Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchQuercetinQuercetin (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

The spike protein of SARS-CoV-2 virus induces heme oxygenase-1: Pathophysiologic implications

Singh et al., Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, doi:10.1016/j.bbadis.2021.166322
Dec 2021  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Quercetin for COVID-19
24th treatment shown to reduce risk in July 2021, now with p = 0.002 from 12 studies.
No treatment is 100% effective. Protocols combine treatments.
5,200+ studies for 112 treatments. c19early.org
In Vitro study transfecting SARS-CoV-2 viral spike protein in kidney cell lines, showing syncytia formation and upregulation of the cytoprotective gene HO-1, and that quercetin, which induces HO-1, can reduce syncytia formation. Authors conclude that quercetin may be protective for AKI in COVID-19.
Bioavailability. Quercetin has low bioavailability and studies typically use advanced formulations to improve bioavailability which may be required to reach therapeutic concentrations.
73 preclinical studies support the efficacy of quercetin for COVID-19:
In Silico studies predict inhibition of SARS-CoV-2, or minimization of side effects, with quercetin or metabolites via binding to the spikeA,2,3,9,10,22,24,25,27,30,38,39,41,42,62, MproB,2,3,7,9,11,13,15,17,18,20,23,24,27,30,34,36-38,42-45, RNA-dependent RNA polymeraseC,1-3,9,32, PLproD,3,37,45, ACE2E,22,23,27,28,37,41, TMPRSS2F,22, nucleocapsidG,3, helicaseH,3,29,34, endoribonucleaseI,39, NSP16/10J,6, cathepsin LK,26, Wnt-3L,22, FZDM,22, LRP6N,22, ezrinO,40, ADRPP,38, NRP1Q,41, EP300R,16, PTGS2S,23, HSP90AA1T,16,23, matrix metalloproteinase 9U,31, IL-6V,21,35, IL-10W,21, VEGFAX,35, and RELAY,35 proteins. In Vitro studies demonstrate inhibition of the MproB,15,46,51,59 protein, and inhibition of spike-ACE2 interactionZ,47. In Vitro studies demonstrate efficacy in Calu-3AA,50, A549AB,21, HEK293-ACE2+AC,58, Huh-7AD,25, Caco-2AE,49, Vero E6AF,19,42,49, mTECAG,52, and RAW264.7AH,52 cells. Animal studies demonstrate efficacy in K18-hACE2 miceAI,55, db/db miceAJ,52,61, BALB/c miceAK,60, and rats19. Quercetin reduced proinflammatory cytokines and protected lung and kidney tissue against LPS-induced damage in mice60, inhibits LPS-induced cytokine storm by modulating key inflammatory and antioxidant pathways in macrophages5, and inhibits SARS-CoV-2 ORF3a ion channel activity, which contributes to viral pathogenicity and cytotoxicity54.
a. The trimeric spike (S) protein is a glycoprotein that mediates viral entry by binding to the host ACE2 receptor, is critical for SARS-CoV-2's ability to infect host cells, and is a target of neutralizing antibodies. Inhibition of the spike protein prevents viral attachment, halting infection at the earliest stage.
b. The main protease or Mpro, also known as 3CLpro or nsp5, is a cysteine protease that cleaves viral polyproteins into functional units needed for replication. Inhibiting Mpro disrupts the SARS-CoV-2 lifecycle within the host cell, preventing the creation of new copies.
c. RNA-dependent RNA polymerase (RdRp), also called nsp12, is the core enzyme of the viral replicase-transcriptase complex that copies the positive-sense viral RNA genome into negative-sense templates for progeny RNA synthesis. Inhibiting RdRp blocks viral genome replication and transcription.
d. The papain-like protease (PLpro) has multiple functions including cleaving viral polyproteins and suppressing the host immune response by deubiquitination and deISGylation of host proteins. Inhibiting PLpro may block viral replication and help restore normal immune responses.
e. The angiotensin converting enzyme 2 (ACE2) protein is a host cell transmembrane protein that serves as the cellular receptor for the SARS-CoV-2 spike protein. ACE2 is expressed on many cell types, including epithelial cells in the lungs, and allows the virus to enter and infect host cells. Inhibition may affect ACE2's physiological function in blood pressure control.
f. Transmembrane protease serine 2 (TMPRSS2) is a host cell protease that primes the spike protein, facilitating cellular entry. TMPRSS2 activity helps enable cleavage of the spike protein required for membrane fusion and virus entry. Inhibition may especially protect respiratory epithelial cells, buy may have physiological effects.
g. The nucleocapsid (N) protein binds and encapsulates the viral genome by coating the viral RNA. N enables formation and release of infectious virions and plays additional roles in viral replication and pathogenesis. N is also an immunodominant antigen used in diagnostic assays.
h. The helicase, or nsp13, protein unwinds the double-stranded viral RNA, a crucial step in replication and transcription. Inhibition may prevent viral genome replication and the creation of new virus components.
i. The endoribonuclease, also known as NendoU or nsp15, cleaves specific sequences in viral RNA which may help the virus evade detection by the host immune system. Inhibition may hinder the virus's ability to mask itself from the immune system, facilitating a stronger immune response.
j. The NSP16/10 complex consists of non-structural proteins 16 and 10, forming a 2'-O-methyltransferase that modifies the viral RNA cap structure. This modification helps the virus evade host immune detection by mimicking host mRNA, making NSP16/10 a promising antiviral target.
k. Cathepsin L is a host lysosomal cysteine protease that can prime the spike protein through an alternative pathway when TMPRSS2 is unavailable. Dual targeting of cathepsin L and TMPRSS2 may maximize disruption of alternative pathways for virus entry.
l. Wingless-related integration site (Wnt) ligand 3 is a host signaling molecule that activates the Wnt signaling pathway, which is important in development, cell growth, and tissue repair. Some studies suggest that SARS-CoV-2 infection may interfere with the Wnt signaling pathway, and that Wnt3a is involved in SARS-CoV-2 entry.
m. The frizzled (FZD) receptor is a host transmembrane receptor that binds Wnt ligands, initiating the Wnt signaling cascade. FZD serves as a co-receptor, along with ACE2, in some proposed mechanisms of SARS-CoV-2 infection. The virus may take advantage of this pathway as an alternative entry route.
n. Low-density lipoprotein receptor-related protein 6 is a cell surface co-receptor essential for Wnt signaling. LRP6 acts in tandem with FZD for signal transduction and has been discussed as a potential co-receptor for SARS-CoV-2 entry.
o. The ezrin protein links the cell membrane to the cytoskeleton (the cell's internal support structure) and plays a role in cell shape, movement, adhesion, and signaling. Drugs that occupy the same spot on ezrin where the viral spike protein would bind may hindering viral attachment, and drug binding could further stabilize ezrin, strengthening its potential natural capacity to impede viral fusion and entry.
p. The Adipocyte Differentiation-Related Protein (ADRP, also known as Perilipin 2 or PLIN2) is a lipid droplet protein regulating the storage and breakdown of fats in cells. SARS-CoV-2 may hijack the lipid handling machinery of host cells and ADRP may play a role in this process. Disrupting ADRP's interaction with the virus may hinder the virus's ability to use lipids for replication and assembly.
q. Neuropilin-1 (NRP1) is a cell surface receptor with roles in blood vessel development, nerve cell guidance, and immune responses. NRP1 may function as a co-receptor for SARS-CoV-2, facilitating viral entry into cells. Blocking NRP1 may disrupt an alternative route of viral entry.
r. EP300 (E1A Binding Protein P300) is a transcriptional coactivator involved in several cellular processes, including growth, differentiation, and apoptosis, through its acetyltransferase activity that modifies histones and non-histone proteins. EP300 facilitates viral entry into cells and upregulates inflammatory cytokine production.
s. Prostaglandin G/H synthase 2 (PTGS2, also known as COX-2) is an enzyme crucial for the production of inflammatory molecules called prostaglandins. PTGS2 plays a role in the inflammatory response that can become severe in COVID-19 and inhibitors (like some NSAIDs) may have benefits in dampening harmful inflammation, but note that prostaglandins have diverse physiological functions.
t. Heat Shock Protein 90 Alpha Family Class A Member 1 (HSP90AA1) is a chaperone protein that helps other proteins fold correctly and maintains their stability. HSP90AA1 plays roles in cell signaling, survival, and immune responses. HSP90AA1 may interact with numerous viral proteins, but note that it has diverse physiological functions.
u. Matrix metalloproteinase 9 (MMP9), also called gelatinase B, is a zinc-dependent enzyme that breaks down collagen and other components of the extracellular matrix. MMP9 levels increase in severe COVID-19. Overactive MMP9 can damage lung tissue and worsen inflammation. Inhibition of MMP9 may prevent excessive tissue damage and help regulate the inflammatory response.
v. The interleukin-6 (IL-6) pro-inflammatory cytokine (signaling molecule) has a complex role in the immune response and may trigger and perpetuate inflammation. Elevated IL-6 levels are associated with severe COVID-19 cases and cytokine storm. Anti-IL-6 therapies may be beneficial in reducing excessive inflammation in severe COVID-19 cases.
w. The interleukin-10 (IL-10) anti-inflammatory cytokine helps regulate and dampen immune responses, preventing excessive inflammation. IL-10 levels can also be elevated in severe COVID-19. IL-10 could either help control harmful inflammation or potentially contribute to immune suppression.
x. Vascular Endothelial Growth Factor A (VEGFA) promotes the growth of new blood vessels (angiogenesis) and has roles in inflammation and immune responses. VEGFA may contribute to blood vessel leakiness and excessive inflammation associated with severe COVID-19.
y. RELA is a transcription factor subunit of NF-kB and is a key regulator of inflammation, driving pro-inflammatory gene expression. SARS-CoV-2 may hijack and modulate NF-kB pathways.
z. The interaction between the SARS-CoV-2 spike protein and the human ACE2 receptor is a primary method of viral entry, inhibiting this interaction can prevent the virus from attaching to and entering host cells, halting infection at an early stage.
aa. Calu-3 is a human lung adenocarcinoma cell line with moderate ACE2 and TMPRSS2 expression and SARS-CoV-2 susceptibility. It provides a model of the human respiratory epithelium, but many not be ideal for modeling early stages of infection due to the moderate expression levels of ACE2 and TMPRSS2.
ab. A549 is a human lung carcinoma cell line with low ACE2 expression and SARS-CoV-2 susceptibility. Viral entry/replication can be studied but the cells may not replicate all aspects of lung infection.
ac. HEK293-ACE2+ is a human embryonic kidney cell line engineered for high ACE2 expression and SARS-CoV-2 susceptibility.
ad. Huh-7 cells were derived from a liver tumor (hepatoma).
ae. Caco-2 cells come from a colorectal adenocarcinoma (cancer). They are valued for their ability to form a polarized cell layer with properties similar to the intestinal lining.
af. Vero E6 is an African green monkey kidney cell line with low/no ACE2 expression and high SARS-CoV-2 susceptibility. The cell line is easy to maintain and supports robust viral replication, however the monkey origin may not accurately represent human responses.
ag. mTEC is a mouse tubular epithelial cell line.
ah. RAW264.7 is a mouse macrophage cell line.
ai. A mouse model expressing the human ACE2 receptor under the control of the K18 promoter.
aj. A mouse model of obesity and severe insulin resistance leading to type 2 diabetes due to a mutation in the leptin receptor gene that impairs satiety signaling.
ak. A mouse model commonly used in infectious disease and cancer research due to higher immune response and susceptibility to infection.
Singh et al., 14 Dec 2021, peer-reviewed, 9 authors.
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
This PaperQuercetinAll
The spike protein of SARS-CoV-2 induces heme oxygenase-1: Pathophysiologic implications
Ph.D Raman Deep Singh, Ph.D Michael A Barry, Anthony J Croatt, M.S Allan W Ackerman, M.D Joseph P Grande, Ph.D Rosa M Diaz, Ph.D Richard G Vile, M.D Anupam Agarwal, MB. ChB Karl A Nath
Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, doi:10.1016/j.bbadis.2021.166322
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Authors' contributions Raman Deep Singh: Conceptualisation, data curation, formal analysis, investigation, methodology, project administration, resources, software, validation, visualisation, writingoriginal draft, and writingreview & editing. Declaration of interests ☒ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. ☐The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: J o u r n a l P r e -p r o o f
References
Agarwal, Bolisetty, Adaptive responses to tissue injury: role of heme oxygenase-1, Trans Am Clin Climatol Assoc
Batra, Souza, Batra, Raetz, Yu, The HMOX1 Pathway as a Promising Target for the Treatment and Prevention of SARS-CoV-2 of 2019 (COVID-19), Int J Mol Sci
Bortolotti, Gentili, Rizzo, Rotola, Rizzo, SARS-CoV-2 Spike 1 Protein Controls Natural Killer Cell Activation via the HLA-E/NKG2A Pathway, Cells
Braun, Lutgehetmann, Pfefferle, Wong, Carsten et al., SARS-CoV-2 renal tropism associates with acute kidney injury, Lancet
Buchrieser, Dufloo, Hubert, Monel, Planas et al., Syncytia formation by SARS-CoV-2-infected cells, Embo j
Buzhdygan, Deore, Baldwin-Leclair, Bullock, Mcgary et al., The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in-vitro models of the human blood-brain barrier, Neurobiol Dis
Caceres, Savickas, Murray, Umanath, Uduman et al., High SARS-CoV-2 Viral Load in Urine Sediment Correlates with Acute Kidney Injury and Poor COVID-19
Diniz, Souza, Duarte, Sousa, Mechanistic Aspects and Therapeutic Potential of Quercetin against COVID-19-Associated Acute Kidney Injury, Molecules
Fakhouri, Peterson, Kothari, Shapiro, Abraham, Genetic Polymorphisms Complicate COVID-19 Therapy: Pivotal Role of HO-1 in Cytokine Storm, Antioxidants
Funes, Rios, Fernández-Fierro, Covián, Bueno et al., Naturally Derived Heme-Oxygenase 1 Inducers and Their Therapeutic Application to Immune-Mediated Diseases, Front Immunol
Furuichi, Wada, Iwata, Kitagawa, Kobayashi et al., CCR2 signaling contributes to ischemia-reperfusion injury in kidney, J Am Soc Nephrol
Furuichi, Wada, Iwata, Kitagawa, Kobayashi et al., Gene therapy expressing amino-terminal truncated monocyte chemoattractant protein-1 prevents renal ischemia-reperfusion injury, J Am Soc Nephrol
Gao, Zeng, Jia, Stavenhagen, Matsumoto et al., SARS-CoV-2 Spike Protein Interacts with Multiple Innate Immune Receptors
George, Pal, Gagnon, Timalsina, Singh et al., Evidence for SARS-CoV-2 Spike Protein in the Urine of COVID-19 patients, doi:Kidney360.2021:10.34067/KID.0002172021
Gu, Zhang, Cen, Wu, Lu et al., Quercetin as a potential treatment for COVID-19-induced acute kidney injury: Based on network pharmacology and molecular docking study, PLoS One
Gupta, Madhavan, Sehgal, Nair, Mahajan et al., Extrapulmonary manifestations of COVID-19, Nat Med
Han, Pandey, ZMPSTE24 Regulates SARS-CoV-2 Spike Protein-enhanced Expression of Endothelial Plasminogen Activator Inhibitor-1, Am J Respir Cell Mol Biol
Hoffmann, Kleine-Weber, Schroeder, Kruger, Herrler et al., SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor, Cell
J O U R N A L P R E, -p r o o f Journal Pre-proof
J O U R N A L P R E, -p r o o f Journal Pre-proof
Kelly, Williams, Colvin, Bonventre, Antibody to intercellular adhesion molecule 1 protects the kidney against ischemic injury, Proc Natl Acad Sci U S A
Kelly, Williams, Colvin, Meehan, Springer et al., Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury, J Clin Invest
Khan, Chen, Yang, Raghuram, Khundmiri et al., Does SARS-CoV-2 Infect the Kidney?, J Am Soc Nephrol
Lei, Zhang, Schiavon, He, Chen et al., SARS-CoV-2 Spike Protein Impairs Endothelial Function via Downregulation of ACE 2, Circ Res
Musarrat, Chouljenko, Dahal, Nabi, Chouljenko et al., The anti-HIV drug nelfinavir mesylate (Viracept) is a potent inhibitor of cell fusion caused by the SARSCoV-2 J o u r n a l P r e -p r o o f Journal Pre-proof spike (S) glycoprotein warranting further evaluation as an antiviral against COVID-19 infections, J Med Virol
Nadim, Forni, Mehta, Connor, Liu et al., COVID-19-associated acute kidney injury: consensus report of the 25th Acute Disease Quality Initiative (ADQI) Workgroup, Nat Rev Nephrol
Nath, Garovic, Grande, Croatt, Ackerman et al., Heme oxygenase-2 protects against ischemic acute kidney injury: influence of age and sex, Am J Physiol Renal Physiol
Nath, Grande, Belcher, Garovic, Croatt et al., Antithrombotic effects of heme-degrading and heme-binding proteins, Am J Physiol Heart Circ Physiol
Nath, Heme oxygenase-1 and acute kidney injury, Curr Opin Nephrol Hypertens
Ou, Liu, Lei, Li, Mi et al., Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV, Nat Commun
Paola, Genovese, Impellizzeri, Ahmad, Cuzzocrea et al., The renal injury and inflammation caused by ischemia-reperfusion are reduced by genetic inhibition of TNF-αR1: a comparison with infliximab treatment, Eur J Pharmacol
Puelles, Lutgehetmann, Lindenmeyer, Sperhake, Wong et al., Multiorgan and Renal Tropism of SARS-CoV-2, N Engl J Med
Ratajczak, Bujko, Ciechanowicz, Sielatycka, Cymer et al., SARS-CoV-2 Entry Receptor ACE2 Is Expressed on Very Small CD45(-) Precursors of Hematopoietic and Endothelial Cells and in Response to Virus Spike Protein Activates the Nlrp3 Inflammasome, Stem Cell Rev Rep
Rivero, Merino-López, Olmedo, Garrido-Roldan, Moguel et al., Association between Postmortem Kidney Biopsy Findings and Acute Kidney Injury from Patients with SARS-CoV-2 (COVID-19), Clin J Am Soc Nephrol
Rossi, Piagnerelli, Van Meerhaeghe, Boudjeltia, Heme oxygenase-1 (HO-1) cytoprotective pathway: A potential treatment strategy against coronavirus disease 2019 (COVID-19)-induced cytokine storm syndrome, Med Hypotheses
Saeedi-Boroujeni, Mr, Anti-inflammatory potential of Quercetin in COVID-19 treatment, J Inflamm (Lond)
Shoskes, Effect of bioflavonoids quercetin and curcumin on ischemic renal injury: a new class of renoprotective agents, Transplantation
Singh, Wasan, Reeta, Heme oxygenase-1 modulation: A potential therapeutic target for COVID-19 and associated complications, Free Radic Biol Med
Sparks, South, Badley, Baker-Smith, Batlle et al., Severe Acute Respiratory Syndrome Coronavirus 2, COVID-19, and the Renin-Angiotensin System: Pressing Needs and Best Research Practices, Hypertension
Su, Lin, Hang, Wu, Cheng et al., Desaturation and heme elevation during COVID-19 infection: A potential prognostic factor of heme oxygenase-1, J Microbiol Immunol Infect
Vijayan, Humphreys, SARS-CoV-2 in the kidney: bystander or culprit?, Nat Rev Nephrol
Wagener, Pickkers, Peterson, Immenschuh, Abraham, Targeting the Heme-Heme Oxygenase System to Prevent Severe Complications Following COVID-19 Infections, Antioxidants
Xia, Shen, He, Pan, Liu et al., SARS-CoV-2 envelope protein causes acute respiratory distress syndrome (ARDS)-like pathological damages and constitutes an antiviral target, Cell Res
Yu, Yuan, Chen, Chaturvedi, Braunstein et al., Direct activation of the alternative complement pathway by SARS-CoV-2 spike proteins is blocked by factor D inhibition, Blood
{ 'indexed': { 'date-parts': [[2021, 12, 16]], 'date-time': '2021-12-16T08:31:03Z', 'timestamp': 1639643463725}, 'reference-count': 42, 'publisher': 'Elsevier BV', 'license': [ { 'start': { 'date-parts': [[2021, 12, 1]], 'date-time': '2021-12-01T00:00:00Z', 'timestamp': 1638316800000}, 'content-version': 'tdm', 'delay-in-days': 0, 'URL': 'https://www.elsevier.com/tdm/userlicense/1.0/'}], 'content-domain': {'domain': [], 'crossmark-restriction': False}, 'short-container-title': ['Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease'], 'published-print': {'date-parts': [[2021, 12]]}, 'DOI': '10.1016/j.bbadis.2021.166322', 'type': 'journal-article', 'created': { 'date-parts': [[2021, 12, 14]], 'date-time': '2021-12-14T17:10:51Z', 'timestamp': 1639501851000}, 'page': '166322', 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': ['The spike protein of SARS-CoV-2 virus induces heme oxygenase-1: Pathophysiologic implications'], 'prefix': '10.1016', 'author': [ {'given': 'Raman Deep', 'family': 'Singh', 'sequence': 'first', 'affiliation': []}, {'given': 'Michael A.', 'family': 'Barry', 'sequence': 'additional', 'affiliation': []}, {'given': 'Anthony J.', 'family': 'Croatt', 'sequence': 'additional', 'affiliation': []}, {'given': 'Allan W.', 'family': 'Ackerman', 'sequence': 'additional', 'affiliation': []}, {'given': 'Joseph P.', 'family': 'Grande', 'sequence': 'additional', 'affiliation': []}, {'given': 'Rosa M.', 'family': 'Diaz', 'sequence': 'additional', 'affiliation': []}, {'given': 'Richard G.', 'family': 'Vile', 'sequence': 'additional', 'affiliation': []}, {'given': 'Anupam', 'family': 'Agarwal', 'sequence': 'additional', 'affiliation': []}, {'given': 'Karl A.', 'family': 'Nath', 'sequence': 'additional', 'affiliation': []}], 'member': '78', 'reference': [ { 'issue': '7', 'key': '10.1016/j.bbadis.2021.166322_bb0005', 'doi-asserted-by': 'crossref', 'first-page': '1017', 'DOI': '10.1038/s41591-020-0968-3', 'article-title': 'Extrapulmonary manifestations of COVID-19', 'volume': '26', 'author': 'Gupta', 'year': '2020', 'journal-title': 'Nat. Med.'}, { 'issue': '12', 'key': '10.1016/j.bbadis.2021.166322_bb0010', 'doi-asserted-by': 'crossref', 'first-page': '747', 'DOI': '10.1038/s41581-020-00356-5', 'article-title': 'COVID-19-associated acute kidney injury: consensus report of the 25th ' 'acute disease quality initiative (ADQI) workgroup', 'volume': '16', 'author': 'Nadim', 'year': '2020', 'journal-title': 'Nat. Rev. Nephrol.'}, { 'issue': '5', 'key': '10.1016/j.bbadis.2021.166322_bb0015', 'doi-asserted-by': 'crossref', 'first-page': '1350', 'DOI': '10.1161/HYPERTENSIONAHA.120.15948', 'article-title': 'Severe acute respiratory syndrome coronavirus 2, COVID-19, and the ' 'renin-angiotensin system: pressing needs and best research practices', 'volume': '76', 'author': 'Sparks', 'year': '2020', 'journal-title': 'Hypertension'}, { 'issue': '2', 'key': '10.1016/j.bbadis.2021.166322_bb0020', 'doi-asserted-by': 'crossref', 'first-page': '271', 'DOI': '10.1016/j.cell.2020.02.052', 'article-title': 'SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a ' 'clinically proven protease inhibitor', 'volume': '181', 'author': 'Hoffmann', 'year': '2020', 'journal-title': 'Cell'}, { 'issue': '1', 'key': '10.1016/j.bbadis.2021.166322_bb0025', 'doi-asserted-by': 'crossref', 'first-page': '1620', 'DOI': '10.1038/s41467-020-15562-9', 'article-title': 'Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and ' 'its immune cross-reactivity with SARS-CoV', 'volume': '11', 'author': 'Ou', 'year': '2020', 'journal-title': 'Nat. Commun.'}, { 'key': '10.1016/j.bbadis.2021.166322_bb0030', 'article-title': 'SARS-CoV-2 spike protein interacts with multiple innate immune ' 'receptors', 'author': 'Gao', 'year': '2020', 'journal-title': 'bioRxiv.'}, { 'key': '10.1016/j.bbadis.2021.166322_bb0035', 'doi-asserted-by': 'crossref', 'first-page': '1', 'DOI': '10.1007/s12015-019-09951-x', 'article-title': 'SARS-CoV-2 entry receptor ACE2 is expressed on very small CD45(-) ' 'precursors of hematopoietic and endothelial cells and in response to ' 'virus spike protein activates the Nlrp3 inflammasome', 'author': 'Ratajczak', 'year': '2020', 'journal-title': 'Stem Cell Rev. Rep.'}, { 'issue': '18', 'key': '10.1016/j.bbadis.2021.166322_bb0040', 'doi-asserted-by': 'crossref', 'first-page': '2080', 'DOI': '10.1182/blood.2020008248', 'article-title': 'Direct activation of the alternative complement pathway by SARS-CoV-2 ' 'spike proteins is blocked by factor D inhibition', 'volume': '136', 'author': 'Yu', 'year': '2020', 'journal-title': 'Blood'}, { 'key': '10.1016/j.bbadis.2021.166322_bb0045', 'doi-asserted-by': 'crossref', 'DOI': '10.1016/j.nbd.2020.105131', 'article-title': 'The SARS-CoV-2 spike protein alters barrier function in 2D static and ' '3D microfluidic in-vitro models of the human blood-brain barrier', 'volume': '146', 'author': 'Buzhdygan', 'year': '2020', 'journal-title': 'Neurobiol. Dis.'}, { 'issue': '9', 'key': '10.1016/j.bbadis.2021.166322_bb0050', 'doi-asserted-by': 'crossref', 'first-page': '1323', 'DOI': '10.1161/CIRCRESAHA.121.318902', 'article-title': 'SARS-CoV-2 spike protein impairs endothelial function via ' 'downregulation of ACE 2', 'volume': '128', 'author': 'Lei', 'year': '2021', 'journal-title': 'Circ. Res.'}, { 'key': '10.1016/j.bbadis.2021.166322_bb0055', 'doi-asserted-by': 'crossref', 'article-title': 'ZMPSTE24 regulates SARS-CoV-2 spike protein-enhanced expression of ' 'endothelial plasminogen activator Inhibitor-1', 'author': 'Han', 'year': '2021', 'journal-title': 'Am. J. Respir. Cell Mol. Biol.', 'DOI': '10.1165/rcmb.2020-0544OC'}, { 'issue': '9', 'key': '10.1016/j.bbadis.2021.166322_bb0060', 'doi-asserted-by': 'crossref', 'first-page': '15', 'DOI': '10.3390/cells9091975', 'article-title': 'SARS-CoV-2 spike 1 protein controls natural killer cell activation via ' 'the HLA-E/NKG2A pathway', 'volume': '9', 'author': 'Bortolotti', 'year': '2020', 'journal-title': 'Cells'}, { 'issue': '10251', 'key': '10.1016/j.bbadis.2021.166322_bb0065', 'doi-asserted-by': 'crossref', 'first-page': '597', 'DOI': '10.1016/S0140-6736(20)31759-1', 'article-title': 'SARS-CoV-2 renal tropism associates with acute kidney injury', 'volume': '396', 'author': 'Braun', 'year': '2020', 'journal-title': 'Lancet'}, { 'key': '10.1016/j.bbadis.2021.166322_bb0070', 'doi-asserted-by': 'crossref', 'article-title': 'Does SARS-CoV-2 infect the Kidney?', 'author': 'Khan', 'year': '2020', 'journal-title': 'J. Am. Soc. Nephrol.', 'DOI': '10.1681/ASN.2020081229'}, { 'issue': '6', 'key': '10.1016/j.bbadis.2021.166322_bb0075', 'doi-asserted-by': 'crossref', 'first-page': '590', 'DOI': '10.1056/NEJMc2011400', 'article-title': 'Multiorgan and renal tropism of SARS-CoV-2', 'volume': '383', 'author': 'Puelles', 'year': '2020', 'journal-title': 'N. Engl. J. Med.'}, { 'issue': '12', 'key': '10.1016/j.bbadis.2021.166322_bb0080', 'doi-asserted-by': 'crossref', 'first-page': '703', 'DOI': '10.1038/s41581-020-00354-7', 'article-title': 'SARS-CoV-2 in the kidney: bystander or culprit?', 'volume': '16', 'author': 'Vijayan', 'year': '2020', 'journal-title': 'Nat. Rev. Nephrol.'}, { 'key': '10.1016/j.bbadis.2021.166322_bb0085', 'doi-asserted-by': 'crossref', 'article-title': 'High SARS-CoV-2 viral load in urine sediment correlates with acute ' 'kidney injury and poor COVID-19 outcome', 'author': 'Caceres', 'year': '2021', 'journal-title': 'J. Am. Soc. Nephrol.', 'DOI': '10.1681/ASN.2021010059'}, { 'key': '10.1016/j.bbadis.2021.166322_bb0090', 'article-title': 'Evidence for SARS-CoV-2 spike protein in the urine of COVID-19 patients', 'volume': '360', 'author': 'George', 'year': '2021', 'journal-title': 'Kidney'}, { 'issue': '3', 'key': '10.1016/j.bbadis.2021.166322_bb0095', 'doi-asserted-by': 'crossref', 'DOI': '10.1152/ajpheart.00280.2019', 'article-title': 'Antithrombotic effects of heme-degrading and heme-binding proteins', 'volume': '318', 'author': 'Nath', 'year': '2020', 'journal-title': 'Am J Physiol Heart Circ Physiol.'}, { 'issue': '3', 'key': '10.1016/j.bbadis.2021.166322_bb0100', 'doi-asserted-by': 'crossref', 'first-page': 'F695', 'DOI': '10.1152/ajprenal.00085.2019', 'article-title': 'Heme oxygenase-2 protects against ischemic acute kidney injury: ' 'influence of age and sex', 'volume': '317', 'author': 'Nath', 'year': '2019', 'journal-title': 'Am. J. Physiol. Renal. Physiol.'}, { 'issue': '8', 'key': '10.1016/j.bbadis.2021.166322_bb0105', 'doi-asserted-by': 'crossref', 'first-page': '847', 'DOI': '10.1038/s41422-021-00519-4', 'article-title': 'SARS-CoV-2 envelope protein causes acute respiratory distress syndrome ' '(ARDS)-like pathological damages and constitutes an antiviral target', 'volume': '31', 'author': 'Xia', 'year': '2021', 'journal-title': 'Cell Res.'}, { 'key': '10.1016/j.bbadis.2021.166322_bb0110', 'doi-asserted-by': 'crossref', 'first-page': '1467', 'DOI': '10.3389/fimmu.2020.01467', 'article-title': 'Naturally derived heme-oxygenase 1 inducers and their therapeutic ' 'application to immune-mediated diseases', 'volume': '11', 'author': 'Funes', 'year': '2020', 'journal-title': 'Front. Immunol.'}, { 'key': '10.1016/j.bbadis.2021.166322_bb0115', 'doi-asserted-by': 'crossref', 'article-title': 'Association between postmortem kidney biopsy findings and acute kidney ' 'injury from patients with SARS-CoV-2 (COVID-19)', 'author': 'Rivero', 'year': '2021', 'journal-title': 'Clin. J. Am. Soc. Nephrol.', 'DOI': '10.2215/CJN.16281020'}, { 'key': '10.1016/j.bbadis.2021.166322_bb0120', 'doi-asserted-by': 'crossref', 'article-title': 'Syncytia formation by SARS-CoV-2-infected cells', 'author': 'Buchrieser', 'year': '2020', 'journal-title': 'EMBO J.', 'DOI': '10.15252/embj.2020106267'}, { 'key': '10.1016/j.bbadis.2021.166322_bb0125', 'doi-asserted-by': 'crossref', 'article-title': 'The anti-HIV drug nelfinavir mesylate (Viracept) is a potent inhibitor ' 'of cell fusion caused by the SARSCoV-2 spike (S) glycoprotein ' 'warranting further evaluation as an antiviral against COVID-19 ' 'infections', 'author': 'Musarrat', 'year': '2020', 'journal-title': 'J. Med. Virol.', 'DOI': '10.1002/jmv.25985'}, { 'issue': '1–3', 'key': '10.1016/j.bbadis.2021.166322_bb0130', 'doi-asserted-by': 'crossref', 'first-page': '134', 'DOI': '10.1016/j.ejphar.2012.11.066', 'article-title': 'The renal injury and inflammation caused by ischemia-reperfusion are ' 'reduced by genetic inhibition of TNF-αR1: a comparison with infliximab ' 'treatment', 'volume': '700', 'author': 'Di Paola', 'year': '2013', 'journal-title': 'Eur. J. Pharmacol.'}, { 'issue': '4', 'key': '10.1016/j.bbadis.2021.166322_bb0135', 'doi-asserted-by': 'crossref', 'first-page': '1066', 'DOI': '10.1097/01.ASN.0000059339.14780.E4', 'article-title': 'Gene therapy expressing amino-terminal truncated monocyte ' 'chemoattractant protein-1 prevents renal ischemia-reperfusion injury', 'volume': '14', 'author': 'Furuichi', 'year': '2003', 'journal-title': 'J. Am. Soc. Nephrol.'}, { 'issue': '10', 'key': '10.1016/j.bbadis.2021.166322_bb0140', 'doi-asserted-by': 'crossref', 'first-page': '2503', 'DOI': '10.1097/01.ASN.0000089563.63641.A8', 'article-title': 'CCR2 signaling contributes to ischemia-reperfusion injury in kidney', 'volume': '14', 'author': 'Furuichi', 'year': '2003', 'journal-title': 'J. Am. Soc. Nephrol.'}, { 'issue': '2', 'key': '10.1016/j.bbadis.2021.166322_bb0145', 'doi-asserted-by': 'crossref', 'first-page': '812', 'DOI': '10.1073/pnas.91.2.812', 'article-title': 'Antibody to intercellular adhesion molecule 1 protects the kidney ' 'against ischemic injury', 'volume': '91', 'author': 'Kelly', 'year': '1994', 'journal-title': 'Proc. Natl. Acad. Sci. U. S. A.'}, { 'issue': '4', 'key': '10.1016/j.bbadis.2021.166322_bb0150', 'doi-asserted-by': 'crossref', 'first-page': '1056', 'DOI': '10.1172/JCI118498', 'article-title': 'Intercellular adhesion molecule-1-deficient mice are protected against ' 'ischemic renal injury', 'volume': '97', 'author': 'Kelly', 'year': '1996', 'journal-title': 'J. Clin. Invest.'}, { 'key': '10.1016/j.bbadis.2021.166322_bb0155', 'first-page': '111', 'article-title': 'Adaptive responses to tissue injury: role of heme oxygenase-1', 'volume': '124', 'author': 'Agarwal', 'year': '2013', 'journal-title': 'Trans. Am. Clin. Climatol. Assoc.'}, { 'issue': '1', 'key': '10.1016/j.bbadis.2021.166322_bb0160', 'doi-asserted-by': 'crossref', 'first-page': '17', 'DOI': '10.1097/01.mnh.0000437613.88158.d3', 'article-title': 'Heme oxygenase-1 and acute kidney injury', 'volume': '23', 'author': 'Nath', 'year': '2014', 'journal-title': 'Curr. Opin. Nephrol. Hypertens.'}, { 'issue': '17', 'key': '10.1016/j.bbadis.2021.166322_bb0165', 'doi-asserted-by': 'crossref', 'DOI': '10.3390/ijms21176412', 'article-title': 'The HMOX1 pathway as a promising target for the treatment and ' 'prevention of SARS-CoV-2 of 2019 (COVID-19)', 'volume': '21', 'author': 'Batra', 'year': '2020', 'journal-title': 'Int. J. Mol. Sci.'}, { 'issue': '7', 'key': '10.1016/j.bbadis.2021.166322_bb0170', 'article-title': 'Genetic polymorphisms complicate COVID-19 therapy: pivotal role of HO-1 ' 'in cytokine storm', 'volume': '9', 'author': 'Fakhouri', 'year': '2020', 'journal-title': 'Antioxidants (Basel)'}, { 'key': '10.1016/j.bbadis.2021.166322_bb0175', 'doi-asserted-by': 'crossref', 'DOI': '10.1016/j.mehy.2020.110242', 'article-title': 'Heme oxygenase-1 (HO-1) cytoprotective pathway: a potential treatment ' 'strategy against coronavirus disease 2019 (COVID-19)-induced cytokine ' 'storm syndrome', 'volume': '144', 'author': 'Rossi', 'year': '2020', 'journal-title': 'Med. Hypotheses'}, { 'key': '10.1016/j.bbadis.2021.166322_bb0180', 'doi-asserted-by': 'crossref', 'first-page': '263', 'DOI': '10.1016/j.freeradbiomed.2020.10.016', 'article-title': 'Heme oxygenase-1 modulation: a potential therapeutic target for ' 'COVID-19 and associated complications', 'volume': '161', 'author': 'Singh', 'year': '2020', 'journal-title': 'Free Radic. Biol. Med.'}, { 'issue': '6', 'key': '10.1016/j.bbadis.2021.166322_bb0185', 'article-title': 'Targeting the heme-heme oxygenase system to prevent severe ' 'complications following COVID-19 infections', 'volume': '9', 'author': 'Wagener', 'year': '2020', 'journal-title': 'Antioxidants (Basel)'}, { 'issue': '1', 'key': '10.1016/j.bbadis.2021.166322_bb0190', 'doi-asserted-by': 'crossref', 'first-page': '113', 'DOI': '10.1016/j.jmii.2020.10.001', 'article-title': 'Desaturation and heme elevation during COVID-19 infection: a potential ' 'prognostic factor of heme oxygenase-1', 'volume': '54', 'author': 'Su', 'year': '2021', 'journal-title': 'J. Microbiol. Immunol. Infect.'}, { 'issue': '1', 'key': '10.1016/j.bbadis.2021.166322_bb0195', 'doi-asserted-by': 'crossref', 'first-page': '3', 'DOI': '10.1186/s12950-021-00268-6', 'article-title': 'Anti-inflammatory potential of quercetin in COVID-19 treatment', 'volume': '18', 'author': 'Saeedi-Boroujeni', 'year': '2021', 'journal-title': 'J. Inflamm. (Lond).'}, { 'issue': '2', 'key': '10.1016/j.bbadis.2021.166322_bb0200', 'doi-asserted-by': 'crossref', 'first-page': '147', 'DOI': '10.1097/00007890-199807270-00001', 'article-title': 'Effect of bioflavonoids quercetin and curcumin on ischemic renal ' 'injury: a new class of renoprotective agents', 'volume': '66', 'author': 'Shoskes', 'year': '1998', 'journal-title': 'Transplantation'}, { 'issue': '23', 'key': '10.1016/j.bbadis.2021.166322_bb0205', 'doi-asserted-by': 'crossref', 'DOI': '10.3390/molecules25235772', 'article-title': 'Mechanistic aspects and therapeutic potential of quercetin against ' 'COVID-19-associated acute kidney injury', 'volume': '25', 'author': 'Diniz', 'year': '2020', 'journal-title': 'Molecules'}, { 'issue': '1', 'key': '10.1016/j.bbadis.2021.166322_bb0210', 'doi-asserted-by': 'crossref', 'DOI': '10.1371/journal.pone.0245209', 'article-title': 'Quercetin as a potential treatment for COVID-19-induced acute kidney ' 'injury: based on network pharmacology and molecular docking study', 'volume': '16', 'author': 'Gu', 'year': '2021', 'journal-title': 'PLoS One'}], 'container-title': ['Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease'], 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://api.elsevier.com/content/article/PII:S0925443921002556?httpAccept=text/xml', 'content-type': 'text/xml', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://api.elsevier.com/content/article/PII:S0925443921002556?httpAccept=text/plain', 'content-type': 'text/plain', 'content-version': 'vor', 'intended-application': 'text-mining'}], 'deposited': { 'date-parts': [[2021, 12, 14]], 'date-time': '2021-12-14T17:11:27Z', 'timestamp': 1639501887000}, 'score': 1, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2021, 12]]}, 'references-count': 42, 'alternative-id': ['S0925443921002556'], 'URL': 'http://dx.doi.org/10.1016/j.bbadis.2021.166322', 'relation': {}, 'ISSN': ['0925-4439'], 'issn-type': [{'value': '0925-4439', 'type': 'print'}], 'subject': ['Molecular Biology', 'Molecular Medicine'], 'published': {'date-parts': [[2021, 12]]}, 'article-number': '166322'}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit