Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchCurcuminCurcumin (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

Nanoparticulate curcumin spray imparts prophylactic and therapeutic properties against SARS-CoV-2

Kamble et al., Emergent Materials, doi:10.1007/s42247-024-00754-6
Jun 2024  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Curcumin for COVID-19
15th treatment shown to reduce risk in February 2021, now with p = 0.0000000096 from 27 studies.
No treatment is 100% effective. Protocols combine treatments.
5,200+ studies for 112 treatments. c19early.org
In Vitro study showing that a water-dispersible nano-spray formulation of curcumin inhibits SARS-CoV-2 infection in Vero E6 cells. Authors found that pre-treatment effectively inhibited SARS-CoV-2 infection, and subsequent exposure to the nanoformulation after infection inhibited viral particle spread. There was no cytotoxicity at the tested concentrations on Vero E6 cells.
51 preclinical studies support the efficacy of curcumin for COVID-19:
In Silico studies predict inhibition of SARS-CoV-2 with curcumin or metabolites via binding to the spikeA,1,2,7,12,14,20,23 (and specifically the receptor binding domainB,10,13,16), MproC,1,2,7,9,11-13,15,16,18,21,23,24,26,40, RNA-dependent RNA polymeraseD,1,2,13,22, PLproE,2, ACE2F,14,15,17, nucleocapsidG,8,25, nsp10H,25, and helicaseI,29 proteins. In Vitro studies demonstrate inhibition of the spikeA,34 (and specifically the receptor binding domainB,43), MproC,19,34,40,42, ACE2F,43, and TMPRSS2J,43 proteins, and inhibition of spike-ACE2 interactionK,27. In Vitro studies demonstrate efficacy in Calu-3L,41, A549M,34, 293TN,3, HEK293-hACE2O,19,32, 293T/hACE2/TMPRSS2P,33, Vero E6Q,9,13,23,32,34,36,37,39,41, and SH-SY5YR,31 cells. Curcumin is predicted to inhibit the interaction between the SARS-CoV-2 spike protein receptor binding domain and the human ACE2 receptor for the delta and omicron variants10, decreases pro-inflammatory cytokines induced by SARS-CoV-2 in peripheral blood mononuclear cells39, alleviates SARS-CoV-2 spike protein-induced mitochondrial membrane damage and oxidative stress3, may limit COVID-19 induced cardiac damage by inhibiting the NF-κB signaling pathway which mediates the profibrotic effects of the SARS-CoV-2 spike protein on cardiac fibroblasts28, and inhibits SARS-CoV-2 ORF3a ion channel activity, which contributes to viral pathogenicity and cytotoxicity35.
4 studies investigate novel formulations of curcumin for improved efficacy13,30,44,45
a. The trimeric spike (S) protein is a glycoprotein that mediates viral entry by binding to the host ACE2 receptor, is critical for SARS-CoV-2's ability to infect host cells, and is a target of neutralizing antibodies. Inhibition of the spike protein prevents viral attachment, halting infection at the earliest stage.
b. The receptor binding domain is a specific region of the spike protein that binds ACE2 and is a major target of neutralizing antibodies. Focusing on the precise binding site allows highly specific disruption of viral attachment with reduced potential for off-target effects.
c. The main protease or Mpro, also known as 3CLpro or nsp5, is a cysteine protease that cleaves viral polyproteins into functional units needed for replication. Inhibiting Mpro disrupts the SARS-CoV-2 lifecycle within the host cell, preventing the creation of new copies.
d. RNA-dependent RNA polymerase (RdRp), also called nsp12, is the core enzyme of the viral replicase-transcriptase complex that copies the positive-sense viral RNA genome into negative-sense templates for progeny RNA synthesis. Inhibiting RdRp blocks viral genome replication and transcription.
e. The papain-like protease (PLpro) has multiple functions including cleaving viral polyproteins and suppressing the host immune response by deubiquitination and deISGylation of host proteins. Inhibiting PLpro may block viral replication and help restore normal immune responses.
f. The angiotensin converting enzyme 2 (ACE2) protein is a host cell transmembrane protein that serves as the cellular receptor for the SARS-CoV-2 spike protein. ACE2 is expressed on many cell types, including epithelial cells in the lungs, and allows the virus to enter and infect host cells. Inhibition may affect ACE2's physiological function in blood pressure control.
g. The nucleocapsid (N) protein binds and encapsulates the viral genome by coating the viral RNA. N enables formation and release of infectious virions and plays additional roles in viral replication and pathogenesis. N is also an immunodominant antigen used in diagnostic assays.
h. Non-structural protein 10 (nsp10) serves as an RNA chaperone and stabilizes conformations of nsp12 and nsp14 in the replicase-transcriptase complex, which synthesizes new viral RNAs. Nsp10 disruption may destabilize replicase-transcriptase complex activity.
i. The helicase, or nsp13, protein unwinds the double-stranded viral RNA, a crucial step in replication and transcription. Inhibition may prevent viral genome replication and the creation of new virus components.
j. Transmembrane protease serine 2 (TMPRSS2) is a host cell protease that primes the spike protein, facilitating cellular entry. TMPRSS2 activity helps enable cleavage of the spike protein required for membrane fusion and virus entry. Inhibition may especially protect respiratory epithelial cells, buy may have physiological effects.
k. The interaction between the SARS-CoV-2 spike protein and the human ACE2 receptor is a primary method of viral entry, inhibiting this interaction can prevent the virus from attaching to and entering host cells, halting infection at an early stage.
l. Calu-3 is a human lung adenocarcinoma cell line with moderate ACE2 and TMPRSS2 expression and SARS-CoV-2 susceptibility. It provides a model of the human respiratory epithelium, but many not be ideal for modeling early stages of infection due to the moderate expression levels of ACE2 and TMPRSS2.
m. A549 is a human lung carcinoma cell line with low ACE2 expression and SARS-CoV-2 susceptibility. Viral entry/replication can be studied but the cells may not replicate all aspects of lung infection.
n. 293T is a human embryonic kidney cell line that can be engineered for high ACE2 expression and SARS-CoV-2 susceptibility. 293T cells are easily transfected and support high protein expression.
o. HEK293-hACE2 is a human embryonic kidney cell line with high ACE2 expression and SARS-CoV-2 susceptibility. Cells have been transfected with a plasmid to express the human ACE2 (hACE2) protein.
p. 293T/hACE2/TMPRSS2 is a human embryonic kidney cell line engineered for high ACE2 and TMPRSS2 expression, which mimics key aspects of human infection. 293T/hACE2/TMPRSS2 cells are very susceptible to SARS-CoV-2 infection.
q. Vero E6 is an African green monkey kidney cell line with low/no ACE2 expression and high SARS-CoV-2 susceptibility. The cell line is easy to maintain and supports robust viral replication, however the monkey origin may not accurately represent human responses.
r. SH-SY5Y is a human neuroblastoma cell line that exhibits neuronal phenotypes. It is commonly used as an in vitro model for studying neurotoxicity, neurodegenerative diseases, and neuronal differentiation.
Kamble et al., 3 Jun 2024, peer-reviewed, 6 authors.
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
This PaperCurcuminAll
{ 'indexed': {'date-parts': [[2024, 6, 4]], 'date-time': '2024-06-04T00:20:27Z', 'timestamp': 1717460427319}, 'reference-count': 33, 'publisher': 'Springer Science and Business Media LLC', 'license': [ { 'start': { 'date-parts': [[2024, 6, 3]], 'date-time': '2024-06-03T00:00:00Z', 'timestamp': 1717372800000}, 'content-version': 'tdm', 'delay-in-days': 0, 'URL': 'https://www.springernature.com/gp/researchers/text-and-data-mining'}, { 'start': { 'date-parts': [[2024, 6, 3]], 'date-time': '2024-06-03T00:00:00Z', 'timestamp': 1717372800000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'https://www.springernature.com/gp/researchers/text-and-data-mining'}], 'funder': [ { 'DOI': '10.13039/501100010710', 'name': 'Savitribai Phule Pune University', 'doi-asserted-by': 'publisher', 'award': ['Dept of Technology']}], 'content-domain': {'domain': ['link.springer.com'], 'crossmark-restriction': False}, 'DOI': '10.1007/s42247-024-00754-6', 'type': 'journal-article', 'created': {'date-parts': [[2024, 6, 3]], 'date-time': '2024-06-03T11:06:09Z', 'timestamp': 1717412769000}, 'update-policy': 'http://dx.doi.org/10.1007/springer_crossmark_policy', 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': 'Nanoparticulate curcumin spray imparts prophylactic and therapeutic properties against ' 'SARS-CoV-2', 'prefix': '10.1007', 'author': [ { 'ORCID': 'http://orcid.org/0000-0002-7501-2044', 'authenticated-orcid': False, 'given': 'Swapnil C.', 'family': 'Kamble', 'sequence': 'first', 'affiliation': []}, {'given': 'Prem', 'family': 'Pandey', 'sequence': 'additional', 'affiliation': []}, {'given': 'Vijay K.', 'family': 'Kanuru', 'sequence': 'additional', 'affiliation': []}, {'given': 'Nilesh', 'family': 'Rai', 'sequence': 'additional', 'affiliation': []}, {'given': 'Vibhav', 'family': 'Gautam', 'sequence': 'additional', 'affiliation': []}, {'given': 'Dinesh', 'family': 'Amalnerkar', 'sequence': 'additional', 'affiliation': []}], 'member': '297', 'published-online': {'date-parts': [[2024, 6, 3]]}, 'reference': [ { 'key': '754_CR1', 'unstructured': 'WHO COVID-19 Dashboard. Geneva: World Health Organization, 2020.\xa0' 'https://covid19.who.int/ (last cited: [13 June 2022])'}, { 'key': '754_CR2', 'doi-asserted-by': 'publisher', 'unstructured': 'R.E. Chen et al., Resistance of SARS-CoV-2 variants to neutralization by ' 'monoclonal and serum-derived polyclonal antibodies. Nat. Med. 27(4), ' '717–726 (Apr. 2021). https://doi.org/10.1038/s41591-021-01294-w', 'DOI': '10.1038/s41591-021-01294-w'}, { 'key': '754_CR3', 'doi-asserted-by': 'publisher', 'unstructured': 'P. Wang et al.,\xa0 Increased Resistance of SARS-CoV-2 Variants B.1.351 ' 'and B.1.1.7, bioRxiv Prepr. Serv. Biol, p. 2021.01.25.428137, 2021, ' 'https://doi.org/10.1101/2021.01.25.428137', 'DOI': '10.1101/2021.01.25.428137'}, { 'key': '754_CR4', 'doi-asserted-by': 'publisher', 'unstructured': 'T. Tada et al., Convalescent-phase sera and vaccine-elicited antibodies ' 'largely maintain neutralizing titer against global sars-cov-2 variant ' 'spikes. MBio. 12(3) (Jun. 2021). https://doi.org/10.1128/mBio.00696-21', 'DOI': '10.1128/mBio.00696-21'}, { 'key': '754_CR5', 'doi-asserted-by': 'publisher', 'unstructured': 'C.K. Wibmer, SARS-CoV-2 501Y.V2 escapes neutralization by South African ' 'COVID-19 donor plasma. Nat Med 27, 622–625 (2021). ' 'https://doi.org/10.1038/s41591-021-01285-x', 'DOI': '10.1038/s41591-021-01285-x'}, { 'issue': '1', 'key': '754_CR6', 'doi-asserted-by': 'publisher', 'first-page': '1', 'DOI': '10.1038/s41598-021-95565-8', 'volume': '11', 'author': 'S Lopez-Leon', 'year': '2021', 'unstructured': 'S. Lopez-Leon et al., More than 50 long-term effects of COVID-19: a ' 'systematic review and meta-analysis. Sci. Rep. 11(1), 1–12 (2021). ' 'https://doi.org/10.1038/s41598-021-95565-8', 'journal-title': 'Sci. Rep.'}, { 'issue': '5', 'key': '754_CR7', 'doi-asserted-by': 'publisher', 'first-page': '798', 'DOI': '10.3390/vaccines10050798', 'volume': '10', 'author': 'H Cheng', 'year': '2022', 'unstructured': 'H. Cheng et al., Immunogenicity and safety of homologous and ' 'heterologous prime–boost immunization with COVID-19 vaccine: systematic ' 'review and Meta-analysis. Vaccines. 10(5), 798 (2022). ' 'https://doi.org/10.3390/vaccines10050798', 'journal-title': 'Vaccines'}, { 'key': '754_CR8', 'doi-asserted-by': 'publisher', 'first-page': '116', 'DOI': '10.1016/j.addr.2017.04.008', 'volume': '114', 'author': 'JE Vela Ramirez', 'year': '2017', 'unstructured': 'J.E. Vela Ramirez, L.A. Sharpe, N.A. Peppas, Current state and ' 'challenges in developing oral vaccines. Adv. Drug Deliv Rev. 114, ' '116–131 (2017). https://doi.org/10.1016/j.addr.2017.04.008', 'journal-title': 'Adv. Drug Deliv Rev.'}, { 'key': '754_CR9', 'doi-asserted-by': 'publisher', 'first-page': '118813', 'DOI': '10.1016/j.ijpharm.2019.118813', 'volume': '572', 'author': 'Y Lobaina Mato', 'year': '2019', 'unstructured': 'Y. Lobaina Mato, Nasal route for vaccine and drug delivery: Features and ' 'current opportunities. Intl J Pharm 572, 118813 (2019). ' 'https://doi.org/10.1016/j.ijpharm.2019.118813', 'journal-title': 'Intl J Pharm'}, { 'key': '754_CR10', 'doi-asserted-by': 'publisher', 'first-page': '1', 'DOI': '10.3389/fmed.2021.760170', 'volume': '8', 'author': 'M Cunha', 'year': '2021', 'unstructured': 'M. Cunha et al., Atypical Prolonged Viral Shedding With Intra-Host ' 'SARS-CoV-2 Evolution in a Mildly Affected Symptomatic Patient, Front. ' 'Med\xa08\xa0 1–11, 2021, https://doi.org/10.3389/fmed.2021.760170', 'journal-title': 'Front Med'}, { 'issue': '13', 'key': '754_CR11', 'doi-asserted-by': 'publisher', 'first-page': '1435', 'DOI': '10.1177/0022034520960070', 'volume': '99', 'author': 'LL Fernandes', 'year': '2020', 'unstructured': 'L.L. Fernandes et al., Saliva in the diagnosis of COVID-19: a review and ' 'New Research directions. J. Dent. Res. 99(13), 1435–1443 (2020). ' 'https://doi.org/10.1177/0022034520960070', 'journal-title': 'J. Dent. Res.'}, { 'issue': '10', 'key': '754_CR12', 'doi-asserted-by': 'publisher', 'first-page': '2364', 'DOI': '10.1080/21645515.2017.1356952', 'volume': '13', 'author': 'G Kanojia', 'year': '2017', 'unstructured': 'G. Kanojia, R. ten Have, P.C. Soema, H. Frijlink, J.P. Amorij, G. ' 'Kersten, Developments in the formulation and delivery of spray dried ' 'vaccines. Hum. Vaccines Immunother. 13(10), 2364–2378 (2017). ' 'https://doi.org/10.1080/21645515.2017.1356952', 'journal-title': 'Hum. Vaccines Immunother'}, { 'issue': '2', 'key': '754_CR13', 'doi-asserted-by': 'publisher', 'first-page': '132', 'DOI': '10.1007/s12098-017-2377-2', 'volume': '85', 'author': 'N Garg', 'year': '2018', 'unstructured': 'N. Garg, A. Aggarwal, Advances towards painless vaccination and newer ' 'modes of Vaccine Delivery. Indian J. Pediatr. 85(2), 132–138 (2018). ' 'https://doi.org/10.1007/s12098-017-2377-2', 'journal-title': 'Indian J. Pediatr.'}, { 'issue': '2', 'key': '754_CR14', 'doi-asserted-by': 'publisher', 'first-page': '1', 'DOI': '10.17303/jfn.2021.7.202', 'volume': '7', 'author': 'CG Yedjou', 'year': '2021', 'unstructured': 'C.G. Yedjou, Pharmacological Effects of Selected Medicinal Plants and ' 'Vitamins Against COVID-19. Jacobs J Food Nutr 7(2), 1–18 (2021). ' 'https://doi.org/10.17303/jfn.2021.7.202', 'journal-title': 'Jacobs J Food Nutr'}, { 'key': '754_CR15', 'doi-asserted-by': 'publisher', 'first-page': '177', 'DOI': '10.1016/j.intimp.2017.11.009', 'volume': '54', 'author': 'J Dai', 'year': '2018', 'unstructured': 'J. Dai et al., Inhibition of curcumin on influenza A virus infection and ' 'influenzal pneumonia via oxidative stress, TLR2/4, p38/JNK MAPK and ' 'NF-κB pathways. Int Immunopharmacol 54, 177–187 (2018). ' 'https://doi.org/10.1016/j.intimp.2017.11.009', 'journal-title': 'Int Immunopharmacol'}, { 'issue': '1', 'key': '754_CR16', 'doi-asserted-by': 'publisher', 'first-page': '1', 'DOI': '10.1038/s41598-021-98243-x', 'volume': '11', 'author': 'P Thongsri', 'year': '2021', 'unstructured': 'P. Thongsri, Y. Pewkliang, S. Borwornpinyo, A. Wongkajornsilp, S. ' 'Hongeng, K. Sa-ngiamsuntorn, Curcumin inhibited hepatitis B viral entry ' 'through NTCP binding. Sci. Rep. 11(1), 1–12 (2021). ' 'https://doi.org/10.1038/s41598-021-98243-x', 'journal-title': 'Sci. Rep.'}, { 'issue': '1', 'key': '754_CR17', 'doi-asserted-by': 'publisher', 'first-page': '21', 'DOI': '10.1186/s13063-021-05372-9', 'volume': '22', 'author': 'G Askari', 'year': '2021', 'unstructured': 'G. Askari et al., Effect of curcumin-pipeine supplementation on clinical ' 'status, mortality rate, oxidative stress, and inflammatory markers in ' 'critically ill ICU patients with COVID-19: a structured summary of a ' 'study protocol for a randomized controlled trial. Trials. 22(1), 21–23 ' '(2021). https://doi.org/10.1186/s13063-021-05372-9', 'journal-title': 'Trials'}, { 'issue': '1', 'key': '754_CR18', 'doi-asserted-by': 'publisher', 'first-page': '20', 'DOI': '10.1186/s13063-020-04824-y', 'volume': '21', 'author': 'M Hassaniazad', 'year': '2020', 'unstructured': 'M. Hassaniazad et al., The clinical effect of Nano micelles containing ' 'curcumin as a therapeutic supplement in patients with COVID-19 and the ' 'immune responses balance changes following treatment: a structured ' 'summary of a study protocol for a randomised controlled trial. Trials. ' '21(1), 20–22 (2020). https://doi.org/10.1186/s13063-020-04824-y', 'journal-title': 'Trials'}, { 'key': '754_CR19', 'doi-asserted-by': 'publisher', 'first-page': '1', 'DOI': '10.3389/fphar.2021.669362', 'volume': '12', 'author': 'KS Pawar', 'year': '2021', 'unstructured': 'K.S. Pawar et al., Oral Curcumin with Piperine as Adjuvant Therapy for ' 'the treatment of COVID-19: a Randomized Clinical Trial. Front. ' 'Pharmacol. 12, 1–7 (2021). https://doi.org/10.3389/fphar.2021.669362', 'journal-title': 'Front. Pharmacol.'}, { 'issue': '8', 'key': '754_CR20', 'doi-asserted-by': 'publisher', 'first-page': '4068', 'DOI': '10.1002/fsn3.2226', 'volume': '9', 'author': 'R Ahmadi', 'year': '2021', 'unstructured': 'R. Ahmadi et al., Oral nano-curcumin formulation efficacy in the ' 'management of mild to moderate outpatient COVID-19: a randomized ' 'triple-blind placebo-controlled clinical trial. Food Sci. Nutr. 9(8), ' '4068–4075 (2021). https://doi.org/10.1002/fsn3.2226', 'journal-title': 'Food Sci. Nutr.'}, { 'issue': '76', 'key': '754_CR21', 'doi-asserted-by': 'publisher', 'first-page': '886', 'DOI': '10.4103/pm.pm_252_21', 'volume': '17', 'author': 'RB Humbare', 'year': '2021', 'unstructured': 'R.B. Humbare, J. Sarkar, A.A. Kulkarni, S.C. Kamble, Evaluation of free ' 'radical scavenging with in vitro Antiproliferative properties of ' 'different extracts of Pluchea Lanceolata (DC.) Oliv. And Hiern in Cancer ' 'Cell lines. Pharmacogn Mag. 17(76), 886–892 (2021). ' 'https://doi.org/10.4103/pm.pm_252_21', 'journal-title': 'Pharmacogn Mag'}, { 'key': '754_CR22', 'doi-asserted-by': 'publisher', 'first-page': '911', 'DOI': '10.1016/j.foodhyd.2017.11.038', 'volume': '77', 'author': 'B Sun', 'year': '2018', 'unstructured': 'B. Sun, Y. Tian, L. Chen, Z. Jin, Linear dextrin as curcumin delivery ' 'system: Effect of degree of polymerization on the functional stability ' 'of curcumin. Food Hydrocoll. 77, 911–920 (2018). ' 'https://doi.org/10.1016/j.foodhyd.2017.11.038', 'journal-title': 'Food Hydrocoll.'}, { 'key': '754_CR23', 'doi-asserted-by': 'publisher', 'unstructured': 'V.A. Marcolino, G.M. Zanin, L.R. Durrant, M.D.T. Benassi, G. Matioli, ' 'Interaction of curcumin and bixin with β-cyclodextrin: complexation ' 'methods, stability, and applications in food. J. Agric. Food Chem. ' '59(7), 3348–3357 (Apr. 2011). https://doi.org/10.1021/JF104223K/ASSET.', 'DOI': '10.1021/JF104223K/ASSET'}, { 'key': '754_CR24', 'doi-asserted-by': 'publisher', 'unstructured': 'S. Samimi, N. Maghsoudnia, R.B. Eftekhari, F. Dorkoosh, Lipid-Based ' 'Nanoparticles for Drug Delivery Systems, in Characterization and Biology ' 'of Nanomaterials for Drug Delivery: Nanoscience and Nanotechnology in ' 'Drug Delivery, S. T. Shyam S. Mohapatra, Shivendu Ranjan, Nandita ' 'Dasgupta, Raghvendra Kumar Mishra, I. M. and N. Technologies, and ' 'Characterization and Biology of Nanomaterials for Drug Delivery, Eds., ' '1st ed.Amsterdam: Elsevier Inc., 2018, pp. 47–76. ' 'https://doi.org/10.1016/B978-0-12-814031-4.00003-9', 'DOI': '10.1016/B978-0-12-814031-4.00003-9'}, { 'key': '754_CR25', 'doi-asserted-by': 'publisher', 'first-page': '10', 'DOI': '10.1002/open.202200200', 'volume': '12', 'author': 'P Pandey', 'year': '2023', 'unstructured': 'P. Pandey et al., A Xanthan-Gum-Stabilized PEG-Conjugated Nanocurcumin ' 'Complex: Telescoping Synthesis for Enhanced Permeation Potential, ' 'ChemistryOpen, vol. 12, no. 1, pp. 10–14, 2023, ' 'https://doi.org/10.1002/open.202200200', 'journal-title': 'ChemistryOpen'}, { 'issue': '8', 'key': '754_CR26', 'doi-asserted-by': 'publisher', 'first-page': '14293', 'DOI': '10.3390/molecules200814293', 'volume': '20', 'author': 'X Chen', 'year': '2015', 'unstructured': 'X. Chen, L.Q. Zou, J. Niu, W. Liu, S.F. Peng, C.M. Liu, The stability, ' 'sustained release and cellular antioxidant activity of curcumin ' 'nanoliposomes. Molecules. 20(8), 14293–14311 (2015). ' 'https://doi.org/10.3390/molecules200814293', 'journal-title': 'Molecules'}, { 'issue': '5', 'key': '754_CR27', 'doi-asserted-by': 'publisher', 'first-page': '369', 'DOI': '10.1007/s13659-018-0170-1', 'volume': '8', 'author': 'S Manimaran', 'year': '2018', 'unstructured': 'S. Manimaran et al., Medicinal Plant using Ground State stabilization of ' 'natural antioxidant curcumin by Keto-Enol Tautomerisation. Nat. Prod. ' 'Bioprospect. 8(5), 369–390 (2018). ' 'https://doi.org/10.1007/s13659-018-0170-1', 'journal-title': 'Nat. Prod. Bioprospect'}, { 'issue': '2', 'key': '754_CR28', 'doi-asserted-by': 'publisher', 'first-page': '469', 'DOI': '10.1016/j.carbpol.2011.04.063', 'volume': '86', 'author': 'S Faria', 'year': '2011', 'unstructured': 'S. Faria et al., Characterization of xanthan gum produced from sugar ' 'cane broth. Carbohydr. Polym. 86(2), 469–476 (2011). ' 'https://doi.org/10.1016/j.carbpol.2011.04.063', 'journal-title': 'Carbohydr. Polym.'}, { 'issue': '2', 'key': '754_CR29', 'doi-asserted-by': 'publisher', 'first-page': '179', 'DOI': '10.1016/j.ijmst.2013.04.022', 'volume': '23', 'author': 'W Qin', 'year': '2013', 'unstructured': 'W. Qin et al., Utilization of polysaccharides as depressants for the ' 'flotation separation of copper/lead concentrate. Int. J. Min. Sci. ' 'Technol 23(2), 179–186 (2013). ' 'https://doi.org/10.1016/j.ijmst.2013.04.022', 'journal-title': 'Int. J. Min. Sci. Technol'}, { 'issue': '17', 'key': '754_CR30', 'doi-asserted-by': 'publisher', 'first-page': '4087', 'DOI': '10.1021/jm070295s', 'volume': '50', 'author': 'CC Wen', 'year': '2007', 'unstructured': 'C.C. Wen, Specific plant terpenoids and lignoids possess potent ' 'antiviral activities against severe acute respiratory syndrome ' 'coronavirus. J. Med. Chem 50(17), 4087–4095 (2007). ' 'https://doi.org/10.1021/jm070295s', 'journal-title': 'J. Med. Chem'}, { 'issue': '7826', 'key': '754_CR31', 'doi-asserted-by': 'publisher', 'first-page': '588', 'DOI': '10.1038/s41586-020-2575-3', 'volume': '585', 'author': 'M Hoffmann', 'year': '2020', 'unstructured': 'M. Hoffmann et al., Chloroquine does not inhibit infection of human lung ' 'cells with SARS-CoV-2. Nature. 585(7826), 588–590 (2020). ' 'https://doi.org/10.1038/s41586-020-2575-3', 'journal-title': 'Nature'}, { 'issue': '1', 'key': '754_CR32', 'doi-asserted-by': 'publisher', 'first-page': '1', 'DOI': '10.1038/s41598-021-81462-7', 'volume': '11', 'author': 'AB Jena', 'year': '2021', 'unstructured': 'A.B. Jena, N. Kanungo, V. Nayak, G.B.N. Chainy, J. Dandapat, Catechin ' 'and curcumin interact with S protein of SARS-CoV2 and ACE2 of human cell ' 'membrane: insights from computational studies. Sci. Rep. 11(1), 1–14 ' '(2021). https://doi.org/10.1038/s41598-021-81462-7', 'journal-title': 'Sci. Rep.'}, { 'issue': '2', 'key': '754_CR33', 'doi-asserted-by': 'publisher', 'first-page': '483', 'DOI': '10.1021/acsabm.1c00874', 'volume': '5', 'author': 'VK Sharma', 'year': '2022', 'unstructured': 'V.K. Sharma, N. Prateeksha, S.P. Singh, B.N. Singh, C.V. Rao, S.K. ' 'Barik, Nanocurcumin Potently inhibits SARS-CoV-2 Spike Protein-Induced ' 'Cytokine Storm by Deactivation of MAPK/NF-κB signaling in epithelial ' 'cells. ACS Appl. Bio Mater. 5(2), 483–491 (2022). ' 'https://doi.org/10.1021/acsabm.1c00874', 'journal-title': 'ACS Appl. Bio Mater.'}], 'container-title': 'Emergent Materials', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://link.springer.com/content/pdf/10.1007/s42247-024-00754-6.pdf', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://link.springer.com/article/10.1007/s42247-024-00754-6/fulltext.html', 'content-type': 'text/html', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://link.springer.com/content/pdf/10.1007/s42247-024-00754-6.pdf', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2024, 6, 3]], 'date-time': '2024-06-03T11:06:59Z', 'timestamp': 1717412819000}, 'score': 1, 'resource': {'primary': {'URL': 'https://link.springer.com/10.1007/s42247-024-00754-6'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2024, 6, 3]]}, 'references-count': 33, 'alternative-id': ['754'], 'URL': 'http://dx.doi.org/10.1007/s42247-024-00754-6', 'relation': {}, 'ISSN': ['2522-5731', '2522-574X'], 'subject': [], 'container-title-short': 'emergent mater.', 'published': {'date-parts': [[2024, 6, 3]]}, 'assertion': [ { 'value': '15 December 2023', 'order': 1, 'name': 'received', 'label': 'Received', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': '26 May 2024', 'order': 2, 'name': 'accepted', 'label': 'Accepted', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': '3 June 2024', 'order': 3, 'name': 'first_online', 'label': 'First Online', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, {'order': 1, 'name': 'Ethics', 'group': {'name': 'EthicsHeading', 'label': 'Declarations'}}, { 'value': 'V.K. is Chief Technical and Scientific Officer of Oncocur India Pvt. Ltd, ' 'India. P.P. is Director of Nuimance Phytochemical Pvt. Ltd, India. There are no ' 'conflicts to declare for all other authors.', 'order': 2, 'name': 'Ethics', 'group': {'name': 'EthicsHeading', 'label': 'Conflict of interest'}}]}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit