Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchCurcuminCurcumin (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

Turmeric Root and Its Bioactive Ingredient Curcumin Effectively Neutralize SARS-CoV-2 In Vitro

Bormann et al., Viruses, doi:10.3390/v13101914
Sep 2021  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Curcumin for COVID-19
15th treatment shown to reduce risk in February 2021, now with p = 0.0000000096 from 27 studies.
No treatment is 100% effective. Protocols combine treatments.
5,100+ studies for 112 treatments. c19early.org
In Vitro study showing curcumin neutralizes SARS-CoV2 in vitro with low subtoxic concentrations. Authors note that the clinical use of curcumin is hindered by poor bioavailability, and recommend using methods to increase bioavailability such as nanoparticles, liposomes, micelles, or adjuvants (e.g., piperine).
51 preclinical studies support the efficacy of curcumin for COVID-19:
In Silico studies predict inhibition of SARS-CoV-2 with curcumin or metabolites via binding to the spikeA,2,7,12,14,20,23,44 (and specifically the receptor binding domainB,10,13,16), MproC,2,7,9,11-13,15,16,18,21,23,24,26,40,44, RNA-dependent RNA polymeraseD,2,13,22,44, PLproE,2, ACE2F,14,15,17, nucleocapsidG,8,25, nsp10H,25, and helicaseI,29 proteins. In Vitro studies demonstrate inhibition of the spikeA,34 (and specifically the receptor binding domainB,43), MproC,19,34,40,42, ACE2F,43, and TMPRSS2J,43 proteins, and inhibition of spike-ACE2 interactionK,27. In Vitro studies demonstrate efficacy in Calu-3L,41, A549M,34, 293TN,3, HEK293-hACE2O,19,32, 293T/hACE2/TMPRSS2P,33, Vero E6Q,9,13,23,32,34,36,37,39,41, and SH-SY5YR,31 cells. Curcumin is predicted to inhibit the interaction between the SARS-CoV-2 spike protein receptor binding domain and the human ACE2 receptor for the delta and omicron variants10, decreases pro-inflammatory cytokines induced by SARS-CoV-2 in peripheral blood mononuclear cells39, alleviates SARS-CoV-2 spike protein-induced mitochondrial membrane damage and oxidative stress3, may limit COVID-19 induced cardiac damage by inhibiting the NF-κB signaling pathway which mediates the profibrotic effects of the SARS-CoV-2 spike protein on cardiac fibroblasts45, and inhibits SARS-CoV-2 ORF3a ion channel activity, which contributes to viral pathogenicity and cytotoxicity35.
a. The trimeric spike (S) protein is a glycoprotein that mediates viral entry by binding to the host ACE2 receptor, is critical for SARS-CoV-2's ability to infect host cells, and is a target of neutralizing antibodies. Inhibition of the spike protein prevents viral attachment, halting infection at the earliest stage.
b. The receptor binding domain is a specific region of the spike protein that binds ACE2 and is a major target of neutralizing antibodies. Focusing on the precise binding site allows highly specific disruption of viral attachment with reduced potential for off-target effects.
c. The main protease or Mpro, also known as 3CLpro or nsp5, is a cysteine protease that cleaves viral polyproteins into functional units needed for replication. Inhibiting Mpro disrupts the SARS-CoV-2 lifecycle within the host cell, preventing the creation of new copies.
d. RNA-dependent RNA polymerase (RdRp), also called nsp12, is the core enzyme of the viral replicase-transcriptase complex that copies the positive-sense viral RNA genome into negative-sense templates for progeny RNA synthesis. Inhibiting RdRp blocks viral genome replication and transcription.
e. The papain-like protease (PLpro) has multiple functions including cleaving viral polyproteins and suppressing the host immune response by deubiquitination and deISGylation of host proteins. Inhibiting PLpro may block viral replication and help restore normal immune responses.
f. The angiotensin converting enzyme 2 (ACE2) protein is a host cell transmembrane protein that serves as the cellular receptor for the SARS-CoV-2 spike protein. ACE2 is expressed on many cell types, including epithelial cells in the lungs, and allows the virus to enter and infect host cells. Inhibition may affect ACE2's physiological function in blood pressure control.
g. The nucleocapsid (N) protein binds and encapsulates the viral genome by coating the viral RNA. N enables formation and release of infectious virions and plays additional roles in viral replication and pathogenesis. N is also an immunodominant antigen used in diagnostic assays.
h. Non-structural protein 10 (nsp10) serves as an RNA chaperone and stabilizes conformations of nsp12 and nsp14 in the replicase-transcriptase complex, which synthesizes new viral RNAs. Nsp10 disruption may destabilize replicase-transcriptase complex activity.
i. The helicase, or nsp13, protein unwinds the double-stranded viral RNA, a crucial step in replication and transcription. Inhibition may prevent viral genome replication and the creation of new virus components.
j. Transmembrane protease serine 2 (TMPRSS2) is a host cell protease that primes the spike protein, facilitating cellular entry. TMPRSS2 activity helps enable cleavage of the spike protein required for membrane fusion and virus entry. Inhibition may especially protect respiratory epithelial cells, buy may have physiological effects.
k. The interaction between the SARS-CoV-2 spike protein and the human ACE2 receptor is a primary method of viral entry, inhibiting this interaction can prevent the virus from attaching to and entering host cells, halting infection at an early stage.
l. Calu-3 is a human lung adenocarcinoma cell line with moderate ACE2 and TMPRSS2 expression and SARS-CoV-2 susceptibility. It provides a model of the human respiratory epithelium, but many not be ideal for modeling early stages of infection due to the moderate expression levels of ACE2 and TMPRSS2.
m. A549 is a human lung carcinoma cell line with low ACE2 expression and SARS-CoV-2 susceptibility. Viral entry/replication can be studied but the cells may not replicate all aspects of lung infection.
n. 293T is a human embryonic kidney cell line that can be engineered for high ACE2 expression and SARS-CoV-2 susceptibility. 293T cells are easily transfected and support high protein expression.
o. HEK293-hACE2 is a human embryonic kidney cell line with high ACE2 expression and SARS-CoV-2 susceptibility. Cells have been transfected with a plasmid to express the human ACE2 (hACE2) protein.
p. 293T/hACE2/TMPRSS2 is a human embryonic kidney cell line engineered for high ACE2 and TMPRSS2 expression, which mimics key aspects of human infection. 293T/hACE2/TMPRSS2 cells are very susceptible to SARS-CoV-2 infection.
q. Vero E6 is an African green monkey kidney cell line with low/no ACE2 expression and high SARS-CoV-2 susceptibility. The cell line is easy to maintain and supports robust viral replication, however the monkey origin may not accurately represent human responses.
r. SH-SY5Y is a human neuroblastoma cell line that exhibits neuronal phenotypes. It is commonly used as an in vitro model for studying neurotoxicity, neurodegenerative diseases, and neuronal differentiation.
Bormann et al., 23 Sep 2021, peer-reviewed, 18 authors.
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
This PaperCurcuminAll
Turmeric Root and Its Bioactive Ingredient Curcumin Effectively Neutralize SARS-CoV-2 In Vitro
Maren Bormann, Mira Alt, Leonie Schipper, Lukas Van De Sand, Vu Thuy Khanh Le-Trilling, Lydia Rink, Natalie Heinen, Rabea Julia Madel, Mona Otte, Korbinian Wuensch, Christiane Silke Heilingloh, Thorsten Mueller, Ulf Dittmer, Carina Elsner, Stephanie Pfaender, Mirko Trilling, Oliver Witzke, Adalbert Krawczyk
Viruses, doi:10.3390/v13101914
Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 . The availability of effective and well-tolerated antiviral drugs for the treatment of COVID-19 patients is still very limited. Traditional herbal medicines elicit antiviral activity against various viruses and might therefore represent a promising option for the complementary treatment of COVID-19 patients. The application of turmeric root in herbal medicine has a very long history. Its bioactive ingredient curcumin shows a broad-spectrum antimicrobial activity. In the present study, we investigated the antiviral activity of aqueous turmeric root extract, the dissolved content of a curcumin-containing nutritional supplement capsule, and pure curcumin against SARS-CoV-2. Turmeric root extract, dissolved turmeric capsule content, and pure curcumin effectively neutralized SARS-CoV-2 at subtoxic concentrations in Vero E6 and human Calu-3 cells. Furthermore, curcumin treatment significantly reduced SARS-CoV-2 RNA levels in cell culture supernatants. Our data uncover curcumin as a promising compound for complementary COVID-19 treatment. Curcumin concentrations contained in turmeric root or capsules used as nutritional supplements completely neutralized SARS-CoV-2 in vitro. Our data argue in favor of appropriate and carefully monitored clinical studies that vigorously test the effectiveness of complementary treatment of COVID-19 patients with curcumin-containing products.
References
Abdollahi, Momtazi, Johnston, Sahebkar, Therapeutic effects of curcumin in inflammatory and immune-mediated diseases: A nature-made jack-of-all-trades?, J. Cell. Physiol, doi:10.1002/jcp.25778
Abidi, Gupta, Agarwal, Bhalla, Saluja, Evaluation of Efficacy of Curcumin as an Add-on therapy in Patients of Bronchial Asthma, J. Clin. Diagn. Res, doi:10.7860/JCDR/2014/9273.4705
Bandyopadhyay, Farmer to pharmacist: Curcumin as an anti-invasive and antimetastatic agent for the treatment of cancer, Front. Chem, doi:10.3389/fchem.2014.00113
Beigel, Tomashek, Dodd, Mehta, Zingman et al., Remdesivir for the Treatment of Covid-19-Final Report, N. Engl. J. Med, doi:10.1056/NEJMoa2007764
Chainani-Wu, Safety and Anti-Inflammatory Activity of Curcumin: A Component of Tumeric (Curcuma longa), J. Altern. Complement. Med, doi:10.1089/107555303321223035
Cheng, Hsu, Lin, Hsu, Ho et al., Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions, Anticancer Res
Colpitts, Schang, Rachmawati, Frentzen, Pfaender et al., Turmeric curcumin inhibits entry of all hepatitis C virus genotypes into human liver cells, Gut, doi:10.1136/gutjnl-2012-304299
Daily, Yang, Park, Efficacy of Turmeric Extracts and Curcumin for Alleviating the Symptoms of Joint Arthritis: A Systematic Review and Meta-Analysis of Randomized Clinical Trials, J. Med. Food, doi:10.1089/jmf.2016.3705
Derosa, Maffioli, Simental-Mendía, Bo, Sahebkar, Effect of curcumin on circulating interleukin-6 concentrations: A systematic review and meta-analysis of randomized controlled trials, Pharmacol. Res, doi:10.1016/j.phrs.2016.07.004
Guan, Ni, Hu, Liang, Ou et al., Clinical Characteristics of Coronavirus Disease 2019 in China, N. Engl. J. Med, doi:10.1056/NEJMoa2002032
Heilingloh, Aufderhorst, Schipper, Dittmer, Witzke et al., Susceptibility of SARS-CoV-2 to UV irradiation, Am. J. Infect. Control, doi:10.1016/j.ajic.2020.07.031
Hoffmann, Mösbauer, Hofmann-Winkler, Kaul, Kleine-Weber et al., Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2, CrossRef, doi:10.1038/s41586-020-2575-3
Horby, Lim, Emberson, Mafham, Bell et al., Dexamethasone in Hospitalized Patients with Covid-19, N. Engl. J. Med
Huang, Wang, Li, Ren, Zhao et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet, doi:10.1016/S0140-6736(20)30183-5
Ireson, Orr, Jones, Verschoyle, Lim et al., Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production, Cancer Res
Jahanbakhshi, Maleki Dana, Badehnoosh, Yousefi, Mansournia et al., Curcumin anti-tumor effects on endometrial cancer with focus on its molecular targets, Cancer Cell Int, doi:10.1186/s12935-021-01832-z
Jena, Kanungo, Nayak, Chainy, Dandapat, Catechin and curcumin interact with S protein of SARS-CoV2 and ACE2 of human cell membrane: Insights from computational studies, Sci. Rep, doi:10.1038/s41598-021-81462-7
Jennings, Parks, Curcumin as an Antiviral Agent, Viruses, doi:10.3390/v12111242
Krah, A simplified multiwell plate assay for the measurement of hepatitis A virus infectivity, Biologicals
Kunnumakkara, Bordoloi, Padmavathi, Monisha, Roy et al., Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases, Br. J. Pharmacol, doi:10.1111/bph.13621
Lao, Ruffin, Normolle, Heath, Murray et al., Dose escalation of a curcuminoid formulation, BMC Complement. Altern. Med, doi:10.1186/1472-6882-6-10
Le-Trilling, Mennerich, Schuler, Flores-Martinez, Katschinski et al., Universally available herbal teas based on sage and perilla elicit potent antiviral activity against SARS-CoV-2 in vitro, bioRxiv, doi:10.1101/2020.11.18.388710
Lindemann, Lenz, Knop, Klump, Alt et al., Convalescent plasma treatment of critically ill intensive care COVID-19 patients, Transfusion, doi:10.1111/trf.16392
Lutter, Scholka, Richter, Anderer, Applying XTT, WST-1, and WST-8 to human chondrocytes: A comparison of membrane-impermeable tetrazolium salts in 2D and 3D cultures, Clin. Hemorheol. Microcirc, doi:10.3233/CH-179213
Mani, Johnson, Steel, Broszczak, Neilsen et al., Natural product-derived phytochemicals as potential agents against coronaviruses: A review, Virus Res, doi:10.1016/j.virusres.2020.197989
Metzler, Pfeiffer, Schulz, Dempe, Curcumin uptake and metabolism, Biofactors, doi:10.1002/biof.1042
Moghadamtousi, Kadir, Hassandarvish, Tajik, Abubakar et al., A review on antibacterial, antiviral, and antifungal activity of curcumin, BioMed Res. Int
Nabavi, Daglia, Moghaddam, Habtemariam, Nabavi, Curcumin and Liver Disease: From Chemistry to Medicine, Compr. Rev. Food Sci. Food Saf, doi:10.1111/1541-4337.12047
Pan, Huang, Lin, Biotransformation of curcumin through reduction and glucuronidation in mice, Drug Metab. Dispos
Perrone, Ardito, Giannatempo, Dioguardi, Troiano et al., Biological and therapeutic activities, and anticancer properties of curcumin, Exp. Ther. Med, doi:10.3892/etm.2015.2749
Pivari, Mingione, Brasacchio, Soldati, Curcumin and Type 2 Diabetes Mellitus: Prevention and Treatment, Nutrients, doi:10.3390/nu11081837
Praditya, Kirchhoff, Brüning, Rachmawati, Steinmann et al., Anti-infective Properties of the Golden Spice Curcumin, Front. Microbiol, doi:10.3389/fmicb.2019.00912
Prasad, Aggarwal, Turmeric, the Golden Spice: From Traditional Medicine to Modern Medicine
Sahebkar, Cicero, Simental-Mendía, Aggarwal, Gupta, Curcumin downregulates human tumor necrosis factor-α levels: A systematic review and meta-analysis ofrandomized controlled trials, Pharmacol. Res, doi:10.1016/j.phrs.2016.03.026
Schöler, Le-Trilling, Eilbrecht, Mennerich, Anastasiou et al., A Novel In-Cell ELISA Assay Allows Rapid and Automated Quantification of SARS-CoV-2 to Analyze Neutralizing Antibodies and Antiviral Compounds, Front. Immunol, doi:10.3389/fimmu.2020.573526
Shanmugarajan, Prabitha, Kumar, Suresh, Curcumin to inhibit binding of spike glycoprotein to ACE2 receptors: Computational modelling, simulations, and ADMET studies to explore curcuminoids against novel SARS-CoV-2 targets, RSC Adv, doi:10.1039/D0RA03167D
Shoba, Joy, Joseph, Majeed, Rajendran et al., Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers, Planta Med, doi:10.1055/s-2006-957450
Stanić, Curcumin, a Compound from Natural Sources, a True Scientific Challenge-A Review, Plant Foods Hum. Nutr, doi:10.1007/s11130-016-0590-1
Toptan, Hoehl, Westhaus, Bojkova, Berger et al., Optimized qRT-PCR Approach for the Detection of Intra-and Extra-Cellular SARS-CoV-2 RNAs, Int. J. Mol. Sci, doi:10.3390/ijms21124396
Van De Sand, Bormann, Alt, Schipper, Heilingloh et al., Glycyrrhizin Effectively Inhibits SARS-CoV-2 Replication by Inhibiting the Viral Main Protease, Viruses
Wahlström, Blennow, A study on the fate of curcumin in the rat, Acta Pharmacol. Toxicol, doi:10.1111/j.1600-0773.1978.tb02240.x
Wen, Kuo, Jan, Liang, Wang et al., Specific Plant Terpenoids and Lignoids Possess Potent Antiviral Activities against Severe Acute Respiratory Syndrome Coronavirus, J. Med. Chem, doi:10.1021/jm070295s
Zahedipour, Hosseini, Sathyapalan, Majeed, Jamialahmadi et al., Potential effects of curcumin in the treatment of COVID-19 infection, Phytother. Res, doi:10.1002/ptr.6738
Ziegler, Allon, Nyquist, Mbano, Miao et al., SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues, Cell, doi:10.1016/j.cell.2020.04.035
{ 'indexed': {'date-parts': [[2024, 5, 10]], 'date-time': '2024-05-10T05:12:28Z', 'timestamp': 1715317948476}, 'reference-count': 48, 'publisher': 'MDPI AG', 'issue': '10', 'license': [ { 'start': { 'date-parts': [[2021, 9, 23]], 'date-time': '2021-09-23T00:00:00Z', 'timestamp': 1632355200000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by/4.0/'}], 'funder': [ { 'DOI': '10.13039/501100010380', 'name': 'Stiftung Universitätsmedizin Essen', 'doi-asserted-by': 'publisher', 'award': ['N.A.']}, { 'DOI': '10.13039/501100014837', 'name': 'Rudolf Ackermann Foundation', 'doi-asserted-by': 'publisher', 'award': ['N.A.']}], 'content-domain': {'domain': [], 'crossmark-restriction': False}, 'abstract': '<jats:p>Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2) is the causative ' 'agent of the coronavirus disease 2019 (COVID-19). The availability of effective and ' 'well-tolerated antiviral drugs for the treatment of COVID-19 patients is still very limited. ' 'Traditional herbal medicines elicit antiviral activity against various viruses and might ' 'therefore represent a promising option for the complementary treatment of COVID-19 patients. ' 'The application of turmeric root in herbal medicine has a very long history. Its bioactive ' 'ingredient curcumin shows a broad-spectrum antimicrobial activity. In the present study, we ' 'investigated the antiviral activity of aqueous turmeric root extract, the dissolved content ' 'of a curcumin-containing nutritional supplement capsule, and pure curcumin against ' 'SARS-CoV-2. Turmeric root extract, dissolved turmeric capsule content, and pure curcumin ' 'effectively neutralized SARS-CoV-2 at subtoxic concentrations in Vero E6 and human Calu-3 ' 'cells. Furthermore, curcumin treatment significantly reduced SARS-CoV-2 RNA levels in cell ' 'culture supernatants. Our data uncover curcumin as a promising compound for complementary ' 'COVID-19 treatment. Curcumin concentrations contained in turmeric root or capsules used as ' 'nutritional supplements completely neutralized SARS-CoV-2 in vitro. Our data argue in favor ' 'of appropriate and carefully monitored clinical studies that vigorously test the ' 'effectiveness of complementary treatment of COVID-19 patients with curcumin-containing ' 'products.</jats:p>', 'DOI': '10.3390/v13101914', 'type': 'journal-article', 'created': {'date-parts': [[2021, 9, 28]], 'date-time': '2021-09-28T03:08:31Z', 'timestamp': 1632798511000}, 'page': '1914', 'source': 'Crossref', 'is-referenced-by-count': 42, 'title': 'Turmeric Root and Its Bioactive Ingredient Curcumin Effectively Neutralize SARS-CoV-2 In Vitro', 'prefix': '10.3390', 'volume': '13', 'author': [ { 'ORCID': 'http://orcid.org/0000-0002-0955-1453', 'authenticated-orcid': False, 'given': 'Maren', 'family': 'Bormann', 'sequence': 'first', 'affiliation': []}, {'given': 'Mira', 'family': 'Alt', 'sequence': 'additional', 'affiliation': []}, {'given': 'Leonie', 'family': 'Schipper', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0001-5122-4213', 'authenticated-orcid': False, 'given': 'Lukas', 'family': 'van de Sand', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0002-2733-3732', 'authenticated-orcid': False, 'given': 'Vu Thuy Khanh', 'family': 'Le-Trilling', 'sequence': 'additional', 'affiliation': []}, {'given': 'Lydia', 'family': 'Rink', 'sequence': 'additional', 'affiliation': []}, {'given': 'Natalie', 'family': 'Heinen', 'sequence': 'additional', 'affiliation': []}, {'given': 'Rabea Julia', 'family': 'Madel', 'sequence': 'additional', 'affiliation': []}, {'given': 'Mona', 'family': 'Otte', 'sequence': 'additional', 'affiliation': []}, {'given': 'Korbinian', 'family': 'Wuensch', 'sequence': 'additional', 'affiliation': []}, { 'given': 'Christiane Silke', 'family': 'Heilingloh', 'sequence': 'additional', 'affiliation': []}, {'given': 'Thorsten', 'family': 'Mueller', 'sequence': 'additional', 'affiliation': []}, {'given': 'Ulf', 'family': 'Dittmer', 'sequence': 'additional', 'affiliation': []}, {'given': 'Carina', 'family': 'Elsner', 'sequence': 'additional', 'affiliation': []}, {'given': 'Stephanie', 'family': 'Pfaender', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0003-3659-3541', 'authenticated-orcid': False, 'given': 'Mirko', 'family': 'Trilling', 'sequence': 'additional', 'affiliation': []}, {'given': 'Oliver', 'family': 'Witzke', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0001-9502-9903', 'authenticated-orcid': False, 'given': 'Adalbert', 'family': 'Krawczyk', 'sequence': 'additional', 'affiliation': []}], 'member': '1968', 'published-online': {'date-parts': [[2021, 9, 23]]}, 'reference': [ {'key': 'ref1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S0140-6736(20)30183-5'}, {'key': 'ref2', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S2213-2600(20)30514-2'}, {'key': 'ref3', 'doi-asserted-by': 'publisher', 'DOI': '10.1056/NEJMoa2002032'}, { 'key': 'ref4', 'first-page': '693', 'article-title': 'Dexamethasone in Hospitalized Patients with Covid-19', 'volume': '348', 'author': 'Horby', 'year': '2021', 'journal-title': 'N. Engl. J. Med.'}, {'key': 'ref5', 'doi-asserted-by': 'publisher', 'DOI': '10.1056/NEJMoa2007764'}, {'key': 'ref6', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.virusres.2020.197989'}, {'key': 'ref7', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/v13040609'}, {'key': 'ref8', 'doi-asserted-by': 'publisher', 'DOI': '10.1101/2020.11.18.388710'}, { 'key': 'ref9', 'first-page': '186864', 'article-title': 'A review on antibacterial, antiviral, and antifungal activity of ' 'curcumin', 'volume': '2014', 'author': 'Moghadamtousi', 'year': '2014', 'journal-title': 'BioMed Res. Int.'}, {'key': 'ref10', 'doi-asserted-by': 'publisher', 'DOI': '10.1186/s12935-021-01832-z'}, {'key': 'ref11', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/s11130-016-0590-1'}, {'key': 'ref12', 'doi-asserted-by': 'publisher', 'DOI': '10.1111/bph.13621'}, {'key': 'ref13', 'doi-asserted-by': 'publisher', 'DOI': '10.1111/1541-4337.12047'}, {'key': 'ref14', 'doi-asserted-by': 'publisher', 'DOI': '10.3892/etm.2015.2749'}, {'key': 'ref15', 'doi-asserted-by': 'publisher', 'DOI': '10.3389/fchem.2014.00113'}, {'key': 'ref16', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/v12111242'}, {'key': 'ref17', 'doi-asserted-by': 'publisher', 'DOI': '10.1136/gutjnl-2012-304299'}, {'key': 'ref18', 'doi-asserted-by': 'publisher', 'DOI': '10.3389/fmicb.2019.00912'}, {'key': 'ref19', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/jcp.25778'}, {'key': 'ref20', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/ptr.6738'}, {'key': 'ref21', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.ajic.2020.07.031'}, {'key': 'ref22', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/1045-1056(91)90039-M'}, {'key': 'ref23', 'doi-asserted-by': 'publisher', 'DOI': '10.1111/trf.16392'}, {'key': 'ref24', 'doi-asserted-by': 'publisher', 'DOI': '10.3389/fimmu.2020.573526'}, {'key': 'ref25', 'doi-asserted-by': 'publisher', 'DOI': '10.3233/CH-179213'}, {'key': 'ref26', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/ijms21124396'}, {'key': 'ref27'}, {'key': 'ref28', 'doi-asserted-by': 'publisher', 'DOI': '10.1039/D0RA03167D'}, {'key': 'ref29', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41598-021-81462-7'}, {'key': 'ref30', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.cell.2020.04.035'}, {'key': 'ref31', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/jm070295s'}, {'key': 'ref32', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41586-020-2575-3'}, {'key': 'ref33', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.phrs.2016.03.026'}, {'key': 'ref34', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.phrs.2016.07.004'}, {'key': 'ref35', 'doi-asserted-by': 'publisher', 'DOI': '10.1089/jmf.2016.3705'}, {'key': 'ref36', 'doi-asserted-by': 'publisher', 'DOI': '10.7860/JCDR/2014/9273.4705'}, {'key': 'ref37', 'series-title': 'CFR—Code of Federal Regulations Title 21', 'year': '2020'}, { 'key': 'ref38', 'series-title': 'GRAS Notice 000460: Curcuminoids Purified from Turmeric (Curcuma longa ' 'L.)', 'year': '2013'}, { 'key': 'ref39', 'series-title': 'Scientific Opinion on the Re-Evaluation of Curcumin (E 100) as a Food ' 'Additive', 'year': '2010'}, { 'key': 'ref40', 'first-page': '2895', 'article-title': 'Phase I clinical trial of curcumin, a chemopreventive agent, in ' 'patients with high-risk or pre-malignant lesions', 'volume': '21', 'author': 'Cheng', 'year': '2001', 'journal-title': 'Anticancer Res.'}, {'key': 'ref41', 'doi-asserted-by': 'publisher', 'DOI': '10.1089/107555303321223035'}, {'key': 'ref42', 'doi-asserted-by': 'publisher', 'DOI': '10.1186/1472-6882-6-10'}, { 'key': 'ref43', 'first-page': '1058', 'article-title': 'Characterization of metabolites of the chemopreventive agent curcumin ' 'in human and rat hepatocytes and in the rat in vivo, and evaluation of ' 'their ability to inhibit phorbol ester-induced prostaglandin E2 ' 'production', 'volume': '61', 'author': 'Ireson', 'year': '2001', 'journal-title': 'Cancer Res.'}, { 'key': 'ref44', 'first-page': '486', 'article-title': 'Biotransformation of curcumin through reduction and glucuronidation in ' 'mice', 'volume': '27', 'author': 'Pan', 'year': '1999', 'journal-title': 'Drug Metab. Dispos.'}, { 'key': 'ref45', 'doi-asserted-by': 'publisher', 'DOI': '10.1111/j.1600-0773.1978.tb02240.x'}, {'key': 'ref46', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/biof.1042'}, {'key': 'ref47', 'doi-asserted-by': 'publisher', 'DOI': '10.1055/s-2006-957450'}, {'key': 'ref48', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/nu11081837'}], 'container-title': 'Viruses', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://www.mdpi.com/1999-4915/13/10/1914/pdf', 'content-type': 'unspecified', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2021, 9, 28]], 'date-time': '2021-09-28T03:40:35Z', 'timestamp': 1632800435000}, 'score': 1, 'resource': {'primary': {'URL': 'https://www.mdpi.com/1999-4915/13/10/1914'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2021, 9, 23]]}, 'references-count': 48, 'journal-issue': {'issue': '10', 'published-online': {'date-parts': [[2021, 10]]}}, 'alternative-id': ['v13101914'], 'URL': 'http://dx.doi.org/10.3390/v13101914', 'relation': {}, 'ISSN': ['1999-4915'], 'subject': [], 'container-title-short': 'Viruses', 'published': {'date-parts': [[2021, 9, 23]]}}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit