Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchCurcuminCurcumin (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

Bioactive Polyphenolic Compounds Showing Strong Antiviral Activities against Severe Acute Respiratory Syndrome Coronavirus 2

Kandeil et al., Pathogens, doi:10.3390/pathogens10060758
Jun 2021  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Curcumin for COVID-19
15th treatment shown to reduce risk in February 2021, now with p = 0.0000000096 from 27 studies.
No treatment is 100% effective. Protocols combine treatments.
5,100+ studies for 112 treatments. c19early.org
Vero E6 In Vitro study showing curcumin, hesperidin, and quercetin significantly inhibited SARS-CoV-2 replication, and In Silico analysis with promising Mpro and spike docking results.
51 preclinical studies support the efficacy of curcumin for COVID-19:
In Silico studies predict inhibition of SARS-CoV-2 with curcumin or metabolites via binding to the spikeA,2,7,12,14,20,23,44 (and specifically the receptor binding domainB,10,13,16), MproC,2,7,9,11-13,15,16,18,21,23,24,26,40,44, RNA-dependent RNA polymeraseD,2,13,22,44, PLproE,2, ACE2F,14,15,17, nucleocapsidG,8,25, nsp10H,25, and helicaseI,29 proteins. In Vitro studies demonstrate inhibition of the spikeA,34 (and specifically the receptor binding domainB,43), MproC,19,34,40,42, ACE2F,43, and TMPRSS2J,43 proteins, and inhibition of spike-ACE2 interactionK,27. In Vitro studies demonstrate efficacy in Calu-3L,41, A549M,34, 293TN,3, HEK293-hACE2O,19,32, 293T/hACE2/TMPRSS2P,33, Vero E6Q,9,13,23,32,34,36,37,39,41, and SH-SY5YR,31 cells. Curcumin is predicted to inhibit the interaction between the SARS-CoV-2 spike protein receptor binding domain and the human ACE2 receptor for the delta and omicron variants10, decreases pro-inflammatory cytokines induced by SARS-CoV-2 in peripheral blood mononuclear cells39, alleviates SARS-CoV-2 spike protein-induced mitochondrial membrane damage and oxidative stress3, may limit COVID-19 induced cardiac damage by inhibiting the NF-κB signaling pathway which mediates the profibrotic effects of the SARS-CoV-2 spike protein on cardiac fibroblasts45, and inhibits SARS-CoV-2 ORF3a ion channel activity, which contributes to viral pathogenicity and cytotoxicity35.
Study covers curcumin and quercetin.
a. The trimeric spike (S) protein is a glycoprotein that mediates viral entry by binding to the host ACE2 receptor, is critical for SARS-CoV-2's ability to infect host cells, and is a target of neutralizing antibodies. Inhibition of the spike protein prevents viral attachment, halting infection at the earliest stage.
b. The receptor binding domain is a specific region of the spike protein that binds ACE2 and is a major target of neutralizing antibodies. Focusing on the precise binding site allows highly specific disruption of viral attachment with reduced potential for off-target effects.
c. The main protease or Mpro, also known as 3CLpro or nsp5, is a cysteine protease that cleaves viral polyproteins into functional units needed for replication. Inhibiting Mpro disrupts the SARS-CoV-2 lifecycle within the host cell, preventing the creation of new copies.
d. RNA-dependent RNA polymerase (RdRp), also called nsp12, is the core enzyme of the viral replicase-transcriptase complex that copies the positive-sense viral RNA genome into negative-sense templates for progeny RNA synthesis. Inhibiting RdRp blocks viral genome replication and transcription.
e. The papain-like protease (PLpro) has multiple functions including cleaving viral polyproteins and suppressing the host immune response by deubiquitination and deISGylation of host proteins. Inhibiting PLpro may block viral replication and help restore normal immune responses.
f. The angiotensin converting enzyme 2 (ACE2) protein is a host cell transmembrane protein that serves as the cellular receptor for the SARS-CoV-2 spike protein. ACE2 is expressed on many cell types, including epithelial cells in the lungs, and allows the virus to enter and infect host cells. Inhibition may affect ACE2's physiological function in blood pressure control.
g. The nucleocapsid (N) protein binds and encapsulates the viral genome by coating the viral RNA. N enables formation and release of infectious virions and plays additional roles in viral replication and pathogenesis. N is also an immunodominant antigen used in diagnostic assays.
h. Non-structural protein 10 (nsp10) serves as an RNA chaperone and stabilizes conformations of nsp12 and nsp14 in the replicase-transcriptase complex, which synthesizes new viral RNAs. Nsp10 disruption may destabilize replicase-transcriptase complex activity.
i. The helicase, or nsp13, protein unwinds the double-stranded viral RNA, a crucial step in replication and transcription. Inhibition may prevent viral genome replication and the creation of new virus components.
j. Transmembrane protease serine 2 (TMPRSS2) is a host cell protease that primes the spike protein, facilitating cellular entry. TMPRSS2 activity helps enable cleavage of the spike protein required for membrane fusion and virus entry. Inhibition may especially protect respiratory epithelial cells, buy may have physiological effects.
k. The interaction between the SARS-CoV-2 spike protein and the human ACE2 receptor is a primary method of viral entry, inhibiting this interaction can prevent the virus from attaching to and entering host cells, halting infection at an early stage.
l. Calu-3 is a human lung adenocarcinoma cell line with moderate ACE2 and TMPRSS2 expression and SARS-CoV-2 susceptibility. It provides a model of the human respiratory epithelium, but many not be ideal for modeling early stages of infection due to the moderate expression levels of ACE2 and TMPRSS2.
m. A549 is a human lung carcinoma cell line with low ACE2 expression and SARS-CoV-2 susceptibility. Viral entry/replication can be studied but the cells may not replicate all aspects of lung infection.
n. 293T is a human embryonic kidney cell line that can be engineered for high ACE2 expression and SARS-CoV-2 susceptibility. 293T cells are easily transfected and support high protein expression.
o. HEK293-hACE2 is a human embryonic kidney cell line with high ACE2 expression and SARS-CoV-2 susceptibility. Cells have been transfected with a plasmid to express the human ACE2 (hACE2) protein.
p. 293T/hACE2/TMPRSS2 is a human embryonic kidney cell line engineered for high ACE2 and TMPRSS2 expression, which mimics key aspects of human infection. 293T/hACE2/TMPRSS2 cells are very susceptible to SARS-CoV-2 infection.
q. Vero E6 is an African green monkey kidney cell line with low/no ACE2 expression and high SARS-CoV-2 susceptibility. The cell line is easy to maintain and supports robust viral replication, however the monkey origin may not accurately represent human responses.
r. SH-SY5Y is a human neuroblastoma cell line that exhibits neuronal phenotypes. It is commonly used as an in vitro model for studying neurotoxicity, neurodegenerative diseases, and neuronal differentiation.
Kandeil et al., 15 Jun 2021, peer-reviewed, 11 authors.
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
This PaperCurcuminAll
Bioactive Polyphenolic Compounds Showing Strong Antiviral Activities against Severe Acute Respiratory Syndrome Coronavirus 2
Ahmed Kandeil, Ahmed Mostafa, Omnia Kutkat, Yassmin Moatasim, Ahmed A Al-Karmalawy, Adel A Rashad, Ahmed E Kayed, Azza E Kayed, Rabeh El-Shesheny, Ghazi Kayali, Mohamed A Ali
Pathogens, doi:10.3390/pathogens10060758
Until now, there has been no direct evidence of the effectiveness of repurposed FDAapproved drugs against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections. Although curcumin, hesperidin, and quercetin have broad spectra of pharmacological properties, their antiviral activities against SARS-CoV-2 remain unclear. Our study aimed to assess the in vitro antiviral activities of curcumin, hesperidin, and quercetin against SARS-CoV-2 compared to hydroxychloroquine and determine their mode of action. In Vero E6 cells, these compounds significantly inhibited virus replication, mainly as virucidal agents primarily indicating their potential activity at the early stage of viral infection. To investigate the mechanism of action of the tested compounds, molecular docking studies were carried out against both SARS-CoV-2 spike (S) and main protease (Mpro) receptors. Collectively, the obtained in silico and in vitro findings suggest that the compounds could be promising SARS-CoV-2 Mpro inhibitors. We recommend further preclinical and clinical studies on the studied compounds to find a potential therapeutic targeting COVID-19 in the near future.
Data Availability Statement: The data presented in this study are available within the article and Supplementary Materials. Conflicts of Interest: The authors declare no conflict of interest.
References
Abouaitah, Swiderska-Sroda, Kandeil, Salman, Wojnarowicz et al., Virucidal Action Against Avian Influenza H5N1 Virus and Immunomodulatory Effects of Nanoformulations Consisting of Mesoporous Silica Nanoparticles Loaded with Natural Prodrugs, Int. J. Nanomed, doi:10.2147/IJN.S247692
Al-Karmalawy, Dahab, Metwaly, Elhady, Elkaeed et al., Molecular Docking and Dynamics Simulation Revealed the Potential Inhibitory Activity of ACEIs Against SARS-CoV-2 Targeting the hACE2 Receptor, Front. Chem, doi:10.3389/fchem.2021.661230
Al-Karmalawy, Eissa, Molecular docking and dynamics simulations reveal the potential of anti-HCV drugs to inhibit COVID-19 main protease, Pharm. Sci, doi:10.34172/PS.2021.3
Al-Karmalawy, Khattab, Molecular modelling of mebendazole polymorphs as a potential colchicine binding site inhibitor, New J. Chem, doi:10.1039/D0NJ02844D
Alnajjar, Mostafa, Kandeil, Al-Karmalawy, Molecular docking, molecular dynamics, and in vitro studies reveal the potential of angiotensin II receptor blockers to inhibit the COVID-19 main protease, Heliyon, doi:10.1016/j.heliyon.2020.e05641
Annunziata, Zamparelli, Santoro, Ciampaglia, Stornaiuolo et al., May Polyphenols Have a Role Against Coronavirus Infection? An Overview of in vitro Evidence, Front. Med, doi:10.3389/fmed.2020.00240
Brogi, Computational Approaches for Drug Discovery, Molecules, doi:10.3390/molecules24173061
Chen, Chen, Wen, Ou, Chiou et al., Inhibition of Enveloped Viruses Infectivity by Curcumin, PLoS ONE, doi:10.1371/journal.pone.0062482
Choi, Song, Park, Kwon, Inhibitory effects of quercetin 3-rhamnoside on influenza A virus replication, Eur. J. Pharm. Sci, doi:10.1016/j.ejps.2009.03.002
Chu, Pan, Cheng, Hui, Krishnan et al., Molecular Diagnosis of a Novel Coronavirus (2019-nCoV) Causing an Outbreak of Pneumonia, Clin. Chem, doi:10.1093/clinchem/hvaa029
Colpitts, Schang, Rachmawati, Frentzen, Pfaender et al., Turmeric curcumin inhibits entry of all hepatitis C virus genotypes into human liver cells, Gut
Dong, Wei, Zhang, Hao, Huang et al., A dual character of flavonoids in influenza A virus replication and spread through modulating cell-autonomous immunity by MAPK signaling pathways, Sci. Rep, doi:10.1038/srep07237
El Shal, Eid, El-Sayed, El-Sayed, Al-Karmalawy, Concanavalin-A shows synergistic cytotoxicity with tamoxifen via inducing apoptosis in estrogen receptor-positive breast cancer: In vitro and molecular docking studies, Pharm. Sci, doi:10.34172/PS.2021.22
Eliaa, Al-Karmalawy, Saleh, Elshal, Empagliflozin and Doxorubicin Synergistically Inhibit the Survival of Triple-Negative Breast Cancer Cells via Interfering with the mTOR Pathway and Inhibition of Calmodulin: In Vitro and Molecular Docking Studies, ACS Pharmacol. Transl. Sci, doi:10.1021/acsptsci.0c00144
Elmaaty, Alnajjar, Hamed, Khattab, Khalifa et al., Revisiting activity of some glucocorticoids as a potential inhibitor of SARS-CoV-2 main protease: Theoretical study, RSC Adv, doi:10.1039/D0RA10674G
Elmaaty, Darwish, Khattab, Elhady, Salah et al., In a search for potential drug candidates for combating COVID-19: Computational study revealed salvianolic acid B as a potential therapeutic targeting 3CLpro and spike proteins, J. Biomol. Struct. Dyn, doi:10.1080/07391102.2021.1918256
Gao, Wang, Wei, Men, Zheng et al., Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer, Nanoscale, doi:10.1039/c2nr32181e
Ghanem, Emara, Muawia, El Maksoud, Al-Karmalawy et al., Tanshinone IIA synergistically enhances the antitumor activity of doxorubicin by interfering with the PI3K/AKT/mTOR pathway and inhibition of topoisomerase II: In vitro and molecular docking studies, New J. Chem, doi:10.1039/D0NJ04088F
Guedes, De Magalhães, Dardenne, Receptor-ligand molecular docking, Biophys. Rev, doi:10.1007/s12551-013-0130-2
Haggag, El-Ashmawy, Okasha, Is hesperidin essential for prophylaxis and treatment of COVID-19 Infection?, Med. Hypotheses, doi:10.1016/j.mehy.2020.109957
Hajialyani, Farzaei, Echeverría, Nabavi, Uriarte et al., Hesperidin as a Neuroprotective Agent: A Review of Animal and Clinical Evidence, Molecules, doi:10.3390/molecules24030648
Harwood, Danielewska-Nikiel, Borzelleca, Flamm, Williams et al., A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties, Food Chem. Toxicol, doi:10.1016/j.fct.2007.05.015
Jin, Du, Xu, Deng, Liu et al., Structure of M pro from SARS-CoV-2 and discovery of its inhibitors, Nature, doi:10.1038/s41586-020-2223-y
Johari, Kianmehr, Mustafa, Abubakar, Zandi, Antiviral activity of baicalein and quercetin against the Japanese encephalitis virus, Int. J. Mol. Sci, doi:10.3390/ijms131216785
Khattab, Al-Karmalawy, Revisiting Activity of Some Nocodazole Analogues as a Potential Anticancer Drugs Using Molecular Docking and DFT Calculations, Front. Chem, doi:10.3389/fchem.2021.628398
Kim, Kim, Song, Antiviral Activities of Quercetin and Isoquercitrin Against Human Herpesviruses, Molecules, doi:10.3390/molecules25102379
Kobayashi, Tanabe, Sugiyama, Konishi, Transepithelial transport of hesperetin and hesperidin in intestinal Caco-2 cell monolayers, Biochim. Biophys. Acta (BBA) Biomembr, doi:10.1016/j.bbamem.2007.08.020
Kuo, Lin, Tsai, Chou, Kung et al., Samarangenin B from Limonium sinense Suppresses Herpes Simplex Virus Type 1 Replication in Vero Cells by Regulation of Viral Macromolecular Synthesis, Antimicrob. Agents Chemother, doi:10.1128/AAC.46.9.2854-2864.2002
Li, Xu, Quercetin in a lotus leaves extract may be responsible for antibacterial activity, Arch. Pharmacal Res, doi:10.1007/s12272-001-1206-5
Maheshwari, Singh, Gaddipati, Srimal, Multiple biological activities of curcumin: A short review, Life Sci, doi:10.1016/j.lfs.2005.12.007
Mazumder, Raghavan, Weinstein, Kohn, Pommier, Inhibition of human immunodeficiency virus type-1 integrase by curcumin, Biochem. Pharmacol, doi:10.1016/0006-2952(95)98514-A
Moghadamtousi, Kadir, Hassandarvish, Tajik, Abubakar et al., A Review on Antibacterial, Antiviral, and Antifungal Activity of Curcumin, BioMed Res. Int, doi:10.1155/2014/186864
Mosmann, Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays, J. Immunol. Methods, doi:10.1016/0022-1759(83)90303-4
Mostafa, Kandeil, Elshaier, Kutkat, Moatasim et al., FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2, Pharmaceuticals, doi:10.3390/ph13120443
Mounce, Cesaro, Carrau, Vallet, Vignuzzi, Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding, Antivir. Res, doi:10.1016/j.antiviral.2017.03.014
Nabila, Suada, Denis, Yohan, Adi et al., Antiviral Action of Curcumin Encapsulated in Nanoemulsion against Four Serotypes of Dengue Virus, Pharm. Nanotechnol, doi:10.2174/2211738507666191210163408
Orfali, Rateb, Hassan, Alonazi, Gomaa et al., Sinapic Acid Suppresses SARS CoV-2 Replication by Targeting Its Envelope Protein, Antibiotics, doi:10.3390/antibiotics10040420
Parvez, Rehman, Alam, Al-Dosari, Alqasoumi et al., Plant-derived antiviral drugs as novel hepatitis B virus inhibitors: Cell culture and molecular docking study, Saudi Pharm. J, doi:10.1016/j.jsps.2018.12.008
Prasad, Gupta, Tyagi, Aggarwal, Curcumin, a component of golden spice: From bedside to bench and back, Biotechnol. Adv, doi:10.1016/j.biotechadv.2014.04.004
Robaszkiewicz, Balcerczyk, Bartosz, Antioxidative and prooxidative effects of quercetin on A549 cells, Cell Biol. Int, doi:10.1016/j.cellbi.2007.04.009
Rojas, Del Campo, Clement, Lemasson, García-Valdecasas et al., Effect of Quercetin on Hepatitis C Virus Life Cycle: From Viral to Host Targets, Sci. Rep, doi:10.1038/srep31777
Roshdy, Rashed, Kandeil, Mostafa, Moatasim et al., EGYVIR: An immunomodulatory herbal extract with potent antiviral activity against SARS-CoV-2, PLoS ONE, doi:10.1371/journal.pone.0241739
Samra, Soliman, Zaki, Ashour, Al-Karmalawy et al., Bioassay-guided isolation of a new cytotoxic ceramide from Cyperus rotundus L, S. Afr. J. Bot, doi:10.1016/j.sajb.2021.02.007
Sarhan, Ashour, Al-Karmalawy, The journey of antimalarial drugs against SARS-CoV-2: Review article, Inform. Med. Unlocked, doi:10.1016/j.imu.2021.100604
Schuhmacher, Reichling, Schnitzler, Virucidal effect of peppermint oil on the enveloped viruses herpes simplex virus type 1 and type 2 in vitro, Phytomedicine, doi:10.1078/094471103322331467
Shang, Ye, Shi, Wan, Luo et al., Structural basis of receptor recognition by SARS-CoV-2, Nature, doi:10.1038/s41586-020-2179-y
Soltane, Chrouda, Mostafa, Al-Karmalawy, Chouaïb et al., Strong Inhibitory Activity and Action Modes of Synthetic Maslinic Acid Derivative on Highly Pathogenic Coronaviruses: COVID-19 Drug Candidate, Pathogens, doi:10.3390/pathogens10050623
Swatson, Katoh-Kurasawa, Shaulsky, Alexander, Curcumin affects gene expression and reactive oxygen species via a PKA dependent mechanism in Dictyostelium discoideum, PLoS ONE, doi:10.1371/journal.pone.0187562
Vázquez-Calvo, De Oya, Martín-Acebes, Garcia-Moruno, Saiz, Antiviral Properties of the Natural Polyphenols Delphinidin and Epigallocatechin Gallate against the Flaviviruses West Nile Virus, Zika Virus, and Dengue Virus, Front. Microbiol, doi:10.3389/fmicb.2017.01314
Wu, Hou, Cao, Zuo, Xue et al., Virucidal efficacy of treatment with photodynamically activated curcumin on murine norovirus bio-accumulated in oysters, Photodiagn. Photodyn. Ther, doi:10.1016/j.pdpdt.2015.06.005
Wu, Li, Li, He, Jiang et al., Quercetin as an Antiviral Agent Inhibits Influenza A Virus (IAV) Entry, Viruses, doi:10.3390/v8010006
Wu, Liu, Yang, Zhang, Zhong et al., Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, Acta Pharm. Sin. B, doi:10.1016/j.apsb.2020.02.008
Yang, Lee, Si, Lee, You et al., Curcumin Shows Antiviral Properties against Norovirus, Molecules, doi:10.3390/molecules21101401
Yang, Li, Li, Wang, Huang, Synergistic antiviral effect of curcumin functionalized graphene oxide against respiratory syncytial virus infection, Nanoscale, doi:10.1039/C7NR06520E
Zaki, Al-Karmalawy, El-Amier, Ashour, Molecular docking reveals the potential of Cleome amblyocarpa isolated compounds to inhibit COVID-19 virus main protease, New J. Chem, doi:10.1039/D0NJ03611K
Zaki, Ashour, Elhady, Darwish, Al-Karmalawy, Calendulaglycoside A Showing Potential Activity Against SARS-CoV-2 Main Protease: Molecular Docking, Molecular Dynamics, and SAR Studies, J. Tradit. Complement. Med
Zhang, Zhan, Yao, Gao, Shong, Antiviral activity of tannin from the pericarp of Punica granatum L. against genital Herpes virus in vitro, China J. Chin. Mater. Med
{ 'indexed': {'date-parts': [[2022, 4, 21]], 'date-time': '2022-04-21T11:06:14Z', 'timestamp': 1650539174233}, 'reference-count': 59, 'publisher': 'MDPI AG', 'issue': '6', 'license': [ { 'start': { 'date-parts': [[2021, 6, 15]], 'date-time': '2021-06-15T00:00:00Z', 'timestamp': 1623715200000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by/4.0/'}], 'funder': [ {'name': 'Egyptian Academy of Scientific Research & Technology', 'award': ['project ID: 7303']}, { 'DOI': '10.13039/100000060', 'name': 'National Institute of Allergy and Infectious Diseases', 'doi-asserted-by': 'publisher', 'award': ['HHSN272201400006C']}], 'content-domain': {'domain': [], 'crossmark-restriction': False}, 'short-container-title': ['Pathogens'], 'abstract': '<jats:p>Until now, there has been no direct evidence of the effectiveness of repurposed ' 'FDA-approved drugs against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) ' 'infections. Although curcumin, hesperidin, and quercetin have broad spectra of ' 'pharmacological properties, their antiviral activities against SARS-CoV-2 remain unclear. Our ' 'study aimed to assess the in vitro antiviral activities of curcumin, hesperidin, and ' 'quercetin against SARS-CoV-2 compared to hydroxychloroquine and determine their mode of ' 'action. In Vero E6 cells, these compounds significantly inhibited virus replication, mainly ' 'as virucidal agents primarily indicating their potential activity at the early stage of viral ' 'infection. To investigate the mechanism of action of the tested compounds, molecular docking ' 'studies were carried out against both SARS-CoV-2 spike (S) and main protease (Mpro) ' 'receptors. Collectively, the obtained in silico and in vitro findings suggest that the ' 'compounds could be promising SARS-CoV-2 Mpro inhibitors. We recommend further preclinical and ' 'clinical studies on the studied compounds to find a potential therapeutic targeting COVID-19 ' 'in the near future.</jats:p>', 'DOI': '10.3390/pathogens10060758', 'type': 'journal-article', 'created': {'date-parts': [[2021, 6, 16]], 'date-time': '2021-06-16T01:24:29Z', 'timestamp': 1623806669000}, 'page': '758', 'source': 'Crossref', 'is-referenced-by-count': 30, 'title': [ 'Bioactive Polyphenolic Compounds Showing Strong Antiviral Activities against Severe Acute ' 'Respiratory Syndrome Coronavirus 2'], 'prefix': '10.3390', 'volume': '10', 'author': [ { 'ORCID': 'http://orcid.org/0000-0003-3253-6961', 'authenticated-orcid': False, 'given': 'Ahmed', 'family': 'Kandeil', 'sequence': 'first', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0002-2878-5714', 'authenticated-orcid': False, 'given': 'Ahmed', 'family': 'Mostafa', 'sequence': 'additional', 'affiliation': []}, {'given': 'Omnia', 'family': 'Kutkat', 'sequence': 'additional', 'affiliation': []}, {'given': 'Yassmin', 'family': 'Moatasim', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0002-8173-6073', 'authenticated-orcid': False, 'given': 'Ahmed A.', 'family': 'Al-Karmalawy', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0001-6113-0333', 'authenticated-orcid': False, 'given': 'Adel A.', 'family': 'Rashad', 'sequence': 'additional', 'affiliation': []}, {'given': 'Ahmed E.', 'family': 'Kayed', 'sequence': 'additional', 'affiliation': []}, {'given': 'Azza E.', 'family': 'Kayed', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0002-8798-2240', 'authenticated-orcid': False, 'given': 'Rabeh', 'family': 'El-Shesheny', 'sequence': 'additional', 'affiliation': []}, {'given': 'Ghazi', 'family': 'Kayali', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0002-5615-3212', 'authenticated-orcid': False, 'given': 'Mohamed A.', 'family': 'Ali', 'sequence': 'additional', 'affiliation': []}], 'member': '1968', 'published-online': {'date-parts': [[2021, 6, 15]]}, 'reference': [ { 'key': 'ref1', 'unstructured': 'World Health Organization COVID-19 Dashboardhttps://covid19.who.int/'}, {'key': 'ref2', 'doi-asserted-by': 'publisher', 'DOI': '10.1371/journal.pone.0241739'}, {'key': 'ref3', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/antibiotics10040420'}, {'key': 'ref4', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/ph13120443'}, {'key': 'ref5', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.heliyon.2020.e05641'}, {'key': 'ref6', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.biotechadv.2014.04.004'}, {'key': 'ref7', 'doi-asserted-by': 'publisher', 'DOI': '10.1155/2014/186864'}, {'key': 'ref8', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.lfs.2005.12.007'}, {'key': 'ref9', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.pdpdt.2015.06.005'}, {'key': 'ref10', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/molecules21101401'}, {'key': 'ref11', 'doi-asserted-by': 'publisher', 'DOI': '10.1371/journal.pone.0187562'}, {'key': 'ref12', 'doi-asserted-by': 'publisher', 'DOI': '10.1039/C7NR06520E'}, {'key': 'ref13', 'doi-asserted-by': 'publisher', 'DOI': '10.2174/2211738507666191210163408'}, {'key': 'ref14', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.fct.2007.05.015'}, {'key': 'ref15', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.cellbi.2007.04.009'}, {'key': 'ref16', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/s12272-001-1206-5'}, {'key': 'ref17', 'doi-asserted-by': 'publisher', 'DOI': '10.1039/c2nr32181e'}, {'key': 'ref18', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/ijms131216785'}, {'key': 'ref19', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/molecules25102379'}, {'key': 'ref20', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.ejps.2009.03.002'}, {'key': 'ref21', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/v8010006'}, {'key': 'ref22', 'doi-asserted-by': 'publisher', 'DOI': '10.2147/IJN.S247692'}, {'key': 'ref23', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/molecules24030648'}, {'key': 'ref24', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/srep07237'}, {'key': 'ref25', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/molecules24173061'}, {'key': 'ref26', 'doi-asserted-by': 'publisher', 'DOI': '10.3389/fchem.2021.628398'}, {'key': 'ref27', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/s12551-013-0130-2'}, {'key': 'ref28', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.imu.2021.100604'}, {'key': 'ref29', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.mehy.2020.109957'}, {'key': 'ref30', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.apsb.2020.02.008'}, {'key': 'ref31', 'doi-asserted-by': 'publisher', 'DOI': '10.34172/PS.2021.3'}, {'key': 'ref32', 'doi-asserted-by': 'publisher', 'DOI': '10.1039/D0NJ03611K'}, {'key': 'ref33', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.jtcme.2021.05.001'}, {'key': 'ref34', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/pathogens10050623'}, {'key': 'ref35', 'doi-asserted-by': 'publisher', 'DOI': '10.1080/07391102.2021.1918256'}, {'key': 'ref36', 'doi-asserted-by': 'publisher', 'DOI': '10.1039/D0RA10674G'}, {'key': 'ref37', 'doi-asserted-by': 'publisher', 'DOI': '10.3389/fchem.2021.661230'}, {'key': 'ref38', 'doi-asserted-by': 'publisher', 'DOI': '10.3389/fmicb.2017.01314'}, {'key': 'ref39', 'doi-asserted-by': 'publisher', 'DOI': '10.3389/fmed.2020.00240'}, { 'key': 'ref40', 'doi-asserted-by': 'crossref', 'first-page': '1137', 'DOI': '10.1136/gutjnl-2012-304299', 'article-title': 'Turmeric curcumin inhibits entry of all hepatitis C virus genotypes ' 'into human liver cells', 'volume': '63', 'author': 'Colpitts', 'year': '2014', 'journal-title': 'Gut'}, {'key': 'ref41', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.antiviral.2017.03.014'}, {'key': 'ref42', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/0006-2952(95)98514-A'}, {'key': 'ref43', 'doi-asserted-by': 'publisher', 'DOI': '10.1371/journal.pone.0062482'}, {'key': 'ref44', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.bbamem.2007.08.020'}, {'key': 'ref45', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.jsps.2018.12.008'}, {'key': 'ref46', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/srep31777'}, {'key': 'ref47', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/0022-1759(83)90303-4'}, {'key': 'ref48', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/clinchem/hvaa029'}, { 'key': 'ref49', 'first-page': '556', 'article-title': 'Antiviral activity of tannin from the pericarp of Punica granatum L. ' 'against genital Herpes virus in vitro', 'volume': '20', 'author': 'Zhang', 'year': '1995', 'journal-title': 'China J. Chin. Mater. Med.'}, {'key': 'ref50', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/AAC.46.9.2854-2864.2002'}, {'key': 'ref51', 'doi-asserted-by': 'publisher', 'DOI': '10.1078/094471103322331467'}, { 'key': 'ref52', 'series-title': 'Molecular Operating Environment (MOE), 2008.10', 'year': '2016'}, {'key': 'ref53', 'doi-asserted-by': 'publisher', 'DOI': '10.1039/D0NJ02844D'}, {'key': 'ref54', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41586-020-2223-y'}, {'key': 'ref55', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41586-020-2179-y'}, {'key': 'ref56', 'doi-asserted-by': 'publisher', 'DOI': '10.34172/PS.2021.22'}, {'key': 'ref57', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.sajb.2021.02.007'}, {'key': 'ref58', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/acsptsci.0c00144'}, {'key': 'ref59', 'doi-asserted-by': 'publisher', 'DOI': '10.1039/D0NJ04088F'}], 'container-title': ['Pathogens'], 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://www.mdpi.com/2076-0817/10/6/758/pdf', 'content-type': 'unspecified', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2021, 6, 17]], 'date-time': '2021-06-17T16:17:41Z', 'timestamp': 1623946661000}, 'score': 1, 'resource': {'primary': {'URL': 'https://www.mdpi.com/2076-0817/10/6/758'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2021, 6, 15]]}, 'references-count': 59, 'journal-issue': {'issue': '6', 'published-online': {'date-parts': [[2021, 6]]}}, 'alternative-id': ['pathogens10060758'], 'URL': 'http://dx.doi.org/10.3390/pathogens10060758', 'relation': {}, 'ISSN': ['2076-0817'], 'issn-type': [{'value': '2076-0817', 'type': 'electronic'}], 'subject': [ 'Infectious Diseases', 'Microbiology (medical)', 'General Immunology and Microbiology', 'Molecular Biology', 'Immunology and Allergy'], 'published': {'date-parts': [[2021, 6, 15]]}}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit