Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchQuercetinQuercetin (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

In silico evidence implicating novel mechanisms of Prunella vulgaris L. as a potential botanical drug against COVID-19-associated acute kidney injury

Yang et al., Frontiers in Pharmacology, doi:10.3389/fphar.2023.1188086
May 2023  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Quercetin for COVID-19
24th treatment shown to reduce risk in July 2021, now with p = 0.002 from 12 studies.
No treatment is 100% effective. Protocols combine treatments.
5,100+ studies for 112 treatments. c19early.org
In Silico study identifying quercetin, luteolin and kaempferol as potentially protective for COVID-19 acute kidney injury.
73 preclinical studies support the efficacy of quercetin for COVID-19:
In Silico studies predict inhibition of SARS-CoV-2, or minimization of side effects, with quercetin or metabolites via binding to the spikeA,3,9,10,22,24,25,30,38,39,41,42,62-64, MproB,3,7,9,11,13,15,17,18,20,23,24,30,34,36-38,42,43,45,63-65, RNA-dependent RNA polymeraseC,1,3,9,32,64, PLproD,3,37,45, ACE2E,22,23,28,37,41,63, TMPRSS2F,22, nucleocapsidG,3, helicaseH,3,29,34, endoribonucleaseI,39, NSP16/10J,6, cathepsin LK,26, Wnt-3L,22, FZDM,22, LRP6N,22, ezrinO,40, ADRPP,38, NRP1Q,41, EP300R,16, PTGS2S,23, HSP90AA1T,16,23, matrix metalloproteinase 9U,31, IL-6V,21,35, IL-10W,21, VEGFAX,35, and RELAY,35 proteins. In Vitro studies demonstrate inhibition of the MproB,15,46,51,59 protein, and inhibition of spike-ACE2 interactionZ,47. In Vitro studies demonstrate efficacy in Calu-3AA,50, A549AB,21, HEK293-ACE2+AC,58, Huh-7AD,25, Caco-2AE,49, Vero E6AF,19,42,49, mTECAG,52, and RAW264.7AH,52 cells. Animal studies demonstrate efficacy in K18-hACE2 miceAI,55, db/db miceAJ,52,61, BALB/c miceAK,60, and rats66. Quercetin reduced proinflammatory cytokines and protected lung and kidney tissue against LPS-induced damage in mice60, inhibits LPS-induced cytokine storm by modulating key inflammatory and antioxidant pathways in macrophages5, and inhibits SARS-CoV-2 ORF3a ion channel activity, which contributes to viral pathogenicity and cytotoxicity54.
a. The trimeric spike (S) protein is a glycoprotein that mediates viral entry by binding to the host ACE2 receptor, is critical for SARS-CoV-2's ability to infect host cells, and is a target of neutralizing antibodies. Inhibition of the spike protein prevents viral attachment, halting infection at the earliest stage.
b. The main protease or Mpro, also known as 3CLpro or nsp5, is a cysteine protease that cleaves viral polyproteins into functional units needed for replication. Inhibiting Mpro disrupts the SARS-CoV-2 lifecycle within the host cell, preventing the creation of new copies.
c. RNA-dependent RNA polymerase (RdRp), also called nsp12, is the core enzyme of the viral replicase-transcriptase complex that copies the positive-sense viral RNA genome into negative-sense templates for progeny RNA synthesis. Inhibiting RdRp blocks viral genome replication and transcription.
d. The papain-like protease (PLpro) has multiple functions including cleaving viral polyproteins and suppressing the host immune response by deubiquitination and deISGylation of host proteins. Inhibiting PLpro may block viral replication and help restore normal immune responses.
e. The angiotensin converting enzyme 2 (ACE2) protein is a host cell transmembrane protein that serves as the cellular receptor for the SARS-CoV-2 spike protein. ACE2 is expressed on many cell types, including epithelial cells in the lungs, and allows the virus to enter and infect host cells. Inhibition may affect ACE2's physiological function in blood pressure control.
f. Transmembrane protease serine 2 (TMPRSS2) is a host cell protease that primes the spike protein, facilitating cellular entry. TMPRSS2 activity helps enable cleavage of the spike protein required for membrane fusion and virus entry. Inhibition may especially protect respiratory epithelial cells, buy may have physiological effects.
g. The nucleocapsid (N) protein binds and encapsulates the viral genome by coating the viral RNA. N enables formation and release of infectious virions and plays additional roles in viral replication and pathogenesis. N is also an immunodominant antigen used in diagnostic assays.
h. The helicase, or nsp13, protein unwinds the double-stranded viral RNA, a crucial step in replication and transcription. Inhibition may prevent viral genome replication and the creation of new virus components.
i. The endoribonuclease, also known as NendoU or nsp15, cleaves specific sequences in viral RNA which may help the virus evade detection by the host immune system. Inhibition may hinder the virus's ability to mask itself from the immune system, facilitating a stronger immune response.
j. The NSP16/10 complex consists of non-structural proteins 16 and 10, forming a 2'-O-methyltransferase that modifies the viral RNA cap structure. This modification helps the virus evade host immune detection by mimicking host mRNA, making NSP16/10 a promising antiviral target.
k. Cathepsin L is a host lysosomal cysteine protease that can prime the spike protein through an alternative pathway when TMPRSS2 is unavailable. Dual targeting of cathepsin L and TMPRSS2 may maximize disruption of alternative pathways for virus entry.
l. Wingless-related integration site (Wnt) ligand 3 is a host signaling molecule that activates the Wnt signaling pathway, which is important in development, cell growth, and tissue repair. Some studies suggest that SARS-CoV-2 infection may interfere with the Wnt signaling pathway, and that Wnt3a is involved in SARS-CoV-2 entry.
m. The frizzled (FZD) receptor is a host transmembrane receptor that binds Wnt ligands, initiating the Wnt signaling cascade. FZD serves as a co-receptor, along with ACE2, in some proposed mechanisms of SARS-CoV-2 infection. The virus may take advantage of this pathway as an alternative entry route.
n. Low-density lipoprotein receptor-related protein 6 is a cell surface co-receptor essential for Wnt signaling. LRP6 acts in tandem with FZD for signal transduction and has been discussed as a potential co-receptor for SARS-CoV-2 entry.
o. The ezrin protein links the cell membrane to the cytoskeleton (the cell's internal support structure) and plays a role in cell shape, movement, adhesion, and signaling. Drugs that occupy the same spot on ezrin where the viral spike protein would bind may hindering viral attachment, and drug binding could further stabilize ezrin, strengthening its potential natural capacity to impede viral fusion and entry.
p. The Adipocyte Differentiation-Related Protein (ADRP, also known as Perilipin 2 or PLIN2) is a lipid droplet protein regulating the storage and breakdown of fats in cells. SARS-CoV-2 may hijack the lipid handling machinery of host cells and ADRP may play a role in this process. Disrupting ADRP's interaction with the virus may hinder the virus's ability to use lipids for replication and assembly.
q. Neuropilin-1 (NRP1) is a cell surface receptor with roles in blood vessel development, nerve cell guidance, and immune responses. NRP1 may function as a co-receptor for SARS-CoV-2, facilitating viral entry into cells. Blocking NRP1 may disrupt an alternative route of viral entry.
r. EP300 (E1A Binding Protein P300) is a transcriptional coactivator involved in several cellular processes, including growth, differentiation, and apoptosis, through its acetyltransferase activity that modifies histones and non-histone proteins. EP300 facilitates viral entry into cells and upregulates inflammatory cytokine production.
s. Prostaglandin G/H synthase 2 (PTGS2, also known as COX-2) is an enzyme crucial for the production of inflammatory molecules called prostaglandins. PTGS2 plays a role in the inflammatory response that can become severe in COVID-19 and inhibitors (like some NSAIDs) may have benefits in dampening harmful inflammation, but note that prostaglandins have diverse physiological functions.
t. Heat Shock Protein 90 Alpha Family Class A Member 1 (HSP90AA1) is a chaperone protein that helps other proteins fold correctly and maintains their stability. HSP90AA1 plays roles in cell signaling, survival, and immune responses. HSP90AA1 may interact with numerous viral proteins, but note that it has diverse physiological functions.
u. Matrix metalloproteinase 9 (MMP9), also called gelatinase B, is a zinc-dependent enzyme that breaks down collagen and other components of the extracellular matrix. MMP9 levels increase in severe COVID-19. Overactive MMP9 can damage lung tissue and worsen inflammation. Inhibition of MMP9 may prevent excessive tissue damage and help regulate the inflammatory response.
v. The interleukin-6 (IL-6) pro-inflammatory cytokine (signaling molecule) has a complex role in the immune response and may trigger and perpetuate inflammation. Elevated IL-6 levels are associated with severe COVID-19 cases and cytokine storm. Anti-IL-6 therapies may be beneficial in reducing excessive inflammation in severe COVID-19 cases.
w. The interleukin-10 (IL-10) anti-inflammatory cytokine helps regulate and dampen immune responses, preventing excessive inflammation. IL-10 levels can also be elevated in severe COVID-19. IL-10 could either help control harmful inflammation or potentially contribute to immune suppression.
x. Vascular Endothelial Growth Factor A (VEGFA) promotes the growth of new blood vessels (angiogenesis) and has roles in inflammation and immune responses. VEGFA may contribute to blood vessel leakiness and excessive inflammation associated with severe COVID-19.
y. RELA is a transcription factor subunit of NF-kB and is a key regulator of inflammation, driving pro-inflammatory gene expression. SARS-CoV-2 may hijack and modulate NF-kB pathways.
z. The interaction between the SARS-CoV-2 spike protein and the human ACE2 receptor is a primary method of viral entry, inhibiting this interaction can prevent the virus from attaching to and entering host cells, halting infection at an early stage.
aa. Calu-3 is a human lung adenocarcinoma cell line with moderate ACE2 and TMPRSS2 expression and SARS-CoV-2 susceptibility. It provides a model of the human respiratory epithelium, but many not be ideal for modeling early stages of infection due to the moderate expression levels of ACE2 and TMPRSS2.
ab. A549 is a human lung carcinoma cell line with low ACE2 expression and SARS-CoV-2 susceptibility. Viral entry/replication can be studied but the cells may not replicate all aspects of lung infection.
ac. HEK293-ACE2+ is a human embryonic kidney cell line engineered for high ACE2 expression and SARS-CoV-2 susceptibility.
ad. Huh-7 cells were derived from a liver tumor (hepatoma).
ae. Caco-2 cells come from a colorectal adenocarcinoma (cancer). They are valued for their ability to form a polarized cell layer with properties similar to the intestinal lining.
af. Vero E6 is an African green monkey kidney cell line with low/no ACE2 expression and high SARS-CoV-2 susceptibility. The cell line is easy to maintain and supports robust viral replication, however the monkey origin may not accurately represent human responses.
ag. mTEC is a mouse tubular epithelial cell line.
ah. RAW264.7 is a mouse macrophage cell line.
ai. A mouse model expressing the human ACE2 receptor under the control of the K18 promoter.
aj. A mouse model of obesity and severe insulin resistance leading to type 2 diabetes due to a mutation in the leptin receptor gene that impairs satiety signaling.
ak. A mouse model commonly used in infectious disease and cancer research due to higher immune response and susceptibility to infection.
Yang et al., 18 May 2023, China, peer-reviewed, 7 authors. Contact: ke.li@mail.xjtu.edu.cn, yjr923@163.com.
In Silico studies are an important part of preclinical research, however results may be very different in vivo.
This PaperQuercetinAll
In silico evidence implicating novel mechanisms of Prunella vulgaris L. as a potential botanical drug against COVID-19-associated acute kidney injury
Xue-Ling Yang, Chun-Xuan Wang, Jia-Xing Wang, Shi-Min Wu, Qing Yong, Ke Li, Ju-Rong Yang
Frontiers in Pharmacology, doi:10.3389/fphar.2023.1188086
COVID-19-associated acute kidney injury (COVID-19 AKI) is an independent risk factor for in-hospital mortality and has the potential to progress to chronic kidney disease. Prunella vulgaris L., a traditional Chinese herb that has been used for the treatment of a variety of kidney diseases for centuries, could have the potential to treat this complication. In this study, we studied the potential protective role of Prunella vulgaris in COVID-19 AKI and explored its specific mechanisms applied by network pharmacology and bioinformatics methods. The combination of the protein-protein interaction network and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment -target gene network revealed eight key target genes (VEGFA, ICAM1, IL6, CXCL8, IL1B, CCL2, IL10 and RELA). Molecular docking showed that all these eight gene-encoded proteins could be effectively bound to three major active compounds (quercetin, luteolin and kaempferol), thus becoming potential therapeutic targets. Molecular dynamics simulation also supports the binding stability of RELA-encoded protein with quercetin and luteolin. Together, our data suggest that IL6, VEGFA, and RELA could be the potential drug targets by inhibiting the NF-κB signaling pathway. Our in silico studies shed new insights into P. vulgaris and its ingredients, e.g., quercetin, as potential botanical drugs against COVID-19 AKI, and warrant further studies on efficacy and mechanisms.
Author contributions J-RY and KL designed the study; X-LY, C-XW, J-XW, S-MW, QY performed the experiments and collected and analyzed the data; J-RY, KL and X-LY wrote and revised the manuscript. All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication. Conflict of interest The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. Publisher's note All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher. Supplementary material The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphar.2023.1188086/ full#supplementary-material
References
Ahmadian, Hosseiniyan Khatibi, Razi Soofiyani, Abediazar, Shoja et al., Covid-19 and kidney injury: Pathophysiology and molecular mechanisms, Rev. Med. Virol, doi:10.1002/rmv.2176
Amberger, Bocchini, Schiettecatte, Scott, Hamosh, None
Ao, Chan, Ouyang, Olukitibi, Mahmoudi et al., Identification and evaluation of the inhibitory effect of Prunella vulgaris extract on SARScoronavirus 2 virus entry, PLoS One, doi:10.1371/journal.pone.0251649
Bai, Xia, Xie, Zhou, Xie et al., Phytochemistry and pharmacological activities of the genus Prunella, Food Chem, doi:10.1016/j.foodchem.2016.02.047
Berman, Westbrook, Feng, Gilliland, Bhat et al., The protein data bank, Nucleic Acids Res, doi:10.1093/nar/28.1.235
Boeing, De Souza, Speca, Somensi, Mariano et al., Luteolin prevents irinotecan-induced intestinal mucositis in mice through antioxidant and anti-inflammatory properties, Br. J. Pharmacol, doi:10.1111/bph.14987
Case, Duke, Walker, Skrynnikov, Cheatham Iii et al., AMBER 22 reference manual
Chen, Ji, Chen, Ttd: Therapeutic target database, Nucleic Acids Res, doi:10.1093/nar/30.1.412
Chen, Zhou, Dong, Qu, Gong et al., Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in wuhan, China: A descriptive study, Lancet, doi:10.1016/s0140-6736(20)30211-7
Cheng, Luo, Wang, Zhang, Wang et al., Kidney disease is associated with in-hospital death of patients with COVID-19, Kidney Int, doi:10.1016/j.kint.2020.03.005
Consortium, UniProt: A hub for protein information, Nucleic Acids Res, doi:10.1093/nar/gku989
Coomes, Haghbayan, Interleukin-6 in covid-19: A systematic review and meta-analysis, Rev. Med. Virol, doi:10.1002/rmv.2141
Coperchini, Chiovato, Croce, Magri, Rotondi, The cytokine storm in COVID-19: An overview of the involvement of the chemokine/ chemokine-receptor system, Cytokine Growth Factor Rev, doi:10.1016/j.cytogfr.2020.05.003
Daniels, Jr, Morton, COVID-19 recession: Young adult food insecurity, racial disparities, and correlates, J. Adolesc. Health, doi:10.1016/j.jadohealth.2022.09.008
Derosa, Maffioli, Di Pierro, A role for quercetin in coronavirus disease 2019 (COVID-19), Phytother. Res, doi:10.1002/ptr.6887
Dong, Du, Gardner, An interactive web-based dashboard to track COVID-19 in real time, Lancet Infect. Dis, doi:10.1016/s1473-3099(20)30120-1
Gajewski, Kośmider, Nowacka, Puk, Wiciński, Potential of herbal products in prevention and treatment of COVID-19. Literature review, Biomed. Pharmacother, doi:10.1016/j.biopha.2021.112150
Guan, Ni, Hu, Liang, Ou et al., Clinical characteristics of coronavirus disease 2019 in China, N. Engl. J. Med, doi:10.1056/NEJMoa2002032
Han, Ye, Kidney involvement in COVID-19 and its treatments, J. Med. Virol, doi:10.1002/jmv.26653
Hariharan, Hakeem, Radhakrishnan, Reddy, Rela, The role and therapeutic potential of NF-kappa-B pathway in severe COVID-19 patients, Inflammopharmacology, doi:10.1007/s10787-020-00773-9
Hayden, Ghosh, NF-κB in immunobiology, Frontiers in Pharmacology frontiersin.org
Hu, Guan, Bi, Zhang, Li et al., Efficacy and safety of lianhuaqingwen capsules, a repurposed Chinese herb, in patients with coronavirus disease 2019: A multicenter, prospective, randomized controlled trial, Phytomedicine, doi:10.1016/j.phymed.2020.153242
Hu, Gui, Zhou, Xia, Lin et al., Quercetin alleviates rat osteoarthritis by inhibiting inflammation and apoptosis of chondrocytes, modulating synovial macrophages polarization to M2 macrophages. Free Radic, Biol. Med, doi:10.1016/j.freeradbiomed.2019.09.024
Hu, Guo, Zhou, Shi, Characteristics of SARS-CoV-2 and COVID-19, Nat. Rev. Microbiol, doi:10.1038/s41579-020-00459-7
Huang, Bai, He, Xie, Zhou, Review on the potential action mechanisms of Chinese medicines in treating Coronavirus Disease 2019 (COVID-19), Pharmacol. Res, doi:10.1016/j.phrs.2020.104939
Huang, Wang, Li, Ren, Zhao et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, doi:10.1016/s0140-6736(20)30183-5
Jia, Nallasamy, Liu, Shah, Li et al., Luteolin protects against vascular inflammation in mice and TNF-alpha-induced monocyte adhesion to endothelial cells via suppressing IΚBα/NF-κB signaling pathway, J. Nutr. Biochem, doi:10.1016/j.jnutbio.2014.11.008
Kang, Park, Kim, Sung, Jung et al., Luteolin ameliorates cisplatin-induced acute kidney injury in mice by regulation of p53-dependent renal tubular apoptosis, Nephrol. Dial. Transpl, doi:10.1093/ndt/gfq528
Kudose, Batal, Santoriello, Xu, Barasch et al., Kidney biopsy findings in patients with COVID-19, J. Am. Soc. Nephrol, doi:10.1681/asn.2020060802
Li, Li, Liang, Yang, Su et al., Network Pharmacology and bioinformatics analyses identify intersection genes of niacin and COVID-19 as potential therapeutic targets, Brief. Bioinform, doi:10.1093/bib/bbaa300
Li, Meng, Huang, Zhang, Lv et al., Application of herbal traditional Chinese medicine in the treatment of acute kidney injury, Front. Pharmacol, doi:10.3389/fphar.2019.00376
Li, Yao, Han, Yang, Chaudhry et al., Quercetin, inflammation and immunity, Nutrients, doi:10.3390/nu8030167
Lin, Deng, Li, Zheng, Wu et al., Pathogenesis and histological changes of nephropathy associated with COVID-19, J. Med. Virol, doi:10.1002/jmv.28311
Lin, Wang, Ren, Sun, Yu et al., Risk factors and prognosis for COVID-19-induced acute kidney injury: A meta-analysis, BMJ Open, doi:10.1136/bmjopen-2020-042573
Liu, Li, Zhou, Guan, Xiang, Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)?, J. Autoimmun, doi:10.1016/j.jaut.2020.102452
Liu, Sun, Liu, Liu, Fang et al., Dissecting the molecular mechanism of cepharanthine against COVID-19, based on a network pharmacology strategy combined with RNA-sequencing analysis, molecular docking, and molecular dynamics simulation, Comput. Biol. Med, doi:10.1016/j.compbiomed.2022.106298
Luo, Jiang, Wang, Fitzgerald, Hu et al., Analysis on herbal medicines utilized for treatment of COVID-19, Acta Pharm. Sin. B, doi:10.1016/j.apsb.2020.05.007
Martonik, Parfieniuk-Kowerda, Rogalska, Flisiak, The role of Th17 response in COVID-19, Cells, doi:10.3390/cells10061550
Matsumoto, Prowle, COVID-19-associated AKI, Curr. Opin. Crit. Care, doi:10.1097/mcc.0000000000000988
Morris, Huey, Lindstrom, Sanner, Belew et al., None
Nadim, Forni, Mehta, Connor, Jr et al., COVID-19-associated acute kidney injury: Consensus report of the 25th acute disease quality initiative (ADQI) workgroup, Nat. Rev. Nephrol, doi:10.1038/s41581-020-00356-5
Namgung, Yoon, Yoon, Han, Choi et al., Prunella vulgaris attenuates diabetic renal injury by suppressing glomerular fibrosis and inflammation, Am. J. Chin. Med, doi:10.1142/s0192415x1750029x
Nechemia-Arbely, Barkan, Pizov, Shriki, Rose-John et al., IL-6/IL-6R axis plays a critical role in acute kidney injury, J. Am. Soc. Nephrol, doi:10.1681/asn.2007070744
Nogales, Mamdouh, List, Kiel, Casas et al., Network pharmacology: Curing causal mechanisms instead of treating symptoms, Trends Pharmacol. Sci, doi:10.1016/j.tips.2021.11.004
Omim, Org, Online Mendelian Inheritance in Man (OMIM ® ), an online catalog of human genes and genetic disorders, Nucleic Acids Res, doi:10.1093/nar/gku1205
Ozyel, Le Gall, Needs, Kroon, Anti-inflammatory effects of quercetin on high-glucose and pro-inflammatory cytokine challenged vascular endothelial cell metabolism, Mol. Nutr. Food Res, doi:10.1002/mnfr.202000777
Peng, Ren, Lan, Chen, Shao et al., Renoprotective effects of ursolic acid on ischemia/reperfusion-induced acute kidney injury through oxidative stress, inflammation and the inhibition of STAT3 and NF-κB activities, Mol. Med. Rep, doi:10.3892/mmr.2016.5654
Piñero, Bravo, Queralt-Rosinach, Gutiérrez-Sacristán, Deu-Pons et al., DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants, Nucleic Acids Res, doi:10.1093/nar/gkw943
Rebhan, Chalifa-Caspi, Prilusky, Lancet, GeneCards: Integrating information about genes, proteins and diseases, Trends Genet, doi:10.1016/s0168-9525(97)01103-7
Rovas, Osiaevi, Buscher, Sackarnd, Tepasse et al., Microvascular dysfunction in COVID-19: The MYSTIC study, Angiogenesis, doi:10.1007/s10456-020-09753-7
Ru, Li, Wang, Zhou, Li et al., Tcmsp: A database of systems pharmacology for drug discovery from herbal medicines, J. Cheminform, doi:10.1186/1758-2946-6-13
Runfeng, Yunlong, Jicheng, Weiqi, Qinhai et al., Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2), Pharmacol. Res, doi:10.1016/j.phrs.2020.104761
Shannon, Markiel, Ozier, Baliga, Wang et al., Cytoscape: A software environment for integrated models of biomolecular interaction networks, Genome Res, doi:10.1101/gr.1239303
Shohan, Nashibi, Mahmoudian-Sani, Abolnezhadian, Ghafourian et al., The therapeutic efficacy of quercetin in combination with antiviral drugs in hospitalized COVID-19 patients: A randomized controlled trial, Eur. J. Pharmacol, doi:10.1016/j.ejphar.2021.174615
Szklarczyk, Gable, Lyon, Junge, Wyder et al., STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets, Nucleic Acids Res, doi:10.1093/nar/gky1131
Tabba, Chang, Smith, Isolation, purification, and partial characterization of prunellin, an anti-HIV component from aqueous extracts of Prunella vulgaris, Antivir. Res, doi:10.1016/0166-3542(89)90036-3
Tan, Wang, Deng, Zhong, Yan et al., Quercetin protects against cisplatin-induced acute kidney injury by inhibiting Mincle/Syk/NF-κB signaling maintained macrophage inflammation, Phytother. Res, doi:10.1002/ptr.6507
Tian, Kasavajhala, Belfon, Raguette, Huang et al., ff19SB: Amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution, J. Chem. theory Comput, doi:10.1021/acs.jctc.9b00591
Wang, Bryant, Cheng, Wang, Gindulyte et al., PubChem BioAssay: 2017 update, Nucleic Acids Res, doi:10.1093/nar/gkw1118
Wang, Chen, Hu, Pan, Liang et al., SARS-CoV-2 N protein induces acute kidney injury via smad3-dependent G1 cell cycle arrest mechanism, Adv. Sci. (Weinh), doi:10.1002/advs.202103248
Wang, Quan, Cao, Lin, Yue et al., Quercetin alleviates acute kidney injury by inhibiting ferroptosis, J. Adv. Res, doi:10.1016/j.jare.2020.07.007
Weiser, Shenkin, Still, Wu, Wang et al., 7-Hydroxycoumarin protects against cisplatin-induced acute kidney injury by inhibiting necroptosis and promoting Sox9-mediated tubular epithelial cell proliferation, J. Comput. Chem, doi:10.1016/j.phymed.2020.153202
Xia, Xun, Lu, Lu, Yang et al., Network pharmacology and molecular docking analyses on Lianhua Qingwen capsule indicate Akt1 is a potential target to treat and prevent COVID-19, Frontiers in Pharmacology frontiersin
Xu, Lee, Lee, White, Blay, Isolation and characterization of an anti-HSV polysaccharide from Prunella vulgaris, Antivir. Res, doi:10.1016/s0166-3542(99)00053-4
Yang, Yu, Xu, Shu, Xia et al., Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in wuhan, China: A single-centered, retrospective, observational study, Lancet Respir. Med, doi:10.1016/s2213-2600(20)30079-5
Yao, Sun, Wei, Zhang, Chen et al., Kaempferol protects blood vessels from damage induced by oxidative stress and inflammation in association with the Nrf2/HO-1 signaling pathway, Front. Pharmacol, doi:10.3389/fphar.2020.01118
Yao, Wainberg, Parniak, Yu, Chen et al., Computational screening of antagonists against the SARS-CoV-2 (COVID-19) coronavirus by molecular docking, Int. J. Antimicrob. Agents, doi:10.1016/j.ijantimicag.2020.106012
Yuan, Sun, Liu, Hutterer, Pummer et al., Kaempferol alleviates calcium oxalate crystal-induced renal injury and crystal deposition via regulation of the AR/NOX2 signaling pathway, Phytomedicine, doi:10.1016/j.phymed.2021.153555
Zhang, Ao, Bello, Ran, Liu et al., Characterization of the inhibitory effect of an extract of Prunella vulgaris on Ebola virus glycoprotein (GP)-mediated virus entry and infection, Res, doi:10.1016/j.antiviral.2016.01.001
Zheng, Wang, Prediction of oral bioavailability: Challenges and strategies, J. Bioequivalence Bioavailab, doi:10.4172/jbb.10000e47
{ 'indexed': {'date-parts': [[2023, 5, 19]], 'date-time': '2023-05-19T05:10:32Z', 'timestamp': 1684473032677}, 'reference-count': 71, 'publisher': 'Frontiers Media SA', 'license': [ { 'start': { 'date-parts': [[2023, 5, 18]], 'date-time': '2023-05-18T00:00:00Z', 'timestamp': 1684368000000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by/4.0/'}], 'funder': [ { 'DOI': '10.13039/501100001809', 'name': 'National Natural Science Foundation of China', 'doi-asserted-by': 'publisher', 'award': ['82270723, 81770682']}, { 'DOI': '10.13039/100012546', 'name': 'Chongqing Postdoctoral Science Foundation', 'doi-asserted-by': 'publisher', 'award': ['cstc2021ycjh-bgzxm0090']}], 'content-domain': {'domain': ['frontiersin.org'], 'crossmark-restriction': True}, 'abstract': '<jats:p>COVID-19-associated acute kidney injury (COVID-19 AKI) is an independent risk factor ' 'for in-hospital mortality and has the potential to progress to chronic kidney disease. ' '<jats:italic>Prunella vulgaris</jats:italic> L<jats:italic>.,</jats:italic> a traditional ' 'Chinese herb that has been used for the treatment of a variety of kidney diseases for ' 'centuries, could have the potential to treat this complication. In this study, we studied the ' 'potential protective role of <jats:italic>Prunella vulgaris</jats:italic> in COVID-19 AKI and ' 'explored its specific mechanisms applied by network pharmacology and bioinformatics methods. ' 'The combination of the protein-protein interaction network and Gene Ontology and Kyoto ' 'Encyclopedia of Genes and Genomes enrichment -target gene network revealed eight key target ' 'genes (VEGFA, ICAM1, IL6, CXCL8, IL1B, CCL2, IL10 and RELA). Molecular docking showed that ' 'all these eight gene-encoded proteins could be effectively bound to three major active ' 'compounds (quercetin, luteolin and kaempferol), thus becoming potential therapeutic targets. ' 'Molecular dynamics simulation also supports the binding stability of RELA-encoded protein ' 'with quercetin and luteolin. Together, our data suggest that IL6, VEGFA, and RELA could be ' 'the potential drug targets by inhibiting the NF-κB signaling pathway. Our <jats:italic>in ' 'silico</jats:italic> studies shed new insights into <jats:italic>P. vulgaris</jats:italic> ' 'and its ingredients, e.g., quercetin, as potential botanical drugs against COVID-19 AKI, and ' 'warrant further studies on efficacy and mechanisms.</jats:p>', 'DOI': '10.3389/fphar.2023.1188086', 'type': 'journal-article', 'created': {'date-parts': [[2023, 5, 18]], 'date-time': '2023-05-18T04:57:41Z', 'timestamp': 1684385861000}, 'update-policy': 'http://dx.doi.org/10.3389/crossmark-policy', 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': 'In silico evidence implicating novel mechanisms of Prunella vulgaris L. as a potential botanical ' 'drug against COVID-19-associated acute kidney injury', 'prefix': '10.3389', 'volume': '14', 'author': [ {'given': 'Xue-Ling', 'family': 'Yang', 'sequence': 'first', 'affiliation': []}, {'given': 'Chun-Xuan', 'family': 'Wang', 'sequence': 'additional', 'affiliation': []}, {'given': 'Jia-Xing', 'family': 'Wang', 'sequence': 'additional', 'affiliation': []}, {'given': 'Shi-Min', 'family': 'Wu', 'sequence': 'additional', 'affiliation': []}, {'given': 'Qing', 'family': 'Yong', 'sequence': 'additional', 'affiliation': []}, {'given': 'Ke', 'family': 'Li', 'sequence': 'additional', 'affiliation': []}, {'given': 'Ju-Rong', 'family': 'Yang', 'sequence': 'additional', 'affiliation': []}], 'member': '1965', 'published-online': {'date-parts': [[2023, 5, 18]]}, 'reference': [ { 'key': 'B1', 'doi-asserted-by': 'publisher', 'first-page': 'e2176', 'DOI': '10.1002/rmv.2176', 'article-title': 'Covid-19 and kidney injury: Pathophysiology and molecular mechanisms', 'volume': '31', 'author': 'Ahmadian', 'year': '2021', 'journal-title': 'Rev. Med. Virol.'}, { 'key': 'B2', 'doi-asserted-by': 'publisher', 'first-page': 'D789', 'DOI': '10.1093/nar/gku1205', 'article-title': 'OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online ' 'catalog of human genes and genetic disorders', 'volume': '43', 'author': 'Amberger', 'year': '2015', 'journal-title': 'Nucleic Acids Res.'}, { 'key': 'B3', 'doi-asserted-by': 'publisher', 'first-page': 'e0251649', 'DOI': '10.1371/journal.pone.0251649', 'article-title': 'Identification and evaluation of the inhibitory effect of Prunella ' 'vulgaris extract on SARS-coronavirus 2 virus entry', 'volume': '16', 'author': 'Ao', 'year': '2021', 'journal-title': 'PLoS One'}, { 'key': 'B4', 'doi-asserted-by': 'publisher', 'first-page': '483', 'DOI': '10.1016/j.foodchem.2016.02.047', 'article-title': 'Phytochemistry and pharmacological activities of the genus Prunella', 'volume': '204', 'author': 'Bai', 'year': '2016', 'journal-title': 'Food Chem.'}, { 'key': 'B5', 'doi-asserted-by': 'publisher', 'first-page': '235', 'DOI': '10.1093/nar/28.1.235', 'article-title': 'The protein data bank', 'volume': '28', 'author': 'Berman', 'year': '2000', 'journal-title': 'Nucleic Acids Res.'}, { 'key': 'B6', 'doi-asserted-by': 'publisher', 'first-page': '2393', 'DOI': '10.1111/bph.14987', 'article-title': 'Luteolin prevents irinotecan-induced intestinal mucositis in mice ' 'through antioxidant and anti-inflammatory properties', 'volume': '177', 'author': 'Boeing', 'year': '2020', 'journal-title': 'Br. J. Pharmacol.'}, {'key': 'B7', 'volume-title': 'AMBER 22 reference manual', 'author': 'Case', 'year': '2022'}, { 'key': 'B8', 'doi-asserted-by': 'publisher', 'first-page': '507', 'DOI': '10.1016/s0140-6736(20)30211-7', 'article-title': 'Epidemiological and clinical characteristics of 99 cases of 2019 novel ' 'coronavirus pneumonia in wuhan, China: A descriptive study', 'volume': '395', 'author': 'Chen', 'year': '2020', 'journal-title': 'Lancet'}, { 'key': 'B9', 'doi-asserted-by': 'publisher', 'first-page': '412', 'DOI': '10.1093/nar/30.1.412', 'article-title': 'Ttd: Therapeutic target database', 'volume': '30', 'author': 'Chen', 'year': '2002', 'journal-title': 'Nucleic Acids Res.'}, { 'key': 'B10', 'doi-asserted-by': 'publisher', 'first-page': '829', 'DOI': '10.1016/j.kint.2020.03.005', 'article-title': 'Kidney disease is associated with in-hospital death of patients with ' 'COVID-19', 'volume': '97', 'author': 'Cheng', 'year': '2020', 'journal-title': 'Kidney Int.'}, { 'key': 'B11', 'doi-asserted-by': 'publisher', 'first-page': 'D204', 'DOI': '10.1093/nar/gku989', 'article-title': 'UniProt: A hub for protein information', 'volume': '43', 'author': 'Consortium', 'year': '2015', 'journal-title': 'Nucleic Acids Res.'}, { 'key': 'B12', 'doi-asserted-by': 'publisher', 'first-page': '1', 'DOI': '10.1002/rmv.2141', 'article-title': 'Interleukin-6 in covid-19: A systematic review and meta-analysis', 'volume': '30', 'author': 'Coomes', 'year': '2020', 'journal-title': 'Rev. Med. Virol.'}, { 'key': 'B13', 'doi-asserted-by': 'publisher', 'first-page': '25', 'DOI': '10.1016/j.cytogfr.2020.05.003', 'article-title': 'The cytokine storm in COVID-19: An overview of the involvement of the ' 'chemokine/chemokine-receptor system', 'volume': '53', 'author': 'Coperchini', 'year': '2020', 'journal-title': 'Cytokine Growth Factor Rev.'}, { 'key': 'B14', 'doi-asserted-by': 'publisher', 'first-page': '237', 'DOI': '10.1016/j.jadohealth.2022.09.008', 'article-title': 'COVID-19 recession: Young adult food insecurity, racial disparities, ' 'and correlates', 'volume': '72', 'author': 'Daniels', 'year': '2023', 'journal-title': 'J. Adolesc. Health'}, { 'key': 'B15', 'doi-asserted-by': 'publisher', 'first-page': '1230', 'DOI': '10.1002/ptr.6887', 'article-title': 'A role for quercetin in coronavirus disease 2019 (COVID-19)', 'volume': '35', 'author': 'Derosa', 'year': '2021', 'journal-title': 'Phytother. Res.'}, { 'key': 'B16', 'doi-asserted-by': 'publisher', 'first-page': '533', 'DOI': '10.1016/s1473-3099(20)30120-1', 'article-title': 'An interactive web-based dashboard to track COVID-19 in real time', 'volume': '20', 'author': 'Dong', 'year': '2020', 'journal-title': 'Lancet Infect. Dis.'}, { 'key': 'B17', 'doi-asserted-by': 'publisher', 'first-page': '112150', 'DOI': '10.1016/j.biopha.2021.112150', 'article-title': 'Potential of herbal products in prevention and treatment of COVID-19. ' 'Literature review', 'volume': '143', 'author': 'Gajewski', 'year': '2021', 'journal-title': 'Biomed. Pharmacother.'}, { 'key': 'B18', 'doi-asserted-by': 'publisher', 'first-page': '1708', 'DOI': '10.1056/NEJMoa2002032', 'article-title': 'Clinical characteristics of coronavirus disease 2019 in China', 'volume': '382', 'author': 'Guan', 'year': '2020', 'journal-title': 'N. Engl. J. Med.'}, { 'key': 'B19', 'doi-asserted-by': 'publisher', 'first-page': '1387', 'DOI': '10.1002/jmv.26653', 'article-title': 'Kidney involvement in COVID-19 and its treatments', 'volume': '93', 'author': 'Han', 'year': '2021', 'journal-title': 'J. Med. Virol.'}, { 'key': 'B20', 'doi-asserted-by': 'publisher', 'first-page': '91', 'DOI': '10.1007/s10787-020-00773-9', 'article-title': 'The role and therapeutic potential of NF-kappa-B pathway in severe ' 'COVID-19 patients', 'volume': '29', 'author': 'Hariharan', 'year': '2021', 'journal-title': 'Inflammopharmacology'}, { 'key': 'B21', 'doi-asserted-by': 'publisher', 'first-page': '223', 'DOI': '10.1038/cr.2011.13', 'article-title': 'NF-κB in immunobiology', 'volume': '21', 'author': 'Hayden', 'year': '2011', 'journal-title': 'Cell Res.'}, { 'key': 'B22', 'doi-asserted-by': 'publisher', 'first-page': '141', 'DOI': '10.1038/s41579-020-00459-7', 'article-title': 'Characteristics of SARS-CoV-2 and COVID-19', 'volume': '19', 'author': 'Hu', 'year': '', 'journal-title': 'Nat. Rev. Microbiol.'}, { 'key': 'B23', 'doi-asserted-by': 'publisher', 'first-page': '153242', 'DOI': '10.1016/j.phymed.2020.153242', 'article-title': 'Efficacy and safety of lianhuaqingwen capsules, a repurposed Chinese ' 'herb, in patients with coronavirus disease 2019: A multicenter, ' 'prospective, randomized controlled trial', 'volume': '85', 'author': 'Hu', 'year': '', 'journal-title': 'Phytomedicine'}, { 'key': 'B24', 'doi-asserted-by': 'publisher', 'first-page': '146', 'DOI': '10.1016/j.freeradbiomed.2019.09.024', 'article-title': 'Quercetin alleviates rat osteoarthritis by inhibiting inflammation and ' 'apoptosis of chondrocytes, modulating synovial macrophages polarization ' 'to M2 macrophages', 'volume': '145', 'author': 'Hu', 'year': '2019', 'journal-title': 'Free Radic. Biol. Med.'}, { 'key': 'B25', 'doi-asserted-by': 'publisher', 'first-page': '497', 'DOI': '10.1016/s0140-6736(20)30183-5', 'article-title': 'Clinical features of patients infected with 2019 novel coronavirus in ' 'Wuhan, China', 'volume': '395', 'author': 'Huang', 'year': '', 'journal-title': 'Lancet'}, { 'key': 'B26', 'doi-asserted-by': 'publisher', 'first-page': '104939', 'DOI': '10.1016/j.phrs.2020.104939', 'article-title': 'Review on the potential action mechanisms of Chinese medicines in ' 'treating Coronavirus Disease 2019 (COVID-19)', 'volume': '158', 'author': 'Huang', 'year': '', 'journal-title': 'Pharmacol. Res.'}, { 'key': 'B27', 'doi-asserted-by': 'publisher', 'first-page': '293', 'DOI': '10.1016/j.jnutbio.2014.11.008', 'article-title': 'Luteolin protects against vascular inflammation in mice and ' 'TNF-alpha-induced monocyte adhesion to endothelial cells via ' 'suppressing IΚBα/NF-κB signaling pathway', 'volume': '26', 'author': 'Jia', 'year': '2015', 'journal-title': 'J. Nutr. Biochem.'}, { 'key': 'B28', 'doi-asserted-by': 'publisher', 'first-page': '814', 'DOI': '10.1093/ndt/gfq528', 'article-title': 'Luteolin ameliorates cisplatin-induced acute kidney injury in mice by ' 'regulation of p53-dependent renal tubular apoptosis', 'volume': '26', 'author': 'Kang', 'year': '2011', 'journal-title': 'Nephrol. Dial. Transpl.'}, { 'key': 'B29', 'doi-asserted-by': 'publisher', 'first-page': '1959', 'DOI': '10.1681/asn.2020060802', 'article-title': 'Kidney biopsy findings in patients with COVID-19', 'volume': '31', 'author': 'Kudose', 'year': '2020', 'journal-title': 'J. Am. Soc. Nephrol.'}, { 'key': 'B30', 'doi-asserted-by': 'publisher', 'first-page': '376', 'DOI': '10.3389/fphar.2019.00376', 'article-title': 'Application of herbal traditional Chinese medicine in the treatment of ' 'acute kidney injury', 'volume': '10', 'author': 'Li', 'year': '2019', 'journal-title': 'Front. Pharmacol.'}, { 'key': 'B31', 'doi-asserted-by': 'publisher', 'first-page': '1279', 'DOI': '10.1093/bib/bbaa300', 'article-title': 'Network Pharmacology and bioinformatics analyses identify intersection ' 'genes of niacin and COVID-19 as potential therapeutic targets', 'volume': '22', 'author': 'Li', 'year': '2021', 'journal-title': 'Brief. Bioinform'}, { 'key': 'B32', 'doi-asserted-by': 'publisher', 'first-page': '167', 'DOI': '10.3390/nu8030167', 'article-title': 'Quercetin, inflammation and immunity', 'volume': '8', 'author': 'Li', 'year': '2016', 'journal-title': 'Nutrients'}, { 'key': 'B33', 'doi-asserted-by': 'publisher', 'first-page': 'e28311', 'DOI': '10.1002/jmv.28311', 'article-title': 'Pathogenesis and histological changes of nephropathy associated with ' 'COVID-19', 'volume': '95', 'author': 'Lin', 'year': '2022', 'journal-title': 'J. Med. Virol.'}, { 'key': 'B34', 'doi-asserted-by': 'publisher', 'first-page': 'e042573', 'DOI': '10.1136/bmjopen-2020-042573', 'article-title': 'Risk factors and prognosis for COVID-19-induced acute kidney injury: A ' 'meta-analysis', 'volume': '10', 'author': 'Lin', 'year': '2020', 'journal-title': 'BMJ Open'}, { 'key': 'B35', 'doi-asserted-by': 'publisher', 'first-page': '102452', 'DOI': '10.1016/j.jaut.2020.102452', 'article-title': 'Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 ' '(COVID-19)-induced cytokine release syndrome (CRS)?', 'volume': '111', 'author': 'Liu', 'year': '2020', 'journal-title': 'J. Autoimmun.'}, { 'key': 'B36', 'doi-asserted-by': 'publisher', 'first-page': '106298', 'DOI': '10.1016/j.compbiomed.2022.106298', 'article-title': 'Dissecting the molecular mechanism of cepharanthine against COVID-19, ' 'based on a network pharmacology strategy combined with RNA-sequencing ' 'analysis, molecular docking, and molecular dynamics simulation', 'volume': '151', 'author': 'Liu', 'year': '2022', 'journal-title': 'Comput. Biol. Med.'}, { 'key': 'B37', 'doi-asserted-by': 'publisher', 'first-page': '1192', 'DOI': '10.1016/j.apsb.2020.05.007', 'article-title': 'Analysis on herbal medicines utilized for treatment of COVID-19', 'volume': '10', 'author': 'Luo', 'year': '2020', 'journal-title': 'Acta Pharm. Sin. B'}, { 'key': 'B38', 'doi-asserted-by': 'publisher', 'first-page': '1550', 'DOI': '10.3390/cells10061550', 'article-title': 'The role of Th17 response in COVID-19', 'volume': '10', 'author': 'Martonik', 'year': '2021', 'journal-title': 'Cells'}, { 'key': 'B39', 'doi-asserted-by': 'publisher', 'first-page': '630', 'DOI': '10.1097/mcc.0000000000000988', 'article-title': 'COVID-19-associated AKI', 'volume': '28', 'author': 'Matsumoto', 'year': '2022', 'journal-title': 'Curr. Opin. Crit. Care'}, { 'key': 'B40', 'doi-asserted-by': 'publisher', 'first-page': '2785', 'DOI': '10.1002/jcc.21256', 'article-title': 'AutoDock4 and AutoDockTools4: Automated docking with selective receptor ' 'flexibility', 'volume': '30', 'author': 'Morris', 'year': '2009', 'journal-title': 'J. Comput. Chem.'}, { 'key': 'B41', 'doi-asserted-by': 'publisher', 'first-page': '747', 'DOI': '10.1038/s41581-020-00356-5', 'article-title': 'COVID-19-associated acute kidney injury: Consensus report of the 25th ' 'acute disease quality initiative (ADQI) workgroup', 'volume': '16', 'author': 'Nadim', 'year': '2020', 'journal-title': 'Nat. Rev. Nephrol.'}, { 'key': 'B42', 'doi-asserted-by': 'publisher', 'first-page': '475', 'DOI': '10.1142/s0192415x1750029x', 'article-title': 'Prunella vulgaris attenuates diabetic renal injury by suppressing ' 'glomerular fibrosis and inflammation', 'volume': '45', 'author': 'Namgung', 'year': '2017', 'journal-title': 'Am. J. Chin. Med.'}, { 'key': 'B43', 'doi-asserted-by': 'publisher', 'first-page': '1106', 'DOI': '10.1681/asn.2007070744', 'article-title': 'IL-6/IL-6R axis plays a critical role in acute kidney injury', 'volume': '19', 'author': 'Nechemia-Arbely', 'year': '2008', 'journal-title': 'J. Am. Soc. Nephrol.'}, { 'key': 'B44', 'doi-asserted-by': 'publisher', 'first-page': '136', 'DOI': '10.1016/j.tips.2021.11.004', 'article-title': 'Network pharmacology: Curing causal mechanisms instead of treating ' 'symptoms', 'volume': '43', 'author': 'Nogales', 'year': '2022', 'journal-title': 'Trends Pharmacol. Sci.'}, { 'key': 'B45', 'doi-asserted-by': 'publisher', 'first-page': 'e2000777', 'DOI': '10.1002/mnfr.202000777', 'article-title': 'Anti-inflammatory effects of quercetin on high-glucose and ' 'pro-inflammatory cytokine challenged vascular endothelial cell ' 'metabolism', 'volume': '65', 'author': 'Ozyel', 'year': '2021', 'journal-title': 'Mol. Nutr. Food Res.'}, { 'key': 'B46', 'doi-asserted-by': 'publisher', 'first-page': '3397', 'DOI': '10.3892/mmr.2016.5654', 'article-title': 'Renoprotective effects of ursolic acid on ischemia/reperfusion-induced ' 'acute kidney injury through oxidative stress, inflammation and the ' 'inhibition of STAT3 and NF-κB activities', 'volume': '14', 'author': 'Peng', 'year': '2016', 'journal-title': 'Mol. Med. Rep.'}, { 'key': 'B47', 'doi-asserted-by': 'publisher', 'first-page': 'D833', 'DOI': '10.1093/nar/gkw943', 'article-title': 'DisGeNET: A comprehensive platform integrating information on human ' 'disease-associated genes and variants', 'volume': '45', 'author': 'Piñero', 'year': '2017', 'journal-title': 'Nucleic Acids Res.'}, { 'key': 'B48', 'doi-asserted-by': 'publisher', 'first-page': '163', 'DOI': '10.1016/s0168-9525(97)01103-7', 'article-title': 'GeneCards: Integrating information about genes, proteins and diseases', 'volume': '13', 'author': 'Rebhan', 'year': '1997', 'journal-title': 'Trends Genet.'}, { 'key': 'B49', 'doi-asserted-by': 'publisher', 'first-page': '145', 'DOI': '10.1007/s10456-020-09753-7', 'article-title': 'Microvascular dysfunction in COVID-19: The MYSTIC study', 'volume': '24', 'author': 'Rovas', 'year': '2021', 'journal-title': 'Angiogenesis'}, { 'key': 'B50', 'doi-asserted-by': 'publisher', 'first-page': '13', 'DOI': '10.1186/1758-2946-6-13', 'article-title': 'Tcmsp: A database of systems pharmacology for drug discovery from ' 'herbal medicines', 'volume': '6', 'author': 'Ru', 'year': '2014', 'journal-title': 'J. Cheminform'}, { 'key': 'B51', 'doi-asserted-by': 'publisher', 'first-page': '104761', 'DOI': '10.1016/j.phrs.2020.104761', 'article-title': 'Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against ' 'novel coronavirus (SARS-CoV-2)', 'volume': '156', 'author': 'Runfeng', 'year': '2020', 'journal-title': 'Pharmacol. Res.'}, { 'key': 'B52', 'doi-asserted-by': 'publisher', 'first-page': '2498', 'DOI': '10.1101/gr.1239303', 'article-title': 'Cytoscape: A software environment for integrated models of biomolecular ' 'interaction networks', 'volume': '13', 'author': 'Shannon', 'year': '2003', 'journal-title': 'Genome Res.'}, { 'key': 'B53', 'doi-asserted-by': 'publisher', 'first-page': '174615', 'DOI': '10.1016/j.ejphar.2021.174615', 'article-title': 'The therapeutic efficacy of quercetin in combination with antiviral ' 'drugs in hospitalized COVID-19 patients: A randomized controlled trial', 'volume': '914', 'author': 'Shohan', 'year': '2022', 'journal-title': 'Eur. J. Pharmacol.'}, { 'key': 'B54', 'doi-asserted-by': 'publisher', 'first-page': 'D607', 'DOI': '10.1093/nar/gky1131', 'article-title': 'STRING v11: Protein-protein association networks with increased ' 'coverage, supporting functional discovery in genome-wide experimental ' 'datasets', 'volume': '47', 'author': 'Szklarczyk', 'year': '2019', 'journal-title': 'Nucleic Acids Res.'}, { 'key': 'B55', 'doi-asserted-by': 'publisher', 'first-page': '263', 'DOI': '10.1016/0166-3542(89)90036-3', 'article-title': 'Isolation, purification, and partial characterization of prunellin, an ' 'anti-HIV component from aqueous extracts of Prunella vulgaris', 'volume': '11', 'author': 'Tabba', 'year': '1989', 'journal-title': 'Antivir. Res.'}, { 'key': 'B56', 'doi-asserted-by': 'publisher', 'first-page': '139', 'DOI': '10.1002/ptr.6507', 'article-title': 'Quercetin protects against cisplatin-induced acute kidney injury by ' 'inhibiting Mincle/Syk/NF-κB signaling maintained macrophage ' 'inflammation', 'volume': '34', 'author': 'Tan', 'year': '2020', 'journal-title': 'Phytother. Res.'}, { 'key': 'B57', 'doi-asserted-by': 'publisher', 'first-page': '528', 'DOI': '10.1021/acs.jctc.9b00591', 'article-title': 'ff19SB: Amino-acid-specific protein backbone parameters trained against ' 'quantum mechanics energy surfaces in solution', 'volume': '16', 'author': 'Tian', 'year': '2019', 'journal-title': 'J. Chem. theory Comput.'}, { 'key': 'B58', 'doi-asserted-by': 'publisher', 'first-page': 'e2103248', 'DOI': '10.1002/advs.202103248', 'article-title': 'SARS-CoV-2 N protein induces acute kidney injury via smad3-dependent G1 ' 'cell cycle arrest mechanism', 'volume': '9', 'author': 'Wang', 'year': '2022', 'journal-title': 'Adv. Sci. (Weinh)'}, { 'key': 'B59', 'doi-asserted-by': 'publisher', 'first-page': 'D955', 'DOI': '10.1093/nar/gkw1118', 'article-title': 'PubChem BioAssay: 2017 update', 'volume': '45', 'author': 'Wang', 'year': '2017', 'journal-title': 'Nucleic Acids Res.'}, { 'key': 'B60', 'doi-asserted-by': 'publisher', 'first-page': '231', 'DOI': '10.1016/j.jare.2020.07.007', 'article-title': 'Quercetin alleviates acute kidney injury by inhibiting ferroptosis', 'volume': '28', 'author': 'Wang', 'year': '2021', 'journal-title': 'J. Adv. Res.'}, { 'key': 'B61', 'doi-asserted-by': 'publisher', 'first-page': '217', 'DOI': '10.1002/(sici)1096-987x(19990130)20:2<217::aid-jcc4>3.0.co;2-a', 'article-title': 'Approximate atomic surfaces from linear combinations of pairwise ' 'overlaps (LCPO)', 'volume': '20', 'author': 'Weiser', 'year': '1999', 'journal-title': 'J. Comput. Chem.'}, { 'key': 'B62', 'doi-asserted-by': 'publisher', 'first-page': '153202', 'DOI': '10.1016/j.phymed.2020.153202', 'article-title': '7-Hydroxycoumarin protects against cisplatin-induced acute kidney ' 'injury by inhibiting necroptosis and promoting Sox9-mediated tubular ' 'epithelial cell proliferation', 'volume': '69', 'author': 'Wu', 'year': '2020', 'journal-title': 'Phytomedicine'}, { 'key': 'B63', 'doi-asserted-by': 'publisher', 'first-page': 'e12949', 'DOI': '10.1111/cpr.12949', 'article-title': 'Network pharmacology and molecular docking analyses on Lianhua Qingwen ' 'capsule indicate Akt1 is a potential target to treat and prevent ' 'COVID-19', 'volume': '53', 'author': 'Xia', 'year': '2020', 'journal-title': 'Cell Prolif.'}, { 'key': 'B64', 'doi-asserted-by': 'publisher', 'first-page': '43', 'DOI': '10.1016/s0166-3542(99)00053-4', 'article-title': 'Isolation and characterization of an anti-HSV polysaccharide from ' 'Prunella vulgaris', 'volume': '44', 'author': 'Xu', 'year': '1999', 'journal-title': 'Antivir. Res.'}, { 'key': 'B65', 'doi-asserted-by': 'publisher', 'first-page': '475', 'DOI': '10.1016/s2213-2600(20)30079-5', 'article-title': 'Clinical course and outcomes of critically ill patients with SARS-CoV-2 ' 'pneumonia in wuhan, China: A single-centered, retrospective, ' 'observational study', 'volume': '8', 'author': 'Yang', 'year': '2020', 'journal-title': 'Lancet Respir. Med.'}, { 'key': 'B66', 'doi-asserted-by': 'publisher', 'first-page': '1118', 'DOI': '10.3389/fphar.2020.01118', 'article-title': 'Kaempferol protects blood vessels from damage induced by oxidative ' 'stress and inflammation in association with the Nrf2/HO-1 signaling ' 'pathway', 'volume': '11', 'author': 'Yao', 'year': '2020', 'journal-title': 'Front. Pharmacol.'}, { 'key': 'B67', 'doi-asserted-by': 'publisher', 'first-page': '56', 'DOI': '10.1016/0042-6822(92)90294-y', 'article-title': 'Mechanism of inhibition of HIV-1 infection in vitro by purified extract ' 'of Prunella vulgaris', 'volume': '187', 'author': 'Yao', 'year': '1992', 'journal-title': 'Virology'}, { 'key': 'B68', 'doi-asserted-by': 'publisher', 'first-page': '106012', 'DOI': '10.1016/j.ijantimicag.2020.106012', 'article-title': 'Computational screening of antagonists against the SARS-CoV-2 ' '(COVID-19) coronavirus by molecular docking', 'volume': '56', 'author': 'Yu', 'year': '2020', 'journal-title': 'Int. J. Antimicrob. Agents'}, { 'key': 'B69', 'doi-asserted-by': 'publisher', 'first-page': '153555', 'DOI': '10.1016/j.phymed.2021.153555', 'article-title': 'Kaempferol alleviates calcium oxalate crystal-induced renal injury and ' 'crystal deposition via regulation of the AR/NOX2 signaling pathway', 'volume': '86', 'author': 'Yuan', 'year': '2021', 'journal-title': 'Phytomedicine'}, { 'key': 'B70', 'doi-asserted-by': 'publisher', 'first-page': '20', 'DOI': '10.1016/j.antiviral.2016.01.001', 'article-title': 'Characterization of the inhibitory effect of an extract of Prunella ' 'vulgaris on Ebola virus glycoprotein (GP)-mediated virus entry and ' 'infection', 'volume': '127', 'author': 'Zhang', 'year': '2016', 'journal-title': 'Antivir. Res.'}, { 'key': 'B71', 'doi-asserted-by': 'publisher', 'first-page': '1', 'DOI': '10.4172/jbb.10000e47', 'article-title': 'Prediction of oral bioavailability: Challenges and strategies', 'volume': '6', 'author': 'Zheng', 'year': '2014', 'journal-title': 'J. Bioequivalence Bioavailab.'}], 'container-title': 'Frontiers in Pharmacology', 'original-title': [], 'link': [ { 'URL': 'https://www.frontiersin.org/articles/10.3389/fphar.2023.1188086/full', 'content-type': 'unspecified', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2023, 5, 18]], 'date-time': '2023-05-18T04:57:49Z', 'timestamp': 1684385869000}, 'score': 1, 'resource': {'primary': {'URL': 'https://www.frontiersin.org/articles/10.3389/fphar.2023.1188086/full'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2023, 5, 18]]}, 'references-count': 71, 'alternative-id': ['10.3389/fphar.2023.1188086'], 'URL': 'http://dx.doi.org/10.3389/fphar.2023.1188086', 'relation': {}, 'ISSN': ['1663-9812'], 'subject': ['Pharmacology (medical)', 'Pharmacology'], 'container-title-short': 'Front. Pharmacol.', 'published': {'date-parts': [[2023, 5, 18]]}}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit