Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchCurcuminCurcumin (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis       

Inhibition of the SARS-CoV-2 3CLpro main protease by plant polyphenols

Bahun et al., Food Chemistry, doi:10.1016/j.foodchem.2021.131594
Nov 2021  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Curcumin for COVID-19
15th treatment shown to reduce risk in February 2021, now with p = 0.0000000096 from 27 studies.
No treatment is 100% effective. Protocols combine treatments.
5,200+ studies for 112 treatments. c19early.org
In Silico and In Vitro study of plant polyphenols identifying quercetin, curcumin, ellagic acid, epigallocatechin gallate, and resveratrol as SARS-CoV-2 3CLpro inhibitors with IC50 between 11.8µM and 23.4µM. Real-time binding was analyzed with surface plasmon resonance spectroscopy.
51 preclinical studies support the efficacy of curcumin for COVID-19:
In Silico studies predict inhibition of SARS-CoV-2 with curcumin or metabolites via binding to the spikeA,1,2,7,12,14,20,23 (and specifically the receptor binding domainB,10,13,16), MproC,1,2,7,9,11-13,15,16,18,21,23,24,26,40, RNA-dependent RNA polymeraseD,1,2,13,22, PLproE,2, ACE2F,14,15,17, nucleocapsidG,8,25, nsp10H,25, and helicaseI,29 proteins. In Vitro studies demonstrate inhibition of the spikeA,34 (and specifically the receptor binding domainB,43), MproC,19,34,40,42, ACE2F,43, and TMPRSS2J,43 proteins, and inhibition of spike-ACE2 interactionK,27. In Vitro studies demonstrate efficacy in Calu-3L,41, A549M,34, 293TN,3, HEK293-hACE2O,19,32, 293T/hACE2/TMPRSS2P,33, Vero E6Q,9,13,23,32,34,36,37,39,41, and SH-SY5YR,31 cells. Curcumin is predicted to inhibit the interaction between the SARS-CoV-2 spike protein receptor binding domain and the human ACE2 receptor for the delta and omicron variants10, decreases pro-inflammatory cytokines induced by SARS-CoV-2 in peripheral blood mononuclear cells39, alleviates SARS-CoV-2 spike protein-induced mitochondrial membrane damage and oxidative stress3, may limit COVID-19 induced cardiac damage by inhibiting the NF-κB signaling pathway which mediates the profibrotic effects of the SARS-CoV-2 spike protein on cardiac fibroblasts28, and inhibits SARS-CoV-2 ORF3a ion channel activity, which contributes to viral pathogenicity and cytotoxicity35.
Study covers curcumin and quercetin.
a. The trimeric spike (S) protein is a glycoprotein that mediates viral entry by binding to the host ACE2 receptor, is critical for SARS-CoV-2's ability to infect host cells, and is a target of neutralizing antibodies. Inhibition of the spike protein prevents viral attachment, halting infection at the earliest stage.
b. The receptor binding domain is a specific region of the spike protein that binds ACE2 and is a major target of neutralizing antibodies. Focusing on the precise binding site allows highly specific disruption of viral attachment with reduced potential for off-target effects.
c. The main protease or Mpro, also known as 3CLpro or nsp5, is a cysteine protease that cleaves viral polyproteins into functional units needed for replication. Inhibiting Mpro disrupts the SARS-CoV-2 lifecycle within the host cell, preventing the creation of new copies.
d. RNA-dependent RNA polymerase (RdRp), also called nsp12, is the core enzyme of the viral replicase-transcriptase complex that copies the positive-sense viral RNA genome into negative-sense templates for progeny RNA synthesis. Inhibiting RdRp blocks viral genome replication and transcription.
e. The papain-like protease (PLpro) has multiple functions including cleaving viral polyproteins and suppressing the host immune response by deubiquitination and deISGylation of host proteins. Inhibiting PLpro may block viral replication and help restore normal immune responses.
f. The angiotensin converting enzyme 2 (ACE2) protein is a host cell transmembrane protein that serves as the cellular receptor for the SARS-CoV-2 spike protein. ACE2 is expressed on many cell types, including epithelial cells in the lungs, and allows the virus to enter and infect host cells. Inhibition may affect ACE2's physiological function in blood pressure control.
g. The nucleocapsid (N) protein binds and encapsulates the viral genome by coating the viral RNA. N enables formation and release of infectious virions and plays additional roles in viral replication and pathogenesis. N is also an immunodominant antigen used in diagnostic assays.
h. Non-structural protein 10 (nsp10) serves as an RNA chaperone and stabilizes conformations of nsp12 and nsp14 in the replicase-transcriptase complex, which synthesizes new viral RNAs. Nsp10 disruption may destabilize replicase-transcriptase complex activity.
i. The helicase, or nsp13, protein unwinds the double-stranded viral RNA, a crucial step in replication and transcription. Inhibition may prevent viral genome replication and the creation of new virus components.
j. Transmembrane protease serine 2 (TMPRSS2) is a host cell protease that primes the spike protein, facilitating cellular entry. TMPRSS2 activity helps enable cleavage of the spike protein required for membrane fusion and virus entry. Inhibition may especially protect respiratory epithelial cells, buy may have physiological effects.
k. The interaction between the SARS-CoV-2 spike protein and the human ACE2 receptor is a primary method of viral entry, inhibiting this interaction can prevent the virus from attaching to and entering host cells, halting infection at an early stage.
l. Calu-3 is a human lung adenocarcinoma cell line with moderate ACE2 and TMPRSS2 expression and SARS-CoV-2 susceptibility. It provides a model of the human respiratory epithelium, but many not be ideal for modeling early stages of infection due to the moderate expression levels of ACE2 and TMPRSS2.
m. A549 is a human lung carcinoma cell line with low ACE2 expression and SARS-CoV-2 susceptibility. Viral entry/replication can be studied but the cells may not replicate all aspects of lung infection.
n. 293T is a human embryonic kidney cell line that can be engineered for high ACE2 expression and SARS-CoV-2 susceptibility. 293T cells are easily transfected and support high protein expression.
o. HEK293-hACE2 is a human embryonic kidney cell line with high ACE2 expression and SARS-CoV-2 susceptibility. Cells have been transfected with a plasmid to express the human ACE2 (hACE2) protein.
p. 293T/hACE2/TMPRSS2 is a human embryonic kidney cell line engineered for high ACE2 and TMPRSS2 expression, which mimics key aspects of human infection. 293T/hACE2/TMPRSS2 cells are very susceptible to SARS-CoV-2 infection.
q. Vero E6 is an African green monkey kidney cell line with low/no ACE2 expression and high SARS-CoV-2 susceptibility. The cell line is easy to maintain and supports robust viral replication, however the monkey origin may not accurately represent human responses.
r. SH-SY5Y is a human neuroblastoma cell line that exhibits neuronal phenotypes. It is commonly used as an in vitro model for studying neurotoxicity, neurodegenerative diseases, and neuronal differentiation.
Bahun et al., 14 Nov 2021, peer-reviewed, 10 authors.
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
This PaperCurcuminAll
Inhibition of the SARS-CoV-2 3CLpro main protease by plant polyphenols
Miha Bahun, Marko Jukić, Domen Oblak, Luka Kranjc, Gregor Bajc, Matej Butala, Krištof Bozovičar, Tomaž Bratkovič, Črtomir Podlipnik, Nataša Poklar Ulrih
Food Chemistry, doi:10.1016/j.foodchem.2021.131594
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Conflicts of interest: The authors declare that they have no conflicts of interest. Appendix A. Supplementary material
References
Abbas, Saeed, Anjum, Afzaal, Tufail et al., Natural polyphenols: an overview, International Journal of Food Properties, doi:10.1080/10942912.2016.1220393
Abian, Ortega-Alarcon, Jimenez-Alesanco, Ceballos-Laita, Vega et al., Structural stability of SARS-CoV-2 3CLpro and identification of quercetin as an inhibitor by experimental screening, International Journal of Biological Macromolecules, doi:10.1016/j.ijbiomac.2020.07.235
Baell, Holloway, New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays, Journal of Medicinal Chemistry, doi:10.1021/jm901137j
Calland, Sahuc, Belouzard, Bonnafous, Mesalam et al., Polyphenols inhibit hepatitis C virus entry by a new mechanism of action, Journal of Virology, doi:10.1128/JVI.01473-15
Campagna, Rivas, Antiviral activity of resveratrol, Biochemical Society Transactions, doi:10.1042/BST0380050
Chiou, Chen, Chen, Yang, Hwang et al., The inhibitory effects of PGG and EGCG against the SARS-CoV-2 3C-like protease, Biochemical and Biophysical Research Communications, doi:10.1016/j.bbrc.2020.12.106
Dai, Zhang, Jiang, Su, Li et al., Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease, Science, doi:10.1126/science.abb4489
Daniel, Krupnick, Heur, Blinzler, Nims et al., Extraction, stability, and quantitation of ellagic acid in various fruits and nuts, Journal of Food Composition and Analysis, doi:10.1016/0889-1575(89)90005-7
Dewit, Van Doremalen, Falzarano, Munster, SARS and MERS: recent insights into emerging coronaviruses, Nature Reviews Microbiology, doi:10.1038/nrmicro.2016.81
Du, Zheng, Disoma, Li, Chen et al., Epigallocatechin-3-gallate, an active ingredient of traditional Chinese medicines, inhibits the 3CL pro activity of SARS-CoV-2, International Journal of Biological Macromolecules, doi:10.1016/j.ijbiomac.2021.02.012
El-Missiry, Fekri, Kesar, Othman, Polyphenols are potential nutritional adjuvants for targeting COVID-19, Phytotherapy Research, doi:10.1002/ptr.6992
Friesner, Murphy, Repasky, Frye, Greenwood et al., Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein−ligand complexes, Journal of Medicinal Chemistry, doi:10.1021/jm051256o
Fry, Cai, Zhang, Wagner, Consolidation in a crisis: patterns of international collaboration in early COVID-19 research, PLoS ONE, doi:10.1371/journal.pone.0236307
Goc, Sumera, Rath, Niedzwiecki, Phenolic compounds disrupt Spike-mediated receptor binding and entry of SARS-CoV-2, PLoS ONE, doi:10.1371/journal.pone.0253489
Houston, Walkinshaw, Consensus docking: improving the reliability of docking in a virtual screening context, Journal of Chemical Information and Modeling, doi:10.1021/ci300399w
Huynh, Wang, Luan, In-silico exploration of the molecular mechanism of clinically oriented drugs for possibly inhibiting SARS-CoV-2 main protease, Journal of Physical Chemistry Letters, doi:10.1021/acs.jpclett.0c00994
Kahn, Mcintosh, History and recent advances in coronavirus discovery, The Pediatric Infectious Disease Journal
Khalifa, Zhu, Mohammed, Dutta, Li, Tannins inhibit SARS-CoV-2 through binding with catalytic dyad residues of 3CL pro : an in-silico approach with 19 structural different hydrolysable tannins, Journal of Food Biochemistry, doi:10.1111/jfbc.13432
Khan, Heng, Wang, Qiu, Wei et al., In silico and in vitro evaluation of kaempferol as a potential inhibitor of the SARS-CoV-2 main protease (3CLpro), Phytotherapy Research, doi:10.1002/ptr.6998
Khan, Umbreen, Hameed, Fatima, Zahoor et al., In Silico Mutagenesis-Based Remodelling of SARS-CoV-1 Peptide (ATLQAIAS) to Inhibit SARS-CoV-2: Structural-Dynamics and Free Energy Calculations, Interdisciplinary Sciences: Computational Life Sciences, doi:10.1007/s12539-021-00447-2
Kim, Narayanan, Chang, Inhibition of influenza virus replication by plant-derived isoquercetin, Antiviral Research, doi:10.1016/j.antiviral.2010.08.016
Krieger, Vriend, New ways to boost molecular dynamics simulations, Journal of Computational Chemistry, doi:10.1002/jcc.23899
Mathew, Hsu, Antiviral potential of curcumin, Journal of Functional Foods, doi:10.1016/j.jff.2017.12.017
Mehany, Khalifa, Barakat, Althwab, Alharbi et al., Polyphenols as promising biologically active substances for preventing SARS-CoV-2: a review with research evidence and underlying mechanisms, Food Bioscience, doi:10.1016/j.fbio.2021.100891
Mody, Ho, Wills, Mawri, Lawson et al., Identification of 3-chymotrypsin like protease (3CL pro ) inhibitors as potential anti-SARS-CoV-2 agents, Communications Biology, doi:10.1038/s42003-020-01577-x
Ni, Chen, Wei, Lan, Qiu et al., Study on the mechanism of active components of Liupao tea on 3CL pro based on HPLC-DAD fingerprint and molecular docking technique, Journal of Food Biochemistry, doi:10.1111/jfbc.13707
Paraiso, Revel, Stevens, Potential use of polyphenols in the battle against COVID-19, Current Opinion in Food Science, doi:10.1016/j.cofs.2020.08.004
Pasquereau, Nehme, Ahmad, Daouad, Van Assche et al., Resveratrol inhibits HCoV-229E and SARS-CoV-2 coronavirus replication in vitro, Viruses, doi:10.3390/v13020354
Rasouli, Farzaei, Khodarahmi, Polyphenols and their benefits: a review, International Journal of Food Properties, doi:10.1080/10942912.2017.1354017
Rizzuti, Grande, Conforti, Jimenez-Alesanco, Ceballos-Laita et al., Rutin Is a low micromolar inhibitor of SARS-CoV-2 main protease 3CL pro : implications for drug design of quercetin analogs, Biomedicines, doi:10.3390/biomedicines9040375
Ruiz-Carmona, Alvarez-Garcia, Foloppe, Garmendia-Doval, Juhos, rDock: a fast, versatile and open source program for docking ligands to proteins and nucleic acids, PLoS Computational Biology, doi:10.1371/journal.pcbi.1003571
Ryu, Park, Kim, Lee, Seo et al., SARS-CoV 3CL pro inhibitory effects of quinone-methide triterpenes from Tripterygium regelii, Bioorganic and Medicinal Chemistry Letters, doi:10.1016/j.bmcl.2010.01.152
Sarkar, Mondal, Torequl Islam, Martorell, Docea et al., Potential therapeutic options for COVID-19: current status, challenges, and future perspectives, Frontiers in Pharmacology, doi:10.3389/fphar.2020.572870
Treutter, Significance of flavonoids in plant resistance: a review, Environmental Chemistry Letters, doi:10.1007/s10311-006-0068-8
Trott, Olson, AutoDock VINA: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, Journal of Computational Chemistry, doi:10.1002/jcc.21334
Wang, Horby, Hayden, Gao, A novel coronavirus outbreak of global health concern, The Lancet, doi:10.1016/S0140-6736(20)30185-9
Williamson, The role of polyphenols in modern nutrition, Nutrition Bulletin, doi:10.1111/nbu.12278
Yang, Wei, Huang, Lei, Shen et al., Resveratrol inhibits the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in cultured Vero cells, Phytotherapy Research, doi:10.1002/ptr.6916
Yang, Yu, Huang, Swine enteric alphacoronavirus (swine acute diarrhea syndrome coronavirus): an update three years after its discovery, Virus Research, doi:10.1016/j.virusres.2020.198024
Zhu, Zhang, Wang, Li, Yang et al., A novel coronavirus from patients with pneumonia in China, 2019, New England Journal of Medicine, doi:10.1056/NEJMoa2001017
{ 'indexed': {'date-parts': [[2024, 1, 1]], 'date-time': '2024-01-01T18:29:16Z', 'timestamp': 1704133756503}, 'reference-count': 40, 'publisher': 'Elsevier BV', 'license': [ { 'start': { 'date-parts': [[2022, 3, 1]], 'date-time': '2022-03-01T00:00:00Z', 'timestamp': 1646092800000}, 'content-version': 'tdm', 'delay-in-days': 0, 'URL': 'https://www.elsevier.com/tdm/userlicense/1.0/'}, { 'start': { 'date-parts': [[2021, 11, 14]], 'date-time': '2021-11-14T00:00:00Z', 'timestamp': 1636848000000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'http://creativecommons.org/licenses/by/4.0/'}], 'funder': [ { 'DOI': '10.13039/501100004329', 'name': 'Javna Agencija za Raziskovalno Dejavnost RS', 'doi-asserted-by': 'publisher', 'award': ['P4-0121']}, { 'DOI': '10.13039/501100005989', 'name': 'Ministrstvo za Izobraževanje, Znanost in Šport', 'doi-asserted-by': 'publisher', 'award': ['OP20.04342']}], 'content-domain': {'domain': ['elsevier.com', 'sciencedirect.com'], 'crossmark-restriction': True}, 'published-print': {'date-parts': [[2022, 3]]}, 'DOI': '10.1016/j.foodchem.2021.131594', 'type': 'journal-article', 'created': { 'date-parts': [[2021, 11, 14]], 'date-time': '2021-11-14T14:52:17Z', 'timestamp': 1636901537000}, 'page': '131594', 'update-policy': 'http://dx.doi.org/10.1016/elsevier_cm_policy', 'source': 'Crossref', 'is-referenced-by-count': 57, 'title': 'Inhibition of the SARS-CoV-2 3CLpro main protease by plant polyphenols', 'prefix': '10.1016', 'volume': '373', 'author': [ {'given': 'Miha', 'family': 'Bahun', 'sequence': 'first', 'affiliation': []}, {'given': 'Marko', 'family': 'Jukić', 'sequence': 'additional', 'affiliation': []}, {'given': 'Domen', 'family': 'Oblak', 'sequence': 'additional', 'affiliation': []}, {'given': 'Luka', 'family': 'Kranjc', 'sequence': 'additional', 'affiliation': []}, {'given': 'Gregor', 'family': 'Bajc', 'sequence': 'additional', 'affiliation': []}, {'given': 'Matej', 'family': 'Butala', 'sequence': 'additional', 'affiliation': []}, {'given': 'Krištof', 'family': 'Bozovičar', 'sequence': 'additional', 'affiliation': []}, {'given': 'Tomaž', 'family': 'Bratkovič', 'sequence': 'additional', 'affiliation': []}, {'given': 'Črtomir', 'family': 'Podlipnik', 'sequence': 'additional', 'affiliation': []}, {'given': 'Nataša', 'family': 'Poklar Ulrih', 'sequence': 'additional', 'affiliation': []}], 'member': '78', 'reference': [ { 'issue': '8', 'key': '10.1016/j.foodchem.2021.131594_b0005', 'doi-asserted-by': 'crossref', 'first-page': '1689', 'DOI': '10.1080/10942912.2016.1220393', 'article-title': 'Natural polyphenols: An overview', 'volume': '20', 'author': 'Abbas', 'year': '2017', 'journal-title': 'International Journal of Food Properties'}, { 'key': '10.1016/j.foodchem.2021.131594_b0010', 'doi-asserted-by': 'crossref', 'first-page': '1693', 'DOI': '10.1016/j.ijbiomac.2020.07.235', 'article-title': 'Structural stability of SARS-CoV-2 3CLpro and identification of ' 'quercetin as an inhibitor by experimental screening', 'volume': '164', 'author': 'Abian', 'year': '2020', 'journal-title': 'International Journal of Biological Macromolecules'}, { 'issue': '7', 'key': '10.1016/j.foodchem.2021.131594_b0015', 'doi-asserted-by': 'crossref', 'first-page': '2719', 'DOI': '10.1021/jm901137j', 'article-title': 'New substructure filters for removal of pan assay interference ' 'compounds (PAINS) from screening libraries and for their exclusion in ' 'bioassays', 'volume': '53', 'author': 'Baell', 'year': '2010', 'journal-title': 'Journal of Medicinal Chemistry'}, { 'issue': '19', 'key': '10.1016/j.foodchem.2021.131594_b0020', 'doi-asserted-by': 'crossref', 'first-page': '10053', 'DOI': '10.1128/JVI.01473-15', 'article-title': 'Polyphenols inhibit hepatitis C virus entry by a new mechanism of ' 'action', 'volume': '89', 'author': 'Calland', 'year': '2015', 'journal-title': 'Journal of Virology'}, { 'issue': '1', 'key': '10.1016/j.foodchem.2021.131594_b0025', 'doi-asserted-by': 'crossref', 'first-page': '50', 'DOI': '10.1042/BST0380050', 'article-title': 'Antiviral activity of resveratrol', 'volume': '38', 'author': 'Campagna', 'year': '2010', 'journal-title': 'Biochemical Society Transactions'}, { 'key': '10.1016/j.foodchem.2021.131594_b0030', 'article-title': 'The inhibitory effects of PGG and EGCG against the SARS-CoV-2 3C-like ' 'protease', 'author': 'Chiou', 'year': '2021', 'journal-title': 'Biochemical and Biophysical Research Communications.'}, { 'issue': '6497', 'key': '10.1016/j.foodchem.2021.131594_b0035', 'doi-asserted-by': 'crossref', 'first-page': '1331', 'DOI': '10.1126/science.abb4489', 'article-title': 'Structure-based design of antiviral drug candidates targeting the ' 'SARS-CoV-2 main protease', 'volume': '368', 'author': 'Dai', 'year': '2020', 'journal-title': 'Science'}, { 'issue': '4', 'key': '10.1016/j.foodchem.2021.131594_b0040', 'doi-asserted-by': 'crossref', 'first-page': '338', 'DOI': '10.1016/0889-1575(89)90005-7', 'article-title': 'Extraction, stability, and quantitation of ellagic acid in various ' 'fruits and nuts', 'volume': '2', 'author': 'Daniel', 'year': '1989', 'journal-title': 'Journal of Food Composition and Analysis'}, { 'issue': '8', 'key': '10.1016/j.foodchem.2021.131594_b0045', 'doi-asserted-by': 'crossref', 'first-page': '523', 'DOI': '10.1038/nrmicro.2016.81', 'article-title': 'SARS and MERS: Recent insights into emerging coronaviruses', 'volume': '14', 'author': 'de Wit', 'year': '2016', 'journal-title': 'Nature Reviews Microbiology'}, { 'key': '10.1016/j.foodchem.2021.131594_b0050', 'doi-asserted-by': 'crossref', 'first-page': '1', 'DOI': '10.1016/j.ijbiomac.2021.02.012', 'article-title': 'Epigallocatechin-3-gallate, an active ingredient of traditional Chinese ' 'medicines, inhibits the 3CLpro activity of SARS-CoV-2', 'volume': '176', 'author': 'Du', 'year': '2021', 'journal-title': 'International Journal of Biological Macromolecules'}, { 'issue': '6', 'key': '10.1016/j.foodchem.2021.131594_b0055', 'doi-asserted-by': 'crossref', 'first-page': '2879', 'DOI': '10.1002/ptr.6992', 'article-title': 'Polyphenols are potential nutritional adjuvants for targeting COVID-19', 'volume': '35', 'author': 'El-Missiry', 'year': '2021', 'journal-title': 'Phytotherapy Research'}, { 'issue': '21', 'key': '10.1016/j.foodchem.2021.131594_b0060', 'doi-asserted-by': 'crossref', 'first-page': '6177', 'DOI': '10.1021/jm051256o', 'article-title': 'Extra precision glide: Docking and scoring incorporating a model of ' 'hydrophobic enclosure for protein−ligand complexes', 'volume': '49', 'author': 'Friesner', 'year': '2006', 'journal-title': 'Journal of Medicinal Chemistry'}, { 'issue': '7', 'key': '10.1016/j.foodchem.2021.131594_b0065', 'doi-asserted-by': 'crossref', 'first-page': 'e0236307', 'DOI': '10.1371/journal.pone.0236307', 'article-title': 'Consolidation in a crisis: Patterns of international collaboration in ' 'early COVID-19 research', 'volume': '15', 'author': 'Fry', 'year': '2020', 'journal-title': 'PLoS ONE'}, { 'issue': '6', 'key': '10.1016/j.foodchem.2021.131594_b0070', 'doi-asserted-by': 'crossref', 'DOI': '10.1371/journal.pone.0253489', 'article-title': 'Phenolic compounds disrupt Spike-mediated receptor binding and entry of ' 'SARS-CoV-2', 'volume': '16', 'author': 'Goc', 'year': '2021', 'journal-title': 'PLoS ONE'}, { 'issue': '2', 'key': '10.1016/j.foodchem.2021.131594_b0075', 'doi-asserted-by': 'crossref', 'first-page': '384', 'DOI': '10.1021/ci300399w', 'article-title': 'Consensus docking: Improving the reliability of docking in a virtual ' 'screening context', 'volume': '53', 'author': 'Houston', 'year': '2013', 'journal-title': 'Journal of Chemical Information and Modeling'}, { 'issue': '11', 'key': '10.1016/j.foodchem.2021.131594_b0080', 'doi-asserted-by': 'crossref', 'first-page': '4413', 'DOI': '10.1021/acs.jpclett.0c00994', 'article-title': 'In-silico exploration of the molecular mechanism of clinically oriented ' 'drugs for possibly inhibiting SARS-CoV-2 main protease', 'volume': '11', 'author': 'Huynh', 'year': '2020', 'journal-title': 'Journal of Physical Chemistry Letters'}, { 'key': '10.1016/j.foodchem.2021.131594_b0085', 'article-title': 'In silico and in vitro evaluation of kaempferol as a potential ' 'inhibitor of the SARS-CoV-2 main protease (3CLpro)', 'volume': '1–5', 'author': 'Khan', 'year': '2021', 'journal-title': 'Phytotherapy Research'}, { 'issue': '3', 'key': '10.1016/j.foodchem.2021.131594_b0090', 'first-page': '521', 'article-title': 'In silico mutagenesis-based remodelling of SARS-CoV-1 peptide ' '(ATLQAIAS) to inhibit SARS-CoV-2: structural-dynamics and free energy ' 'calculations', 'volume': '13', 'author': 'Khan', 'year': '2021', 'journal-title': 'Interdisciplinary Sciences: Computational Life Sciences'}, { 'issue': '11', 'key': '10.1016/j.foodchem.2021.131594_b0095', 'doi-asserted-by': 'crossref', 'first-page': 'S223', 'DOI': '10.1097/01.inf.0000188166.17324.60', 'article-title': 'History and recent advances in coronavirus discovery', 'volume': '24', 'author': 'Kahn', 'year': '2005', 'journal-title': 'The Pediatric Infectious Disease Journal'}, { 'issue': '10', 'key': '10.1016/j.foodchem.2021.131594_b0100', 'doi-asserted-by': 'crossref', 'DOI': '10.1111/jfbc.13432', 'article-title': 'Tannins inhibit SARS-CoV-2 through binding with catalytic dyad residues ' 'of 3CLpro: An in-silico approach with 19 structural different ' 'hydrolysable tannins', 'volume': '44', 'author': 'Khalifa', 'year': '2020', 'journal-title': 'Journal of Food Biochemistry'}, { 'issue': '2', 'key': '10.1016/j.foodchem.2021.131594_b0105', 'doi-asserted-by': 'crossref', 'first-page': '227', 'DOI': '10.1016/j.antiviral.2010.08.016', 'article-title': 'Inhibition of influenza virus replication by plant-derived isoquercetin', 'volume': '88', 'author': 'Kim', 'year': '2010', 'journal-title': 'Antiviral Research'}, { 'issue': '13', 'key': '10.1016/j.foodchem.2021.131594_b0110', 'doi-asserted-by': 'crossref', 'first-page': '996', 'DOI': '10.1002/jcc.23899', 'article-title': 'New ways to boost molecular dynamics simulations', 'volume': '36', 'author': 'Krieger', 'year': '2015', 'journal-title': 'Journal of Computational Chemistry'}, { 'key': '10.1016/j.foodchem.2021.131594_b0115', 'doi-asserted-by': 'crossref', 'first-page': '692', 'DOI': '10.1016/j.jff.2017.12.017', 'article-title': 'Antiviral potential of curcumin', 'volume': '40', 'author': 'Mathew', 'year': '2018', 'journal-title': 'Journal of Functional Foods'}, { 'key': '10.1016/j.foodchem.2021.131594_b0120', 'doi-asserted-by': 'crossref', 'first-page': '100891', 'DOI': '10.1016/j.fbio.2021.100891', 'article-title': 'Polyphenols as promising biologically active substances for preventing ' 'SARS-CoV-2: A review with research evidence and underlying mechanisms', 'volume': '40', 'author': 'Mehany', 'year': '2021', 'journal-title': 'Food Bioscience'}, { 'issue': '1', 'key': '10.1016/j.foodchem.2021.131594_b0125', 'doi-asserted-by': 'crossref', 'DOI': '10.1038/s42003-020-01577-x', 'article-title': 'Identification of 3-chymotrypsin like protease (3CLpro) inhibitors as ' 'potential anti-SARS-CoV-2 agents', 'volume': '4', 'author': 'Mody', 'year': '2021', 'journal-title': 'Communications Biology'}, { 'issue': '5', 'key': '10.1016/j.foodchem.2021.131594_b0130', 'doi-asserted-by': 'crossref', 'DOI': '10.1111/jfbc.13707', 'article-title': 'Study on the mechanism of active components of Liupao tea on 3CLpro ' 'based on HPLC-DAD fingerprint and molecular docking technique', 'volume': '45', 'author': 'Ni', 'year': '2021', 'journal-title': 'Journal of Food Biochemistry'}, { 'key': '10.1016/j.foodchem.2021.131594_b0135', 'doi-asserted-by': 'crossref', 'first-page': '149', 'DOI': '10.1016/j.cofs.2020.08.004', 'article-title': 'Potential use of polyphenols in the battle against COVID-19', 'volume': '32', 'author': 'Paraiso', 'year': '2020', 'journal-title': 'Current Opinion in Food Science'}, { 'issue': '2', 'key': '10.1016/j.foodchem.2021.131594_b0140', 'doi-asserted-by': 'crossref', 'first-page': '354', 'DOI': '10.3390/v13020354', 'article-title': 'Resveratrol inhibits HCoV-229E and SARS-CoV-2 coronavirus replication ' 'in vitro', 'volume': '13', 'author': 'Pasquereau', 'year': '2021', 'journal-title': 'Viruses'}, { 'issue': '2', 'key': '10.1016/j.foodchem.2021.131594_b0145', 'first-page': '1700', 'article-title': 'Polyphenols and their benefits: A review', 'volume': '20', 'author': 'Rasouli', 'year': '2017', 'journal-title': 'International Journal of Food Properties'}, { 'issue': '4', 'key': '10.1016/j.foodchem.2021.131594_b0150', 'doi-asserted-by': 'crossref', 'first-page': '375', 'DOI': '10.3390/biomedicines9040375', 'article-title': 'Rutin Is a low micromolar inhibitor of SARS-CoV-2 main protease 3CLpro: ' 'Implications for drug design of quercetin analogs', 'volume': '9', 'author': 'Rizzuti', 'year': '2021', 'journal-title': 'Biomedicines'}, { 'issue': '4', 'key': '10.1016/j.foodchem.2021.131594_b0155', 'doi-asserted-by': 'crossref', 'first-page': 'e1003571', 'DOI': '10.1371/journal.pcbi.1003571', 'article-title': 'rDock: A fast, versatile and open source program for docking ligands to ' 'proteins and nucleic acids', 'volume': '10', 'author': 'Ruiz-Carmona', 'year': '2014', 'journal-title': 'PLoS Computational Biology'}, { 'issue': '6', 'key': '10.1016/j.foodchem.2021.131594_b0160', 'doi-asserted-by': 'crossref', 'first-page': '1873', 'DOI': '10.1016/j.bmcl.2010.01.152', 'article-title': 'SARS-CoV 3CLpro inhibitory effects of quinone-methide triterpenes from ' 'Tripterygium regelii', 'volume': '20', 'author': 'Ryu', 'year': '2010', 'journal-title': 'Bioorganic and Medicinal Chemistry Letters'}, { 'key': '10.1016/j.foodchem.2021.131594_b0165', 'doi-asserted-by': 'crossref', 'DOI': '10.3389/fphar.2020.572870', 'article-title': 'Potential therapeutic options for COVID-19: Current status, challenges, ' 'and future perspectives', 'volume': '11', 'author': 'Sarkar', 'year': '2020', 'journal-title': 'Frontiers in Pharmacology'}, { 'issue': '3', 'key': '10.1016/j.foodchem.2021.131594_b0170', 'doi-asserted-by': 'crossref', 'first-page': '147', 'DOI': '10.1007/s10311-006-0068-8', 'article-title': 'Significance of flavonoids in plant resistance: A review', 'volume': '4', 'author': 'Treutter', 'year': '2006', 'journal-title': 'Environmental Chemistry Letters'}, { 'issue': '2', 'key': '10.1016/j.foodchem.2021.131594_b0175', 'doi-asserted-by': 'crossref', 'first-page': '455', 'DOI': '10.1002/jcc.21334', 'article-title': 'AutoDock VINA: Improving the speed and accuracy of docking with a new ' 'scoring function, efficient optimization, and multithreading', 'volume': '31', 'author': 'Trott', 'year': '2010', 'journal-title': 'Journal of Computational Chemistry'}, { 'issue': '10223', 'key': '10.1016/j.foodchem.2021.131594_b0180', 'doi-asserted-by': 'crossref', 'first-page': '470', 'DOI': '10.1016/S0140-6736(20)30185-9', 'article-title': 'A novel coronavirus outbreak of global health concern', 'volume': '395', 'author': 'Wang', 'year': '2020', 'journal-title': 'The Lancet'}, { 'issue': '3', 'key': '10.1016/j.foodchem.2021.131594_b0185', 'doi-asserted-by': 'crossref', 'first-page': '226', 'DOI': '10.1111/nbu.12278', 'article-title': 'The role of polyphenols in modern nutrition', 'volume': '42', 'author': 'Williamson', 'year': '2017', 'journal-title': 'Nutrition Bulletin'}, { 'issue': '3', 'key': '10.1016/j.foodchem.2021.131594_b0190', 'doi-asserted-by': 'crossref', 'first-page': '1127', 'DOI': '10.1002/ptr.6916', 'article-title': 'Resveratrol inhibits the replication of severe acute respiratory ' 'syndrome coronavirus 2 (SARS-CoV-2) in cultured Vero cells', 'volume': '35', 'author': 'Yang', 'year': '2020', 'journal-title': 'Phytotherapy Research'}, { 'key': '10.1016/j.foodchem.2021.131594_b0195', 'doi-asserted-by': 'crossref', 'first-page': '198024', 'DOI': '10.1016/j.virusres.2020.198024', 'article-title': 'Swine enteric alphacoronavirus (swine acute diarrhea syndrome ' 'coronavirus): An update three years after its discovery', 'volume': '285', 'author': 'Yang', 'year': '2020', 'journal-title': 'Virus Research'}, { 'issue': '8', 'key': '10.1016/j.foodchem.2021.131594_b0200', 'doi-asserted-by': 'crossref', 'first-page': '727', 'DOI': '10.1056/NEJMoa2001017', 'article-title': 'A novel coronavirus from patients with pneumonia in China, 2019', 'volume': '382', 'author': 'Zhu', 'year': '2020', 'journal-title': 'New England Journal of Medicine'}], 'container-title': 'Food Chemistry', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://api.elsevier.com/content/article/PII:S0308814621026005?httpAccept=text/xml', 'content-type': 'text/xml', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://api.elsevier.com/content/article/PII:S0308814621026005?httpAccept=text/plain', 'content-type': 'text/plain', 'content-version': 'vor', 'intended-application': 'text-mining'}], 'deposited': { 'date-parts': [[2023, 11, 12]], 'date-time': '2023-11-12T16:18:36Z', 'timestamp': 1699805916000}, 'score': 1, 'resource': {'primary': {'URL': 'https://linkinghub.elsevier.com/retrieve/pii/S0308814621026005'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2022, 3]]}, 'references-count': 40, 'alternative-id': ['S0308814621026005'], 'URL': 'http://dx.doi.org/10.1016/j.foodchem.2021.131594', 'relation': {}, 'ISSN': ['0308-8146'], 'subject': ['General Medicine', 'Food Science', 'Analytical Chemistry'], 'container-title-short': 'Food Chemistry', 'published': {'date-parts': [[2022, 3]]}, 'assertion': [ {'value': 'Elsevier', 'name': 'publisher', 'label': 'This article is maintained by'}, { 'value': 'Inhibition of the SARS-CoV-2 3CLpro main protease by plant polyphenols', 'name': 'articletitle', 'label': 'Article Title'}, {'value': 'Food Chemistry', 'name': 'journaltitle', 'label': 'Journal Title'}, { 'value': 'https://doi.org/10.1016/j.foodchem.2021.131594', 'name': 'articlelink', 'label': 'CrossRef DOI link to publisher maintained version'}, {'value': 'article', 'name': 'content_type', 'label': 'Content Type'}, { 'value': '© 2021 The Authors. Published by Elsevier Ltd.', 'name': 'copyright', 'label': 'Copyright'}], 'article-number': '131594'}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit