Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchCurcuminCurcumin (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

Potential Mechanism of Curcumin and Resveratrol against SARS-CoV-2

Wu et al., Research Square, doi:10.21203/rs.3.rs-2780614/v1
Apr 2023  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Curcumin for COVID-19
15th treatment shown to reduce risk in February 2021, now with p = 0.0000000096 from 27 studies.
No treatment is 100% effective. Protocols combine treatments.
5,200+ studies for 112 treatments. c19early.org
In Vitro study showing that curcumin and resveratrol inhibit SARS-CoV-2 infection through multiple mechanisms. Curcumin and resveratrol inhibit SARS-CoV-2 pseudovirus cell entry in HEK293-ACE2 cells with IC50 values of 18.02 μM and 8.76 μM, respectively. Combined treatment further reduces pseudovirus entry. Both compounds also inhibit activity of the SARS-CoV-2 3CL protease with IC50 values around 10-15 μM. Spike protein-induced cytokine storm is alleviated by curcumin or resveratrol through NFKB pathway inhibition in HEK293-ACE2 cells. Similarly, spike protein-mediated oxidative stress is reduced by the compounds via enhanced antioxidant system activity and ROS scavenging. Authors conclude that curcumin and resveratrol may help prevent and treat COVID-19 by inhibiting viral entry, replication, cytokine storm, and oxidative stress.
In Silico study showing potential benefits of curcumin in preventing severe COVID-19 manifestations by protecting mitochondria. Authors identified five mitochondrial dysfunction biomarkers (RECQL4, PYCR1, PIF1, POLQ, GLDC) associated with metabolic and immune dysregulation in severe COVID-19. Curcumin exhibited regulatory effects on these biomarkers and protected cells against SARS-CoV-2 spike protein-induced mitochondrial damage and oxidative stress. The study provides evidence for curcumin's ability to safeguard mitochondrial function, which may help prevent progression to severe disease.
51 preclinical studies support the efficacy of curcumin for COVID-19:
In Silico studies predict inhibition of SARS-CoV-2 with curcumin or metabolites via binding to the spikeA,1,2,7,12,14,20,23 (and specifically the receptor binding domainB,10,13,16), MproC,1,2,7,9,11-13,15,16,18,21,23,24,26,40, RNA-dependent RNA polymeraseD,1,2,13,22, PLproE,2, ACE2F,14,15,17, nucleocapsidG,8,25, nsp10H,25, and helicaseI,29 proteins. In Vitro studies demonstrate inhibition of the spikeA,34 (and specifically the receptor binding domainB,43), MproC,19,34,40,42, ACE2F,43, and TMPRSS2J,43 proteins, and inhibition of spike-ACE2 interactionK,27. In Vitro studies demonstrate efficacy in Calu-3L,41, A549M,34, 293TN,3, HEK293-hACE2O,19,32, 293T/hACE2/TMPRSS2P,33, Vero E6Q,9,13,23,32,34,36,37,39,41, and SH-SY5YR,31 cells. Curcumin is predicted to inhibit the interaction between the SARS-CoV-2 spike protein receptor binding domain and the human ACE2 receptor for the delta and omicron variants10, decreases pro-inflammatory cytokines induced by SARS-CoV-2 in peripheral blood mononuclear cells39, alleviates SARS-CoV-2 spike protein-induced mitochondrial membrane damage and oxidative stress3, may limit COVID-19 induced cardiac damage by inhibiting the NF-κB signaling pathway which mediates the profibrotic effects of the SARS-CoV-2 spike protein on cardiac fibroblasts28, and inhibits SARS-CoV-2 ORF3a ion channel activity, which contributes to viral pathogenicity and cytotoxicity35.
a. The trimeric spike (S) protein is a glycoprotein that mediates viral entry by binding to the host ACE2 receptor, is critical for SARS-CoV-2's ability to infect host cells, and is a target of neutralizing antibodies. Inhibition of the spike protein prevents viral attachment, halting infection at the earliest stage.
b. The receptor binding domain is a specific region of the spike protein that binds ACE2 and is a major target of neutralizing antibodies. Focusing on the precise binding site allows highly specific disruption of viral attachment with reduced potential for off-target effects.
c. The main protease or Mpro, also known as 3CLpro or nsp5, is a cysteine protease that cleaves viral polyproteins into functional units needed for replication. Inhibiting Mpro disrupts the SARS-CoV-2 lifecycle within the host cell, preventing the creation of new copies.
d. RNA-dependent RNA polymerase (RdRp), also called nsp12, is the core enzyme of the viral replicase-transcriptase complex that copies the positive-sense viral RNA genome into negative-sense templates for progeny RNA synthesis. Inhibiting RdRp blocks viral genome replication and transcription.
e. The papain-like protease (PLpro) has multiple functions including cleaving viral polyproteins and suppressing the host immune response by deubiquitination and deISGylation of host proteins. Inhibiting PLpro may block viral replication and help restore normal immune responses.
f. The angiotensin converting enzyme 2 (ACE2) protein is a host cell transmembrane protein that serves as the cellular receptor for the SARS-CoV-2 spike protein. ACE2 is expressed on many cell types, including epithelial cells in the lungs, and allows the virus to enter and infect host cells. Inhibition may affect ACE2's physiological function in blood pressure control.
g. The nucleocapsid (N) protein binds and encapsulates the viral genome by coating the viral RNA. N enables formation and release of infectious virions and plays additional roles in viral replication and pathogenesis. N is also an immunodominant antigen used in diagnostic assays.
h. Non-structural protein 10 (nsp10) serves as an RNA chaperone and stabilizes conformations of nsp12 and nsp14 in the replicase-transcriptase complex, which synthesizes new viral RNAs. Nsp10 disruption may destabilize replicase-transcriptase complex activity.
i. The helicase, or nsp13, protein unwinds the double-stranded viral RNA, a crucial step in replication and transcription. Inhibition may prevent viral genome replication and the creation of new virus components.
j. Transmembrane protease serine 2 (TMPRSS2) is a host cell protease that primes the spike protein, facilitating cellular entry. TMPRSS2 activity helps enable cleavage of the spike protein required for membrane fusion and virus entry. Inhibition may especially protect respiratory epithelial cells, buy may have physiological effects.
k. The interaction between the SARS-CoV-2 spike protein and the human ACE2 receptor is a primary method of viral entry, inhibiting this interaction can prevent the virus from attaching to and entering host cells, halting infection at an early stage.
l. Calu-3 is a human lung adenocarcinoma cell line with moderate ACE2 and TMPRSS2 expression and SARS-CoV-2 susceptibility. It provides a model of the human respiratory epithelium, but many not be ideal for modeling early stages of infection due to the moderate expression levels of ACE2 and TMPRSS2.
m. A549 is a human lung carcinoma cell line with low ACE2 expression and SARS-CoV-2 susceptibility. Viral entry/replication can be studied but the cells may not replicate all aspects of lung infection.
n. 293T is a human embryonic kidney cell line that can be engineered for high ACE2 expression and SARS-CoV-2 susceptibility. 293T cells are easily transfected and support high protein expression.
o. HEK293-hACE2 is a human embryonic kidney cell line with high ACE2 expression and SARS-CoV-2 susceptibility. Cells have been transfected with a plasmid to express the human ACE2 (hACE2) protein.
p. 293T/hACE2/TMPRSS2 is a human embryonic kidney cell line engineered for high ACE2 and TMPRSS2 expression, which mimics key aspects of human infection. 293T/hACE2/TMPRSS2 cells are very susceptible to SARS-CoV-2 infection.
q. Vero E6 is an African green monkey kidney cell line with low/no ACE2 expression and high SARS-CoV-2 susceptibility. The cell line is easy to maintain and supports robust viral replication, however the monkey origin may not accurately represent human responses.
r. SH-SY5Y is a human neuroblastoma cell line that exhibits neuronal phenotypes. It is commonly used as an in vitro model for studying neurotoxicity, neurodegenerative diseases, and neuronal differentiation.
Wu et al., 13 Apr 2023, preprint, 6 authors.
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
This PaperCurcuminAll
Potential Mechanism of Curcumin and Resveratrol against SARS-CoV-2
Wei Wu, Junxi Wu, Xuxu Ji, Ji Liu, Fuchang Geng
doi:10.21203/rs.3.rs-2780614/v1
Recently, World Health Organization predicted a near end of COVID-19 pandemic. However, the prediction should be interpreted cautiously. Due to SARS-CoV-2 continuous mutation-evolve, limited durability of infection-acquired protection in individuals with hybrid immunity, and the effects of long COVID-19 or Post-COVID-19 syndrome, COVID-19 may continue to be a worldwide threat. Alternative therapeutics are incorporated into some countries' health guidelines for COVID-19. Qiannan herbal, an ancient medical book of Yi Nationality in China, recorded that grapes and turmeric were often used to treat respiratory diseases. Curcumin and resveratrol are the primary bioactive compounds in turmeric and grapes, respectively. The clinical trials con rmed that curcumin or resveratrol supplementation could cause moderate or marked improvements in COVID-19 patients. Exploring the potential mechanisms is of great signi cance. This study found that curcumin and resveratrol could effectively inhibit SARS-CoV-23CLpro activity and spike protein-mediated cell entry. Curcumin and resveratrol could signi cantly alleviate spike protein-mediated cytokine storm via inhibiting over-activation of NFKB, and effectively ameliorate spike protein-mediated oxidative stress through scavenging ROS and enhancing function of antioxidation system. The combined treatment showed a better effect than alone treatment. Therefore, curcumin and resveratrol could inhibit SARS-CoV-23C-like proteinase activity and Spike protein-mediated cell entry, cytokine storm, and oxidative stress.
In conclusion, curcumin and resveratrol could inhibit SARS-CoV-2 3CLpro activity and spike proteinmediated cell entry, cytokine storm, and oxidative stress. The above conclusions are shown in Supplementary Fig. 5 . Our study provides a reference of nutrient supplementation for preventing and treating COVID-19. Methods Venn analysis and Enrichment analysis Firstly, COVID-19, curcumin, and resveratrol were separately input into Gene or Pubchem database at National Center for Biotechnology Information (NCBI) and ltered with Homo sapiens, and the gene sets were Cell culture and reagents Vero cells and HEK293T-hACE2 cells were obtained from the Laboratory of Biochemistry and Molecular Biology, Sichuan University. Cells were maintained in Dulbecco's Modi ed Eagle's Medium (DMEM) supplemented with 10% FBS and incubated at 37°C with 5% CO2. Fetal bovine serum (FBS), DMEM, and phosphate-buffered saline (PBS) were bought from Gibco (Grand Island, NY, USA). Pyrrolidinedithiocarbamate ammonium (PDTC), curcumin, and resveratrol were obtained from Solarbio. Ebselen was purchased from Beyotime. Cell viability assay Vero E6 cells were..
References
Adhikari, Banerjee, Baidya, Ghosh, Jha, Ligand-based quantitative structural assessments of SARS-CoV-2 3CLpro inhibitors: An analysis in light of structure-based multi-molecular modeling evidences, J Mol Struct, doi:10.1016/j.molstruc.2021.132041
Afroz, Fairuz, Joty, Uddin, Rahman, Virtual screening of functional foods and dissecting their roles in modulating gene functions to support post COVID-19 complications, J Food Biochem, doi:10.1111/jfbc.13961
Asadirad, Antiin ammatory potential of nano-curcumin as an alternative therapeutic agent for the treatment of mild-to-moderate hospitalized COVID-19 patients in a placebo-controlled clinical trial, Phytother Res, doi:10.1002/ptr.7375
Bahar, Singhrao, An evaluation of the molecular mode of action of trans-resveratrol in the Porphyromonas gingivalis lipopolysaccharide challenged neuronal cell model, Mol Biol Rep, doi:10.1007/s11033-020-06024-y
Bahun, Inhibition of the SARS-CoV-2 3CLpro main protease by plant polyphenols, Food Chem, doi:10.1016/j.foodchem.2021.131594
Barhoumi, SARS-CoV-2 Coronavirus Spike Protein-Induced Apoptosis, In ammatory, and Oxidative Stress Responses in THP-1-Like-Macrophages: Potential Role of Angiotensin-Converting Enzyme Inhibitor (Perindopril), Front Immunol, doi:10.3389/mmu.2021.728896
Barnes, SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies, Nature, doi:10.1038/s41586-020-2852-1
Bormann, Turmeric Root and Its Bioactive Ingredient Curcumin Effectively Neutralize SARS-CoV-2 In Vitro, Viruses, doi:10.3390/v13101914
Chernyak, Popova, Prikhodko, Grebenchikov, Zinovkina et al., COVID-19 and Oxidative Stress, Biochemistry (Mosc), doi:10.1134/S0006297920120068
Chittasupho, Manthaisong, Okonogi, Tadtong, Samee, Effects of Quercetin and Curcumin Combination on Antibacterial, Antioxidant, In Vitro Wound Healing and Migration of Human Dermal Fibroblast Cells, Int J Mol Sci, doi:10.3390/ijms23010142
Choudhury, Mukherjee, In silico studies on the comparative characterization of the interactions of SARS-CoV-2 spike glycoprotein with ACE-2 receptor homologs and human TLRs, J Med Virol, doi:10.1002/jmv.25987
Choudhury, Mukherjee, In silico studies on the comparative characterization of the interactions of SARS-CoV-2 spike glycoprotein with ACE-2 receptor homologs and human TLRs, J Med Virol, doi:10.1002/jmv.25987
Dai, Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease, Science, doi:10.1126/science.abb4489
De La Fuente, Hernanz, Vallejo, The immune system in the oxidative stress conditions of aging and hypertension: favorable effects of antioxidants and physical exercise, Antioxid Redox Signal, doi:10.1089/ars.2005.7.1356
Duan, Goh, Zhou, The impact of COVID-19 pandemic on construction safety in China and the U.S.: A comparative study, Saf Sci, doi:10.1016/j.ssci.2023.106076
Emirik, Potential therapeutic effect of turmeric contents against SARS-CoV-2 compared with experimental COVID-19 therapies: in silico study, J Biomol Struct Dyn, doi:10.1080/07391102.2020.1835719
Fuloria, Chemistry, Biosynthesis and Pharmacology of Viniferin: Potential Resveratrol-Derived Molecules for New Drug Discovery, Development and Therapy, Molecules, doi:10.3390/molecules27165072
Ganji, Protective Effects of Curcumin against Lipopolysaccharide-Induced Toxicity, Curr Med Chem, doi:10.2174/0929867328666210525124707
Hassaniazad, A triple-blind, placebo-controlled, randomized clinical trial to evaluate the effect of curcumin-containing nanomicelles on cellular immune responses subtypes and clinical outcome in COVID-19 patients, Phytother Res, doi:10.1002/ptr.7294
He, Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms, Pharmacol Res, doi:10.1016/j.phrs.2020.105224
Hoffmann, SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor, Cell, doi:10.1016/j.cell.2020.02.052
Huang, Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet, doi:10.1016/S0140-6736(20)30183-5
Joshi, Deepa, Sharma, Effect of Different Proportions of Phenolics on Antioxidant Potential: Pointers for Bioactive Synergy/Antagonism in Foods and Nutraceuticals, Proc Natl Acad Sci India Sect B Biol Sci, doi:10.1007/s40011-022-01396-6
Kadam, Sukhramani, Bishnoi, Pable, Barvkar, SARS-CoV-2, the pandemic coronavirus: Molecular and structural insights, J Basic Microbiol, doi:10.1002/jobm.202000537
Kishimoto, Newly Developed Highly Bioavailable Curcumin Formulation, curcuRougeTM, Reduces Neutrophil/Lymphocyte Ratio in the Elderly: A Double-Blind, Placebo-Controlled Clinical Trial, J Nutr Sci Vitaminol, doi:10.3177/jnsv.67.249
Kocaadam, Şanlier, Curcumin, an active component of turmeric (Curcuma longa), and its effects on health, Crit Rev Food Sci Nutr, doi:10.1080/10408398
Kumar, Repro ling of approved drugs against SARS-CoV-2 main protease: an in-silico study, J Biomol Struct Dyn, doi:10.1080/07391102.2020.1845976
Lauridsen, From oxidative stress to in ammation: redox balance and immune system, Poult Sci, doi:10.3382/ps/pey407
Lee, COVID-19 prevalence and mortality in patients with cancer and the effect of primary tumour subtype and patient demographics: a prospective cohort study, Lancet Oncol, doi:10.1016/S1470-2045(20)30442-3
Lelli, Sahebkar, Johnston, Pedone, Curcumin use in pulmonary diseases: State of the art and future perspectives, Pharmacol Res, doi:10.1016/j.phrs.2016.11
Lemmin, Kalbermatter, Harder, Plattet, Fotiadis, Structures and dynamics of the novel S1/S2 protease cleavage site loop of the SARS-CoV-2 spike glycoprotein, J Struct Biol X, doi:10.1016/j.yjsbx.2020.100038
Malafaia, Toxicological impact of SARS-CoV-2 on the health of the neotropical sh, Poecilia reticulata, Aquat Toxicol, doi:10.1016/j.aquatox.2022.106104
Marín-Palma, Curcumin Inhibits In Vitro SARS-CoV-2 Infection In Vero E6 Cells through Multiple Antiviral Mechanisms, Molecules, doi:10.3390/molecules26226900
Mccreary, Schnell, Randomized double-blind placebo-controlled proof-of-concept trial of resveratrol for outpatient treatment of mild coronavirus disease (COVID-19), Sci Rep, doi:10.1038/s41598-022-13920-9
Mp, COVID-19 infection and oxidative stress: an under-explored approach for prevention and treatment?, Pan Afr Med J, doi:10.11604/pamj.2020.35.2.22877
Mrityunjaya, Pavithra, Neelam, Janhavi, Halami et al., Immune-Boosting, Antioxidant and Anti-in ammatory Food Supplements Targeting Pathogenesis of COVID-19, Front Immunol, doi:10.3389/mmu.2020.570122
Nag, Banerjee, Paul, Kundu, Curcumin inhibits spike protein of new SARS-CoV-2 variant of concern (VOC) Omicron, an in silico study, Comput Biol Med, doi:10.1016/j.compbiomed.2022.105552
Parsamanesh, Resveratrol and endothelial function: A literature review, Pharmacol Res, doi:10.1016/j.phrs.2021.105725
Pasquereau, Resveratrol Inhibits HCoV-229E and SARS-CoV-2 Coronavirus Replication In Vitro, Viruses, doi:10.3390/v13020354
Perrella, Interference of Polydatin/Resveratrol in the ACE2:Spike Recognition during COVID-19 Infection. A Focus on Their Potential Mechanism of Action through Computational and Biochemical Assays, Biomolecules, doi:10.3390/biom11071048
Qin, Zhang, Zhang, Sun, Zhao et al., Anti-osteoporosis effects of osteoking via reducing reactive oxygen species, J Ethnopharmacol, doi:10.1016/j.jep.2019
Ramdani, Bachari, Potential therapeutic effects of Resveratrol against SARS-CoV-2, Acta Virol, doi:10.4149/av_2020_309
Ratajczak, Kucia, SARS-CoV-2 infection and overactivation of Nlrp3 in ammasome as a trigger of cytokine "storm" and risk factor for damage of hematopoietic stem cells, Leukemia, doi:10.1038/s41375-020-0887-9
Sallenave, Guillot, Innate Immune Signaling and Proteolytic Pathways in the Resolution or Exacerbation of SARS-CoV-2 in Covid-19: Key Therapeutic Targets?, Front Immunol, doi:10.3389/mmu.2020.01229
Sha E E, Effect of nanocurcumin supplementation on the severity of symptoms and length of hospital stay in patients with COVID-19: A randomized double-blind placebo-controlled trial, Phytother Res, doi:10.1002/ptr.7374
Sharma, Prateeksha, Singh, Singh, Rao et al., Nanocurcumin Potently Inhibits SARS-CoV-2 Spike Protein-Induced Cytokine Storm by Deactivation of MAPK/NF-κB Signaling in Epithelial Cells, ACS Appl Bio Mater, doi:10.1021/acsabm.1c00874
Singh, Prevalence of co-morbidities and their association with mortality in patients with COVID-19: A systematic review and meta-analysis, Diabetes Obes Metab, doi:10.1111/dom.14124
Stefan, Birkenfeld, Schulze, Global pandemics interconnected -obesity, impaired metabolic health and COVID-19, Nat Rev Endocrinol, doi:10.1038/s41574-020-00462-1
Sánchez, Insights for COVID-19 in 2023, Rev Esp Quimioter, doi:10.37201/req/122.2022
Valizadeh, Nano-curcumin therapy, a promising method in modulating in ammatory cytokines in COVID-19 patients, Int Immunopharmacol, doi:10.1016/j.intimp.2020.107088
Wang, Comparative analysis of the molecular mechanism of inhibiting proliferation and migration in cervical cancer HeLa cell by curcumin and resveratrol, Nat Prod Res, doi:10.1080/14786419.2022.2162517
Wrapp, Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation, doi:10.1101/2020.02.11.944462
Wu, Effect of the incremental protection of previous infection against Omicron infection among individuals with a hybrid of infection-and vaccine-induced immunity: a population-based cohort study in Canada, Int J Infect Dis, doi:10.1016/j.ijid.2022.11.028
Xia, Domains and Functions of Spike Protein in Sars-Cov-2 in the Context of Vaccine Design, Viruses, doi:10.3390/v13010109
Yadav, Role of Structural and Non-Structural Proteins and Therapeutic Targets of SARS-CoV-2 for COVID-19, Cells, doi:10.3390/cells10040821
Yao, Molecular Architecture of the SARS-CoV-2 Virus, Cell, doi:10.1016/j.cell.2020.09.018
Youn, Zhang, Wu, Cannesson, Cai, Therapeutic application of estrogen for COVID-19: Attenuation of SARS-CoV-2 spike protein and IL-6 stimulated, ACE2-dependent NOX2 activation, ROS production and MCP-1 upregulation in endothelial cells, Redox Biol, doi:10.1016/j.redox.2021.102099
Yu, SARS-CoV-2 spike engagement of ACE2 primes S2' site cleavage and fusion initiation, Proc Natl Acad Sci U S A, doi:10.1073/pnas.2111199119
Zhang, Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors, Science, doi:10.1126/science.abb3405
Zhang, Identi cation of Active Compounds From Yi Nationality Herbal Formula Wosi In uencing COX-2 and VCAM-1 Signaling, Front Pharmacol, doi:10.3389/fphar.2020.568585
Zhou, Effects and Mechanisms of Resveratrol on Aging and Age-Related Diseases, Oxid Med Cell Longev, doi:10.1155/2021/9932218
{ 'institution': [{'name': 'Research Square'}], 'indexed': {'date-parts': [[2023, 6, 29]], 'date-time': '2023-06-29T08:13:11Z', 'timestamp': 1688026391612}, 'posted': {'date-parts': [[2023, 4, 14]]}, 'group-title': 'In Review', 'reference-count': 62, 'publisher': 'Research Square Platform LLC', 'license': [ { 'start': { 'date-parts': [[2023, 4, 14]], 'date-time': '2023-04-14T00:00:00Z', 'timestamp': 1681430400000}, 'content-version': 'unspecified', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by/4.0/'}], 'content-domain': {'domain': [], 'crossmark-restriction': False}, 'accepted': {'date-parts': [[2023, 4, 5]]}, 'abstract': '<jats:title>Abstract</jats:title>\n' ' <jats:p>Recently, World Health Organization predicted a near end of COVID-19 ' 'pandemic. However, the prediction should be interpreted cautiously. Due to SARS-CoV-2 ' 'continuous mutation-evolve, limited durability of infection-acquired protection in ' 'individuals with hybrid immunity, and the effects of long COVID-19 or Post-COVID-19 syndrome, ' 'COVID-19 may continue to be a worldwide threat. Alternative therapeutics are incorporated ' 'into some countries’ health guidelines for COVID-19. Qiannan herbal, an ancient medical book ' 'of Yi Nationality in China, recorded that grapes and turmeric were often used to treat ' 'respiratory diseases. Curcumin and resveratrol are the primary bioactive compounds in ' 'turmeric and grapes, respectively. The clinical trials confirmed that curcumin or resveratrol ' 'supplementation could cause moderate or marked improvements in COVID-19 patients. Exploring ' 'the potential mechanisms is of great significance. This study found that curcumin and ' 'resveratrol could effectively inhibit SARS-CoV-23CLpro activity and spike protein-mediated ' 'cell entry. Curcumin and resveratrol could significantly alleviate spike protein-mediated ' 'cytokine storm via inhibiting over-activation of NFKB, and effectively ameliorate spike ' 'protein-mediated oxidative stress through scavenging ROS and enhancing function of ' 'antioxidation system. The combined treatment showed a better effect than alone treatment. ' 'Therefore, curcumin and resveratrol could inhibit SARS-CoV-23C-like proteinase activity and ' 'Spike protein-mediated cell entry, cytokine storm, and oxidative stress.</jats:p>', 'DOI': '10.21203/rs.3.rs-2780614/v1', 'type': 'posted-content', 'created': {'date-parts': [[2023, 4, 14]], 'date-time': '2023-04-14T13:37:06Z', 'timestamp': 1681479426000}, 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': 'Potential Mechanism of Curcumin and Resveratrol against SARS-CoV-2', 'prefix': '10.21203', 'author': [ { 'given': 'Wei', 'family': 'Wu', 'sequence': 'first', 'affiliation': [ { 'name': 'Liangshan Prefecture Integrated Traditional and Western Medicine ' 'Hospital'}]}, { 'given': 'Junxi', 'family': 'Wu', 'sequence': 'additional', 'affiliation': [{'name': 'Chengdu University of TCM'}]}, { 'given': 'Xuxu', 'family': 'Ji', 'sequence': 'additional', 'affiliation': [{'name': 'Sichuan University'}]}, { 'given': 'Ji', 'family': 'Liu', 'sequence': 'additional', 'affiliation': [{'name': 'Sichuan University'}]}, { 'given': 'Bin', 'family': 'Liu', 'sequence': 'additional', 'affiliation': [{'name': 'Good Doctor Pharmaceutical Group Co.Ltd'}]}, { 'given': 'Fuchang', 'family': 'Geng', 'sequence': 'additional', 'affiliation': [{'name': 'Good Doctor Pharmaceutical Group Co.Ltd'}]}], 'member': '8761', 'reference': [ { 'key': 'ref1', 'unstructured': 'https://www.who.int/emergencies/diseases/novel-coronavirus-2019.'}, { 'issue': '2', 'key': 'ref2', 'doi-asserted-by': 'publisher', 'first-page': '114', 'DOI': '10.37201/req/122.2022', 'article-title': 'Insights for COVID-19 in 2023', 'volume': '36', 'author': 'Martín Sánchez FJ', 'year': '2023', 'unstructured': 'Martín Sánchez FJ, et al. Insights for COVID-19 in 2023. Rev Esp ' 'Quimioter. 2023 Apr;36(2):114–124. doi: 10.37201/req/122.2022.', 'journal-title': 'Rev Esp Quimioter'}, { 'key': 'ref3', 'doi-asserted-by': 'publisher', 'first-page': '69', 'DOI': '10.1016/j.ijid.2022.11.028', 'article-title': 'Effect of the incremental protection of previous infection against ' 'Omicron infection among individuals with a hybrid of infection- and ' 'vaccine-induced immunity: a population-based cohort study in Canada', 'volume': '127', 'author': 'Wu S', 'unstructured': 'Wu S, et al. Effect of the incremental protection of previous infection ' 'against Omicron infection among individuals with a hybrid of infection- ' 'and vaccine-induced immunity: a population-based cohort study in Canada. ' 'Int J Infect Dis. 2023 Feb;127:69–76. doi: 10.1016/j.ijid.2022.11.028.', 'journal-title': 'Int J Infect Dis. 2023 Feb'}, { 'issue': '12', 'key': 'ref4', 'doi-asserted-by': 'publisher', 'first-page': 'e13961', 'DOI': '10.1111/jfbc.13961', 'article-title': 'Virtual screening of functional foods and dissecting their roles in ' 'modulating gene functions to support post COVID-19 complications', 'volume': '45', 'author': 'Afroz S', 'year': '2021', 'unstructured': 'Afroz S, Fairuz S, Joty JA, Uddin MN, Rahman MA. Virtual screening of ' 'functional foods and dissecting their roles in modulating gene functions ' 'to support post COVID-19 complications. J Food Biochem. 2021 ' 'Dec;45(12):e13961. doi: 10.1111/jfbc.13961.', 'journal-title': 'J Food Biochem.'}, { 'key': 'ref5', 'doi-asserted-by': 'publisher', 'first-page': '105224', 'DOI': '10.1016/j.phrs.2020.105224', 'article-title': 'Natural product derived phytochemicals in managing acute lung injury by ' 'multiple mechanisms', 'volume': '163', 'author': 'He YQ', 'unstructured': 'He YQ, et al. Natural product derived phytochemicals in managing acute ' 'lung injury by multiple mechanisms. Pharmacol Res. 2021 Jan;163:105224. ' 'doi: 10.1016/j.phrs.2020.105224.', 'journal-title': 'Pharmacol Res. 2021 Jan'}, { 'issue': '1', 'key': 'ref6', 'doi-asserted-by': 'publisher', 'first-page': '109', 'DOI': '10.3390/v13010109', 'article-title': 'Domains and Functions of Spike Protein in Sars-Cov-2 in the Context of ' 'Vaccine Design', 'volume': '14', 'author': 'Xia X', 'unstructured': 'Xia X. Domains and Functions of Spike Protein in Sars-Cov-2 in the ' 'Context of Vaccine Design. Viruses. 2021 Jan 14;13(1):109. doi: ' '10.3390/v13010109.', 'journal-title': 'Viruses. 2021 Jan'}, { 'issue': '10', 'key': 'ref7', 'doi-asserted-by': 'publisher', 'first-page': '2105', 'DOI': '10.1002/jmv.25987', 'article-title': 'In silico studies on the comparative characterization of the ' 'interactions of SARS-CoV-2 spike glycoprotein with ACE-2 receptor ' 'homologs and human TLRs', 'volume': '92', 'author': 'Choudhury A', 'year': '2020', 'unstructured': 'Choudhury A, Mukherjee S. In silico studies on the comparative ' 'characterization of the interactions of SARS-CoV-2 spike glycoprotein ' 'with ACE-2 receptor homologs and human TLRs. J Med Virol. 2020 ' 'Oct;92(10):2105–2113. doi: 10.1002/jmv.25987.', 'journal-title': 'J Med Virol.'}, { 'key': 'ref8', 'doi-asserted-by': 'publisher', 'first-page': '1229', 'DOI': '10.3389/fimmu.2020.01229', 'article-title': 'Innate Immune Signaling and Proteolytic Pathways in the Resolution or ' 'Exacerbation of SARS-CoV-2 in Covid-19: Key Therapeutic Targets? Front ' 'Immunol', 'volume': '28', 'author': 'Sallenave JM', 'unstructured': 'Sallenave JM, Guillot L. Innate Immune Signaling and Proteolytic ' 'Pathways in the Resolution or Exacerbation of SARS-CoV-2 in Covid-19: ' 'Key Therapeutic Targets? Front Immunol. 2020 May 28;11:1229. doi: ' '10.3389/fimmu.2020.01229.', 'journal-title': '2020 May'}, { 'issue': 'Suppl 2', 'key': 'ref9', 'doi-asserted-by': 'publisher', 'first-page': '12', 'DOI': '10.11604/pamj.2020.35.2.22877', 'article-title': 'COVID-19 infection and oxidative stress: an under-explored approach for ' 'prevention and treatment?', 'volume': '29', 'author': 'Ntyonga-Pono MP', 'unstructured': 'Ntyonga-Pono MP. COVID-19 infection and oxidative stress: an ' 'under-explored approach for prevention and treatment? Pan Afr Med J. ' '2020 Apr 29;35(Suppl 2):12. doi: 10.11604/pamj.2020.35.2.22877.', 'journal-title': 'Pan Afr Med J. 2020 Apr'}, { 'issue': '10', 'key': 'ref10', 'doi-asserted-by': 'publisher', 'first-page': '1309', 'DOI': '10.1016/S1470-2045(20)30442-3', 'article-title': 'COVID-19 prevalence and mortality in patients with cancer and the ' 'effect of primary tumour subtype and patient demographics: a ' 'prospective cohort study', 'volume': '21', 'author': 'Lee LYW', 'year': '2020', 'unstructured': 'Lee LYW, et al. COVID-19 prevalence and mortality in patients with ' 'cancer and the effect of primary tumour subtype and patient ' 'demographics: a prospective cohort study. Lancet Oncol. 2020 ' 'Oct;21(10):1309–1316. doi: 10.1016/S1470-2045(20)30442-3.', 'journal-title': 'Lancet Oncol'}, { 'issue': '3', 'key': 'ref11', 'doi-asserted-by': 'publisher', 'first-page': '135', 'DOI': '10.1038/s41574-020-00462-1', 'article-title': 'Global pandemics interconnected - obesity, impaired metabolic health ' 'and COVID-19', 'volume': '17', 'author': 'Stefan N', 'unstructured': 'Stefan N, Birkenfeld AL, Schulze MB. Global pandemics interconnected - ' 'obesity, impaired metabolic health and COVID-19. Nat Rev Endocrinol. ' '2021 Mar;17(3):135–149. doi: 10.1038/s41574-020-00462-1.', 'journal-title': 'Nat Rev Endocrinol. 2021'}, { 'issue': '10', 'key': 'ref12', 'doi-asserted-by': 'publisher', 'first-page': '1915', 'DOI': '10.1111/dom.14124', 'article-title': 'Prevalence of co-morbidities and their association with mortality in ' 'patients with COVID-19: A systematic review and meta-analysis', 'volume': '22', 'author': 'Singh AK', 'unstructured': 'Singh AK, et al. Prevalence of co-morbidities and their association with ' 'mortality in patients with COVID-19: A systematic review and ' 'meta-analysis. Diabetes Obes Metab. 2020 Oct;22(10):1915–1924. doi: ' '10.1111/dom.14124.', 'journal-title': 'Diabetes Obes Metab. 2020'}, { 'key': 'ref13', 'doi-asserted-by': 'publisher', 'author': 'Dai W', 'unstructured': 'Dai W, et al. Structure-based design of antiviral drug candidates ' 'targeting the SARS-CoV-2 main protease. Science. 2020 Jun ' '19;368(6497):1331–1335. doi: 10.1126/science.abb4489.', 'DOI': '10.1126/science.abb4489'}, { 'issue': '13', 'key': 'ref14', 'doi-asserted-by': 'publisher', 'first-page': '2889', 'DOI': '10.1080/10408398', 'article-title': 'Curcumin, an active component of turmeric (Curcuma longa), and its ' 'effects on health', 'volume': '2', 'author': 'Kocaadam B', 'year': '2017', 'unstructured': 'Kocaadam B, Şanlier N. Curcumin, an active component of turmeric ' '(Curcuma longa), and its effects on health. Crit Rev Food Sci Nutr. 2017 ' 'Sep 2;57(13):2889–2895. doi: 10.1080/10408398.', 'journal-title': 'Crit Rev Food Sci Nutr'}, { 'issue': '2', 'key': 'ref15', 'doi-asserted-by': 'publisher', 'first-page': '1023', 'DOI': '10.1002/ptr.7375', 'article-title': 'Antiinflammatory potential of nano-curcumin as an alternative ' 'therapeutic agent for the treatment of mild-to-moderate hospitalized ' 'COVID-19 patients in a placebo-controlled clinical trial', 'volume': '36', 'author': 'Asadirad A', 'unstructured': 'Asadirad A, et al. Antiinflammatory potential of nano-curcumin as an ' 'alternative therapeutic agent for the treatment of mild-to-moderate ' 'hospitalized COVID-19 patients in a placebo-controlled clinical trial. ' 'Phytother Res. 2022 Feb;36(2):1023–1031. doi: 10.1002/ptr.7375.', 'journal-title': 'Phytother Res. 2022'}, { 'issue': '4', 'key': 'ref16', 'doi-asserted-by': 'publisher', 'first-page': '249', 'DOI': '10.3177/jnsv.67.249', 'article-title': 'Newly Developed Highly Bioavailable Curcumin Formulation, curcuRougeTM, ' 'Reduces Neutrophil/Lymphocyte Ratio in the Elderly: A Double-Blind, ' 'Placebo-Controlled Clinical Trial', 'volume': '67', 'author': 'Kishimoto A', 'year': '2021', 'unstructured': 'Kishimoto A, et al. Newly Developed Highly Bioavailable Curcumin ' 'Formulation, curcuRougeTM, Reduces Neutrophil/Lymphocyte Ratio in the ' 'Elderly: A Double-Blind, Placebo-Controlled Clinical Trial. J Nutr Sci ' 'Vitaminol (Tokyo). 2021;67(4):249–252. doi: 10.3177/jnsv.67.249.', 'journal-title': 'J Nutr Sci Vitaminol (Tokyo)'}, { 'issue': '11', 'key': 'ref17', 'doi-asserted-by': 'publisher', 'first-page': '6417', 'DOI': '10.1002/ptr.7294', 'article-title': 'A triple-blind, placebo-controlled, randomized clinical trial to ' 'evaluate the effect of curcumin-containing nanomicelles on cellular ' 'immune responses subtypes and clinical outcome in COVID-19 patients', 'volume': '35', 'author': 'Hassaniazad M', 'unstructured': 'Hassaniazad M, et al. A triple-blind, placebo-controlled, randomized ' 'clinical trial to evaluate the effect of curcumin-containing ' 'nanomicelles on cellular immune responses subtypes and clinical outcome ' 'in COVID-19 patients. Phytother Res. 2021 Nov;35(11):6417–6427. doi: ' '10.1002/ptr.7294.', 'journal-title': 'Phytother Res. 2021'}, { 'issue': '2', 'key': 'ref18', 'doi-asserted-by': 'publisher', 'first-page': '1013', 'DOI': '10.1002/ptr.7374', 'article-title': 'Effect of nanocurcumin supplementation on the severity of symptoms and ' 'length of hospital stay in patients with COVID-19: A randomized ' 'double-blind placebo-controlled trial', 'volume': '36', 'author': 'Honarkar Shafie E', 'year': '2022', 'unstructured': 'Honarkar Shafie E, et al. Effect of nanocurcumin supplementation on the ' 'severity of symptoms and length of hospital stay in patients with ' 'COVID-19: A randomized double-blind placebo-controlled trial. Phytother ' 'Res. 2022 Feb;36(2):1013–1022. doi: 10.1002/ptr.7374.', 'journal-title': 'Phytother Res'}, { 'key': 'ref19', 'doi-asserted-by': 'publisher', 'author': 'Valizadeh H', 'year': '2020', 'unstructured': 'Valizadeh H, et al. Nano-curcumin therapy, a promising method in ' 'modulating inflammatory cytokines in COVID-19 patients. Int ' 'Immunopharmacol. 2020 Dec;89(Pt B):107088. doi: ' '10.1016/j.intimp.2020.107088.', 'DOI': '10.1016/j.intimp.2020.107088'}, { 'key': 'ref20', 'doi-asserted-by': 'publisher', 'author': 'Bormann M', 'unstructured': 'Bormann M, et al. Turmeric Root and Its Bioactive Ingredient Curcumin ' 'Effectively Neutralize SARS-CoV-2 In Vitro. Viruses. 2021 Sep ' '23;13(10):1914. doi: 10.3390/v13101914.', 'DOI': '10.3390/v13101914'}, { 'key': 'ref21', 'doi-asserted-by': 'publisher', 'first-page': '570122', 'DOI': '10.3389/fimmu.2020.570122', 'article-title': 'Immune-Boosting, Antioxidant and Anti-inflammatory Food Supplements ' 'Targeting Pathogenesis of COVID-19', 'volume': '7', 'author': 'Mrityunjaya M', 'unstructured': 'Mrityunjaya M, Pavithra V, Neelam R, Janhavi P, Halami PM, Ravindra PV. ' 'Immune-Boosting, Antioxidant and Anti-inflammatory Food Supplements ' 'Targeting Pathogenesis of COVID-19. Front Immunol. 2020 Oct 7;11:570122. ' 'doi: 10.3389/fimmu.2020.570122.', 'journal-title': 'Front Immunol. 2020 Oct'}, { 'issue': '22', 'key': 'ref22', 'doi-asserted-by': 'publisher', 'first-page': '6900', 'DOI': '10.3390/molecules26226900', 'article-title': 'Curcumin Inhibits In Vitro SARS-CoV-2 Infection In Vero E6 Cells ' 'through Multiple Antiviral Mechanisms', 'volume': '16', 'author': 'Marín-Palma D', 'unstructured': 'Marín-Palma D, et al. Curcumin Inhibits In Vitro SARS-CoV-2 Infection In ' 'Vero E6 Cells through Multiple Antiviral Mechanisms. Molecules. 2021 Nov ' '16;26(22):6900. doi: 10.3390/molecules26226900.', 'journal-title': 'Molecules. 2021 Nov'}, { 'key': 'ref23', 'doi-asserted-by': 'publisher', 'first-page': '9932218', 'DOI': '10.1155/2021/9932218', 'article-title': 'Effects and Mechanisms of Resveratrol on Aging and Age-Related Diseases', 'volume': '11;2021', 'author': 'Zhou DD', 'year': '2021', 'unstructured': 'Zhou DD, et al. Effects and Mechanisms of Resveratrol on Aging and ' 'Age-Related Diseases. Oxid Med Cell Longev. 2021 Jul 11;2021:9932218. ' 'doi: 10.1155/2021/9932218.', 'journal-title': 'Oxid Med Cell Longev'}, { 'issue': '1', 'key': 'ref24', 'doi-asserted-by': 'publisher', 'first-page': '10978', 'DOI': '10.1038/s41598-022-13920-9', 'article-title': 'Randomized double-blind placebo-controlled proof-of-concept trial of ' 'resveratrol for outpatient treatment of mild coronavirus disease ' '(COVID-19)', 'volume': '29', 'author': 'McCreary MR', 'unstructured': 'McCreary MR, Schnell PM, Rhoda DA. Randomized double-blind ' 'placebo-controlled proof-of-concept trial of resveratrol for outpatient ' 'treatment of mild coronavirus disease (COVID-19). Sci Rep. 2022 Jun ' '29;12(1):10978. doi: 10.1038/s41598-022-13920-9.', 'journal-title': 'Sci Rep. 2022 Jun'}, { 'key': 'ref25', 'doi-asserted-by': 'publisher', 'author': 'Pasquereau S', 'year': '2021', 'unstructured': 'Pasquereau S, et al. Resveratrol Inhibits HCoV-229E and SARS-CoV-2 ' 'Coronavirus Replication In Vitro. Viruses. 2021 Feb 23;13(2):354. doi: ' '10.3390/v13020354.', 'DOI': '10.3390/v13020354'}, { 'issue': '3', 'key': 'ref26', 'doi-asserted-by': 'publisher', 'first-page': '276', 'DOI': '10.4149/av_2020_309', 'article-title': 'Potential therapeutic effects of Resveratrol against SARS-CoV-2', 'volume': '64', 'author': 'Ramdani LH', 'year': '2020', 'unstructured': 'Ramdani LH, Bachari K. Potential therapeutic effects of Resveratrol ' 'against SARS-CoV-2. Acta Virol. 2020;64(3):276–280. doi: ' '10.4149/av_2020_309.', 'journal-title': 'Acta Virol'}, { 'issue': '4', 'key': 'ref27', 'doi-asserted-by': 'publisher', 'first-page': '939', 'DOI': '10.1007/s40011-022-01396-6', 'article-title': 'Effect of Different Proportions of Phenolics on Antioxidant Potential: ' 'Pointers for Bioactive Synergy/Antagonism in Foods and Nutraceuticals', 'volume': '92', 'author': 'Joshi T', 'year': '2022', 'unstructured': 'Joshi T, Deepa PR, Sharma PK. Effect of Different Proportions of ' 'Phenolics on Antioxidant Potential: Pointers for Bioactive ' 'Synergy/Antagonism in Foods and Nutraceuticals. Proc Natl Acad Sci India ' 'Sect B Biol Sci. 2022;92(4):939–946. doi: 10.1007/s40011-022-01396-6.', 'journal-title': 'Proc Natl Acad Sci India Sect B Biol Sci'}, { 'key': 'ref28', 'doi-asserted-by': 'publisher', 'first-page': '568585', 'DOI': '10.3389/fphar.2020.568585', 'article-title': 'Identification of Active Compounds From Yi Nationality Herbal Formula ' 'Wosi Influencing COX-2 and VCAM-1 Signaling', 'volume': '9', 'author': 'Zhang JZ', 'unstructured': 'Zhang JZ, et al. Identification of Active Compounds From Yi Nationality ' 'Herbal Formula Wosi Influencing COX-2 and VCAM-1 Signaling. Front ' 'Pharmacol. 2020 Nov 9;11:568585. doi: 10.3389/fphar.2020.568585.', 'journal-title': 'Front Pharmacol. 2020 Nov'}, { 'key': 'ref29', 'doi-asserted-by': 'publisher', 'first-page': '112045', 'DOI': '10.1016/j.jep.2019', 'article-title': 'Anti-osteoporosis effects of osteoking via reducing reactive oxygen ' 'species', 'volume': '15', 'author': 'Qin D', 'unstructured': 'Qin D, Zhang H, Zhang H, Sun T, Zhao H, Lee WH. Anti-osteoporosis ' 'effects of osteoking via reducing reactive oxygen species. J ' 'Ethnopharmacol. 2019 Nov 15;244:112045. doi: 10.1016/j.jep.2019.', 'journal-title': 'J Ethnopharmacol. 2019 Nov'}, { 'key': 'ref30', 'doi-asserted-by': 'publisher', 'first-page': '106076', 'DOI': '10.1016/j.ssci.2023.106076', 'article-title': 'The impact of COVID-19 pandemic on construction safety in China and the ' 'U.S.: A comparative study', 'volume': '161', 'author': 'Duan P', 'unstructured': 'Duan P, Goh YM, Zhou J. The impact of COVID-19 pandemic on construction ' 'safety in China and the U.S.: A comparative study. Saf Sci. 2023 ' 'May;161:106076. doi: 10.1016/j.ssci.2023.106076.', 'journal-title': 'Saf Sci. 2023 May'}, { 'key': 'ref31', 'doi-asserted-by': 'publisher', 'first-page': '1', 'DOI': '10.1080/14786419.2022.2162517', 'article-title': 'Comparative analysis of the molecular mechanism of inhibiting ' 'proliferation and migration in cervical cancer HeLa cell by curcumin ' 'and resveratrol', 'volume': '4', 'author': 'Wang P', 'unstructured': 'Wang P, et al. Comparative analysis of the molecular mechanism of ' 'inhibiting proliferation and migration in cervical cancer HeLa cell by ' 'curcumin and resveratrol. Nat Prod Res. 2023 Jan 4:1–6. doi: ' '10.1080/14786419.2022.2162517.', 'journal-title': 'Nat Prod Res. 2023 Jan'}, { 'issue': '5', 'key': 'ref32', 'doi-asserted-by': 'publisher', 'first-page': '2024', 'DOI': '10.1080/07391102.2020.1835719', 'article-title': 'Potential therapeutic effect of turmeric contents against SARS-CoV-2 ' 'compared with experimental COVID-19 therapies: in silico study', 'volume': '40', 'author': 'Emirik M', 'year': '2022', 'unstructured': 'Emirik M. Potential therapeutic effect of turmeric contents against ' 'SARS-CoV-2 compared with experimental COVID-19 therapies: in silico ' 'study. J Biomol Struct Dyn. 2022 Mar;40(5):2024–2037. doi: ' '10.1080/07391102.2020.1835719.', 'journal-title': 'J Biomol Struct Dyn'}, { 'key': 'ref33', 'doi-asserted-by': 'publisher', 'author': 'Fuloria S', 'unstructured': 'Fuloria S, et al. Chemistry, Biosynthesis and Pharmacology of Viniferin: ' 'Potential Resveratrol-Derived Molecules for New Drug Discovery, ' 'Development and Therapy. Molecules. 2022 Aug 9;27(16):5072. doi: ' '10.3390/molecules27165072.', 'DOI': '10.3390/molecules27165072'}, { 'key': 'ref34', 'doi-asserted-by': 'publisher', 'first-page': '100038', 'DOI': '10.1016/j.yjsbx.2020.100038', 'article-title': 'Structures and dynamics of the novel S1/S2 protease cleavage site loop ' 'of the SARS-CoV-2 spike glycoprotein', 'volume': '4', 'author': 'Lemmin T', 'year': '2020', 'unstructured': 'Lemmin T, Kalbermatter D, Harder D, Plattet P, Fotiadis D. Structures ' 'and dynamics of the novel S1/S2 protease cleavage site loop of the ' 'SARS-CoV-2 spike glycoprotein. J Struct Biol X. 2020;4:100038. doi: ' '10.1016/j.yjsbx.2020.100038.', 'journal-title': 'J Struct Biol X'}, { 'key': 'ref35', 'doi-asserted-by': 'publisher', 'article-title': 'Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation. ' 'bioRxiv [Preprint]. 2020 Feb 15:2020.02.11.944462', 'author': 'Wrapp D', 'unstructured': 'Wrapp D, et al. Cryo-EM Structure of the 2019-nCoV Spike in the ' 'Prefusion Conformation. bioRxiv [Preprint]. 2020 Feb ' '15:2020.02.11.944462. doi: 10.1101/2020.02.11.944462.', 'DOI': '10.1101/2020.02.11.944462'}, { 'key': 'ref36', 'doi-asserted-by': 'publisher', 'author': 'Yao H', 'year': '2020', 'unstructured': 'Yao H, et al. Molecular Architecture of the SARS-CoV-2 Virus. Cell. 2020 ' 'Oct 29;183(3):730–738.e13. doi: 10.1016/j.cell.2020.09.018.', 'DOI': '10.1016/j.cell.2020.09.018'}, { 'key': 'ref37', 'doi-asserted-by': 'publisher', 'author': 'Hoffmann M', 'unstructured': 'Hoffmann M, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and ' 'Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020 Apr ' '16;181(2):271–280.e8. doi: 10.1016/j.cell.2020.02.052.', 'DOI': '10.1016/j.cell.2020.02.052'}, { 'issue': '3', 'key': 'ref38', 'doi-asserted-by': 'publisher', 'first-page': '180', 'DOI': '10.1002/jobm.202000537', 'article-title': 'SARS-CoV-2, the pandemic coronavirus: Molecular and structural insights', 'volume': '61', 'author': 'Kadam SB', 'unstructured': 'Kadam SB, Sukhramani GS, Bishnoi P, Pable AA, Barvkar VT. SARS-CoV-2, ' 'the pandemic coronavirus: Molecular and structural insights. J Basic ' 'Microbiol. 2021 Mar;61(3):180–202. doi: 10.1002/jobm.202000537.', 'journal-title': 'J Basic Microbiol. 2021'}, { 'issue': '1', 'key': 'ref39', 'doi-asserted-by': 'publisher', 'first-page': 'e2111199119', 'DOI': '10.1073/pnas.2111199119', 'article-title': "SARS-CoV-2 spike engagement of ACE2 primes S2' site cleavage and fusion " 'initiation', 'volume': '4', 'author': 'Yu S', 'unstructured': "Yu S, et al. SARS-CoV-2 spike engagement of ACE2 primes S2' site " 'cleavage and fusion initiation. Proc Natl Acad Sci U S A. 2022 Jan ' '4;119(1):e2111199119. doi: 10.1073/pnas.2111199119.', 'journal-title': 'Proc Natl Acad Sci U S A. 2022 Jan'}, { 'issue': '7839', 'key': 'ref40', 'doi-asserted-by': 'publisher', 'first-page': '682', 'DOI': '10.1038/s41586-020-2852-1', 'article-title': 'SARS-CoV-2 neutralizing antibody structures inform therapeutic ' 'strategies', 'volume': '588', 'author': 'Barnes CO', 'unstructured': 'Barnes CO, et al. SARS-CoV-2 neutralizing antibody structures inform ' 'therapeutic strategies. Nature. 2020 Dec;588(7839):682–687. doi: ' '10.1038/s41586-020-2852-1.', 'journal-title': 'Nature. 2020 Dec'}, { 'key': 'ref41', 'doi-asserted-by': 'publisher', 'first-page': '105552', 'DOI': '10.1016/j.compbiomed.2022.105552', 'article-title': 'Curcumin inhibits spike protein of new SARS-CoV-2 variant of concern ' '(VOC) Omicron, an in silico study', 'volume': '146', 'author': 'Nag A', 'year': '2022', 'unstructured': 'Nag A, Banerjee R, Paul S, Kundu R. Curcumin inhibits spike protein of ' 'new SARS-CoV-2 variant of concern (VOC) Omicron, an in silico study. ' 'Comput Biol Med. 2022 Jul;146:105552. doi: ' '10.1016/j.compbiomed.2022.105552.', 'journal-title': 'Comput Biol Med'}, { 'issue': '7', 'key': 'ref42', 'doi-asserted-by': 'publisher', 'first-page': '1048', 'DOI': '10.3390/biom11071048', 'article-title': 'Interference of Polydatin/Resveratrol in the ACE2:Spike Recognition ' 'during COVID-19 Infection. A Focus on Their Potential Mechanism of ' 'Action through Computational and Biochemical Assays', 'volume': '16', 'author': 'Perrella F', 'unstructured': 'Perrella F, et al. Interference of Polydatin/Resveratrol in the ' 'ACE2:Spike Recognition during COVID-19 Infection. A Focus on Their ' 'Potential Mechanism of Action through Computational and Biochemical ' 'Assays. Biomolecules. 2021 Jul 16;11(7):1048. doi: 10.3390/biom11071048.', 'journal-title': 'Biomolecules. 2021 Jul'}, { 'key': 'ref43', 'doi-asserted-by': 'publisher', 'author': 'Yadav R', 'year': '2021', 'unstructured': 'Yadav R, et al. Role of Structural and Non-Structural Proteins and ' 'Therapeutic Targets of SARS-CoV-2 for COVID-19. Cells. 2021 Apr ' '6;10(4):821. doi: 10.3390/cells10040821.', 'DOI': '10.3390/cells10040821'}, { 'issue': '7', 'key': 'ref44', 'doi-asserted-by': 'publisher', 'first-page': '3170', 'DOI': '10.1080/07391102.2020.1845976', 'article-title': 'Reprofiling of approved drugs against SARS-CoV-2 main protease: an ' 'in-silico study', 'volume': '40', 'author': 'Kumar P', 'year': '2022', 'unstructured': 'Kumar P, et al. Reprofiling of approved drugs against SARS-CoV-2 main ' 'protease: an in-silico study. J Biomol Struct Dyn. 2022 ' 'Apr;40(7):3170–3184. doi: 10.1080/07391102.2020.1845976.', 'journal-title': 'J Biomol Struct Dyn'}, { 'issue': '6489', 'key': 'ref45', 'doi-asserted-by': 'publisher', 'first-page': '409', 'DOI': '10.1126/science.abb3405', 'article-title': 'Crystal structure of SARS-CoV-2 main protease provides a basis for ' 'design of improved α-ketoamide inhibitors', 'volume': '24', 'author': 'Zhang L', 'unstructured': 'Zhang L, et al. Crystal structure of SARS-CoV-2 main protease provides a ' 'basis for design of improved α-ketoamide inhibitors. Science. 2020 Apr ' '24;368(6489):409–412. doi: 10.1126/science.abb3405.', 'journal-title': 'Science. 2020 Apr'}, { 'key': 'ref46', 'doi-asserted-by': 'publisher', 'first-page': '132041', 'DOI': '10.1016/j.molstruc.2021.132041', 'article-title': 'Ligand-based quantitative structural assessments of SARS-CoV-2 3CLpro ' 'inhibitors: An analysis in light of structure-based multi-molecular ' 'modeling evidences', 'volume': '5', 'author': 'Adhikari N', 'unstructured': 'Adhikari N, Banerjee S, Baidya SK, Ghosh B, Jha T. Ligand-based ' 'quantitative structural assessments of SARS-CoV-2 3CLpro inhibitors: An ' 'analysis in light of structure-based multi-molecular modeling evidences. ' 'J Mol Struct. 2022 Mar 5;1251:132041. doi: ' '10.1016/j.molstruc.2021.132041.', 'journal-title': 'J Mol Struct. 2022 Mar'}, { 'key': 'ref47', 'doi-asserted-by': 'publisher', 'author': 'Bahun M', 'unstructured': 'Bahun M, et al. Inhibition of the SARS-CoV-2 3CLpro main protease by ' 'plant polyphenols. Food Chem. 2022 Mar 30;373(Pt B):131594. doi: ' '10.1016/j.foodchem.2021.131594.', 'DOI': '10.1016/j.foodchem.2021.131594'}, { 'key': 'ref48', 'doi-asserted-by': 'publisher', 'author': 'Sharma VK', 'unstructured': 'Sharma VK, Prateeksha, Singh SP, Singh BN, Rao CV, Barik SK. ' 'Nanocurcumin Potently Inhibits SARS-CoV-2 Spike Protein-Induced Cytokine ' 'Storm by Deactivation of MAPK/NF-κB Signaling in Epithelial Cells. ACS ' 'Appl Bio Mater. 2022 Feb 21;5(2):483–491. doi: 10.1021/acsabm.1c00874.', 'DOI': '10.1021/acsabm.1c00874'}, { 'issue': '10', 'key': 'ref49', 'doi-asserted-by': 'publisher', 'first-page': '2105', 'DOI': '10.1002/jmv.25987', 'article-title': 'In silico studies on the comparative characterization of the ' 'interactions of SARS-CoV-2 spike glycoprotein with ACE-2 receptor ' 'homologs and human TLRs', 'volume': '92', 'author': 'Choudhury A', 'unstructured': 'Choudhury A, Mukherjee S. In silico studies on the comparative ' 'characterization of the interactions of SARS-CoV-2 spike glycoprotein ' 'with ACE-2 receptor homologs and human TLRs. J Med Virol. 2020 ' 'Oct;92(10):2105–2113. doi: 10.1002/jmv.25987.', 'journal-title': 'J Med Virol. 2020 Oct'}, { 'issue': '7', 'key': 'ref50', 'doi-asserted-by': 'publisher', 'first-page': '1726', 'DOI': '10.1038/s41375-020-0887-9', 'article-title': 'SARS-CoV-2 infection and overactivation of Nlrp3 inflammasome as a ' 'trigger of cytokine "storm" and risk factor for damage of hematopoietic ' 'stem cells', 'volume': '34', 'author': 'Ratajczak MZ', 'unstructured': 'Ratajczak MZ, Kucia M. SARS-CoV-2 infection and overactivation of Nlrp3 ' 'inflammasome as a trigger of cytokine "storm" and risk factor for damage ' 'of hematopoietic stem cells. Leukemia. 2020 Jul;34(7):1726–1729. doi: ' '10.1038/s41375-020-0887-9.', 'journal-title': 'Leukemia. 2020 Jul'}, { 'issue': '10223', 'key': 'ref51', 'doi-asserted-by': 'publisher', 'first-page': '497', 'DOI': '10.1016/S0140-6736(20)30183-5', 'article-title': 'Clinical features of patients infected with 2019 novel coronavirus in ' 'Wuhan, China', 'volume': '15', 'author': 'Huang C', 'year': '2020', 'unstructured': 'Huang C, et al. Clinical features of patients infected with 2019 novel ' 'coronavirus in Wuhan, China. Lancet. 2020 Feb 15;395(10223):497–506. ' 'doi: 10.1016/S0140-6736(20)30183-5.', 'journal-title': 'Lancet'}, { 'key': 'ref52', 'doi-asserted-by': 'publisher', 'first-page': '133', 'DOI': '10.1016/j.phrs.2016.11', 'article-title': 'Curcumin use in pulmonary diseases: State of the art and future ' 'perspectives', 'volume': '115', 'author': 'Lelli D', 'unstructured': 'Lelli D, Sahebkar A, Johnston TP, Pedone C. Curcumin use in pulmonary ' 'diseases: State of the art and future perspectives. Pharmacol Res. 2017 ' 'Jan;115:133–148. doi: 10.1016/j.phrs.2016.11.', 'journal-title': 'Pharmacol Res. 2017 Jan'}, { 'key': 'ref53', 'doi-asserted-by': 'publisher', 'first-page': '105725', 'DOI': '10.1016/j.phrs.2021.105725', 'article-title': 'Resveratrol and endothelial function: A literature review', 'volume': '170', 'author': 'Parsamanesh N', 'unstructured': 'Parsamanesh N, et al. Resveratrol and endothelial function: A literature ' 'review. Pharmacol Res. 2021 Aug;170:105725. doi: ' '10.1016/j.phrs.2021.105725.', 'journal-title': 'Pharmacol Res. 2021'}, { 'issue': '33', 'key': 'ref54', 'doi-asserted-by': 'publisher', 'first-page': '6915', 'DOI': '10.2174/0929867328666210525124707', 'article-title': 'Protective Effects of Curcumin against Lipopolysaccharide-Induced ' 'Toxicity', 'volume': '25', 'author': 'Ganji A', 'unstructured': 'Ganji A, et al. Protective Effects of Curcumin against ' 'Lipopolysaccharide-Induced Toxicity. Curr Med Chem. 2021 Oct ' '25;28(33):6915–6930. doi: 10.2174/0929867328666210525124707.', 'journal-title': 'Curr Med Chem. 2021 Oct'}, { 'issue': '1', 'key': 'ref55', 'doi-asserted-by': 'publisher', 'first-page': '147', 'DOI': '10.1007/s11033-020-06024-y', 'article-title': 'An evaluation of the molecular mode of action of trans-resveratrol in ' 'the Porphyromonas gingivalis lipopolysaccharide challenged neuronal ' 'cell model', 'volume': '48', 'author': 'Bahar B', 'year': '2021', 'unstructured': 'Bahar B, Singhrao SK. An evaluation of the molecular mode of action of ' 'trans-resveratrol in the Porphyromonas gingivalis lipopolysaccharide ' 'challenged neuronal cell model. Mol Biol Rep. 2021 Jan;48(1):147–156. ' 'doi: 10.1007/s11033-020-06024-y.', 'journal-title': 'Mol Biol Rep.'}, { 'key': 'ref56', 'doi-asserted-by': 'publisher', 'first-page': '728896', 'DOI': '10.3389/fimmu.2021.728896', 'article-title': 'SARS-CoV-2 Coronavirus Spike Protein-Induced Apoptosis, Inflammatory, ' 'and Oxidative Stress Responses in THP-1-Like-Macrophages: Potential ' 'Role of Angiotensin-Converting Enzyme Inhibitor (Perindopril)', 'volume': '20', 'author': 'Barhoumi T', 'year': '2021', 'unstructured': 'Barhoumi T, et al. SARS-CoV-2 Coronavirus Spike Protein-Induced ' 'Apoptosis, Inflammatory, and Oxidative Stress Responses in ' 'THP-1-Like-Macrophages: Potential Role of Angiotensin-Converting Enzyme ' 'Inhibitor (Perindopril). Front Immunol. 2021 Sep 20;12:728896. doi: ' '10.3389/fimmu.2021.728896.', 'journal-title': 'Front Immunol'}, { 'key': 'ref57', 'doi-asserted-by': 'publisher', 'author': 'Lauridsen C', 'unstructured': 'Lauridsen C. From oxidative stress to inflammation: redox balance and ' 'immune system. Poult Sci. 2019 Oct 1;98(10):4240–4246. doi: ' '10.3382/ps/pey407.', 'DOI': '10.3382/ps/pey407'}, { 'key': 'ref58', 'doi-asserted-by': 'publisher', 'author': 'Fuente M', 'unstructured': 'De la Fuente M, Hernanz A, Vallejo MC. The immune system in the ' 'oxidative stress conditions of aging and hypertension: favorable effects ' 'of antioxidants and physical exercise. Antioxid Redox Signal. 2005 ' 'Sep-Oct;7(9–10):1356-66. doi: 10.1089/ars.2005.7.1356. PMID: 16115041.', 'DOI': '10.1089/ars.2005.7.1356'}, { 'key': 'ref59', 'doi-asserted-by': 'publisher', 'first-page': '102099', 'DOI': '10.1016/j.redox.2021.102099', 'article-title': 'Therapeutic application of estrogen for COVID-19: Attenuation of ' 'SARS-CoV-2 spike protein and IL-6 stimulated, ACE2-dependent NOX2 ' 'activation, ROS production and MCP-1 upregulation in endothelial cells', 'volume': '46', 'author': 'Youn JY', 'unstructured': 'Youn JY, Zhang Y, Wu Y, Cannesson M, Cai H. Therapeutic application of ' 'estrogen for COVID-19: Attenuation of SARS-CoV-2 spike protein and IL-6 ' 'stimulated, ACE2-dependent NOX2 activation, ROS production and MCP-1 ' 'upregulation in endothelial cells. Redox Biol. 2021 Oct;46:102099. doi: ' '10.1016/j.redox.2021.102099.', 'journal-title': 'Redox Biol. 2021 Oct'}, { 'key': 'ref60', 'doi-asserted-by': 'publisher', 'first-page': '106104', 'DOI': '10.1016/j.aquatox.2022.106104', 'article-title': 'Toxicological impact of SARS-CoV-2 on the health of the neotropical ' 'fish, Poecilia reticulata', 'volume': '245', 'author': 'Malafaia G', 'year': '2022', 'unstructured': 'Malafaia G, et al. Toxicological impact of SARS-CoV-2 on the health of ' 'the neotropical fish, Poecilia reticulata. Aquat Toxicol. 2022 ' 'Apr;245:106104. doi: 10.1016/j.aquatox.2022.106104.', 'journal-title': 'Aquat Toxicol'}, { 'issue': '12', 'key': 'ref61', 'doi-asserted-by': 'publisher', 'first-page': '1543', 'DOI': '10.1134/S0006297920120068', 'article-title': 'COVID-19 and Oxidative Stress. Biochemistry (Mosc)', 'volume': '85', 'author': 'Chernyak BV', 'year': '2020', 'unstructured': 'Chernyak BV, Popova EN, Prikhodko AS, Grebenchikov OA, Zinovkina LA, ' 'Zinovkin RA. COVID-19 and Oxidative Stress. Biochemistry (Mosc). 2020 ' 'Dec;85(12):1543–1553. doi: 10.1134/S0006297920120068.'}, { 'key': 'ref62', 'doi-asserted-by': 'publisher', 'author': 'Chittasupho C', 'unstructured': 'Chittasupho C, Manthaisong A, Okonogi S, Tadtong S, Samee W. Effects of ' 'Quercetin and Curcumin Combination on Antibacterial, Antioxidant, In ' 'Vitro Wound Healing and Migration of Human Dermal Fibroblast Cells. Int ' 'J Mol Sci. 2021 Dec 23;23(1):142. doi: 10.3390/ijms23010142.', 'DOI': '10.3390/ijms23010142'}], 'container-title': [], 'original-title': [], 'link': [ { 'URL': 'https://www.researchsquare.com/article/rs-2780614/v1', 'content-type': 'text/html', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://www.researchsquare.com/article/rs-2780614/v1.html', 'content-type': 'unspecified', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2023, 6, 29]], 'date-time': '2023-06-29T07:30:01Z', 'timestamp': 1688023801000}, 'score': 1, 'resource': {'primary': {'URL': 'https://www.researchsquare.com/article/rs-2780614/v1'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2023, 4, 14]]}, 'references-count': 62, 'URL': 'http://dx.doi.org/10.21203/rs.3.rs-2780614/v1', 'relation': {}, 'published': {'date-parts': [[2023, 4, 14]]}, 'subtype': 'preprint'}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit