Conv. Plasma
Nigella Sativa
Nitric Oxide
Peg.. Lambda

Home   COVID-19 treatment studies for Curcumin  COVID-19 treatment studies for Curcumin  C19 studies: Curcumin  Curcumin   Select treatmentSelect treatmentTreatmentsTreatments
Alkalinization Meta Lactoferrin Meta
Melatonin Meta
Bromhexine Meta Metformin Meta
Budesonide Meta Molnupiravir Meta
Cannabidiol Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta Nitric Oxide Meta
Ensovibep Meta Paxlovid Meta
Famotidine Meta Peg.. Lambda Meta
Favipiravir Meta Povidone-Iod.. Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta Remdesivir Meta
Iota-carragee.. Meta
Ivermectin Meta Zinc Meta

Other Treatments Global Adoption
All Studies   Meta Analysis   Recent:  
Inhibition of the SARS-CoV-2 3CLpro main protease by plant polyphenols
Bahun et al., Food Chemistry, doi:10.1016/j.foodchem.2021.131594 (In Vitro)
Bahun et al., Inhibition of the SARS-CoV-2 3CLpro main protease by plant polyphenols, Food Chemistry, doi:10.1016/j.foodchem.2021.131594 (In Vitro)
Nov 2021   Source   PDF  
  All Studies   Meta
In Silico and In Vitro study of plant polyphenols identifying quercetin, curcumin, ellagic acid, epigallocatechin gallate and resveratrol as SARS-CoV-2 3CLpro inhibitors with IC50 between 11.8µM and 23.4µM. Real-time binding was analyzed with surface plasmon resonance spectroscopy.
9 In Vitro studies support the efficacy of curcumin [Bahun, Bormann, Goc, Goc (B), Guijarro-Real, Kandeil, Leka, Teshima, Wu].
This study includes quercetin and curcumin.
Bahun et al., 14 Nov 2021, peer-reviewed, 10 authors.
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
All Studies   Meta Analysis   Submit Updates or Corrections
This PaperCurcuminAll
Inhibition of the SARS-CoV-2 3CLpro main protease by plant polyphenols
Miha Bahun, Marko Jukić, Domen Oblak, Luka Kranjc, Gregor Bajc, Matej Butala, Krištof Bozovičar, Tomaž Bratkovič, Črtomir Podlipnik, Nataša Poklar Ulrih
Food Chemistry, doi:10.1016/j.foodchem.2021.131594
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Conflicts of interest: The authors declare that they have no conflicts of interest. Appendix A. Supplementary material
Abbas, Saeed, Anjum, Afzaal, Tufail et al., Natural polyphenols: an overview, International Journal of Food Properties, doi:10.1080/10942912.2016.1220393
Abian, Ortega-Alarcon, Jimenez-Alesanco, Ceballos-Laita, Vega et al., Structural stability of SARS-CoV-2 3CLpro and identification of quercetin as an inhibitor by experimental screening, International Journal of Biological Macromolecules, doi:10.1016/j.ijbiomac.2020.07.235
Baell, Holloway, New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays, Journal of Medicinal Chemistry, doi:10.1021/jm901137j
Calland, Sahuc, Belouzard, Bonnafous, Mesalam et al., Polyphenols inhibit hepatitis C virus entry by a new mechanism of action, Journal of Virology, doi:10.1128/JVI.01473-15
Campagna, Rivas, Antiviral activity of resveratrol, Biochemical Society Transactions, doi:10.1042/BST0380050
Chiou, Chen, Chen, Yang, Hwang et al., The inhibitory effects of PGG and EGCG against the SARS-CoV-2 3C-like protease, Biochemical and Biophysical Research Communications, doi:10.1016/j.bbrc.2020.12.106
Dai, Zhang, Jiang, Su, Li et al., Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease, Science, doi:10.1126/science.abb4489
Daniel, Krupnick, Heur, Blinzler, Nims et al., Extraction, stability, and quantitation of ellagic acid in various fruits and nuts, Journal of Food Composition and Analysis, doi:10.1016/0889-1575(89)90005-7
Dewit, Van Doremalen, Falzarano, Munster, SARS and MERS: recent insights into emerging coronaviruses, Nature Reviews Microbiology, doi:10.1038/nrmicro.2016.81
Du, Zheng, Disoma, Li, Chen et al., Epigallocatechin-3-gallate, an active ingredient of traditional Chinese medicines, inhibits the 3CL pro activity of SARS-CoV-2, International Journal of Biological Macromolecules, doi:10.1016/j.ijbiomac.2021.02.012
El-Missiry, Fekri, Kesar, Othman, Polyphenols are potential nutritional adjuvants for targeting COVID-19, Phytotherapy Research, doi:10.1002/ptr.6992
Friesner, Murphy, Repasky, Frye, Greenwood et al., Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein−ligand complexes, Journal of Medicinal Chemistry, doi:10.1021/jm051256o
Fry, Cai, Zhang, Wagner, Consolidation in a crisis: patterns of international collaboration in early COVID-19 research, PLoS ONE, doi:10.1371/journal.pone.0236307
Goc, Sumera, Rath, Niedzwiecki, Phenolic compounds disrupt Spike-mediated receptor binding and entry of SARS-CoV-2, PLoS ONE, doi:10.1371/journal.pone.0253489
Houston, Walkinshaw, Consensus docking: improving the reliability of docking in a virtual screening context, Journal of Chemical Information and Modeling, doi:10.1021/ci300399w
Huynh, Wang, Luan, In-silico exploration of the molecular mechanism of clinically oriented drugs for possibly inhibiting SARS-CoV-2 main protease, Journal of Physical Chemistry Letters, doi:10.1021/acs.jpclett.0c00994
Kahn, Mcintosh, History and recent advances in coronavirus discovery, The Pediatric Infectious Disease Journal
Khalifa, Zhu, Mohammed, Dutta, Li, Tannins inhibit SARS-CoV-2 through binding with catalytic dyad residues of 3CL pro : an in-silico approach with 19 structural different hydrolysable tannins, Journal of Food Biochemistry, doi:10.1111/jfbc.13432
Khan, Heng, Wang, Qiu, Wei et al., In silico and in vitro evaluation of kaempferol as a potential inhibitor of the SARS-CoV-2 main protease (3CLpro), Phytotherapy Research, doi:10.1002/ptr.6998
Khan, Umbreen, Hameed, Fatima, Zahoor et al., In Silico Mutagenesis-Based Remodelling of SARS-CoV-1 Peptide (ATLQAIAS) to Inhibit SARS-CoV-2: Structural-Dynamics and Free Energy Calculations, Interdisciplinary Sciences: Computational Life Sciences, doi:10.1007/s12539-021-00447-2
Kim, Narayanan, Chang, Inhibition of influenza virus replication by plant-derived isoquercetin, Antiviral Research, doi:10.1016/j.antiviral.2010.08.016
Krieger, Vriend, New ways to boost molecular dynamics simulations, Journal of Computational Chemistry, doi:10.1002/jcc.23899
Mathew, Hsu, Antiviral potential of curcumin, Journal of Functional Foods, doi:10.1016/j.jff.2017.12.017
Mehany, Khalifa, Barakat, Althwab, Alharbi et al., Polyphenols as promising biologically active substances for preventing SARS-CoV-2: a review with research evidence and underlying mechanisms, Food Bioscience, doi:10.1016/j.fbio.2021.100891
Mody, Ho, Wills, Mawri, Lawson et al., Identification of 3-chymotrypsin like protease (3CL pro ) inhibitors as potential anti-SARS-CoV-2 agents, Communications Biology, doi:10.1038/s42003-020-01577-x
Ni, Chen, Wei, Lan, Qiu et al., Study on the mechanism of active components of Liupao tea on 3CL pro based on HPLC-DAD fingerprint and molecular docking technique, Journal of Food Biochemistry, doi:10.1111/jfbc.13707
Paraiso, Revel, Stevens, Potential use of polyphenols in the battle against COVID-19, Current Opinion in Food Science, doi:10.1016/j.cofs.2020.08.004
Pasquereau, Nehme, Ahmad, Daouad, Van Assche et al., Resveratrol inhibits HCoV-229E and SARS-CoV-2 coronavirus replication in vitro, Viruses, doi:10.3390/v13020354
Rasouli, Farzaei, Khodarahmi, Polyphenols and their benefits: a review, International Journal of Food Properties, doi:10.1080/10942912.2017.1354017
Rizzuti, Grande, Conforti, Jimenez-Alesanco, Ceballos-Laita et al., Rutin Is a low micromolar inhibitor of SARS-CoV-2 main protease 3CL pro : implications for drug design of quercetin analogs, Biomedicines, doi:10.3390/biomedicines9040375
Ruiz-Carmona, Alvarez-Garcia, Foloppe, Garmendia-Doval, Juhos, rDock: a fast, versatile and open source program for docking ligands to proteins and nucleic acids, PLoS Computational Biology, doi:10.1371/journal.pcbi.1003571
Ryu, Park, Kim, Lee, Seo et al., SARS-CoV 3CL pro inhibitory effects of quinone-methide triterpenes from Tripterygium regelii, Bioorganic and Medicinal Chemistry Letters, doi:10.1016/j.bmcl.2010.01.152
Sarkar, Mondal, Torequl Islam, Martorell, Docea et al., Potential therapeutic options for COVID-19: current status, challenges, and future perspectives, Frontiers in Pharmacology, doi:10.3389/fphar.2020.572870
Treutter, Significance of flavonoids in plant resistance: a review, Environmental Chemistry Letters, doi:10.1007/s10311-006-0068-8
Trott, Olson, AutoDock VINA: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, Journal of Computational Chemistry, doi:10.1002/jcc.21334
Wang, Horby, Hayden, Gao, A novel coronavirus outbreak of global health concern, The Lancet, doi:10.1016/S0140-6736(20)30185-9
Williamson, The role of polyphenols in modern nutrition, Nutrition Bulletin, doi:10.1111/nbu.12278
Yang, Wei, Huang, Lei, Shen et al., Resveratrol inhibits the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in cultured Vero cells, Phytotherapy Research, doi:10.1002/ptr.6916
Yang, Yu, Huang, Swine enteric alphacoronavirus (swine acute diarrhea syndrome coronavirus): an update three years after its discovery, Virus Research, doi:10.1016/j.virusres.2020.198024
Zhu, Zhang, Wang, Li, Yang et al., A novel coronavirus from patients with pneumonia in China, 2019, New England Journal of Medicine, doi:10.1056/NEJMoa2001017
Please send us corrections, updates, or comments. Vaccines and treatments are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment, vaccine, or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop