Timalsina, Singh et al., Evidence for SARS-CoV-2 Spike Protein in the Urine of COVID-19 patients, doi:Kidney360.2021:10.34067/KID.0002172021
Gu, Zhang, Cen, Wu, Lu et al., Quercetin as a potential treatment for COVID-19-induced acute kidney injury: Based on network pharmacology and molecular docking study, PLoS One
Gupta, Madhavan, Sehgal, Nair, Mahajan et al., Extrapulmonary manifestations of COVID-19, Nat Med
Han, Pandey, ZMPSTE24 Regulates SARS-CoV-2 Spike Protein-enhanced Expression of Endothelial Plasminogen Activator Inhibitor-1, Am J Respir Cell Mol Biol
Hoffmann, Kleine-Weber, Schroeder, Kruger, Herrler et al., SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor, Cell
J O U R N A L P R E, -p r o o f Journal Pre-proof
J O U R N A L P R E, -p r o o f Journal Pre-proof
Kelly, Williams, Colvin, Bonventre, Antibody to intercellular adhesion molecule 1 protects the kidney against ischemic injury, Proc Natl Acad Sci U S A
Kelly, Williams, Colvin, Meehan, Springer et al., Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury, J Clin Invest
Khan, Chen, Yang, Raghuram, Khundmiri et al., Does SARS-CoV-2 Infect the Kidney?, J Am Soc Nephrol
Lei, Zhang, Schiavon, He, Chen et al., SARS-CoV-2 Spike Protein Impairs Endothelial Function via Downregulation of ACE 2, Circ Res
Musarrat, Chouljenko, Dahal, Nabi, Chouljenko et al., The anti-HIV drug nelfinavir mesylate (Viracept) is a potent inhibitor of cell fusion caused by the SARSCoV-2 J o u r n a l P r e -p r o o f Journal Pre-proof spike (S) glycoprotein warranting further evaluation as an antiviral against COVID-19 infections, J Med Virol
Nadim, Forni, Mehta, Connor, Liu et al., COVID-19-associated acute kidney injury: consensus report of the 25th Acute Disease Quality Initiative (ADQI) Workgroup, Nat Rev Nephrol
Nath, Garovic, Grande, Croatt, Ackerman et al., Heme oxygenase-2 protects against ischemic acute kidney injury: influence of age and sex, Am J Physiol Renal Physiol
Nath, Grande, Belcher, Garovic, Croatt et al., Antithrombotic effects of heme-degrading and heme-binding proteins, Am J Physiol Heart Circ Physiol
Nath, Heme oxygenase-1 and acute kidney injury, Curr Opin Nephrol Hypertens
Ou, Liu, Lei, Li, Mi et al., Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV, Nat Commun
Paola, Genovese, Impellizzeri, Ahmad, Cuzzocrea et al., The renal injury and inflammation caused by ischemia-reperfusion are reduced by genetic inhibition of TNF-αR1: a comparison with infliximab treatment, Eur J Pharmacol
Puelles, Lutgehetmann, Lindenmeyer, Sperhake, Wong et al., Multiorgan and Renal Tropism of SARS-CoV-2, N Engl J Med
Ratajczak, Bujko, Ciechanowicz, Sielatycka, Cymer et al., SARS-CoV-2 Entry Receptor ACE2 Is Expressed on Very Small CD45(-) Precursors of Hematopoietic and Endothelial Cells and in Response to Virus Spike Protein Activates the Nlrp3 Inflammasome, Stem Cell Rev Rep
Rivero, Merino-López, Olmedo, Garrido-Roldan, Moguel et al., Association between Postmortem Kidney Biopsy Findings and Acute Kidney Injury from Patients with SARS-CoV-2 (COVID-19), Clin J Am Soc Nephrol
Rossi, Piagnerelli, Van Meerhaeghe, Boudjeltia, Heme oxygenase-1 (HO-1) cytoprotective pathway: A potential treatment strategy against coronavirus disease 2019 (COVID-19)-induced cytokine storm syndrome, Med Hypotheses
Saeedi-Boroujeni, Mr, Anti-inflammatory potential of Quercetin in COVID-19 treatment, J Inflamm (Lond)
Shoskes, Effect of bioflavonoids quercetin and curcumin on ischemic renal injury: a new class of renoprotective agents, Transplantation
Singh, Wasan, Reeta, Heme oxygenase-1 modulation: A potential therapeutic target for COVID-19 and associated complications, Free Radic Biol Med
Sparks, South, Badley, Baker-Smith, Batlle et al., Severe Acute Respiratory Syndrome Coronavirus 2, COVID-19, and the Renin-Angiotensin System: Pressing Needs and Best Research Practices, Hypertension
Su, Lin, Hang, Wu, Cheng et al., Desaturation and heme elevation during COVID-19 infection: A potential prognostic factor of heme oxygenase-1, J Microbiol Immunol Infect
Vijayan, Humphreys, SARS-CoV-2 in the kidney: bystander or culprit?, Nat Rev Nephrol
Wagener, Pickkers, Peterson, Immenschuh, Abraham, Targeting the Heme-Heme Oxygenase System to Prevent Severe Complications Following COVID-19 Infections, Antioxidants
Xia, Shen, He, Pan, Liu et al., SARS-CoV-2 envelope protein causes acute respiratory distress syndrome (ARDS)-like pathological damages and constitutes an antiviral target, Cell Res
Yu, Yuan, Chen, Chaturvedi, Braunstein et al., Direct activation of the alternative complement pathway by SARS-CoV-2 spike proteins is blocked by factor D inhibition, Blood
Please send us corrections, updates, or comments. Vaccines and treatments are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment, vaccine, or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop