Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
Abstract
All curcumin studies
Meta analysis
 
Feedback
Home
next
study
previous
study
c19early.org COVID-19 treatment researchCurcuminCurcumin (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis    Recent:   

Establishment of in-house assay for screening of anti-SARS-CoV-2 protein inhibitors

Emam et al., AMB Express, doi:10.1186/s13568-024-01739-8
Sep 2024  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Curcumin for COVID-19
15th treatment shown to reduce risk in February 2021
 
*, now with p = 0.0000000096 from 27 studies.
No treatment is 100% effective. Protocols combine treatments. * >10% efficacy, ≥3 studies.
4,800+ studies for 95 treatments. c19early.org
In Vitro study showing that curcumin, quercetin, gallic acid, and silymarin inhibit SARS-CoV-2 spike protein binding to the ACE2 receptor. Authors developed a novel immunofluorescent assay to screen potential inhibitors of the spike-ACE2 interaction. Curcumin demonstrated the strongest inhibitory effect with an IC50 of 1.4 μg/mL, followed by gallic acid (4.9 μg/mL), quercetin (8.5 μg/mL), and silymarin (21.0 μg/mL), compared to 12.7 μg/mL for the positive control chitosan nanoparticles. Cytotoxicity was evaluated in Vero cells, with CC50 values of 13 μg/mL for curcumin, 18 μg/mL for gallic acid, 73 μg/mL for quercetin, and 65 μg/mL for silymarin.
47 preclinical studies support the efficacy of curcumin for COVID-19:
In Silico studies predict inhibition of SARS-CoV-2 with curcumin or metabolites via binding to the spikeA,5,10,12,18,21 (and specifically the receptor binding domainB,8,11,14), MproC,5,7,9-11,13,14,16,19,21,22,24,37, RNA-dependent RNA polymeraseD,11,20, ACE2E,12,13,15, nucleocapsidF,6,23, nsp10G,23, and helicaseH,27 proteins. In Vitro studies demonstrate inhibition of the spikeA,32 (and specifically the receptor binding domainB,40), MproC,17,32,37,39, ACE2E,40, and TMPRSS2I,40 proteins, and inhibition of spike-ACE2 interactionJ,25. In Vitro studies demonstrate efficacy in Calu-3K,38, A549L,32, 293TM,1, HEK293-hACE2N,17,30, 293T/hACE2/TMPRSS2O,31, Vero E6P,7,11,21,30,32-34,36,38, and SH-SY5YQ,29 cells. Curcumin is predicted to inhibit the interaction between the SARS-CoV-2 spike protein receptor binding domain and the human ACE2 receptor for the delta and omicron variants8, decreases pro-inflammatory cytokines induced by SARS-CoV-2 in peripheral blood mononuclear cells36, alleviates SARS-CoV-2 spike protein-induced mitochondrial membrane damage and oxidative stress1, and may limit COVID-19 induced cardiac damage by inhibiting the NF-κB signaling pathway which mediates the profibrotic effects of the SARS-CoV-2 spike protein on cardiac fibroblasts41.
Study covers quercetin and curcumin.
Emam et al., 16 Sep 2024, peer-reviewed, 4 authors.
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
This PaperCurcuminAll
Establishment of in-house assay for screening of anti-SARS-CoV-2 protein inhibitors
Samah A Loutfy, Merna H Emam, Mohamed I Mahmoud, Nadia El-Guendy
doi:10.1186/s13568-024-01739-8
drug to be approved in 2020 for the treatment of hospitalized or non-hospitalized patients at high risk for COVID-19 disease progression (Lamb 2020). Following Remdesivir, Tocilizumab (Actemra®) and Baricitinib (Olumiant®), immunosuppressive drugs used for the treatment of rheumatoid arthritis, were approved in 2022 for the treatment of COVID-19 in hospitalized adults who are receiving systemic corticosteroids and require supplemental oxygen, ventilation, or extracorporeal membrane oxygenation (ECMO) (Assadiasl et al. 2021; Bozorgmanesh et al. 2021) . Spike protein is a surface protein of the SARS-CoV-2 virus that mediates viral adhesion and fusion by interaction with the angiotensin-converting enzyme 2 (ACE2) receptor expressed on the surface of the host cells (Scialo et al. 2020) . Spike-ACE2 protein-protein interaction (PPI) is a significant step in virus replication and has been
Supplementary Information The online version contains supplementary material available at https://doi. org/10.1186/s13568-024-01739-8. Supplementary Material 1 Author contributions M.H.E performed the cytotoxicity in-vitro assays, as well as the immunofluorescent screening assay, conducted the graphical analysis for the results, and initiated the writing of the original draft. M.I.M produced and purified the in-house spike protein, conducted the graphical analysis for the results, and participated in the writing of the manuscript. All experiments were conducted under the supervision and guidance of S.A.L, and N.E. S.A.L, and N.E reviewed and supervised the writing of the manuscript. S.A.L was also responsible for the development of the main idea, managing the resources, and funding acquisition. All authors revised the manuscript and agreed to all its contents. Funding Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank (EKB). Declarations Ethics approval and consent to participate Not applicable. Consent for publication All authors agree to be published. Competing interests The authors declare no competing interests. Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
Abdullah, Ismail, Suppian, Munirah, Natural gallic acid and Methyl Gallate induces apoptosis in hela cells through regulation of intrinsic and extrinsic protein expression, Int J Mol Sci, doi:10.3390/ijms24108495
Ahamad, Ali, Secco, Giacca, Gupta, Anti-fungal drug Anidulafungin inhibits SARS-CoV-2 Spike-Induced Syncytia formation by Targeting ACE2-Spike Protein Interaction, Front Genet, doi:10.3389/fgene.2022.866474
Al-Harrasi, Behl, Upadhyay, Chigurupati, Bhatt et al., Targeting Natural products against SARS-CoV-2, Environ Sci Pollut Res, doi:10.1007/s11356-022-19770-2
Assadiasl, Fatahi, Mosharmovahed, Mohebbi, Hossein Nicknam, Baricitinib: from rheumatoid arthritis to COVID-19, J Clin Pharmacol, doi:10.1002/jcph.1874
Babaei, Nassiri-Asl, Hosseinzadeh, Curcumin (a constituent of Turmeric): New Treatment option against COVID-19, Food Sci Nutr, doi:10.1002/fsn3.1858
Bizzoca, Eleonora, Leuci, Mignogna, Muzio et al., Natural compounds may contribute in preventing SARS-CoV-2 infection: a narrative review, Food Sci Hum Wellness, doi:10.1016/j.fshw.2022.04.005
Bojadzic, Alcazar, Chen, Chuang, Jose et al., Small-molecule inhibitors of the Coronavirus Spike: ACE2 protein-protein Interaction as blockers of viral attachment and entry for SARS-CoV-2, ACS Infect Dis, doi:10.1021/acsinfecdis.1c00070
Bozorgmanesh, Yousefifar, Jamalian, Mahmoodiyeh, Kamali, A review on common treatments for COVID-19 and Use of Tocilizumab (ACTEMRA) in reducing effects of the Disease, Annals Romanian Soc Cell Biology
Chakravarti, Singh, Ghosh, Dey, Sharma et al., A review on potential of Natural products in the management of COVID-19, RSC Adv, doi:10.1039/d1ra00644d
Emam, Ahmed, Salam, Moatasim, Gomaa et al., Development of a Newly Confirmatory Immunoassay to Evaluate Anti-Viral Activity of Chitosan Nanoparticles (Cnps) against SARS-CoV-2 Spike Protein
Emam, Nageh, Ali, Taha, Elshehaby et al., Inhibition of SARS-CoV-2 spike protein entry using biologically modified Polyacrylonitrile nanofibers: in Vitro Study towards specific antiviral masks, RSC Adv, doi:10.1039/d2ra01321e
Govea-Salas, Rivas-Estilla, Rodríguez-Herrera, Lozano-Sepúlveda, Aguilar-Gonzalez et al., Gallic acid decreases Hepatitis C Virus expression through its antioxidant capacity, Experimental Therapeutic Med, doi:10.3892/etm.2015.2923
Hiremath, Shridhar, Kumar, Nandan, Mantesh et al., In Silico Docking Analysis Revealed the Potential of Phytochemicals Present in Phyllanthus Amarus and Andrographis Paniculata, Used in Ayurveda Medicine in Inhibiting SARS-CoV-2, 3 Biotech, doi:10.1007/s13205-020-02578-7
Jadel, Carla, Andrighetti-Fröhner, Leal, Nunes et al., Evaluation of Anti-HSV-2 activity of gallic acid and Pentyl Gallate, Biol Pharm Bull, doi:10.1248/bpb.31.903
Jia, Neptune, Cui, Targeting ACE2 for COVID-19 therapy: opportunities and challenges, Am J Respir Cell Mol Biol, doi:10.1165/rcmb.2020-0322PS
Khan, Chen, Geiger, Possible therapeutic use of natural compounds against COVID-19, J Cell Signal
Lai, Po-Ren, Coronavirus Disease 2019 Rebounds following Nirmatrelvir/Ritonavir Treatment, J Med Virol, doi:10.1002/jmv.28430
Lamb, Remdesivir: first approval, Drugs, doi:10.1007/s40265-020-01378-w
Li, Yao, Han, Yang, Chaudhry et al., Quercetin, inflammation and immunity, Nutrients, doi:10.3390/nu8030167
Loutfy, Ahmed, Salam, Moatasim, Gomaa et al., Antiviral Activity of Chitosan Nanoparticles Encapsulating Silymarin (Sil-CNPs) against SARS-CoV-2 (in Silicoin Vitro Study), RSC Advances, doi:10.1039/d2ra00905f
Low, Xuan, Ouyong, Hassandarvish, Poh et al., Antiviral activity of silymarin and Baicalein against Dengue Virus, Sci Rep, doi:10.1038/s41598-021-98949-y
Marín-Palma, Tabares-Guevara, Maríai, Flórez-Álvarez, Yepes et al., Curcumin Inhibits in Vitro Sars-Cov-2 Infection in Vero E6 Cells through Multiple Antiviral Mechanisms, Molecules, doi:10.3390/molecules26226900
Mosmann, Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays
Murakami, Hayden, Hills, Al-Samkari, Casey et al., Therapeutic Advances in COVID-19, Nature Reviews Nephrology, doi:10.1038/s41581-022-00642-4
Ortiz-Andrade, Araujo-León, Sánchez-Recillas, Navarrete-Vazquez, González-Sánchez et al., Toxicological Screening of Four Bioactive Citroflavonoids: In Vitro, In Vivo, and In Silico Approaches, Molecules, doi:10.3390/MOLECULES25245959
Pan, Fang, Zhang, Pan, Liu et al., Chinese Herbal compounds against SARS-CoV-2: Puerarin and quercetin impair the binding of viral S-Protein to ACE2 receptor, Comput Struct Biotechnol J, doi:10.1016/j.csbj.2020.11.010
Rattis, Simone, Ramos, Celes, Curcumin as a potential treatment for COVID-19, Front Pharmacol, doi:10.3389/fphar.2021.675287
Saravolatz, Depcinski, Sharma, Molnupiravir and Nirmatrelvir-Ritonavir: oral coronavirus Disease 2019 antiviral drugs, Clin Infect Dis, doi:10.1093/cid/ciac180
Scialo, Amato, Pastore, Matera, Cazzola et al., ACE2: the major cell entry receptor for SARS-CoV-2, Lung, doi:10.1007/s00408-020-00408-4
Soni, Kumar, Mehta, Ratre, Tiwari et al., Curcumin, a traditional spice component, can hold the Promise against COVID-19?, Eur J Pharmacol, doi:10.1016/j.ejphar.2020.173551
Tedesco, Calugi, Lenci, Trabocchi, Peptidomimetic Small-Molecule inhibitors of 3CLPro Activity and Spike-ACE2 Interaction: toward dual-action molecules against Coronavirus infections, J Org Chem, doi:10.1021/acs.joc.2c01047
Vahedian-Azimi, Abbasifard, Rahimi-Bashar, Guest, Majeed et al., Effectiveness of Curcumin on outcomes of hospitalized COVID-19 patients: a systematic review of clinical trials, Nutrients, doi:10.3390/nu14020256
Wrapp, Wang, Corbett, Goldsmith, Hsieh et al., Antioxidant activities of Quercetin and its complexes for Medicinal Application, Molecules, doi:10.3390/molecules24061123
{ 'indexed': {'date-parts': [[2024, 9, 23]], 'date-time': '2024-09-23T20:29:44Z', 'timestamp': 1727123384255}, 'reference-count': 34, 'publisher': 'Springer Science and Business Media LLC', 'issue': '1', 'license': [ { 'start': { 'date-parts': [[2024, 9, 16]], 'date-time': '2024-09-16T00:00:00Z', 'timestamp': 1726444800000}, 'content-version': 'tdm', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by/4.0'}, { 'start': { 'date-parts': [[2024, 9, 16]], 'date-time': '2024-09-16T00:00:00Z', 'timestamp': 1726444800000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by/4.0'}], 'funder': [ { 'DOI': '10.13039/501100002386', 'name': 'Cairo University', 'doi-asserted-by': 'crossref', 'id': [{'id': '10.13039/501100002386', 'id-type': 'DOI', 'asserted-by': 'crossref'}]}], 'content-domain': {'domain': ['link.springer.com'], 'crossmark-restriction': False}, 'abstract': '<jats:title>Abstract</jats:title><jats:p>Developing a potent antiviral agent to combat ' 'Coronavirus Disease-19 (COVID-19) is of critical importance as we may be at risk of the ' 'emergence of new virus strains or another pandemic recurrence. The interaction between the ' 'SARS-CoV-2 spike protein and Angiotensin Converting Enzyme 2 (ACE2) is the main ' 'protein-protein interaction (PPI) implicated in the virus entry into the host cells. ' 'Spike-ACE2 PPI represents a major target for drug intervention. We have repurposed a ' 'previously described protein-protein interaction detection method to be utilized as a drug ' 'screening assay. The assay was standardized using Chitosan nanoparticles (CNPs) as the drug ' 'and SARS-CoV-2 spike-ACE2 interaction as the PPI model. The assay was then used to screen ' 'four natural bioactive compounds: Curcumin (Cur), Gallic acid (GA), Quercetin (Q), and ' 'Silymarin (Sil), and their cytotoxicity was evaluated in vitro. Production of the spike ' 'protein and the evaluation of its activity in comparison to a standard commercial protein was ' 'part of our work as well. Here we describe a novel simple immunofluorescent screening assay ' 'to identify potential SARS-CoV-2 inhibitors that could assess the inhibitory effect of any ' 'ligand against any PPI.</jats:p>\n' ' <jats:p><jats:bold>Graphical Abstract</jats:bold></jats:p>', 'DOI': '10.1186/s13568-024-01739-8', 'type': 'journal-article', 'created': {'date-parts': [[2024, 9, 16]], 'date-time': '2024-09-16T16:03:19Z', 'timestamp': 1726502599000}, 'update-policy': 'http://dx.doi.org/10.1007/springer_crossmark_policy', 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': 'Establishment of in-house assay for screening of anti-SARS-CoV-2 protein inhibitors', 'prefix': '10.1186', 'volume': '14', 'author': [ {'given': 'Merna H.', 'family': 'Emam', 'sequence': 'first', 'affiliation': []}, {'given': 'Mohamed I.', 'family': 'Mahmoud', 'sequence': 'additional', 'affiliation': []}, {'given': 'Nadia', 'family': 'El-Guendy', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0003-1959-434X', 'authenticated-orcid': False, 'given': 'Samah A.', 'family': 'Loutfy', 'sequence': 'additional', 'affiliation': []}], 'member': '297', 'published-online': {'date-parts': [[2024, 9, 16]]}, 'reference': [ { 'key': '1739_CR1', 'doi-asserted-by': 'publisher', 'unstructured': 'Abdullah H, Ismail I, Suppian R, Nor Munirah Z (2023) Natural gallic ' 'acid and Methyl Gallate induces apoptosis in hela cells through ' 'regulation of intrinsic and extrinsic protein expression. Int J Mol Sci ' '24(10). https://doi.org/10.3390/ijms24108495', 'DOI': '10.3390/ijms24108495'}, { 'key': '1739_CR2', 'doi-asserted-by': 'publisher', 'unstructured': 'Ahamad S, Ali H, Secco I, Giacca M, Gupta D (2022) Anti-fungal drug ' 'Anidulafungin inhibits SARS-CoV-2 Spike-Induced Syncytia formation by ' 'Targeting ACE2-Spike Protein Interaction. Front Genet 13. ' 'https://doi.org/10.3389/fgene.2022.866474', 'DOI': '10.3389/fgene.2022.866474'}, { 'key': '1739_CR3', 'doi-asserted-by': 'publisher', 'unstructured': 'Al-Harrasi A, Behl T, Upadhyay T, Chigurupati S, Bhatt S, Sehgal A, ' 'Bhatia S, Singh S, Sharma N, Vijayabalan S Vasanth Raj Palanimuthu, ' 'Suprava Das, Rajwinder Kaur, Lotfi Aleya, and Simona Bungau. 2022. ' '‘Targeting Natural products against SARS-CoV-2’. Environ Sci Pollut Res ' '29(28):42404–42432. https://doi.org/10.1007/s11356-022-19770-2', 'DOI': '10.1007/s11356-022-19770-2'}, { 'issue': '10', 'key': '1739_CR4', 'doi-asserted-by': 'publisher', 'first-page': '1274', 'DOI': '10.1002/jcph.1874', 'volume': '61', 'author': 'S Assadiasl', 'year': '2021', 'unstructured': 'Assadiasl S, Fatahi Y, Mosharmovahed B, Mohebbi B, Mohammad Hossein ' 'Nicknam (2021) Baricitinib: from rheumatoid arthritis to COVID-19. J ' 'Clin Pharmacol 61(10):1274–1285. https://doi.org/10.1002/jcph.1874', 'journal-title': 'J Clin Pharmacol'}, { 'issue': '10', 'key': '1739_CR5', 'doi-asserted-by': 'publisher', 'first-page': '5215', 'DOI': '10.1002/fsn3.1858', 'volume': '8', 'author': 'F Babaei', 'year': '2020', 'unstructured': 'Babaei F, Marjan Nassiri-Asl, and Hossein Hosseinzadeh (2020) Curcumin ' '(a constituent of Turmeric): New Treatment option against COVID-19. Food ' 'Sci Nutr 8(10):5215–5227. https://doi.org/10.1002/fsn3.1858', 'journal-title': 'Food Sci Nutr'}, { 'key': '1739_CR6', 'doi-asserted-by': 'publisher', 'unstructured': 'Bizzoca M, Eleonora S, Leuci MD, Mignogna Eleonora Lo Muzio, Vito Carlo ' 'Alberto Caponio, and Lorenzo Lo Muzio. 2022. ‘Natural compounds may ' 'contribute in preventing SARS-CoV-2 infection: a narrative review’. Food ' 'Sci Hum Wellness 11(5):1134–1142. ' 'https://doi.org/10.1016/j.fshw.2022.04.005', 'DOI': '10.1016/j.fshw.2022.04.005'}, { 'issue': '6', 'key': '1739_CR7', 'doi-asserted-by': 'publisher', 'first-page': '1519', 'DOI': '10.1021/acsinfecdis.1c00070', 'volume': '7', 'author': 'D Bojadzic', 'year': '2021', 'unstructured': 'Bojadzic D, Alcazar O, Chen J, Chuang ST, Jose M, Condor Capcha LA, ' 'Shehadeh, and Peter Buchwald (2021) Small-molecule inhibitors of the ' 'Coronavirus Spike: ACE2 protein-protein Interaction as blockers of viral ' 'attachment and entry for SARS-CoV-2. ACS Infect Dis 7(6):1519–1534. ' 'https://doi.org/10.1021/acsinfecdis.1c00070', 'journal-title': 'ACS Infect Dis'}, { 'issue': '4', 'key': '1739_CR8', 'first-page': '2920', 'volume': '25', 'author': 'M Bozorgmanesh', 'year': '2021', 'unstructured': 'Bozorgmanesh M, Yousefifar Y, Jamalian M, Mahmoodiyeh B, Kamali A (2021) ' 'A review on common treatments for COVID-19 and Use of Tocilizumab ' '(ACTEMRA) in reducing effects of the Disease. Annals Romanian Soc Cell ' 'Biology 25(4):2920–2936', 'journal-title': 'Annals Romanian Soc Cell Biology'}, { 'issue': '27', 'key': '1739_CR9', 'doi-asserted-by': 'publisher', 'first-page': '16711', 'DOI': '10.1039/d1ra00644d', 'volume': '11', 'author': 'R Chakravarti', 'year': '2021', 'unstructured': 'Chakravarti R, Singh R, Ghosh A, Dey D, Sharma P, Velayutham R, Roy S, ' 'Dipanjan Ghosh (2021) A review on potential of Natural products in the ' 'management of COVID-19. RSC Adv 11(27):16711–16735. ' 'https://doi.org/10.1039/d1ra00644d', 'journal-title': 'RSC Adv'}, { 'key': '1739_CR10', 'unstructured': 'Emam MH, Ahmed I, Abdel-Salam Y, Moatasim MR, Gomaa, Nasra F, Abdel ' 'Fattah F, Ali HM, Alam El-Din A, Mostafa MA, Ali SA, Loutfy (2021) and ' 'Amal Kasry. ‘Development of a Newly Confirmatory Immunoassay to Evaluate ' 'Anti-Viral Activity of Chitosan Nanoparticles (Cnps) against SARS-CoV-2 ' 'Spike Protein’. in The annual conference of National Cancer Institute - ' 'Cairo University ‘Bridging Gaps in Oncology’. Cairo: Journal of the ' 'Egyptian National Cancer Institute'}, { 'issue': '25', 'key': '1739_CR11', 'doi-asserted-by': 'publisher', 'first-page': '16184', 'DOI': '10.1039/d2ra01321e', 'volume': '12', 'author': 'MH Emam', 'year': '2022', 'unstructured': 'Emam MH, Nageh H, Ali F, Taha M, ElShehaby HA, Amin R, Kamoun EA, Loutfy ' 'SA, and Amal Kasry (2022) Inhibition of SARS-CoV-2 spike protein entry ' 'using biologically modified Polyacrylonitrile nanofibers: in Vitro Study ' 'towards specific antiviral masks. RSC Adv 12(25):16184–16193. ' 'https://doi.org/10.1039/d2ra01321e', 'journal-title': 'RSC Adv'}, { 'issue': '2', 'key': '1739_CR12', 'doi-asserted-by': 'publisher', 'first-page': '619', 'DOI': '10.3892/etm.2015.2923', 'volume': '11', 'author': 'M Govea-Salas', 'year': '2016', 'unstructured': 'Govea-Salas M, Rivas-Estilla AM, Rodríguez-Herrera R, Lozano-Sepúlveda ' 'SA, Aguilar-Gonzalez CN, Zugasti-Cruz A, Salas-Villalobos TB, Jesus ' 'Antonio Morlett-Chávez (2016) Gallic acid decreases Hepatitis C Virus ' 'expression through its antioxidant capacity. Experimental Therapeutic ' 'Med 11(2):619–624. https://doi.org/10.3892/etm.2015.2923', 'journal-title': 'Experimental Therapeutic Med'}, { 'key': '1739_CR13', 'doi-asserted-by': 'publisher', 'unstructured': 'Hiremath, Shridhar HD, Vinay Kumar M, Nandan M, Mantesh KS, Shankarappa ' 'V, Venkataravanappa CR, Jahir, Basha, Lakshminarayana CN (2021) Reddy. ' '‘In Silico Docking Analysis Revealed the Potential of Phytochemicals ' 'Present in Phyllanthus Amarus and Andrographis Paniculata, Used in ' 'Ayurveda Medicine in Inhibiting SARS-CoV-2’. 3 Biotech 11(2). ' 'https://doi.org/10.1007/s13205-020-02578-7', 'DOI': '10.1007/s13205-020-02578-7'}, { 'key': '1739_CR14', 'doi-asserted-by': 'publisher', 'unstructured': 'Jadel, Müller, Kratz Carla Regina Andrighetti-Fröhner, Paulo César Leal, ' 'Ricardo José Nunes, Rosendo Augusto Yunes, Edward Trybala, Tomas ' 'Bergström, Célia Regina Monte Barardi, and Cláudia Maria Oliveira ' 'Simões. 2008. ‘Evaluation of Anti-HSV-2 activity of gallic acid and ' 'Pentyl Gallate’. Biol Pharm Bull 31(5):903–907. ' 'https://doi.org/10.1248/bpb.31.903', 'DOI': '10.1248/bpb.31.903'}, { 'issue': '4', 'key': '1739_CR15', 'doi-asserted-by': 'publisher', 'first-page': '416', 'DOI': '10.1165/rcmb.2020-0322PS', 'volume': '64', 'author': 'H Jia', 'year': '2021', 'unstructured': 'Jia H, Neptune E, Cui H (2021) Targeting ACE2 for COVID-19 therapy: ' 'opportunities and challenges. Am J Respir Cell Mol Biol 64(4):416–425. ' 'https://doi.org/10.1165/rcmb.2020-0322PS', 'journal-title': 'Am J Respir Cell Mol Biol'}, { 'issue': '1', 'key': '1739_CR16', 'first-page': '63', 'volume': '2', 'author': 'N Khan', 'year': '2021', 'unstructured': 'Khan N, Chen X, Geiger JD (2021) Possible therapeutic use of natural ' 'compounds against COVID-19. J Cell Signal 2(1):63–79', 'journal-title': 'J Cell Signal'}, { 'key': '1739_CR17', 'doi-asserted-by': 'publisher', 'unstructured': 'Lai C-C, Po‐Ren H (2023) Coronavirus Disease 2019 Rebounds following ' 'Nirmatrelvir/Ritonavir Treatment. J Med Virol 95(2). ' 'https://doi.org/10.1002/jmv.28430', 'DOI': '10.1002/jmv.28430'}, { 'issue': '13', 'key': '1739_CR18', 'doi-asserted-by': 'publisher', 'first-page': '1355', 'DOI': '10.1007/s40265-020-01378-w', 'volume': '80', 'author': 'YN Lamb', 'year': '2020', 'unstructured': 'Lamb YN (2020) Remdesivir: first approval. Drugs 80(13):1355–1363. ' 'https://doi.org/10.1007/s40265-020-01378-w', 'journal-title': 'Drugs'}, { 'key': '1739_CR19', 'doi-asserted-by': 'publisher', 'unstructured': 'Li Y, Yao J, Han C, Yang J, Chaudhry MT, Wang S, Liu H, Yulong Yin ' '(2016) Quercetin, inflammation and immunity. Nutrients 8(3). ' 'https://doi.org/10.3390/nu8030167', 'DOI': '10.3390/nu8030167'}, { 'key': '1739_CR21', 'doi-asserted-by': 'publisher', 'unstructured': 'Loutfy SA, Ahmed I, Abdel-Salam Y, Moatasim MR, Gomaa, Nasra F, Abdel ' 'Fattah MH, Emam F, Ali HA, ElShehaby, Eman A, Ragab HM. Alam El-Din, ' 'Ahmed Mostafa, Ali MA, and Amal Kasry (2022b). ‘Antiviral Activity of ' 'Chitosan Nanoparticles Encapsulating Silymarin (Sil-CNPs) against ' 'SARS-CoV-2 (in Silicoin Vitro Study)’. RSC Advances 12(25):15775–86. ' 'https://doi.org/10.1039/d2ra00905f', 'DOI': '10.1039/d2ra00905f'}, { 'key': '1739_CR22', 'doi-asserted-by': 'publisher', 'unstructured': 'Low Z, Xuan BM, OuYong P, Hassandarvish CL, Poh, and Babu Ramanathan ' '(2021) Antiviral activity of silymarin and Baicalein against Dengue ' 'Virus. Sci Rep 11(1). https://doi.org/10.1038/s41598-021-98949-y', 'DOI': '10.1038/s41598-021-98949-y'}, { 'key': '1739_CR23', 'doi-asserted-by': 'publisher', 'unstructured': 'Marín-Palma D, Tabares-Guevara JH, Zapata-Cardona MaríaI, Flórez-álvarez ' 'L, Yepes LM, Maria T, Rugeles JC, Hernandez (2021) and Natalia A. ' 'Taborda. ‘Curcumin Inhibits in Vitro Sars-Cov-2 Infection in Vero E6 ' 'Cells through Multiple Antiviral Mechanisms’. Molecules 26(22). ' 'https://doi.org/10.3390/molecules26226900', 'DOI': '10.3390/molecules26226900'}, { 'key': '1739_CR24', 'doi-asserted-by': 'crossref', 'unstructured': 'Mosmann T (1983) Rapid Colorimetric Assay for Cellular Growth and ' 'Survival: Application to Proliferation and Cytotoxicity Assays. Vol. 65', 'DOI': '10.1016/0022-1759(83)90303-4'}, { 'key': '1739_CR25', 'doi-asserted-by': 'publisher', 'unstructured': 'Murakami N, Hayden R, Hills T, Al-Samkari H, Casey J, Sorbo LD, Lawler ' 'PR, Sise ME (2023) and David E. Leaf. ‘Therapeutic Advances in ' 'COVID-19’. Nature Reviews Nephrology 19(1):38–52. ' 'https://doi.org/10.1038/s41581-022-00642-4', 'DOI': '10.1038/s41581-022-00642-4'}, { 'key': '1739_CR26', 'doi-asserted-by': 'publisher', 'unstructured': 'Ortiz-Andrade R, Jesús Alfredo Araujo-León, Amanda Sánchez-Recillas, ' 'Gabriel Navarrete-Vazquez, Avel Adolfo González-Sánchez, Sergio ' 'Hidalgo-Figueroa, Ángel Josabad Alonso-Castro, Irma Aranda-González, ' 'Emanuel Hernández-Núñez, Tania Isolina Coral-Martínez, Juan Carlos ' 'Sánchez-Salgado, Victor Yáñez-Pérez, and, Lucio-Garcia MA (2020) ' '‘Toxicological Screening of Four Bioactive Citroflavonoids: In Vitro, In ' 'Vivo, and In Silico Approaches’. Molecules 25(24). ' 'https://doi.org/10.3390/MOLECULES25245959', 'DOI': '10.3390/MOLECULES25245959'}, { 'key': '1739_CR27', 'doi-asserted-by': 'publisher', 'first-page': '3518', 'DOI': '10.1016/j.csbj.2020.11.010', 'volume': '18', 'author': 'B Pan', 'year': '2020', 'unstructured': 'Pan B, Fang S, Zhang J, Pan Y, Liu H, Wang Y, Li M, Liren Liu (2020) ' 'Chinese Herbal compounds against SARS-CoV-2: Puerarin and quercetin ' 'impair the binding of viral S-Protein to ACE2 receptor. Comput Struct ' 'Biotechnol J 18:3518–3527. https://doi.org/10.1016/j.csbj.2020.11.010', 'journal-title': 'Comput Struct Biotechnol J'}, { 'key': '1739_CR28', 'doi-asserted-by': 'publisher', 'unstructured': 'Rattis BAC, Simone G, Ramos, Celes MRN (2021) Curcumin as a potential ' 'treatment for COVID-19. Front Pharmacol 12. ' 'https://doi.org/10.3389/fphar.2021.675287', 'DOI': '10.3389/fphar.2021.675287'}, { 'issue': '1', 'key': '1739_CR29', 'doi-asserted-by': 'publisher', 'first-page': '165', 'DOI': '10.1093/cid/ciac180', 'volume': '76', 'author': 'LD Saravolatz', 'year': '2023', 'unstructured': 'Saravolatz LD, Depcinski S, Sharma M (2023) Molnupiravir and ' 'Nirmatrelvir-Ritonavir: oral coronavirus Disease 2019 antiviral drugs. ' 'Clin Infect Dis 76(1):165–171. https://doi.org/10.1093/cid/ciac180', 'journal-title': 'Clin Infect Dis'}, { 'issue': '6', 'key': '1739_CR30', 'doi-asserted-by': 'publisher', 'first-page': '867', 'DOI': '10.1007/s00408-020-00408-4', 'volume': '198', 'author': 'F Scialo', 'year': '2020', 'unstructured': 'Scialo F, Daniele A, Amato F, Pastore L, Matera MG, Cazzola M, Castaldo ' 'G, Bianco A (2020) ACE2: the major cell entry receptor for SARS-CoV-2. ' 'Lung 198(6):867–877. https://doi.org/10.1007/s00408-020-00408-4', 'journal-title': 'Lung'}, { 'key': '1739_CR31', 'doi-asserted-by': 'publisher', 'unstructured': 'Soni V, Kumar A, Mehta YK, Ratre AK, Tiwari A, Amit RP, Singh Subash ' 'Chandra Sonkar, Navaneet Chaturvedi, Dhananjay Shukla, and Naveen Kumar ' 'Vishvakarma. 2020. ‘Curcumin, a traditional spice component, can hold ' 'the Promise against COVID-19?’. Eur J Pharmacol 886. ' 'https://doi.org/10.1016/j.ejphar.2020.173551', 'DOI': '10.1016/j.ejphar.2020.173551'}, { 'issue': '18', 'key': '1739_CR32', 'doi-asserted-by': 'publisher', 'first-page': '12041', 'DOI': '10.1021/acs.joc.2c01047', 'volume': '87', 'author': 'F Tedesco', 'year': '2022', 'unstructured': 'Tedesco F, Calugi L, Lenci E, Trabocchi A (2022) Peptidomimetic ' 'Small-Molecule inhibitors of 3CLPro Activity and Spike-ACE2 Interaction: ' 'toward dual-action molecules against Coronavirus infections. J Org Chem ' '87(18):12041–12051. https://doi.org/10.1021/acs.joc.2c01047', 'journal-title': 'J Org Chem'}, { 'key': '1739_CR33', 'doi-asserted-by': 'publisher', 'unstructured': 'Vahedian-Azimi A, Abbasifard M, Rahimi-Bashar F, Guest PC, Majeed M, ' 'Mohammadi A, Banach M Tannaz Jamialahmadi, and Amirhossein Sahebkar. ' '2022. ‘Effectiveness of Curcumin on outcomes of hospitalized COVID-19 ' 'patients: a systematic review of clinical trials’. Nutrients 14(2). ' 'https://doi.org/10.3390/nu14020256', 'DOI': '10.3390/nu14020256'}, { 'key': '1739_CR34', 'doi-asserted-by': 'crossref', 'unstructured': 'Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O, Graham ' 'BS, Mclellan JS (2019) Cryo-EM Structure of the 2019-NCoV Spike in the ' 'Prefusion Conformation', 'DOI': '10.1101/2020.02.11.944462'}, { 'key': '1739_CR35', 'doi-asserted-by': 'publisher', 'unstructured': 'Xu D, Wang MJHYQ, Yuan Lu C (2019) Antioxidant activities of Quercetin ' 'and its complexes for Medicinal Application. Molecules 24(6). ' 'https://doi.org/10.3390/molecules24061123', 'DOI': '10.3390/molecules24061123'}], 'container-title': 'AMB Express', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://link.springer.com/content/pdf/10.1186/s13568-024-01739-8.pdf', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://link.springer.com/article/10.1186/s13568-024-01739-8/fulltext.html', 'content-type': 'text/html', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://link.springer.com/content/pdf/10.1186/s13568-024-01739-8.pdf', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2024, 9, 16]], 'date-time': '2024-09-16T16:12:52Z', 'timestamp': 1726503172000}, 'score': 1, 'resource': { 'primary': { 'URL': 'https://amb-express.springeropen.com/articles/10.1186/s13568-024-01739-8'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2024, 9, 16]]}, 'references-count': 34, 'journal-issue': {'issue': '1', 'published-online': {'date-parts': [[2024, 12]]}}, 'alternative-id': ['1739'], 'URL': 'http://dx.doi.org/10.1186/s13568-024-01739-8', 'relation': {}, 'ISSN': ['2191-0855'], 'subject': [], 'container-title-short': 'AMB Expr', 'published': {'date-parts': [[2024, 9, 16]]}, 'assertion': [ { 'value': '7 February 2024', 'order': 1, 'name': 'received', 'label': 'Received', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': '4 July 2024', 'order': 2, 'name': 'accepted', 'label': 'Accepted', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': '16 September 2024', 'order': 3, 'name': 'first_online', 'label': 'First Online', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, {'order': 1, 'name': 'Ethics', 'group': {'name': 'EthicsHeading', 'label': 'Declarations'}}, { 'value': 'Not applicable.', 'order': 2, 'name': 'Ethics', 'group': {'name': 'EthicsHeading', 'label': 'Ethics approval and consent to participate'}}, { 'value': 'All authors agree to be published.', 'order': 3, 'name': 'Ethics', 'group': {'name': 'EthicsHeading', 'label': 'Consent for publication'}}, { 'value': 'The authors declare no competing interests.', 'order': 4, 'name': 'Ethics', 'group': {'name': 'EthicsHeading', 'label': 'Competing interests'}}], 'article-number': '104'}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit