Paradigm of Well-Orchestrated Pharmacokinetic Properties of Curcuminoids Relative to Conventional Drugs for the Inactivation of SARS-CoV-2 Receptors: An In Silico Approach
Akhileshwar Kumar Srivastava, Divya ; Singh, Priya ; Yadav, Monika ; Singh, Sandeep Kumar Singh, Ajay Kumar
Stresses, doi:10.3390/stresses3030043
To cure SARS-CoV-2 infection, the repurposing of conventional antiviral drugs is currently advocated by researchers, though their action is not very effective. The present study, based on in silico methods, was intended to increase the therapeutic potential of conventional drugs: hydroxychloroquine (HCQ), favipiravir (FAV), and remdesivir (REM) by using curcuminoids like curcumin (CUR), bisdemethoxycurcumin (BDMC), and demethoxycurcumin (DMC) as adjunct drugs against SARS-CoV-2 receptor proteins, namely main protease (Mpro) and the S1 receptor-binding domain (RBD). The curcuminoids exhibited similar pharmacokinetic properties to the conventional drugs. The webserver (ANCHOR) predicted greater protein stability for both receptors with a disordered score (<0.5). The molecular docking study showed that the binding energy was highest (-27.47 kcal/mol) for BDMC toward Mpro receptors, while the binding energy of CUR (-20.47 kcal/mol) and DMC (-20.58 kcal/mol) was lower than that of HCQ (-24.58 kcal/mol), FAV (-22.87 kcal/mol), and REM (-23.48 kcal/mol). In the case of S1-RBD, CUR had the highest binding energy (-38.84 kcal/mol) and the lowest was in FAV (-23.77 kcal/mol), whereas HCQ (-35.87 kcal/mol) and REM (-38.44 kcal/mol) had greater binding energy than BDMC (-28.07 kcal/mol) and DMC (-30.29 kcal/mol). Hence, this study envisages that these curcuminoids could be employed in combination therapy with conventional drugs to disrupt the stability of SARS-CoV-2 receptor proteins.
formation. Each result from FireDock provided a rank and scores based on the energy function. About 3.5 s was spent per candidate solution, which offers large-scale flexible refinement and the scoring of docking compounds to be performed. For the imaging of interactive molecules (antiviral drugs and curcuminoids) with SARS-CoV-2 receptors, a visualizer software, Discovery Studio 4.5 Client, was employed.
Conclusions Various promising antiviral drugs against COVID-19 are being examined, although there have not yet been satisfactory outcomes. This study has focused on exploring the main causes of these drugs' ineffectiveness against the COVID-19 disease. Hence, the two receptor proteins, Mpro and S1-RBD, of SARS-CoV-2 were considered as targets for developing new drugs. The physicochemical properties (ADMET, BOILED-Egg construction, and target class) exhibited by curcuminoids (CUR, BDMC, and DMC) were similar to those of antiviral drugs such as HCQ, FAV, and REM. Rat acute toxicity LD50 of all the compounds was found to be in the low ranges between 2.1259 and 2.7169 mol/kg, indicating that curcuminoids can be investigated further by comparing them with conventional antiviral drugs. The protein disordered outcomes from ANCHOR gained scores of less than 0.5 for residues of Mpro and S1-RBD, indicating that these protein receptors have highly packed residues. Thus, it is relatively difficult to disturb the integrity of such viral proteins by employing a single drug. The binding..
References
Anand, Ziebuhr, Wadhwani, Mesters, Hilgenfeld, Coronavirus main proteinase (3CLpro) structure: Basis for design of anti-SARS drugs, Science,
doi:10.1126/science.1085658
Baindara, Chowdhury, Roy, Mandal, Mandal, Surfactin-like lipopeptides from Bacillus clausii efficiently bind to spike glycoprotein of SARS-CoV-2, J. Biomol. Struct. Dyn,
doi:10.1080/07391102.2023.2196694
Biot, Daher, Chavain, Fandeur, Khalife et al., Design and synthesis of hydroxyferroquine derivatives with antimalarial and antiviral activities, J. Med. Chem,
doi:10.1021/jm0601856
Cai, Yang, Liu, Chen, Shu et al., Experimental treatment with favipiravir for COVID-19: An open-label control study, Engineering,
doi:10.1016/j.eng.2020.03.007
Cheng, Li, Zhou, Shen, Wu et al., A comprehensive source and free tool for assessment of chemical ADMET properties, J. Chem. Inf. Model,
doi:10.1021/ci300367a
Daina, Michielin, Zoete, SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep,
doi:10.1038/srep42717
Daina, Michielin, Zoete, SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules, Nucleic Acids Res,
doi:10.1093/nar/gkz382
Daina, Zoete, A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules, Chem. Med. Chem,
doi:10.1002/cmdc.201600182
Dhar, Bhattacharjee, Promising role of curcumin against viral diseases emphasizing COVID-19 management: A review on the mechanistic insights with reference to host-pathogen interaction and immunomodulation, J. Funct. Foods,
doi:10.1016/j.jff.2021.104503
Dosztanyi, Csizmok, Tompa, Simon, The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins, J. Mol. Biol,
doi:10.1016/j.jmb.2005.01.071
Eren, Baysal, Do Gan, Biocidal Activity of Bone Cements Containing Curcumin and Pegylated Quaternary Polyethylenimine, J. Poly. Environ,
doi:10.1007/s10924-020-01787-8
Gautret, Lagier, Parola, Meddeb, Mailhe et al., Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial, Int. J. Antimicrob. Agents,
doi:10.1016/j.ijantimicag.2020.105949
Hilgenfeld, From SARS to MERS: Crystallographic studies on coronaviral proteases enable antiviral drug design, FEBS J,
doi:10.1111/febs.12936
Hwang, Lin, Santelli, Sui, Jaroszewski et al., Structural basis of neutralization by a human anti-severe acute respiratory syndrome spike protein antibody, 80R, J. Biol. Chem,
doi:10.1074/jbc.M603275200
Jeon, Ko, Lee, Choi, Byun et al., Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs, Antimicrob. Agents Chemother,
doi:10.1128/AAC.00819-20
Kgatle, Lawal, Mashabela, Boshomane, Koatale et al., COVID-19 is a multi-organ aggressor: Epigenetic and clinical marks, Front. Immunol. 2021
Kumar, Kashyap, Chowdhury, Kumar, Panwar et al., Identification of phytochemicals as potential therapeutic agents that binds to Nsp15 protein target of coronavirus (SARS-CoV-2) that are capable of inhibiting virus replication, Phytomedicine,
doi:10.1016/j.phymed.2020.153317
Lai, Shih, Ko, Tang, Hsueh, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges, Int. J. Antimicrob. Agents,
doi:10.1016/j.ijantimicag.2020.105924
Lan, Ge, Yu, Shan, Zhou et al., Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor, Nature,
doi:10.1038/s41586-020-2180-5
Letko, Marzi, Munster, Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses, Nat. Microbiol,
doi:10.1038/s41564-020-0688-y
Li, Li, Farzan, Harrison, Structure of SARS coronavirus spike receptor-binding domain complexed with receptor, Science,
doi:10.1126/science.1116480
Li, Moore, Vasilieva, Sui, Wong et al., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus, Nature
Liu, Xiao, Chen, He, Niu et al., Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: Implications for virus fusogenic mechanism and identification of fusion inhibitors, Lancet,
doi:10.1016/S0140-6736(04)15788-7
Mohankumar, Chandramohan, Lalithamba, Jayaraj, Kumaradhas et al., Design and molecular dynamic investigations of 7, 8-dihydroxyflavone derivatives as potential neuroprotective agents against alpha-synuclein,
doi:10.1038/s41598-020-57417-9
Mészáros, Erdős, Dosztányi, IUPred2A: Context-dependent prediction of protein disorder as a function of redox state and protein binding, Nucleic Acids Res,
doi:10.1093/nar/gky384
Niranjan, Prakash, Chemical constituents and biological activities of turmeric (Curcuma longa L.)-A review, J. Food Sci. Technol
Ortega, Serrano, Pujol, Rangel, Unrevealing sequence and structural features of novel coronavirus using in silico approaches: The main protease as molecular target, EXCLI J
Raj, Mou, Smits, Dekkers, Müller et al., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC, Nature,
doi:10.1038/nature12005
Richart, Li, Mizushina, Chang, Chung et al., Synergic effect of curcumin and its structural analogue (Monoacetylcurcumin) on anti-influenza virus infection, J. Food Drug Anal,
doi:10.1016/j.jfda.2017.12.006
Schrezenmeier, Dörner, Mechanisms of action of hydroxychloroquine and chloroquine: Implications for rheumatology, Nat. Rev. Rheumatol,
doi:10.1038/s41584-020-0372-x
Srivastava, Singh, Roy, Structural interactions of curcumin biotransformed molecules with the N-terminal residues of cytotoxic-associated gene a protein provide insights into suppression of oncogenic activities, Interdiscip. Sci. Comput. Life Sci,
doi:10.1007/s12539-016-0142-2
Srivastava, Tewari, Shukla, Roy, In silico profiling of the potentiality of curcumin and conventional drugs for CagA oncoprotein inactivation, Arch. Pharm,
doi:10.1002/ardp.201400438
Tai, He, Zhang, Pu, Voronin et al., Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: Implication for development of RBD protein as a viral attachment inhibitor and vaccine, Cell. Mol. Immunol,
doi:10.1038/s41423-020-0400-4
Vajragupta, Boonchoong, Morris, Olson, Active site binding modes of curcumin in HIV-1 protease and integrase, Bioorg. Med. Chem. Lett,
doi:10.1016/j.bmcl.2005.05.032
Vincent, Bergeron, Benjannet, Erickson, Rollin et al., Chloroquine is a potent inhibitor of SARS coronavirus infection and spread, Virol. J,
doi:10.1186/1743-422X-2-69
Wu, Mcgoogan, Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention, JAMA
Yang, Jiang, Shi, Upregulation of heme oxygenase-1 expression by curcumin conferring protection from hydrogen peroxide-induced apoptosis in H9c2 cardiomyoblasts, Cell Biosci,
doi:10.1186/s13578-017-0146-6
Yang, Li, Huang, Curcumin modified silver nanoparticles for highly efficient inhibition of respiratory syncytial virus infection, Nanoscale,
doi:10.1039/C5NR07918G
Zahedipour, Hosseini, Sathyapalan, Majeed, Jamialahmadi et al., Potential effects of curcumin in the treatment of COVID-19 infection, Phytother. Res,
doi:10.1002/ptr.6738
Zhou, Dai, Tong, COVID-19: A recommendation to examine the effect of hydroxychloroquine in preventing infection and progression, J. Antimicrob. Chemother,
doi:10.1093/jac/dkaa114
Zorofchian Moghadamtousi, Abdul Kadir, Hassandarvish, Tajik, Abubakar et al., A review on antibacterial, antiviral, and antifungal activity of curcumin, BioMed Res. Int,
doi:10.1155/2014/186864
{ 'indexed': {'date-parts': [[2023, 8, 31]], 'date-time': '2023-08-31T13:44:40Z', 'timestamp': 1693489480561},
'reference-count': 57,
'publisher': 'MDPI AG',
'issue': '3',
'license': [ { 'start': { 'date-parts': [[2023, 8, 30]],
'date-time': '2023-08-30T00:00:00Z',
'timestamp': 1693353600000},
'content-version': 'vor',
'delay-in-days': 0,
'URL': 'https://creativecommons.org/licenses/by/4.0/'}],
'content-domain': {'domain': [], 'crossmark-restriction': False},
'abstract': '<jats:p>To cure SARS-CoV-2 infection, the repurposing of conventional antiviral drugs is '
'currently advocated by researchers, though their action is not very effective. The present '
'study, based on in silico methods, was intended to increase the therapeutic potential of '
'conventional drugs: hydroxychloroquine (HCQ), favipiravir (FAV), and remdesivir (REM) by '
'using curcuminoids like curcumin (CUR), bisdemethoxycurcumin (BDMC), and demethoxycurcumin '
'(DMC) as adjunct drugs against SARS-CoV-2 receptor proteins, namely main protease (Mpro) and '
'the S1 receptor-binding domain (RBD). The curcuminoids exhibited similar pharmacokinetic '
'properties to the conventional drugs. The webserver (ANCHOR) predicted greater protein '
'stability for both receptors with a disordered score (<0.5). The molecular docking study '
'showed that the binding energy was highest (−27.47 kcal/mol) for BDMC toward Mpro receptors, '
'while the binding energy of CUR (−20.47 kcal/mol) and DMC (−20.58 kcal/mol) was lower than '
'that of HCQ (−24.58 kcal/mol), FAV (−22.87 kcal/mol), and REM (−23.48 kcal/mol). In the case '
'of S1-RBD, CUR had the highest binding energy (−38.84 kcal/mol) and the lowest was in FAV '
'(−23.77 kcal/mol), whereas HCQ (−35.87 kcal/mol) and REM (−38.44 kcal/mol) had greater '
'binding energy than BDMC (−28.07 kcal/mol) and DMC (−30.29 kcal/mol). Hence, this study '
'envisages that these curcuminoids could be employed in combination therapy with conventional '
'drugs to disrupt the stability of SARS-CoV-2 receptor proteins.</jats:p>',
'DOI': '10.3390/stresses3030043',
'type': 'journal-article',
'created': {'date-parts': [[2023, 8, 30]], 'date-time': '2023-08-30T14:33:56Z', 'timestamp': 1693406036000},
'page': '615-628',
'source': 'Crossref',
'is-referenced-by-count': 0,
'title': 'Paradigm of Well-Orchestrated Pharmacokinetic Properties of Curcuminoids Relative to '
'Conventional Drugs for the Inactivation of SARS-CoV-2 Receptors: An In Silico Approach',
'prefix': '10.3390',
'volume': '3',
'author': [ { 'ORCID': 'http://orcid.org/0000-0001-6747-5762',
'authenticated-orcid': False,
'given': 'Akhileshwar Kumar',
'family': 'Srivastava',
'sequence': 'first',
'affiliation': [ { 'name': 'Centre of Advanced Study in Botany, Institute of Science, '
'Banaras Hindu University, Varanasi 221005, India'}]},
{ 'given': 'Divya',
'family': 'Singh',
'sequence': 'additional',
'affiliation': [ { 'name': 'Central Sericultural Research and Training Institute, Mysore '
'570011, India'}]},
{ 'given': 'Priya',
'family': 'Yadav',
'sequence': 'additional',
'affiliation': [ { 'name': 'Centre of Advanced Study in Botany, Institute of Science, '
'Banaras Hindu University, Varanasi 221005, India'}]},
{ 'ORCID': 'http://orcid.org/0000-0002-6667-1160',
'authenticated-orcid': False,
'given': 'Monika',
'family': 'Singh',
'sequence': 'additional',
'affiliation': [ { 'name': 'Department of Biotechnology, School of Applied and Life '
'Sciences, Uttaranchal University, Dehrdaun 2480071, India'}]},
{ 'given': 'Sandeep Kumar',
'family': 'Singh',
'sequence': 'additional',
'affiliation': [ { 'name': 'Division of Microbiology, Indian Agricultural Research '
'Institute, Pusa, New Delhi 110012, India'}]},
{ 'ORCID': 'http://orcid.org/0000-0002-3260-0807',
'authenticated-orcid': False,
'given': 'Ajay',
'family': 'Kumar',
'sequence': 'additional',
'affiliation': [ { 'name': 'Amity Institute of Biotechnology, Amity University, Noida '
'201303, India'}]}],
'member': '1968',
'published-online': {'date-parts': [[2023, 8, 30]]},
'reference': [ { 'key': 'ref_1',
'doi-asserted-by': 'crossref',
'first-page': '105924',
'DOI': '10.1016/j.ijantimicag.2020.105924',
'article-title': 'Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and '
'coronavirus disease-2019 (COVID-19): The epidemic and the challenges',
'volume': '55',
'author': 'Lai',
'year': '2020',
'journal-title': 'Int. J. Antimicrob. Agents'},
{ 'key': 'ref_2',
'doi-asserted-by': 'crossref',
'first-page': '105949',
'DOI': '10.1016/j.ijantimicag.2020.105949',
'article-title': 'Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results '
'of an open-label non-randomized clinical trial',
'volume': '56',
'author': 'Gautret',
'year': '2020',
'journal-title': 'Int. J. Antimicrob. Agents'},
{ 'key': 'ref_3',
'doi-asserted-by': 'crossref',
'first-page': '1239',
'DOI': '10.1001/jama.2020.2648',
'article-title': 'Characteristics of and important lessons from the coronavirus disease '
'2019 (COVID-19) outbreak in China: Summary of a report of 72 314 cases '
'from the Chinese Center for Disease Control and Prevention',
'volume': '323',
'author': 'Wu',
'year': '2020',
'journal-title': 'JAMA'},
{ 'key': 'ref_4',
'doi-asserted-by': 'crossref',
'first-page': '298',
'DOI': '10.3389/fmicb.2020.00298',
'article-title': 'Subunit vaccines against emerging pathogenic human coronaviruses',
'volume': '11',
'author': 'Wang',
'year': '2020',
'journal-title': 'Front. Microbiol.'},
{ 'key': 'ref_5',
'doi-asserted-by': 'crossref',
'first-page': '677',
'DOI': '10.1080/14760584.2018.1506702',
'article-title': 'Prospects for a MERS-CoV spike vaccine',
'volume': '17',
'author': 'Zhou',
'year': '2018',
'journal-title': 'Expert Rev. Vaccines'},
{ 'key': 'ref_6',
'doi-asserted-by': 'crossref',
'first-page': '131',
'DOI': '10.1080/14728222.2017.1271415',
'article-title': 'MERS-CoV spike protein: A key target for antivirals',
'volume': '21',
'author': 'Du',
'year': '2017',
'journal-title': 'Expert Opin. Ther. Targets'},
{ 'key': 'ref_7',
'doi-asserted-by': 'crossref',
'first-page': '165',
'DOI': '10.1016/j.antiviral.2016.07.015',
'article-title': 'MERS-CoV spike protein: Targets for vaccines and therapeutics',
'volume': '133',
'author': 'Wang',
'year': '2016',
'journal-title': 'Antiviral Res.'},
{ 'key': 'ref_8',
'doi-asserted-by': 'crossref',
'first-page': '938',
'DOI': '10.1016/S0140-6736(04)15788-7',
'article-title': 'Interaction between heptad repeat 1 and 2 regions in spike protein of '
'SARS-associated coronavirus: Implications for virus fusogenic mechanism '
'and identification of fusion inhibitors',
'volume': '363',
'author': 'Liu',
'year': '2004',
'journal-title': 'Lancet'},
{ 'key': 'ref_9',
'doi-asserted-by': 'crossref',
'first-page': '1864',
'DOI': '10.1126/science.1116480',
'article-title': 'Structure of SARS coronavirus spike receptor-binding domain complexed '
'with receptor',
'volume': '309',
'author': 'Li',
'year': '2005',
'journal-title': 'Science'},
{ 'key': 'ref_10',
'doi-asserted-by': 'crossref',
'first-page': '450',
'DOI': '10.1038/nature02145',
'article-title': 'Angiotensin-converting enzyme 2 is a functional receptor for the SARS '
'coronavirus',
'volume': '426',
'author': 'Li',
'year': '2003',
'journal-title': 'Nature'},
{ 'key': 'ref_11',
'doi-asserted-by': 'crossref',
'first-page': '251',
'DOI': '10.1038/nature12005',
'article-title': 'Dipeptidyl peptidase 4 is a functional receptor for the emerging human '
'coronavirus-EMC',
'volume': '495',
'author': 'Raj',
'year': '2013',
'journal-title': 'Nature'},
{ 'key': 'ref_12',
'doi-asserted-by': 'crossref',
'first-page': '613',
'DOI': '10.1038/s41423-020-0400-4',
'article-title': 'Characterization of the receptor-binding domain (RBD) of 2019 novel '
'coronavirus: Implication for development of RBD protein as a viral '
'attachment inhibitor and vaccine',
'volume': '17',
'author': 'Tai',
'year': '2020',
'journal-title': 'Cell. Mol. Immunol.'},
{ 'key': 'ref_13',
'doi-asserted-by': 'crossref',
'first-page': '1763',
'DOI': '10.1126/science.1085658',
'article-title': 'Coronavirus main proteinase (3CLpro) structure: Basis for design of '
'anti-SARS drugs',
'volume': '300',
'author': 'Anand',
'year': '2003',
'journal-title': 'Science'},
{ 'key': 'ref_14',
'doi-asserted-by': 'crossref',
'first-page': '4085',
'DOI': '10.1111/febs.12936',
'article-title': 'From SARS to MERS: Crystallographic studies on coronaviral proteases '
'enable antiviral drug design',
'volume': '281',
'author': 'Hilgenfeld',
'year': '2014',
'journal-title': 'FEBS J.'},
{ 'key': 'ref_15',
'doi-asserted-by': 'crossref',
'first-page': 'e00819',
'DOI': '10.1128/AAC.00819-20',
'article-title': 'Identification of antiviral drug candidates against SARS-CoV-2 from '
'FDA-approved drugs',
'volume': '64',
'author': 'Jeon',
'year': '2020',
'journal-title': 'Antimicrob. Agents Chemother.'},
{ 'key': 'ref_16',
'doi-asserted-by': 'crossref',
'first-page': '2845',
'DOI': '10.1021/jm0601856',
'article-title': 'Design and synthesis of hydroxyferroquine derivatives with antimalarial '
'and antiviral activities',
'volume': '49',
'author': 'Biot',
'year': '2006',
'journal-title': 'J. Med. Chem.'},
{ 'key': 'ref_17',
'doi-asserted-by': 'crossref',
'first-page': '120',
'DOI': '10.1016/j.virusres.2014.11.021',
'article-title': 'Host cell proteases: Critical determinants of coronavirus tropism and '
'pathogenesis',
'volume': '202',
'author': 'Millet',
'year': '2015',
'journal-title': 'Virus Res.'},
{ 'key': 'ref_18',
'doi-asserted-by': 'crossref',
'first-page': '155',
'DOI': '10.1038/s41584-020-0372-x',
'article-title': 'Mechanisms of action of hydroxychloroquine and chloroquine: '
'Implications for rheumatology',
'volume': '16',
'author': 'Schrezenmeier',
'year': '2020',
'journal-title': 'Nat. Rev. Rheumatol.'},
{ 'key': 'ref_19',
'doi-asserted-by': 'crossref',
'first-page': '1667',
'DOI': '10.1093/jac/dkaa114',
'article-title': 'COVID-19: A recommendation to examine the effect of hydroxychloroquine '
'in preventing infection and progression',
'volume': '75',
'author': 'Zhou',
'year': '2020',
'journal-title': 'J. Antimicrob. Chemother.'},
{ 'key': 'ref_20',
'doi-asserted-by': 'crossref',
'first-page': '69',
'DOI': '10.1186/1743-422X-2-69',
'article-title': 'Chloroquine is a potent inhibitor of SARS coronavirus infection and '
'spread',
'volume': '2',
'author': 'Vincent',
'year': '2005',
'journal-title': 'Virol. J.'},
{ 'key': 'ref_21',
'doi-asserted-by': 'crossref',
'first-page': '446',
'DOI': '10.1016/j.antiviral.2013.09.015',
'article-title': 'Favipiravir (T-705), a novel viral RNA polymerase inhibitor',
'volume': '100',
'author': 'Furuta',
'year': '2013',
'journal-title': 'Antiviral Res.'},
{ 'key': 'ref_22',
'doi-asserted-by': 'crossref',
'first-page': '1192',
'DOI': '10.1016/j.eng.2020.03.007',
'article-title': 'Experimental treatment with favipiravir for COVID-19: An open-label '
'control study',
'volume': '6',
'author': 'Cai',
'year': '2020',
'journal-title': 'Engineering'},
{ 'key': 'ref_23',
'doi-asserted-by': 'crossref',
'first-page': '611',
'DOI': '10.3906/sag-2004-145',
'article-title': 'Antiviral treatment of COVID-19',
'volume': '50',
'author': 'Yavuz',
'year': '2020',
'journal-title': 'Turk. J. Med. Sci.'},
{ 'key': 'ref_24',
'first-page': '109',
'article-title': 'Chemical constituents and biological activities of turmeric (Curcuma '
'longa L.)—A review',
'volume': '45',
'author': 'Niranjan',
'year': '2008',
'journal-title': 'J. Food Sci. Technol.'},
{ 'key': 'ref_25',
'doi-asserted-by': 'crossref',
'first-page': '195',
'DOI': '10.1208/s12248-012-9432-8',
'article-title': 'Therapeutic roles of curcumin: Lessons learned from clinical trials',
'volume': '15',
'author': 'Gupta',
'year': '2013',
'journal-title': 'AAPS J.'},
{ 'key': 'ref_26',
'first-page': '186864',
'article-title': 'A review on antibacterial, antiviral, and antifungal activity of '
'curcumin',
'volume': '2014',
'author': 'Hassandarvish',
'year': '2014',
'journal-title': 'BioMed Res. Int.'},
{ 'key': 'ref_27',
'doi-asserted-by': 'crossref',
'unstructured': 'Chen, T.Y., Chen, D.Y., Wen, H.W., Ou, J.L., Chiou, S.S., Chen, J.M., '
'Wong, M.L., and Hsu, W.L. (2013). Inhibition of enveloped viruses '
'infectivity by curcumin. PLoS ONE, 8.',
'DOI': '10.1371/journal.pone.0062482'},
{ 'key': 'ref_28',
'doi-asserted-by': 'crossref',
'first-page': '548',
'DOI': '10.1002/ardp.201400438',
'article-title': 'In silico profiling of the potentiality of curcumin and conventional '
'drugs for CagA oncoprotein inactivation',
'volume': '348',
'author': 'Srivastava',
'year': '2015',
'journal-title': 'Arch. Pharm.'},
{ 'key': 'ref_29',
'first-page': '400',
'article-title': 'Unrevealing sequence and structural features of novel coronavirus using '
'in silico approaches: The main protease as molecular target',
'volume': '19',
'author': 'Ortega',
'year': '2020',
'journal-title': 'EXCLI J.'},
{ 'key': 'ref_30',
'doi-asserted-by': 'crossref',
'first-page': '34610',
'DOI': '10.1074/jbc.M603275200',
'article-title': 'Structural basis of neutralization by a human anti-severe acute '
'respiratory syndrome spike protein antibody, 80R',
'volume': '281',
'author': 'Hwang',
'year': '2006',
'journal-title': 'J. Biol. Chem.'},
{ 'key': 'ref_31',
'doi-asserted-by': 'crossref',
'first-page': '562',
'DOI': '10.1038/s41564-020-0688-y',
'article-title': 'Functional assessment of cell entry and receptor usage for SARS-CoV-2 '
'and other lineage B betacoronaviruses',
'volume': '5',
'author': 'Letko',
'year': '2020',
'journal-title': 'Nat. Microbiol.'},
{ 'key': 'ref_32',
'doi-asserted-by': 'crossref',
'unstructured': 'Baindara, P., Chowdhury, T., Roy, D., Mandal, M., and Mandal, S.M. '
'(2023). Surfactin-like lipopeptides from Bacillus clausii efficiently '
'bind to spike glycoprotein of SARS-CoV-2. J. Biomol. Struct. Dyn., 1–12.',
'DOI': '10.1080/07391102.2023.2196694'},
{ 'key': 'ref_33',
'doi-asserted-by': 'crossref',
'first-page': '1117',
'DOI': '10.1002/cmdc.201600182',
'article-title': 'A boiled-egg to predict gastrointestinal absorption and brain '
'penetration of small molecules',
'volume': '11',
'author': 'Daina',
'year': '2016',
'journal-title': 'Chem. Med. Chem.'},
{ 'key': 'ref_34',
'doi-asserted-by': 'crossref',
'first-page': 'W357',
'DOI': '10.1093/nar/gkz382',
'article-title': 'SwissTargetPrediction: Updated data and new features for efficient '
'prediction of protein targets of small molecules',
'volume': '47',
'author': 'Daina',
'year': '2019',
'journal-title': 'Nucleic Acids Res.'},
{ 'key': 'ref_35',
'doi-asserted-by': 'crossref',
'first-page': '331',
'DOI': '10.1002/pro.3334',
'article-title': 'Prediction of protein disorder based on IUPred',
'volume': '27',
'year': '2018',
'journal-title': 'Protein Sci.'},
{ 'key': 'ref_36',
'doi-asserted-by': 'crossref',
'first-page': 'W329',
'DOI': '10.1093/nar/gky384',
'article-title': 'IUPred2A: Context-dependent prediction of protein disorder as a '
'function of redox state and protein binding',
'volume': '46',
'year': '2018',
'journal-title': 'Nucleic Acids Res.'},
{ 'key': 'ref_37',
'doi-asserted-by': 'crossref',
'first-page': '599',
'DOI': '10.1038/s41598-020-57417-9',
'article-title': 'Design and molecular dynamic investigations of 7, 8-dihydroxyflavone '
'derivatives as potential neuroprotective agents against alpha-synuclein',
'volume': '10',
'author': 'Mohankumar',
'year': '2020',
'journal-title': 'Sci. Rep.'},
{ 'key': 'ref_38',
'doi-asserted-by': 'crossref',
'first-page': '622898',
'DOI': '10.3389/fchem.2021.622898',
'article-title': 'Structural Basis of Potential Inhibitors Targeting SARS-CoV-2 Main '
'Protease',
'volume': '9',
'author': 'Mengist',
'year': '2021',
'journal-title': 'Front. Chem.'},
{ 'key': 'ref_39',
'doi-asserted-by': 'crossref',
'first-page': '752380',
'DOI': '10.3389/fimmu.2021.752380',
'article-title': 'COVID-19 is a multi-organ aggressor: Epigenetic and clinical marks',
'volume': '12',
'author': 'Kgatle',
'year': '2021',
'journal-title': 'Front. Immunol.'},
{ 'key': 'ref_40',
'doi-asserted-by': 'crossref',
'first-page': '2469',
'DOI': '10.1007/s10924-020-01787-8',
'article-title': 'Biocidal Activity of Bone Cements Containing Curcumin and Pegylated '
'Quaternary Polyethylenimine',
'volume': '28',
'author': 'Eren',
'year': '2020',
'journal-title': 'J. Poly. Environ.'},
{ 'key': 'ref_41',
'doi-asserted-by': 'crossref',
'first-page': '215',
'DOI': '10.1038/s41586-020-2180-5',
'article-title': 'Structure of the SARS-CoV-2 spike receptor-binding domain bound to the '
'ACE2 receptor',
'volume': '581',
'author': 'Lan',
'year': '2020',
'journal-title': 'Nature'},
{ 'key': 'ref_42',
'doi-asserted-by': 'crossref',
'first-page': '116',
'DOI': '10.1007/s12539-016-0142-2',
'article-title': 'Structural interactions of curcumin biotransformed molecules with the '
'N-terminal residues of cytotoxic-associated gene a protein provide '
'insights into suppression of oncogenic activities',
'volume': '9',
'author': 'Srivastava',
'year': '2017',
'journal-title': 'Interdiscip. Sci. Comput. Life Sci.'},
{ 'key': 'ref_43',
'doi-asserted-by': 'crossref',
'first-page': '104503',
'DOI': '10.1016/j.jff.2021.104503',
'article-title': 'Promising role of curcumin against viral diseases emphasizing COVID-19 '
'management: A review on the mechanistic insights with reference to '
'host-pathogen interaction and immunomodulation',
'volume': '82',
'author': 'Dhar',
'year': '2021',
'journal-title': 'J. Funct. Foods'},
{ 'key': 'ref_44',
'doi-asserted-by': 'crossref',
'first-page': '20',
'DOI': '10.1186/s13578-017-0146-6',
'article-title': 'Upregulation of heme oxygenase-1 expression by curcumin conferring '
'protection from hydrogen peroxide-induced apoptosis in H9c2 '
'cardiomyoblasts',
'volume': '7',
'author': 'Yang',
'year': '2017',
'journal-title': 'Cell Biosci.'},
{ 'key': 'ref_45',
'doi-asserted-by': 'crossref',
'first-page': '3364',
'DOI': '10.1016/j.bmcl.2005.05.032',
'article-title': 'Active site binding modes of curcumin in HIV-1 protease and integrase',
'volume': '15',
'author': 'Vajragupta',
'year': '2005',
'journal-title': 'Bioorg. Med. Chem. Lett.'},
{ 'key': 'ref_46',
'doi-asserted-by': 'crossref',
'unstructured': 'Jennings, M.R., and Parks, R.J. (2020). Curcumin as an Antiviral Agent. '
'Viruses, 12.',
'DOI': '10.3390/v12111242'},
{ 'key': 'ref_47',
'doi-asserted-by': 'crossref',
'first-page': '148',
'DOI': '10.1016/j.antiviral.2017.03.014',
'article-title': 'Curcumin inhibits Zika and chikungunya virus infection by inhibiting '
'cell binding',
'volume': '142',
'author': 'Mounce',
'year': '2017',
'journal-title': 'Antivir. Res'},
{ 'key': 'ref_48',
'doi-asserted-by': 'crossref',
'first-page': '71',
'DOI': '10.1016/j.antiviral.2018.12.002',
'article-title': 'Inhibition of dengue virus by curcuminoids',
'volume': '162',
'author': 'Balasubramanian',
'year': '2019',
'journal-title': 'Antivir. Res.'},
{ 'key': 'ref_49',
'doi-asserted-by': 'crossref',
'first-page': '1015',
'DOI': '10.1016/j.jfda.2017.12.006',
'article-title': 'Synergic effect of curcumin and its structural analogue '
'(Monoacetylcurcumin) on anti-influenza virus infection',
'volume': '26',
'author': 'Richart',
'year': '2018',
'journal-title': 'J. Food Drug Anal.'},
{ 'key': 'ref_50',
'doi-asserted-by': 'crossref',
'first-page': '3040',
'DOI': '10.1039/C5NR07918G',
'article-title': 'Curcumin modified silver nanoparticles for highly efficient inhibition '
'of respiratory syncytial virus infection',
'volume': '8',
'author': 'Yang',
'year': '2016',
'journal-title': 'Nanoscale'},
{ 'key': 'ref_51',
'doi-asserted-by': 'crossref',
'first-page': '2911',
'DOI': '10.1002/ptr.6738',
'article-title': 'Potential effects of curcumin in the treatment of COVID-19 infection',
'volume': '34',
'author': 'Zahedipour',
'year': '2020',
'journal-title': 'Phytother. Res.'},
{ 'key': 'ref_52',
'doi-asserted-by': 'crossref',
'first-page': '153317',
'DOI': '10.1016/j.phymed.2020.153317',
'article-title': 'Identification of phytochemicals as potential therapeutic agents that '
'binds to Nsp15 protein target of coronavirus (SARS-CoV-2) that are '
'capable of inhibiting virus replication',
'volume': '85',
'author': 'Kumar',
'year': '2021',
'journal-title': 'Phytomedicine'},
{ 'key': 'ref_53',
'doi-asserted-by': 'crossref',
'first-page': '3099',
'DOI': '10.1021/ci300367a',
'article-title': 'admetSAR: A comprehensive source and free tool for assessment of '
'chemical ADMET properties',
'volume': '52',
'author': 'Cheng',
'year': '2012',
'journal-title': 'J. Chem. Inf. Model.'},
{ 'key': 'ref_54',
'doi-asserted-by': 'crossref',
'first-page': '42717',
'DOI': '10.1038/srep42717',
'article-title': 'SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness '
'and medicinal chemistry friendliness of small molecules',
'volume': '7',
'author': 'Daina',
'year': '2017',
'journal-title': 'Sci. Rep.'},
{ 'key': 'ref_55',
'doi-asserted-by': 'crossref',
'first-page': '11628',
'DOI': '10.1073/pnas.93.21.11628',
'article-title': 'An iterative method for extracting energy-like quantities from protein '
'structures',
'volume': '93',
'author': 'Thomas',
'year': '1996',
'journal-title': 'Proc. Natl. Acad. Sci. USA'},
{ 'key': 'ref_56',
'doi-asserted-by': 'crossref',
'first-page': '827',
'DOI': '10.1016/j.jmb.2005.01.071',
'article-title': 'The pairwise energy content estimated from amino acid composition '
'discriminates between folded and intrinsically unstructured proteins',
'volume': '347',
'author': 'Dosztanyi',
'year': '2005',
'journal-title': 'J. Mol. Biol.'},
{ 'key': 'ref_57',
'doi-asserted-by': 'crossref',
'unstructured': 'Mészáros, B., Simon, I., and Dosztányi, Z. (2009). Prediction of protein '
'binding regions in disordered proteins. PLoS Comput. Biol., 5.',
'DOI': '10.1371/journal.pcbi.1000376'}],
'container-title': 'Stresses',
'original-title': [],
'language': 'en',
'link': [ { 'URL': 'https://www.mdpi.com/2673-7140/3/3/43/pdf',
'content-type': 'unspecified',
'content-version': 'vor',
'intended-application': 'similarity-checking'}],
'deposited': { 'date-parts': [[2023, 8, 30]],
'date-time': '2023-08-30T15:22:18Z',
'timestamp': 1693408938000},
'score': 1,
'resource': {'primary': {'URL': 'https://www.mdpi.com/2673-7140/3/3/43'}},
'subtitle': [],
'short-title': [],
'issued': {'date-parts': [[2023, 8, 30]]},
'references-count': 57,
'journal-issue': {'issue': '3', 'published-online': {'date-parts': [[2023, 9]]}},
'alternative-id': ['stresses3030043'],
'URL': 'http://dx.doi.org/10.3390/stresses3030043',
'relation': {},
'ISSN': ['2673-7140'],
'subject': ['General Medicine'],
'container-title-short': 'Stresses',
'published': {'date-parts': [[2023, 8, 30]]}}