Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchCurcuminCurcumin (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

Thermal shift assay (TSA)-based drug screening strategy for rapid discovery of inhibitors against the Nsp13 helicase of SARS-CoV-2

Li et al., Animals and Zoonoses, doi:10.1016/j.azn.2024.06.001
Jul 2024  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Curcumin for COVID-19
15th treatment shown to reduce risk in February 2021, now with p = 0.0000000096 from 27 studies.
No treatment is 100% effective. Protocols combine treatments.
5,100+ studies for 112 treatments. c19early.org
In Vitro study showing that 11 compounds inhibited the SARS-CoV-2 helicase Nsp13, with 7 compounds inhibiting ATPase activity and 4 inhibiting RNA unwinding activity at micromolar concentrations. Authors screened 1,970 FDA-approved drugs using a thermal shift assay, identifying 26 top binders to Nsp13. Biochemical assays confirmed 7 ATPase inhibitors (verteporfin, olsalazine sodium, diclofenac, benidipine, dyclonine, methyl salicylate, butylparaben; IC50 1.07-6.55 μM) and 4 RNA unwinding inhibitors (efaproxiral, fenretinide, curcumin, wedelolactone; IC50 12.23-14.91 μM). The inhibitors were reversible and docking predicted binding to Nsp13's ATPase or RNA binding domains. Curcumin was the most promising helicase inhibitor identified.
51 preclinical studies support the efficacy of curcumin for COVID-19:
In Silico studies predict inhibition of SARS-CoV-2 with curcumin or metabolites via binding to the spikeA,2,7,12,14,20,23,44 (and specifically the receptor binding domainB,10,13,16), MproC,2,7,9,11-13,15,16,18,21,23,24,26,40,44, RNA-dependent RNA polymeraseD,2,13,22,44, PLproE,2, ACE2F,14,15,17, nucleocapsidG,8,25, nsp10H,25, and helicaseI,29 proteins. In Vitro studies demonstrate inhibition of the spikeA,34 (and specifically the receptor binding domainB,43), MproC,19,34,40,42, ACE2F,43, and TMPRSS2J,43 proteins, and inhibition of spike-ACE2 interactionK,27. In Vitro studies demonstrate efficacy in Calu-3L,41, A549M,34, 293TN,3, HEK293-hACE2O,19,32, 293T/hACE2/TMPRSS2P,33, Vero E6Q,9,13,23,32,34,36,37,39,41, and SH-SY5YR,31 cells. Curcumin is predicted to inhibit the interaction between the SARS-CoV-2 spike protein receptor binding domain and the human ACE2 receptor for the delta and omicron variants10, decreases pro-inflammatory cytokines induced by SARS-CoV-2 in peripheral blood mononuclear cells39, alleviates SARS-CoV-2 spike protein-induced mitochondrial membrane damage and oxidative stress3, may limit COVID-19 induced cardiac damage by inhibiting the NF-κB signaling pathway which mediates the profibrotic effects of the SARS-CoV-2 spike protein on cardiac fibroblasts45, and inhibits SARS-CoV-2 ORF3a ion channel activity, which contributes to viral pathogenicity and cytotoxicity35.
a. The trimeric spike (S) protein is a glycoprotein that mediates viral entry by binding to the host ACE2 receptor, is critical for SARS-CoV-2's ability to infect host cells, and is a target of neutralizing antibodies. Inhibition of the spike protein prevents viral attachment, halting infection at the earliest stage.
b. The receptor binding domain is a specific region of the spike protein that binds ACE2 and is a major target of neutralizing antibodies. Focusing on the precise binding site allows highly specific disruption of viral attachment with reduced potential for off-target effects.
c. The main protease or Mpro, also known as 3CLpro or nsp5, is a cysteine protease that cleaves viral polyproteins into functional units needed for replication. Inhibiting Mpro disrupts the SARS-CoV-2 lifecycle within the host cell, preventing the creation of new copies.
d. RNA-dependent RNA polymerase (RdRp), also called nsp12, is the core enzyme of the viral replicase-transcriptase complex that copies the positive-sense viral RNA genome into negative-sense templates for progeny RNA synthesis. Inhibiting RdRp blocks viral genome replication and transcription.
e. The papain-like protease (PLpro) has multiple functions including cleaving viral polyproteins and suppressing the host immune response by deubiquitination and deISGylation of host proteins. Inhibiting PLpro may block viral replication and help restore normal immune responses.
f. The angiotensin converting enzyme 2 (ACE2) protein is a host cell transmembrane protein that serves as the cellular receptor for the SARS-CoV-2 spike protein. ACE2 is expressed on many cell types, including epithelial cells in the lungs, and allows the virus to enter and infect host cells. Inhibition may affect ACE2's physiological function in blood pressure control.
g. The nucleocapsid (N) protein binds and encapsulates the viral genome by coating the viral RNA. N enables formation and release of infectious virions and plays additional roles in viral replication and pathogenesis. N is also an immunodominant antigen used in diagnostic assays.
h. Non-structural protein 10 (nsp10) serves as an RNA chaperone and stabilizes conformations of nsp12 and nsp14 in the replicase-transcriptase complex, which synthesizes new viral RNAs. Nsp10 disruption may destabilize replicase-transcriptase complex activity.
