Analgesics
Antiandrogens
Antihistamines
Budesonide
Colchicine
Conv. Plasma
Curcumin
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Monoclonals
Mpro inhibitors
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Quercetin
RdRp inhibitors
TMPRSS2 inh.
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchCurcuminCurcumin (more..)
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta
Ivermectin Meta
Thermotherapy Meta
Melatonin Meta
Metformin Meta

 

Phytochemical Inhibitors of SARS‐CoV‐2 Entry: Targeting the ACE2‐RBD Interaction with l‐Tartaric Acid, l‐Ascorbic Acid, and Curcuma longa Extract

Najimi et al., ChemistrySelect, doi:10.1002/slct.202406035, Apr 2025
https://c19early.org/najimi.html
Curcumin for COVID-19
15th treatment shown to reduce risk in February 2021, now with p = 0.0000000096 from 27 studies.
No treatment is 100% effective. Protocols combine treatments.
5,700+ studies for 135 treatments. c19early.org
In Vitro and In Silico study showing that l-tartaric acid, l-ascorbic acid, and Curcuma longa extract (curcumin, demethoxycurcumin, bisdemethoxycurcumin) inhibit the SARS-CoV-2 spike RBD interaction with human ACE2. Authors demonstrate by competitive ELISA that l-tartaric acid is most potent (IC₅₀ ≈ 0.009 mg mL⁻¹), l-ascorbic acid reaches half-maximal inhibition at ≈ 0.213 mg mL⁻¹, while C. longa extract shows dose-dependent blockade with IC₅₀ ≈ 0.779 mg mL⁻¹. Molecular docking and 100 ns MD simulations reveal stable hydrogen-bond and hydrophobic networks with ACE2.
54 preclinical studies support the efficacy of curcumin for COVID-19:
In Silico studies predict inhibition of SARS-CoV-2 with curcumin or metabolites via binding to the spikeA,2,3,8,13,15,21,24 (and specifically the receptor binding domainB,11,14,17), MproC,2,3,8,10,12-14,16,17,19,22,24,25,27,42, RNA-dependent RNA polymeraseD,2,3,14,23, PLproE,3, ACE2F,15,16,18, nucleocapsidG,9,26, nsp10H,26, and helicaseI,31 proteins, and inhibition of spike-ACE2 interactionJ,1. In Vitro studies demonstrate inhibition of the spikeA,36 (and specifically the receptor binding domainB,45), MproC,20,36,42,44, ACE2F,45, and TMPRSS2K,45 proteins, and inhibition of spike-ACE2 interactionJ,1,29. In Vitro studies demonstrate efficacy in Calu-3L,43, A549M,36, 293TN,4, HEK293-hACE2O,20,34, 293T/hACE2/TMPRSS2P,35, Vero E6Q,10,14,24,34,36,38,39,41,43, and SH-SY5YR,33 cells. Curcumin is predicted to inhibit the interaction between the SARS-CoV-2 spike protein receptor binding domain and the human ACE2 receptor for the delta and omicron variants11, decreases pro-inflammatory cytokines induced by SARS-CoV-2 in peripheral blood mononuclear cells41, alleviates SARS-CoV-2 spike protein-induced mitochondrial membrane damage and oxidative stress4, may limit COVID-19 induced cardiac damage by inhibiting the NF-κB signaling pathway which mediates the profibrotic effects of the SARS-CoV-2 spike protein on cardiac fibroblasts30, and inhibits SARS-CoV-2 ORF3a ion channel activity, which contributes to viral pathogenicity and cytotoxicity37.
Study covers curcumin and vitamin C.
a. The trimeric spike (S) protein is a glycoprotein that mediates viral entry by binding to the host ACE2 receptor, is critical for SARS-CoV-2's ability to infect host cells, and is a target of neutralizing antibodies. Inhibition of the spike protein prevents viral attachment, halting infection at the earliest stage.
b. The receptor binding domain is a specific region of the spike protein that binds ACE2 and is a major target of neutralizing antibodies. Focusing on the precise binding site allows highly specific disruption of viral attachment with reduced potential for off-target effects.
c. The main protease or Mpro, also known as 3CLpro or nsp5, is a cysteine protease that cleaves viral polyproteins into functional units needed for replication. Inhibiting Mpro disrupts the SARS-CoV-2 lifecycle within the host cell, preventing the creation of new copies.
d. RNA-dependent RNA polymerase (RdRp), also called nsp12, is the core enzyme of the viral replicase-transcriptase complex that copies the positive-sense viral RNA genome into negative-sense templates for progeny RNA synthesis. Inhibiting RdRp blocks viral genome replication and transcription.
e. The papain-like protease (PLpro) has multiple functions including cleaving viral polyproteins and suppressing the host immune response by deubiquitination and deISGylation of host proteins. Inhibiting PLpro may block viral replication and help restore normal immune responses.
f. The angiotensin converting enzyme 2 (ACE2) protein is a host cell transmembrane protein that serves as the cellular receptor for the SARS-CoV-2 spike protein. ACE2 is expressed on many cell types, including epithelial cells in the lungs, and allows the virus to enter and infect host cells. Inhibition may affect ACE2's physiological function in blood pressure control.
g. The nucleocapsid (N) protein binds and encapsulates the viral genome by coating the viral RNA. N enables formation and release of infectious virions and plays additional roles in viral replication and pathogenesis. N is also an immunodominant antigen used in diagnostic assays.
h. Non-structural protein 10 (nsp10) serves as an RNA chaperone and stabilizes conformations of nsp12 and nsp14 in the replicase-transcriptase complex, which synthesizes new viral RNAs. Nsp10 disruption may destabilize replicase-transcriptase complex activity.
i. The helicase, or nsp13, protein unwinds the double-stranded viral RNA, a crucial step in replication and transcription. Inhibition may prevent viral genome replication and the creation of new virus components.
j. The interaction between the SARS-CoV-2 spike protein and the human ACE2 receptor is a primary method of viral entry, inhibiting this interaction can prevent the virus from attaching to and entering host cells, halting infection at an early stage.
k. Transmembrane protease serine 2 (TMPRSS2) is a host cell protease that primes the spike protein, facilitating cellular entry. TMPRSS2 activity helps enable cleavage of the spike protein required for membrane fusion and virus entry. Inhibition may especially protect respiratory epithelial cells, buy may have physiological effects.
l. Calu-3 is a human lung adenocarcinoma cell line with moderate ACE2 and TMPRSS2 expression and SARS-CoV-2 susceptibility. It provides a model of the human respiratory epithelium, but many not be ideal for modeling early stages of infection due to the moderate expression levels of ACE2 and TMPRSS2.
m. A549 is a human lung carcinoma cell line with low ACE2 expression and SARS-CoV-2 susceptibility. Viral entry/replication can be studied but the cells may not replicate all aspects of lung infection.
n. 293T is a human embryonic kidney cell line that can be engineered for high ACE2 expression and SARS-CoV-2 susceptibility. 293T cells are easily transfected and support high protein expression.
o. HEK293-hACE2 is a human embryonic kidney cell line with high ACE2 expression and SARS-CoV-2 susceptibility. Cells have been transfected with a plasmid to express the human ACE2 (hACE2) protein.
p. 293T/hACE2/TMPRSS2 is a human embryonic kidney cell line engineered for high ACE2 and TMPRSS2 expression, which mimics key aspects of human infection. 293T/hACE2/TMPRSS2 cells are very susceptible to SARS-CoV-2 infection.
q. Vero E6 is an African green monkey kidney cell line with low/no ACE2 expression and high SARS-CoV-2 susceptibility. The cell line is easy to maintain and supports robust viral replication, however the monkey origin may not accurately represent human responses.
r. SH-SY5Y is a human neuroblastoma cell line that exhibits neuronal phenotypes. It is commonly used as an in vitro model for studying neurotoxicity, neurodegenerative diseases, and neuronal differentiation.
Najimi et al., 28 Apr 2025, peer-reviewed, 10 authors.
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
DOI record: { "DOI": "10.1002/slct.202406035", "ISSN": [ "2365-6549", "2365-6549" ], "URL": "http://dx.doi.org/10.1002/slct.202406035", "abstract": "<jats:title>Abstract</jats:title><jats:p>Phytochemicals are emerging as promising antiviral agents with the potential to address both acute and long‐term complications of viral infections such as COVID‐19. SARS‐CoV‐2, the virus responsible for COVID‐19, enters host cells by binding its spike protein's receptor‐binding domain (RBD) to the angiotensin‐converting enzyme‐2 (ACE2) receptor. Inhibiting this interaction may provide new therapeutic approaches. This study aimed to evaluate the inhibitory effects of <jats:italic>Curcuma longa</jats:italic> extract, <jats:sc>l</jats:sc>‐ascorbic acid, and <jats:sc>l</jats:sc>‐tartaric acid on the ACE2‐RBD interaction and to explore their potential as antiviral agents against SARS‐CoV‐2. A competitive ELISA was used to assess the inhibitory activity on the ACE2‐RBD interaction, with <jats:sc>l</jats:sc>‐tartaric acid showing the strongest inhibition (IC50 = 0.009 mg/ml). <jats:italic>C. longa</jats:italic> extract displayed dose‐dependent inhibition, while <jats:sc>l</jats:sc>‐ascorbic acid showed peak inhibition between 0.4 and 1 mg/mL. Molecular docking and 100 ns molecular dynamics simulations confirmed strong and stable interactions involving curcuminoids with ACE2. These findings underscore the potential of these compounds to function as effective SARS‐CoV‐2 entry inhibitors, supporting their further investigation as promising therapeutic candidates.</jats:p>", "alternative-id": [ "10.1002/slct.202406035" ], "assertion": [ { "group": { "label": "Publication History", "name": "publication_history" }, "label": "Received", "name": "received", "order": 0, "value": "2024-12-20" }, { "group": { "label": "Publication History", "name": "publication_history" }, "label": "Accepted", "name": "accepted", "order": 2, "value": "2025-04-13" }, { "group": { "label": "Publication History", "name": "publication_history" }, "label": "Published", "name": "published", "order": 3, "value": "2025-04-28" } ], "author": [ { "ORCID": "https://orcid.org/0009-0008-5536-0237", "affiliation": [ { "name": "Laboratory of Human Pathologies Biology, Faculty of Sciences Mohammed V University Rabat Morocco" }, { "name": "Mohammed VI University of Sciences and Health (UM6SS) Casablanca Morocco" }, { "name": "Mohammed VI Center for Research and Innovation (CM6RI) Rabat Morocco" } ], "authenticated-orcid": false, "family": "Najimi", "given": "Nouhaila", "sequence": "first" }, { "affiliation": [ { "name": "Department of Biology Faculty of Sciences Dhar El Mahraz Sidi Mohammed Ben Abdellah University Fez 30003 Morocco" } ], "family": "Amssayef", "given": "Ayoub", "sequence": "additional" }, { "affiliation": [ { "name": "Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia Moulay Ismail University of Meknes BP 509, Boutalamine Errachidia 52000 Morocco" }, { "name": "Center of Genomic of Human Pathologies Biology Faculty of Medicine Mohammed V University Rabat Morocco" } ], "family": "Bouadid", "given": "Ismail", "sequence": "additional" }, { "affiliation": [ { "name": "Mohammed VI University of Sciences and Health (UM6SS) Casablanca Morocco" }, { "name": "Mohammed VI Center for Research and Innovation (CM6RI) Rabat Morocco" } ], "family": "Hakmi", "given": "Mohammed", "sequence": "additional" }, { "affiliation": [ { "name": "Mohammed VI University of Sciences and Health (UM6SS) Casablanca Morocco" }, { "name": "Mohammed VI Center for Research and Innovation (CM6RI) Rabat Morocco" } ], "family": "Festali", "given": "Rihab", "sequence": "additional" }, { "affiliation": [ { "name": "Mohammed VI University of Sciences and Health (UM6SS) Casablanca Morocco" }, { "name": "Mohammed VI Center for Research and Innovation (CM6RI) Rabat Morocco" }, { "name": "Laboratory of Biology and Health, Faculty of Sciences of Tétouan Abdelmalek Essaâdi University Tétouan Morocco" } ], "family": "Kadi", "given": "Chaimae", "sequence": "additional" }, { "affiliation": [ { "name": "Higher Institute of Nursing Professions and Health Techniques Rabat Morocco" } ], "family": "Seghrouchni", "given": "Fouad", "sequence": "additional" }, { "affiliation": [ { "name": "Laboratory of Human Pathologies Biology, Faculty of Sciences Mohammed V University Rabat Morocco" }, { "name": "Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia Moulay Ismail University of Meknes BP 509, Boutalamine Errachidia 52000 Morocco" }, { "name": "Center of Genomic of Human Pathologies Biology Faculty of Medicine Mohammed V University Rabat Morocco" } ], "family": "El hassani", "given": "Rabii Ameziane", "sequence": "additional" }, { "affiliation": [ { "name": "Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia Moulay Ismail University of Meknes BP 509, Boutalamine Errachidia 52000 Morocco" }, { "name": "Center of Genomic of Human Pathologies Biology Faculty of Medicine Mohammed V University Rabat Morocco" } ], "family": "Eddouks", "given": "Mohamed", "sequence": "additional" }, { "affiliation": [ { "name": "Laboratory of Human Pathologies Biology, Faculty of Sciences Mohammed V University Rabat Morocco" }, { "name": "Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia Moulay Ismail University of Meknes BP 509, Boutalamine Errachidia 52000 Morocco" }, { "name": "Center of Genomic of Human Pathologies Biology Faculty of Medicine Mohammed V University Rabat Morocco" } ], "family": "Bakri", "given": "Youssef", "sequence": "additional" } ], "container-title": "ChemistrySelect", "container-title-short": "ChemistrySelect", "content-domain": { "crossmark-restriction": true, "domain": [ "chemistry-europe.onlinelibrary.wiley.com" ] }, "created": { "date-parts": [ [ 2025, 4, 28 ] ], "date-time": "2025-04-28T13:32:01Z", "timestamp": 1745847121000 }, "deposited": { "date-parts": [ [ 2025, 5, 5 ] ], "date-time": "2025-05-05T19:22:56Z", "timestamp": 1746472976000 }, "indexed": { "date-parts": [ [ 2025, 5, 5 ] ], "date-time": "2025-05-05T19:40:06Z", "timestamp": 1746474006804, "version": "3.40.4" }, "is-referenced-by-count": 0, "issue": "17", "issued": { "date-parts": [ [ 2025, 4, 28 ] ] }, "journal-issue": { "issue": "17", "published-print": { "date-parts": [ [ 2025, 5 ] ] } }, "language": "en", "license": [ { "URL": "http://onlinelibrary.wiley.com/termsAndConditions#vor", "content-version": "vor", "delay-in-days": 0, "start": { "date-parts": [ [ 2025, 4, 28 ] ], "date-time": "2025-04-28T00:00:00Z", "timestamp": 1745798400000 } } ], "member": "311", "original-title": [], "prefix": "10.1002", "published": { "date-parts": [ [ 2025, 4, 28 ] ] }, "published-online": { "date-parts": [ [ 2025, 4, 28 ] ] }, "published-print": { "date-parts": [ [ 2025, 5 ] ] }, "publisher": "Wiley", "reference": [ { "DOI": "10.1007/s11033-021-07020-6", "doi-asserted-by": "publisher", "key": "e_1_2_10_1_1" }, { "DOI": "10.1136/postgradmedj-2020-138386", "doi-asserted-by": "publisher", "key": "e_1_2_10_2_1" }, { "DOI": "10.1038/s41564-020-0695-z", "doi-asserted-by": "publisher", "key": "e_1_2_10_3_1" }, { "DOI": "10.1038/s41586-020-2405-7", "doi-asserted-by": "publisher", "key": "e_1_2_10_4_1" }, { "DOI": "10.1161/CIRCRESAHA.120.317015", "doi-asserted-by": "publisher", "key": "e_1_2_10_5_1" }, { "DOI": "10.15252/msb.20209610", "doi-asserted-by": "publisher", "key": "e_1_2_10_6_1" }, { "DOI": "10.1021/acsptsci.2c00003", "doi-asserted-by": "publisher", "key": "e_1_2_10_7_1" }, { "DOI": "10.1016/j.cdtm.2020.05.003", "doi-asserted-by": "publisher", "key": "e_1_2_10_8_1" }, { "DOI": "10.1016/j.fshw.2022.04.005", "doi-asserted-by": "publisher", "key": "e_1_2_10_9_1" }, { "key": "e_1_2_10_10_1", "unstructured": "COVID‐19 cases | WHO COVID‐19 dashboard Datadot n.d. https://data.who.int/dashboards/covid19/cases(accessed: January 2025)." }, { "DOI": "10.1002/mef2.70004", "doi-asserted-by": "publisher", "key": "e_1_2_10_11_1" }, { "DOI": "10.3389/fphar.2021.667704", "doi-asserted-by": "publisher", "key": "e_1_2_10_12_1" }, { "DOI": "10.1016/j.jpha.2020.03.009", "doi-asserted-by": "publisher", "key": "e_1_2_10_13_1" }, { "DOI": "10.1046/j.1365-2672.2003.02026.x", "doi-asserted-by": "publisher", "key": "e_1_2_10_14_1" }, { "DOI": "10.1016/j.molstruc.2024.139675", "doi-asserted-by": "publisher", "key": "e_1_2_10_15_1" }, { "DOI": "10.1007/978-3-030-57415-4", "doi-asserted-by": "publisher", "key": "e_1_2_10_16_1" }, { "DOI": "10.1080/19476337.2023.2245009", "doi-asserted-by": "publisher", "key": "e_1_2_10_17_1" }, { "DOI": "10.1136/gutjnl-2012-304299", "doi-asserted-by": "publisher", "key": "e_1_2_10_18_1" }, { "DOI": "10.3390/nu9111211", "doi-asserted-by": "publisher", "key": "e_1_2_10_19_1" }, { "DOI": "10.1186/s13054-020-03228-3", "doi-asserted-by": "publisher", "key": "e_1_2_10_20_1" }, { "DOI": "10.1016/j.atherosclerosis.2014.04.004", "doi-asserted-by": "publisher", "key": "e_1_2_10_21_1" }, { "DOI": "10.1126/scitranslmed.3007154", "doi-asserted-by": "publisher", "key": "e_1_2_10_22_1" }, { "DOI": "10.1038/s41598-021-96703-y", "doi-asserted-by": "publisher", "key": "e_1_2_10_23_1" }, { "DOI": "10.3389/fpls.2021.643024", "doi-asserted-by": "publisher", "key": "e_1_2_10_24_1" }, { "DOI": "10.3390/molecules24050903", "doi-asserted-by": "publisher", "key": "e_1_2_10_25_1" }, { "DOI": "10.1079/BJN2003966", "doi-asserted-by": "publisher", "key": "e_1_2_10_26_1" }, { "DOI": "10.56499/jppres21.1316_10.3.418", "doi-asserted-by": "publisher", "key": "e_1_2_10_27_1" }, { "DOI": "10.1002/mnfr.201200838", "doi-asserted-by": "publisher", "key": "e_1_2_10_28_1" }, { "DOI": "10.1039/C9FO00336C", "doi-asserted-by": "publisher", "key": "e_1_2_10_29_1" }, { "DOI": "10.1007/s10787-023-01136-w", "doi-asserted-by": "publisher", "key": "e_1_2_10_30_1" }, { "DOI": "10.1016/j.intimp.2010.11.013", "doi-asserted-by": "publisher", "key": "e_1_2_10_31_1" }, { "DOI": "10.1038/s41598-021-98243-x", "doi-asserted-by": "publisher", "key": "e_1_2_10_32_1" }, { "DOI": "10.1186/s12937-021-00748-8", "doi-asserted-by": "publisher", "key": "e_1_2_10_33_1" }, { "DOI": "10.1038/s41598-022-14664-2", "doi-asserted-by": "publisher", "key": "e_1_2_10_34_1" }, { "DOI": "10.3389/fmicb.2022.891978", "doi-asserted-by": "publisher", "key": "e_1_2_10_35_1" }, { "DOI": "10.1002/bdd.2136", "doi-asserted-by": "publisher", "key": "e_1_2_10_36_1" }, { "DOI": "10.1007/s00705-020-04706-3", "doi-asserted-by": "publisher", "key": "e_1_2_10_37_1" }, { "author": "Atampugbire G.", "journal-title": "Nat Prod. Commun.", "key": "e_1_2_10_38_1", "volume": "19", "year": "2024" }, { "author": "Ivanov V.", "journal-title": "Infect. Dis. Res. Treat.", "key": "e_1_2_10_39_1", "volume": "14", "year": "2021" }, { "DOI": "10.2174/1871529X21666211214153308", "doi-asserted-by": "publisher", "key": "e_1_2_10_40_1" }, { "DOI": "10.1177/15353702221108915", "doi-asserted-by": "publisher", "key": "e_1_2_10_41_1" }, { "DOI": "10.2174/1871525721666230406075646", "doi-asserted-by": "publisher", "key": "e_1_2_10_42_1" }, { "DOI": "10.37185/LnS.1.1.137", "doi-asserted-by": "publisher", "key": "e_1_2_10_43_1" }, { "DOI": "10.1039/C7MD00381A", "doi-asserted-by": "publisher", "key": "e_1_2_10_44_1" }, { "DOI": "10.9755/ejfa.2016-07-806", "doi-asserted-by": "publisher", "key": "e_1_2_10_45_1" }, { "DOI": "10.1007/s00449-019-02256-w", "doi-asserted-by": "publisher", "key": "e_1_2_10_46_1" }, { "DOI": "10.1186/s13613-020-00792-3", "doi-asserted-by": "publisher", "key": "e_1_2_10_47_1" }, { "author": "Parikh N.", "journal-title": "Am. J. Case Rep.", "key": "e_1_2_10_48_1", "volume": "21", "year": "2020" }, { "DOI": "10.1111/j.1747-0285.2010.00972.x", "doi-asserted-by": "publisher", "key": "e_1_2_10_49_1" }, { "DOI": "10.3126/jbs.v7i1.29852", "doi-asserted-by": "publisher", "key": "e_1_2_10_50_1" }, { "DOI": "10.1093/pcmedi/pbab001", "doi-asserted-by": "publisher", "key": "e_1_2_10_51_1" }, { "DOI": "10.1016/j.lfs.2020.117627", "doi-asserted-by": "publisher", "key": "e_1_2_10_52_1" }, { "DOI": "10.1016/j.csbj.2021.08.011", "doi-asserted-by": "publisher", "key": "e_1_2_10_53_1" }, { "DOI": "10.1016/j.lfs.2020.117592", "doi-asserted-by": "publisher", "key": "e_1_2_10_54_1" }, { "DOI": "10.1002/minf.202000028", "doi-asserted-by": "publisher", "key": "e_1_2_10_55_1" }, { "DOI": "10.1016/j.compbiomed.2022.105739", "doi-asserted-by": "publisher", "key": "e_1_2_10_56_1" }, { "DOI": "10.4103/pr.pr_30_17", "doi-asserted-by": "publisher", "key": "e_1_2_10_57_1" } ], "reference-count": 57, "references-count": 57, "relation": {}, "resource": { "primary": { "URL": "https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/slct.202406035" } }, "score": 1, "short-title": [], "source": "Crossref", "subject": [], "subtitle": [], "title": "Phytochemical Inhibitors of SARS‐CoV‐2 Entry: Targeting the ACE2‐RBD Interaction with <scp>l</scp>‐Tartaric Acid, <scp>l</scp>‐Ascorbic Acid, and <i>Curcuma longa</i> Extract", "type": "journal-article", "update-policy": "https://doi.org/10.1002/crossmark_policy", "volume": "10" }
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. IMA and WCH provide treatment protocols.
  or use drag and drop   
Submit