i. The helicase, or nsp13, protein unwinds the double-stranded viral RNA, a crucial step in replication and transcription. Inhibition may prevent viral genome replication and the creation of new virus components.
j. Transmembrane protease serine 2 (TMPRSS2) is a host cell protease that primes the spike protein, facilitating cellular entry. TMPRSS2 activity helps enable cleavage of the spike protein required for membrane fusion and virus entry. Inhibition may especially protect respiratory epithelial cells, buy may have physiological effects.
k. The interaction between the SARS-CoV-2 spike protein and the human ACE2 receptor is a primary method of viral entry, inhibiting this interaction can prevent the virus from attaching to and entering host cells, halting infection at an early stage.
l. Calu-3 is a human lung adenocarcinoma cell line with moderate ACE2 and TMPRSS2 expression and SARS-CoV-2 susceptibility. It provides a model of the human respiratory epithelium, but many not be ideal for modeling early stages of infection due to the moderate expression levels of ACE2 and TMPRSS2.
m. A549 is a human lung carcinoma cell line with low ACE2 expression and SARS-CoV-2 susceptibility. Viral entry/replication can be studied but the cells may not replicate all aspects of lung infection.
n. 293T is a human embryonic kidney cell line that can be engineered for high ACE2 expression and SARS-CoV-2 susceptibility. 293T cells are easily transfected and support high protein expression.
o. HEK293-hACE2 is a human embryonic kidney cell line with high ACE2 expression and SARS-CoV-2 susceptibility. Cells have been transfected with a plasmid to express the human ACE2 (hACE2) protein.
p. 293T/hACE2/TMPRSS2 is a human embryonic kidney cell line engineered for high ACE2 and TMPRSS2 expression, which mimics key aspects of human infection. 293T/hACE2/TMPRSS2 cells are very susceptible to SARS-CoV-2 infection.
q. Vero E6 is an African green monkey kidney cell line with low/no ACE2 expression and high SARS-CoV-2 susceptibility. The cell line is easy to maintain and supports robust viral replication, however the monkey origin may not accurately represent human responses.
r. SH-SY5Y is a human neuroblastoma cell line that exhibits neuronal phenotypes. It is commonly used as an in vitro model for studying neurotoxicity, neurodegenerative diseases, and neuronal differentiation.
Li et al., 1 Jul 2024, China, peer-reviewed, 4 authors. Contact: cryptosporida@gmail.com (corresponding author).
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
This PaperCurcuminAll
Thermal shift assay (TSA)-based drug screening strategy for rapid discovery of inhibitors against the Nsp13 helicase of SARS-CoV-2
Meng Li, Jigang Yin, Chang Li, Guan Zhu
Animals and Zoonoses, doi:10.1016/j.azn.2024.06.001
Thermal shift assay (TSA)-based drug screening strategy for rapid discovery of inhibitors against the Nsp13 helicase of SARS
CRediT authorship contribution statement Meng Li played a key role in the experimental setup and data collection, and were responsible for ensuring the quality and integrity of the data obtained. In addition, Meng Li contributed to the analysis J o u r n a l P r e -p r o o f Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The author Guan Zhu and Chang Li are Editorial Board Member for Animals and Zoonoses and were not involved in the editorial review or the decision to publish this article. Declaration of interests ☐ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. J o u r n a l P r e -p r o o f
References
Bormann, Alt, Schipper, Van De Sand, Vtk et al., Turmeric Root and Its Bioactive Ingredient Curcumin Effectively Neutralize SARS-CoV-2 In Vitro, Viruses, doi:10.3390/v13101914
Chen, Malone, Llewellyn, Grasso, Shelton et al., Structural Basis for Helicase-Polymerase Coupling in the SARS-CoV-2 Replication-Transcription Complex, Cell, doi:10.1016/j.cell.2020.07.033
Dart, Machleidt, Jost, Schwinn, Robers et al., Homogeneous Assay for Target Engagement Utilizing Bioluminescent Thermal Shift, ACS Med Chem Lett, doi:10.1021/acsmedchemlett.8b00081
De Groot, Baker, Baric, Brown, Drosten et al., Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group, J Virol, doi:10.1128/JVI.01244-13
Donnelly, Liu, Rockwell, Efaproxiral (RSR13) plus oxygen breathing increases the therapeutic ratio of carboplatin in EMT6 mouse mammary tumors, Exp Biol Med (Maywood), doi:10.1177/153537020623100312
Fehr, Perlman, Coronaviruses: an overview of their replication and pathogenesis, Methods Mol Biol, doi:10.1007/978-1-4939-2438-7_1
Ferner, Aronson, Remdesivir in covid-19, BMJ, doi:10.1136/bmj.m1610
Ghosh, Hazra, Pal, Nelson, Pal, Prostate cancer: Therapeutic prospect with herbal medicine, Curr Res Pharmacol Drug Discov, doi:10.1016/j.crphar.2021.100034.Journ
Gordon, Tchesnokov, Woolner, Perry, Feng et al., Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency, J Biol Chem, doi:10.1074/jbc.RA120.013679
Guilbault, Sanctis, Wojewodka, Saeed, Lachance et al., Fenretinide corrects newly found ceramide deficiency in cystic fibrosis, Am J Respir Cell Mol Biol, doi:10.1165/rcmb.2007-0036OC
Gupta, Patchva, Aggarwal, Therapeutic roles of curcumin: lessons learned from clinical trials, AAPS J, doi:10.1208/s12248-012-9432-8
Gupta, Song, Lee, Lee, Park et al., Malachite Green Assay for the Discovery of Heat-Shock Protein 90 Inhibitors, J Vis Exp, doi:10.3791/64693
Ha, Hop, Son, Wedelolactone: A molecule of interests, Fitoterapia, doi:10.1016/j.fitote.2022.105355
Hao, Wojdyla, Zhao, Han, Das et al., Crystal structure of Middle East respiratory syndrome coronavirus helicase, PLoS Pathog, doi:10.1371/journal.ppat.1006474
Hou, Khan, Grinberg, Yu, Grinberg et al., The effects of Efaproxyn (efaproxiral) on subcutaneous RIF-1 tumor oxygenation and enhancement of radiotherapy-mediated inhibition of tumor growth in mice, Radiat Res, doi:10.1667/RR0962
Hui, Memish, Zumla, Severe acute respiratory syndrome vs. the Middle East respiratory J o u r n a l P r e -p r o o f syndrome, Curr Opin Pulm Med, doi:10.1097/MCP.0000000000000046
Huynh, Partch, Analysis of protein stability and ligand interactions by thermal shift assay, Curr Protoc Protein Sci, doi:10.1002/0471140864.ps2809s79
Iversen, Beck, Chen, Dere, Devanarayan et al., HTS Assay Validation
J O U R N A L P R E, None
Jia, Yan, Ren, Wu, Wang et al., Delicate structural coordination of the Severe Acute Respiratory Syndrome coronavirus Nsp13 upon ATP hydrolysis, Nucleic Acids Res, doi:10.1093/nar/gkz409
Kabinger, Stiller, Schmitzova, Dienemann, Kokic et al., Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis, Nat Struct Mol Biol, doi:10.1038/s41594-021-00651-0
Klein, Barthels, Johe, Wagner, Tenzer et al., Naphthoquinones as Covalent Reversible Inhibitors of Cysteine Proteases-Studies on Inhibition Mechanism and Kinetics, Molecules, doi:10.3390/molecules25092064
Langer, Bartoschik, Cehlar, Duhr, Baaske et al., A New Spectral Shift-Based Method to Characterize Molecular Interactions, Assay Drug Dev Technol, doi:10.1089/adt.2021.133
Lo, Aulabaugh, Jin, Cowling, Bard et al., Evaluation of fluorescence-based thermal shift assays for hit identification in drug discovery, Anal Biochem, doi:10.1016/j.ab.2004.04.031
Lu, Peng, Yao, Wang, Li et al., Punicalagin as an allosteric NSP13 helicase inhibitor potently suppresses SARS-CoV-2 replication in vitro, Antiviral Res, doi:10.1016/j.antiviral.2022.105389
Malone, Chen, Wang, Llewellyn, Choi et al., Structural basis for backtracking by the SARS-CoV-2 replication-transcription complex, Proc Natl Acad Sci U S A, doi:10.1073/pnas.2102516118
Murail, De Vries, Rey, Moroy, Tuffery, SeamDock: An Interactive and Collaborative Online Docking Resource to Assist Small Compound Molecular Docking, Front Mol Biosci, doi:10.3389/fmolb.2021.716466
Nelson, Dahlin, Bisson, Graham, Pauli et al., Curcumin May (Not) Defy Science, ACS Med Chem Lett, doi:10.1021/acsmedchemlett.7b00139
Nelson, Dahlin, Bisson, Graham, Pauli et al., The Essential Medicinal Chemistry of Curcumin, J Med Chem, doi:10.1021/acs.jmedchem.6b00975
Newman, Douangamath, Yadzani, Yosaatmadja, Aimon et al., Structure, mechanism and crystallographic fragment screening of the SARS-CoV-2 NSP13 helicase, Nat Commun, doi:10.1038/s41467-021-25166-6
Orienti, Gentilomi, Farruggia, Pulmonary Delivery of Fenretinide: A Possible Adjuvant Treatment In COVID-19, Int J Mol Sci, doi:10.3390/ijms21113812
Owen, Allerton, Anderson, Aschenbrenner, Avery et al., An oral SARS-CoV-2 M(pro) inhibitor clinical candidate for the treatment of COVID-19, Science, doi:10.1126/science.abl4784
Sarveswaran, Gautam, Ghosh, Wedelolactone, a medicinal plant-derived coumestan, induces caspase-dependent apoptosis in prostate cancer cells via downregulation of PKCepsilon without inhibiting Akt, Int J Oncol, doi:10.3892/ijo.2012.1664
Sheahan, Sims, Zhou, Graham, Pruijssers et al., An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice, doi:10.1126/scitranslmed.abb5883
Van De Leemput, Han, Understanding Individual SARS-CoV-2 Proteins for Targeted Drug Development against COVID-19, Mol Cell Biol, doi:10.1128/MCB.00185-21
Vivoli, Novak, Littlechild, Harmer, Determination of protein-ligand interactions using differential scanning fluorimetry, J Vis Exp, doi:10.3791/51809:51809
Von Delft, Hall, Kwong, Purcell, Saikatendu et al., Accelerating antiviral drug discovery: lessons from COVID-19, Nat Rev Drug Discov, doi:10.1038/s41573-023-00692-8
Wang, Cao, Zhang, Yang, Liu et al., Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro, Cell Res, doi:10.1038/s41422-020-0282-0
White, Cheng, Discovery of COVID-19 Inhibitors Targeting the SARS-CoV-2 Nsp13 Helicase, J Phys Chem Lett, doi:10.1021/acs.jpclett.0c02421
Wu, Dipietrantonio, Hsieh, Mechanism of fenretinide (4-HPR)-induced cell death, Apoptosis, doi:10.1023/a:1011342220621
Xiong, Su, Zhao, Xie, Shao et al., What coronavirus 3C-like protease tells us: From structure, substrate selectivity, to inhibitor design, Med Res Rev, doi:10.1002/med.21783
Yan, Zhang, Ge, Zheng, Gao et al., Architecture of a SARS-CoV-2 mini replication and transcription complex, Nat Commun, doi:10.1038/s41467-020-19770-1
Yazdi, Pakarian, Perveen, Hajian, Santhakumar et al., Kinetic Characterization of SARS-CoV-2 nsp13 ATPase Activity and Discovery of Small-Molecule Inhibitors, ACS Infect Dis, doi:10.1021/acsinfecdis.2c00165
Zeng, Weissmann, Bertolin, Posse, Canal et al., Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of nsp13 helicase, Biochem J, doi:10.1042/BCJ20210201
Zhang, Zhu, Quantitative RT-PCR assay for high-throughput screening (HTS) of drugs against the growth of Cryptosporidium parvum in vitro, Front Microbiol, doi:10.3389/fmicb.2015.00991
Zhu, Chen, Monophyletic relationship between severe acute respiratory syndrome coronavirus and group 2 coronaviruses, J Infect Dis, doi:10.1086/382892
Zhu, Deuremidevir and Simnotrelvir-Ritonavir for the Treatment of COVID-19, ACS Pharmacol Transl Sci, doi:10.1021/acsptsci.3c00134
{ 'indexed': {'date-parts': [[2024, 7, 9]], 'date-time': '2024-07-09T00:17:55Z', 'timestamp': 1720484275332}, 'reference-count': 50, 'publisher': 'Elsevier BV', 'license': [ { 'start': { 'date-parts': [[2024, 7, 1]], 'date-time': '2024-07-01T00:00:00Z', 'timestamp': 1719792000000}, 'content-version': 'tdm', 'delay-in-days': 0, 'URL': 'https://www.elsevier.com/tdm/userlicense/1.0/'}, { 'start': { 'date-parts': [[2024, 7, 1]], 'date-time': '2024-07-01T00:00:00Z', 'timestamp': 1719792000000}, 'content-version': 'tdm', 'delay-in-days': 0, 'URL': 'https://www.elsevier.com/legal/tdmrep-license'}, { 'start': { 'date-parts': [[2024, 6, 27]], 'date-time': '2024-06-27T00:00:00Z', 'timestamp': 1719446400000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'http://creativecommons.org/licenses/by/4.0/'}], 'content-domain': {'domain': ['elsevier.com', 'sciencedirect.com'], 'crossmark-restriction': True}, 'published-print': {'date-parts': [[2024, 7]]}, 'DOI': '10.1016/j.azn.2024.06.001', 'type': 'journal-article', 'created': {'date-parts': [[2024, 7, 1]], 'date-time': '2024-07-01T18:02:04Z', 'timestamp': 1719856924000}, 'update-policy': 'http://dx.doi.org/10.1016/elsevier_cm_policy', 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': 'Thermal shift assay (TSA)-based drug screening strategy for rapid discovery of inhibitors ' 'against the Nsp13 helicase of SARS-CoV-2', 'prefix': '10.1016', 'author': [ {'given': 'Meng', 'family': 'Li', 'sequence': 'first', 'affiliation': []}, {'given': 'Jigang', 'family': 'Yin', 'sequence': 'additional', 'affiliation': []}, {'given': 'Chang', 'family': 'Li', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0003-3888-0659', 'authenticated-orcid': False, 'given': 'Guan', 'family': 'Zhu', 'sequence': 'additional', 'affiliation': []}], 'member': '78', 'reference': [ { 'key': '10.1016/j.azn.2024.06.001_bib1', 'unstructured': 'United States Food & Drug Administration. 2023. Coronavirus (COVID-19) | ' 'Drugs. Last update on 05/25/2023. ' '〈https://www.fda.gov/drugs/emergency-preparedness-drugs/coronavirus-covid-19-drugs〉. ' 'Accessed 12/1/2023.'}, { 'key': '10.1016/j.azn.2024.06.001_bib2', 'unstructured': 'Drugs.com. 2023. Veklury FDA Approval History. Last update on ' '07/18/2023. 〈https://www.drugs.com/history/veklury.html〉. Accessed ' '12/1/2023.'}, { 'key': '10.1016/j.azn.2024.06.001_bib3', 'unstructured': 'Drug.com. 2022. Lagevrio FDA Approval Status. Last update on 4/4/2023. ' '〈https://www.drugs.com/history/lagevrio.html〉. Accessed 12/1/2023.'}, { 'key': '10.1016/j.azn.2024.06.001_bib4', 'unstructured': 'Drugs.com. 2023. Paxlovid FDA Approval History. Last update on ' '11/5/2023. 〈https://www.drugs.com/history/paxlovid.html〉. Accessed ' '12/1/2023.'}, { 'key': '10.1016/j.azn.2024.06.001_bib5', 'doi-asserted-by': 'crossref', 'first-page': 'm1610', 'DOI': '10.1136/bmj.m1610', 'article-title': 'Remdesivir in covid-19', 'author': 'Ferner', 'year': '2020', 'journal-title': 'BMJ 369'}, { 'key': '10.1016/j.azn.2024.06.001_bib6', 'doi-asserted-by': 'crossref', 'DOI': '10.1126/scitranslmed.abb5883', 'article-title': 'An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in ' 'human airway epithelial cell cultures and multiple coronaviruses in ' 'mice', 'volume': '12', 'author': 'Sheahan', 'year': '2020', 'journal-title': 'Sci Transl Med'}, { 'key': '10.1016/j.azn.2024.06.001_bib7', 'doi-asserted-by': 'crossref', 'first-page': '1586', 'DOI': '10.1126/science.abl4784', 'article-title': 'An oral SARS-CoV-2 M(pro) inhibitor clinical candidate for the ' 'treatment of COVID-19', 'volume': '374', 'author': 'Owen', 'year': '2021', 'journal-title': 'Science'}, { 'key': '10.1016/j.azn.2024.06.001_bib8', 'doi-asserted-by': 'crossref', 'first-page': '6785', 'DOI': '10.1074/jbc.RA120.013679', 'article-title': 'Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA ' 'polymerase from severe acute respiratory syndrome coronavirus 2 with ' 'high potency', 'volume': '295', 'author': 'Gordon', 'year': '2020', 'journal-title': 'J Biol Chem'}, { 'key': '10.1016/j.azn.2024.06.001_bib9', 'doi-asserted-by': 'crossref', 'first-page': '740', 'DOI': '10.1038/s41594-021-00651-0', 'article-title': 'Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis', 'volume': '28', 'author': 'Kabinger', 'year': '2021', 'journal-title': 'Nat Struct Mol Biol'}, { 'key': '10.1016/j.azn.2024.06.001_bib10', 'doi-asserted-by': 'crossref', 'first-page': '1965', 'DOI': '10.1002/med.21783', 'article-title': 'What coronavirus 3C-like protease tells us: From structure, substrate ' 'selectivity, to inhibitor design', 'volume': '41', 'author': 'Xiong', 'year': '2021', 'journal-title': 'Med Res Rev'}, { 'key': '10.1016/j.azn.2024.06.001_bib11', 'doi-asserted-by': 'crossref', 'first-page': '1306', 'DOI': '10.1021/acsptsci.3c00134', 'article-title': 'Deuremidevir and Simnotrelvir-Ritonavir for the Treatment of COVID-19', 'volume': '6', 'author': 'Zhu', 'year': '2023', 'journal-title': 'ACS Pharmacol Transl Sci'}, { 'key': '10.1016/j.azn.2024.06.001_bib12', 'doi-asserted-by': 'crossref', 'first-page': '269', 'DOI': '10.1038/s41422-020-0282-0', 'article-title': 'Remdesivir and chloroquine effectively inhibit the recently emerged ' 'novel coronavirus (2019-nCoV) in vitro', 'volume': '30', 'author': 'Wang', 'year': '2020', 'journal-title': 'Cell Res'}, { 'key': '10.1016/j.azn.2024.06.001_bib13', 'doi-asserted-by': 'crossref', 'first-page': '4848', 'DOI': '10.1038/s41467-021-25166-6', 'article-title': 'Structure, mechanism and crystallographic fragment screening of the ' 'SARS-CoV-2 NSP13 helicase', 'volume': '12', 'author': 'Newman', 'year': '2021', 'journal-title': 'Nat Commun'}, { 'key': '10.1016/j.azn.2024.06.001_bib14', 'doi-asserted-by': 'crossref', 'DOI': '10.1073/pnas.2102516118', 'article-title': 'Structural basis for backtracking by the SARS-CoV-2 ' 'replication-transcription complex', 'volume': '118', 'author': 'Malone', 'year': '2021', 'journal-title': 'Proc Natl Acad Sci U S A'}, { 'key': '10.1016/j.azn.2024.06.001_bib15', 'doi-asserted-by': 'crossref', 'first-page': '5874', 'DOI': '10.1038/s41467-020-19770-1', 'article-title': 'Architecture of a SARS-CoV-2 mini replication and transcription complex', 'volume': '11', 'author': 'Yan', 'year': '2020', 'journal-title': 'Nat Commun'}, { 'key': '10.1016/j.azn.2024.06.001_bib16', 'doi-asserted-by': 'crossref', 'first-page': '1560', 'DOI': '10.1016/j.cell.2020.07.033', 'article-title': 'Structural Basis for Helicase-Polymerase Coupling in the SARS-CoV-2 ' 'Replication-Transcription Complex', 'volume': '182', 'author': 'Chen', 'year': '2020', 'journal-title': 'Cell'}, { 'key': '10.1016/j.azn.2024.06.001_bib17', 'doi-asserted-by': 'crossref', 'first-page': '7790', 'DOI': '10.1128/JVI.01244-13', 'article-title': 'Middle East respiratory syndrome coronavirus (MERS-CoV): announcement ' 'of the Coronavirus Study Group', 'volume': '87', 'author': 'de Groot', 'year': '2013', 'journal-title': 'J Virol'}, { 'key': '10.1016/j.azn.2024.06.001_bib18', 'first-page': '1', 'article-title': 'Coronaviruses: an overview of their replication and pathogenesis', 'author': 'Fehr', 'year': '2015', 'journal-title': 'Methods Mol Biol 1282'}, { 'key': '10.1016/j.azn.2024.06.001_bib19', 'doi-asserted-by': 'crossref', 'first-page': '233', 'DOI': '10.1097/MCP.0000000000000046', 'article-title': 'Severe acute respiratory syndrome vs. the Middle East respiratory ' 'syndrome', 'volume': '20', 'author': 'Hui', 'year': '2014', 'journal-title': 'Curr Opin Pulm Med'}, { 'key': '10.1016/j.azn.2024.06.001_bib20', 'doi-asserted-by': 'crossref', 'first-page': '1676', 'DOI': '10.1086/382892', 'article-title': 'Monophyletic relationship between severe acute respiratory syndrome ' 'coronavirus and group 2 coronaviruses', 'volume': '189', 'author': 'Zhu', 'year': '2004', 'journal-title': 'J Infect Dis'}, { 'key': '10.1016/j.azn.2024.06.001_bib21', 'doi-asserted-by': 'crossref', 'first-page': '546', 'DOI': '10.1021/acsmedchemlett.8b00081', 'article-title': 'Homogeneous Assay for Target Engagement Utilizing Bioluminescent ' 'Thermal Shift', 'volume': '9', 'author': 'Dart', 'year': '2018', 'journal-title': 'ACS Med Chem Lett'}, { 'key': '10.1016/j.azn.2024.06.001_bib22', 'doi-asserted-by': 'crossref', 'first-page': '153', 'DOI': '10.1016/j.ab.2004.04.031', 'article-title': 'Evaluation of fluorescence-based thermal shift assays for hit ' 'identification in drug discovery', 'volume': '332', 'author': 'Lo', 'year': '2004', 'journal-title': 'Anal Biochem'}, { 'key': '10.1016/j.azn.2024.06.001_bib23', 'doi-asserted-by': 'crossref', 'unstructured': 'Gupta S.D., Song D.G., Lee S., Lee J.W., Park J.S., Prodromou C., Pan ' 'C.H. 2023. Malachite Green Assay for the Discovery of Heat-Shock Protein ' '90 Inhibitors. J Vis Exp doi:10.3791/64693. doi:10.3791/64693.', 'DOI': '10.3791/64693'}, { 'key': '10.1016/j.azn.2024.06.001_bib24', 'doi-asserted-by': 'crossref', 'DOI': '10.1371/journal.ppat.1006474', 'article-title': 'Crystal structure of Middle East respiratory syndrome coronavirus ' 'helicase', 'volume': '13', 'author': 'Hao', 'year': '2017', 'journal-title': 'PLoS Pathog'}, { 'key': '10.1016/j.azn.2024.06.001_bib25', 'doi-asserted-by': 'crossref', 'first-page': '6538', 'DOI': '10.1093/nar/gkz409', 'article-title': 'Delicate structural coordination of the Severe Acute Respiratory ' 'Syndrome coronavirus Nsp13 upon ATP hydrolysis', 'volume': '47', 'author': 'Jia', 'year': '2019', 'journal-title': 'Nucleic Acids Res'}, { 'key': '10.1016/j.azn.2024.06.001_bib26', 'series-title': 'Assay Guidance Manual', 'article-title': 'HTS Assay Validation', 'author': 'Iversen', 'year': '2004'}, { 'key': '10.1016/j.azn.2024.06.001_bib27', 'doi-asserted-by': 'crossref', 'first-page': '991', 'DOI': '10.3389/fmicb.2015.00991', 'article-title': 'Quantitative RT-PCR assay for high-throughput screening (HTS) of drugs ' 'against the growth of Cryptosporidium parvum in vitro', 'volume': '6', 'author': 'Zhang', 'year': '2015', 'journal-title': 'Front Microbiol'}, { 'key': '10.1016/j.azn.2024.06.001_bib28', 'doi-asserted-by': 'crossref', 'DOI': '10.3791/51809-v', 'article-title': 'Determination of protein-ligand interactions using differential ' 'scanning fluorimetry', 'author': 'Vivoli', 'year': '2014', 'journal-title': 'J Vis Exp'}, { 'key': '10.1016/j.azn.2024.06.001_bib29', 'doi-asserted-by': 'crossref', 'first-page': '83', 'DOI': '10.1089/adt.2021.133', 'article-title': 'A New Spectral Shift-Based Method to Characterize Molecular ' 'Interactions', 'volume': '20', 'author': 'Langer', 'year': '2022', 'journal-title': 'Assay Drug Dev Technol'}, { 'key': '10.1016/j.azn.2024.06.001_bib30', 'doi-asserted-by': 'crossref', 'DOI': '10.3390/molecules25092064', 'article-title': 'Naphthoquinones as Covalent Reversible Inhibitors of Cysteine ' 'Proteases-Studies on Inhibition Mechanism and Kinetics', 'volume': '25', 'author': 'Klein', 'year': '2020', 'journal-title': 'Molecules'}, { 'key': '10.1016/j.azn.2024.06.001_bib31', 'doi-asserted-by': 'crossref', 'DOI': '10.3389/fmolb.2021.716466', 'article-title': 'SeamDock: An Interactive and Collaborative Online Docking Resource to ' 'Assist Small Compound Molecular Docking', 'volume': '8', 'author': 'Murail', 'year': '2021', 'journal-title': 'Front Mol Biosci'}, { 'key': '10.1016/j.azn.2024.06.001_bib32', 'article-title': 'Analysis of protein stability and ligand interactions by thermal shift ' 'assay', 'volume': '79', 'author': 'Huynh', 'year': '2015', 'journal-title': 'Curr Protoc Protein Sci'}, { 'key': '10.1016/j.azn.2024.06.001_bib33', 'doi-asserted-by': 'crossref', 'first-page': '585', 'DOI': '10.1038/s41573-023-00692-8', 'article-title': 'Accelerating antiviral drug discovery: lessons from COVID-19', 'volume': '22', 'author': 'von Delft', 'year': '2023', 'journal-title': 'Nat Rev Drug Discov'}, { 'key': '10.1016/j.azn.2024.06.001_bib34', 'doi-asserted-by': 'crossref', 'DOI': '10.1128/MCB.00185-21', 'article-title': 'Understanding Individual SARS-CoV-2 Proteins for Targeted Drug ' 'Development against COVID-19', 'volume': '41', 'author': 'van de Leemput', 'year': '2021', 'journal-title': 'Mol Cell Biol'}, { 'key': '10.1016/j.azn.2024.06.001_bib35', 'doi-asserted-by': 'crossref', 'first-page': '1533', 'DOI': '10.1021/acsinfecdis.2c00165', 'article-title': 'Kinetic Characterization of SARS-CoV-2 nsp13 ATPase Activity and ' 'Discovery of Small-Molecule Inhibitors', 'volume': '8', 'author': 'Yazdi', 'year': '2022', 'journal-title': 'ACS Infect Dis'}, { 'key': '10.1016/j.azn.2024.06.001_bib36', 'doi-asserted-by': 'crossref', 'first-page': '2405', 'DOI': '10.1042/BCJ20210201', 'article-title': 'Identifying SARS-CoV-2 antiviral compounds by screening for small ' 'molecule inhibitors of nsp13 helicase', 'volume': '478', 'author': 'Zeng', 'year': '2021', 'journal-title': 'Biochem J'}, { 'key': '10.1016/j.azn.2024.06.001_bib37', 'doi-asserted-by': 'crossref', 'first-page': '9144', 'DOI': '10.1021/acs.jpclett.0c02421', 'article-title': 'Discovery of COVID-19 Inhibitors Targeting the SARS-CoV-2 Nsp13 ' 'Helicase', 'volume': '11', 'author': 'White', 'year': '2020', 'journal-title': 'J Phys Chem Lett'}, { 'key': '10.1016/j.azn.2024.06.001_bib38', 'doi-asserted-by': 'crossref', 'DOI': '10.1016/j.antiviral.2022.105389', 'article-title': 'Punicalagin as an allosteric NSP13 helicase inhibitor potently ' 'suppresses SARS-CoV-2 replication in vitro', 'volume': '206', 'author': 'Lu', 'year': '2022', 'journal-title': 'Antiviral Res'}, { 'key': '10.1016/j.azn.2024.06.001_bib39', 'doi-asserted-by': 'crossref', 'first-page': '195', 'DOI': '10.1208/s12248-012-9432-8', 'article-title': 'Therapeutic roles of curcumin: lessons learned from clinical trials', 'volume': '15', 'author': 'Gupta', 'year': '2013', 'journal-title': 'AAPS J'}, { 'key': '10.1016/j.azn.2024.06.001_bib40', 'doi-asserted-by': 'crossref', 'DOI': '10.3390/v13101914', 'article-title': 'Turmeric Root and Its Bioactive Ingredient Curcumin Effectively ' 'Neutralize SARS-CoV-2 In Vitro', 'volume': '13', 'author': 'Bormann', 'year': '2021', 'journal-title': 'Viruses'}, { 'key': '10.1016/j.azn.2024.06.001_bib41', 'doi-asserted-by': 'crossref', 'first-page': '467', 'DOI': '10.1021/acsmedchemlett.7b00139', 'article-title': 'Curcumin May (Not) Defy Science', 'volume': '8', 'author': 'Nelson', 'year': '2017', 'journal-title': 'ACS Med Chem Lett'}, { 'key': '10.1016/j.azn.2024.06.001_bib42', 'doi-asserted-by': 'crossref', 'first-page': '1620', 'DOI': '10.1021/acs.jmedchem.6b00975', 'article-title': 'The Essential Medicinal Chemistry of Curcumin', 'volume': '60', 'author': 'Nelson', 'year': '2017', 'journal-title': 'J Med Chem'}, { 'key': '10.1016/j.azn.2024.06.001_bib43', 'doi-asserted-by': 'crossref', 'DOI': '10.3390/ijms21113812', 'article-title': 'Pulmonary Delivery of Fenretinide: A Possible Adjuvant Treatment In ' 'COVID-19', 'volume': '21', 'author': 'Orienti', 'year': '2020', 'journal-title': 'Int J Mol Sci'}, { 'key': '10.1016/j.azn.2024.06.001_bib44', 'doi-asserted-by': 'crossref', 'first-page': '47', 'DOI': '10.1165/rcmb.2007-0036OC', 'article-title': 'Fenretinide corrects newly found ceramide deficiency in cystic fibrosis', 'volume': '38', 'author': 'Guilbault', 'year': '2008', 'journal-title': 'Am J Respir Cell Mol Biol'}, { 'key': '10.1016/j.azn.2024.06.001_bib45', 'doi-asserted-by': 'crossref', 'first-page': '377', 'DOI': '10.1023/A:1011342220621', 'article-title': 'Mechanism of fenretinide (4-HPR)-induced cell death', 'volume': '6', 'author': 'Wu', 'year': '2001', 'journal-title': 'Apoptosis'}, { 'key': '10.1016/j.azn.2024.06.001_bib46', 'doi-asserted-by': 'crossref', 'first-page': '317', 'DOI': '10.1177/153537020623100312', 'article-title': 'Efaproxiral (RSR13) plus oxygen breathing increases the therapeutic ' 'ratio of carboplatin in EMT6 mouse mammary tumors', 'volume': '231', 'author': 'Donnelly', 'year': '2006', 'journal-title': 'Exp Biol Med (Maywood)'}, { 'key': '10.1016/j.azn.2024.06.001_bib47', 'doi-asserted-by': 'crossref', 'first-page': '218', 'DOI': '10.1667/RR0962.1', 'article-title': 'The effects of Efaproxyn (efaproxiral) on subcutaneous RIF-1 tumor ' 'oxygenation and enhancement of radiotherapy-mediated inhibition of ' 'tumor growth in mice', 'volume': '168', 'author': 'Hou', 'year': '2007', 'journal-title': 'Radiat Res'}, { 'key': '10.1016/j.azn.2024.06.001_bib48', 'doi-asserted-by': 'crossref', 'first-page': '2191', 'DOI': '10.3892/ijo.2012.1664', 'article-title': 'Wedelolactone, a medicinal plant-derived coumestan, induces ' 'caspase-dependent apoptosis in prostate cancer cells via downregulation ' 'of PKCepsilon without inhibiting Akt.', 'volume': '41', 'author': 'Sarveswaran', 'year': '2012', 'journal-title': 'Int J Oncol'}, { 'key': '10.1016/j.azn.2024.06.001_bib49', 'doi-asserted-by': 'crossref', 'DOI': '10.1016/j.fitote.2022.105355', 'article-title': 'Wedelolactone: A molecule of interests', 'volume': '164', 'author': 'Ha', 'year': '2023', 'journal-title': 'Fitoterapia'}, { 'key': '10.1016/j.azn.2024.06.001_bib50', 'doi-asserted-by': 'crossref', 'DOI': '10.1016/j.crphar.2021.100034', 'article-title': 'Prostate cancer: Therapeutic prospect with herbal medicine', 'volume': '2', 'author': 'Ghosh', 'year': '2021', 'journal-title': 'Curr Res Pharmacol Drug Discov'}], 'container-title': 'Animals and Zoonoses', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://api.elsevier.com/content/article/PII:S295024892400004X?httpAccept=text/xml', 'content-type': 'text/xml', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://api.elsevier.com/content/article/PII:S295024892400004X?httpAccept=text/plain', 'content-type': 'text/plain', 'content-version': 'vor', 'intended-application': 'text-mining'}], 'deposited': { 'date-parts': [[2024, 7, 8]], 'date-time': '2024-07-08T04:51:24Z', 'timestamp': 1720414284000}, 'score': 1, 'resource': {'primary': {'URL': 'https://linkinghub.elsevier.com/retrieve/pii/S295024892400004X'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2024, 7]]}, 'references-count': 50, 'alternative-id': ['S295024892400004X'], 'URL': 'http://dx.doi.org/10.1016/j.azn.2024.06.001', 'relation': {}, 'ISSN': ['2950-2489'], 'subject': [], 'container-title-short': 'Animals and Zoonoses', 'published': {'date-parts': [[2024, 7]]}, 'assertion': [ {'value': 'Elsevier', 'name': 'publisher', 'label': 'This article is maintained by'}, { 'value': 'Thermal shift assay (TSA)-based drug screening strategy for rapid discovery of ' 'inhibitors against the Nsp13 helicase of SARS-CoV-2', 'name': 'articletitle', 'label': 'Article Title'}, {'value': 'Animals and Zoonoses', 'name': 'journaltitle', 'label': 'Journal Title'}, { 'value': 'https://doi.org/10.1016/j.azn.2024.06.001', 'name': 'articlelink', 'label': 'CrossRef DOI link to publisher maintained version'}, {'value': 'article', 'name': 'content_type', 'label': 'Content Type'}, { 'value': '© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi ' 'Communications Co. Ltd.', 'name': 'copyright', 'label': 'Copyright'}]}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit