Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
Abstract
All curcumin studies
Meta analysis
 
Feedback
Home
next
study
previous
study
c19early.org COVID-19 treatment researchCurcuminCurcumin (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis    Recent:   

Potential of turmeric-derived compounds against RNA-dependent RNA polymerase of SARS-CoV-2: An in-silico approach

Singh et al., Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2021.104965
Oct 2021  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
Curcumin for COVID-19
15th treatment shown to reduce risk in February 2021
 
*, now with p = 0.0000000096 from 27 studies.
No treatment is 100% effective. Protocols combine treatments. * >10% efficacy, ≥3 studies.
4,400+ studies for 81 treatments. c19early.org
In Silico study showing strong binding affinity of curcumin and diacetylcurcumin with SARS-CoV-2 RNA-dependent RNA polymerase. Comparison with remdesivir and favipiravir suggested greater potential of these compounds as an RdRp inhibitor.
45 preclinical studies support the efficacy of curcumin for COVID-19:
In Silico studies predict inhibition of SARS-CoV-2 with curcumin or metabolites via binding to the spikeA,5,10,12,18,21 (and specifically the receptor binding domainB,8,11,14), MproC,5,7,9-11,13,14,16,19,21,22,24,35, RNA-dependent RNA polymeraseD,11,20, ACE2E,12,13,15, nucleocapsidF,6,23, nsp10G,23, and helicaseH,25 proteins. In Vitro studies demonstrate inhibition of the spikeA,30 (and specifically the receptor binding domainB,38), MproC,17,30,35,37, ACE2E,38, and TMPRSS2I,38 proteins. In Vitro studies demonstrate efficacy in Calu-3J,36, A549K,30, 293TL,1, HEK293-hACE2M,17,28, 293T/hACE2/TMPRSS2N,29, Vero E6O,7,11,21,28,30-32,34,36, and SH-SY5YP,27 cells. Curcumin is predicted to inhibit the interaction between the SARS-CoV-2 spike protein receptor binding domain and the human ACE2 receptor for the delta and omicron variants8, decreases pro-inflammatory cytokines induced by SARS-CoV-2 in peripheral blood mononuclear cells34, and alleviates SARS-CoV-2 spike protein-induced mitochondrial membrane damage and oxidative stress1.
Singh et al., 22 Oct 2021, peer-reviewed, 3 authors.
In Silico studies are an important part of preclinical research, however results may be very different in vivo.
This PaperCurcuminAll
Potential of turmeric-derived compounds against RNA‐dependent RNA polymerase of SARS‐CoV‐2: An in-silico approach
Rahul Singh, Vijay Kumar Bhardwaj, Rituraj Purohit
Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2021.104965
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Competing interests All authors hereby declare that they have no competing interests related to this work. J o u r n a l P r e -p r o o f
References
Bhardwaj, Singh, Das, Purohit, Evaluation of acridinedione analogs as potential SARS-CoV-2 main protease inhibitors and their comparison with repurposed anti-viral drugs, Comput. Biol. Med, doi:10.1016/j.compbiomed.2020.104117
Bhardwaj, Singh, Sharma, Rajendran, Purohit et al., Bioactive molecules of Tea as potential inhibitors for RNA-dependent RNA polymerase of SARS-CoV-2, Front. Med, doi:10.3389/FMED.2021.684020.JournalPre-proof
Bhardwaj, Singh, Sharma, Rajendran, Purohit et al., Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors, J. Biomol. Struct. Dyn, doi:10.1080/07391102.2020.1766572
Chan, Yuan, Kok, To, Chu et al., A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster, Lancet, doi:10.1016/S0140-6736(20)30154-9
Chen, Zhou, Dong, Qu, Gong et al., Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study, Lancet, doi:10.1016/S0140-6736(20
Darden, York, Pedersen, Particle mesh Ewald: An N•log(N) method for Ewald sums in large systems, J. Chem. Phys, doi:10.1063/1.464397
Ebrahimi, Ansari, Hosseyni Moghaddam, Ebrahimi, Salehi et al., In silico investigation on the inhibitory effect of fungal secondary metabolites on RNA dependent RNA polymerase of SARS-CoV-II: A docking and molecular dynamic simulation study, Comput. Biol. Med, doi:10.1016/J.COMPBIOMED.2021.104613
Gao, Yan, Huang, Liu, Zhao et al., Structure of the RNAdependent RNA polymerase from COVID-19 virus, Science, doi:10.1126/science.abb7498
Gong, Peersen, Structural basis for active site closure by the poliovirus RNAdependent RNA polymerase, Proc. Natl. Acad. Sci. U. S. A, doi:10.1073/pnas.1007626107
Gordon, Tchesnokov, Woolner, Perry, Feng et al., Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency, J. Biol. Chem, doi:10.1074/jbc.RA120.013679
Hess, Bekker, Berendsen, Fraaije, LINCS: A Linear Constraint Solver for molecular simulations, J. Comput. Chem
Hillen, Kokic, Farnung, Dienemann, Tegunov et al., Structure of replicating SARS-CoV-2 polymerase, Nature, doi:10.1038/s41586-020-2368-8
Holshue, Debolt, Lindquist, Lofy, Wiesman et al., First Case of 2019 Novel Coronavirus in the United States, N. Engl. J. Med, doi:10.1056/nejmoa2001191
Hosseini, Chen, Xiao, Wang, Computational molecular docking and virtual screening revealed promising SARS-CoV-2 drugs, Precis, Clin. Med, doi:10.1093/pcmedi/pbab001
Kirchdoerfer, Ward, Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors, Nat. Commun, doi:10.1038/s41467-019-10280-3.JournalPre-proof
Koulgi, Jani, Mallikarjunachari Uppuladinne, Sonavane, Joshi, Natural plant products as potential inhibitors of RNA dependent RNA polymerase of Severe Acute Respiratory Syndrome Coronavirus-2, PLoS One, doi:10.1371/journal.pone.0251801
Kumar, Bhardwaj, Singh, Purohit, Explicit-solvent molecular dynamics simulations revealed conformational regain and aggregation inhibition of I113T SOD1 by Himalayan bioactive molecules, J. Mol. Liq, doi:10.1016/j.molliq.2021.116798
Kumari, Kumar, Lynn, G-mmpbsa -A GROMACS tool for high-throughput MM-PBSA calculations, J. Chem. Inf. Model, doi:10.1021/ci500020m
Lehmann, Gulyaeva, Zevenhoven-Dobbe, Janssen, Ruben et al., Discovery of an essential nucleotidylating activity associated with a newly delineated conserved domain in the RNA polymerase-containing protein of all nidoviruses, Nucleic Acids Res, doi:10.1093/nar/gkv838
Mcdonald, RNA synthetic mechanisms employed by diverse families of RNA viruses, Wiley Interdiscip. Rev. RNA, doi:10.1002/wrna.1164
Moghadamtousi, Abdul Kadir, Hassandarvish, Tajik, Abubakar et al., A review on antibacterial, antiviral, and antifungal activity of curcumin, Biomed Res. Int, doi:10.1155/2014/186864
Mounce, Cesaro, Carrau, Vallet, Vignuzzi, Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding, Antiviral Res, doi:10.1016/j.antiviral.2017.03.014
Niranjan, Singh, Dhiman, Tewari, Biochemical Composition of Curcuma longa L. Accessions, Anal. Lett, doi:10.1080/00032719.2012.751541
Parrinello, Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method, J. Appl. Phys, doi:10.1063/1.328693
Priyadarsini, The chemistry of curcumin: From extraction to therapeutic agent, Molecules, doi:10.3390/molecules191220091
Rajagopal, Varakumar, Baliwada, Byran, Activity of phytochemical constituents of Curcuma longa (turmeric) and Andrographis paniculata against coronavirus (COVID-19): an in silico approach, Futur. J. Pharm. Sci, doi:10.1186/s43094-020-00126-x
Rattis, Ramos, Celes, Curcumin as a Potential Treatment for COVID-19, Front. Pharmacol, doi:10.3389/fphar.2021.675287
Shannon, Le, Selisko, Eydoux, Alvarez et al., Remdesivir and SARS-CoV-2: Structural requirements at both nsp12 RdRp and nsp14 Exonuclease active-sites, Antiviral Res, doi:10.1016/j.antiviral.2020.104793
Sharma, Bhardwaj, Singh, Rajendran, Purohit et al., An in-silico evaluation of different bioactive molecules of Tea for their inhibition potency against non structural protein-15 of SARS-CoV-2, Food Chem, doi:10.1016/j.foodchem.2020.128933
Singh, Bhardwaj, Das, Purohit, A computational approach for rational discovery of inhibitors for non-structural protein 1 of SARS-CoV-2, Comput. Biol. Med, doi:10.1016/j.compbiomed.2021.104555
Singh, Bhardwaj, Sharma, Kumar, Purohit, Identification of potential plant bioactive as SARS-CoV-2 Spike protein and human ACE2 fusion inhibitors, Comput. Biol. Med, doi:10.1016/J.COMPBIOMED.2021
Singh, Bhardwaj, Sharma, Purohit, Kumar, In-silico evaluation of bioactive compounds from tea as potential SARS-CoV-2 nonstructural protein 16 inhibitors, J. Tradit. Complement. Med, doi:10.1016/j.jtcme.2021.05.005
Skariyachan, Gopal, Muddebihalkar, Uttarkar, Niranjan, Structural insights on the interaction potential of natural leads against major protein targets of SARS-CoV-2: Molecular modelling, docking and dynamic simulation studies, Comput. Biol. Med, doi:10.1016/J.COMPBIOMED.2021.104325
Studio, Dassault Systemes BIOVIA
Subissi, Posthuma, Collet, Zevenhoven-Dobbe, Gorbalenya et al., One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities, Proc. Natl. Acad. Sci. U. S. A, doi:10.1073/pnas.1323705111
Umashankar, Deshpande, Hegde, Singh, Chattopadhyay, Phytochemical Moieties From Indian Traditional Medicine for Targeting Dual Hotspots on SARS-CoV-2
Van Der, Spoel, Lindahl, Hess, Groenhof et al., GROMACS: Fast, flexible, and free, J. Comput. Chem, doi:10.1002/jcc.20291
Vanommeslaeghe, Hatcher, Acharya, Kundu, Zhong et al., CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields, J. Comput. Chem, doi:10.1002/jcc.21367.JournalPre-proof
Wang, Cao, Zhang, Yang, Liu et al., Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro, Cell Res, doi:10.1038/s41422-020-0282-0
Yin, Mao, Luan, Shen, Shen et al., Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir, Science, doi:10.1126/science.abc1560
Zheng, Frisch, Efficient Geometry Minimization and Transition Structure Optimization Using Interpolated Potential Energy Surfaces and Iteratively Updated Hessians, J. Chem. Theory Comput, doi:10.1021/acs.jctc.7b00719
{ 'indexed': {'date-parts': [[2023, 3, 26]], 'date-time': '2023-03-26T22:59:28Z', 'timestamp': 1679871568424}, 'reference-count': 41, 'publisher': 'Elsevier BV', 'license': [ { 'start': { 'date-parts': [[2021, 12, 1]], 'date-time': '2021-12-01T00:00:00Z', 'timestamp': 1638316800000}, 'content-version': 'tdm', 'delay-in-days': 0, 'URL': 'https://www.elsevier.com/tdm/userlicense/1.0/'}, { 'start': { 'date-parts': [[2021, 12, 1]], 'date-time': '2021-12-01T00:00:00Z', 'timestamp': 1638316800000}, 'content-version': 'stm-asf', 'delay-in-days': 0, 'URL': 'https://doi.org/10.15223/policy-017'}, { 'start': { 'date-parts': [[2021, 12, 1]], 'date-time': '2021-12-01T00:00:00Z', 'timestamp': 1638316800000}, 'content-version': 'stm-asf', 'delay-in-days': 0, 'URL': 'https://doi.org/10.15223/policy-037'}, { 'start': { 'date-parts': [[2021, 12, 1]], 'date-time': '2021-12-01T00:00:00Z', 'timestamp': 1638316800000}, 'content-version': 'stm-asf', 'delay-in-days': 0, 'URL': 'https://doi.org/10.15223/policy-012'}, { 'start': { 'date-parts': [[2021, 12, 1]], 'date-time': '2021-12-01T00:00:00Z', 'timestamp': 1638316800000}, 'content-version': 'stm-asf', 'delay-in-days': 0, 'URL': 'https://doi.org/10.15223/policy-029'}, { 'start': { 'date-parts': [[2021, 12, 1]], 'date-time': '2021-12-01T00:00:00Z', 'timestamp': 1638316800000}, 'content-version': 'stm-asf', 'delay-in-days': 0, 'URL': 'https://doi.org/10.15223/policy-004'}], 'content-domain': { 'domain': [ 'clinicalkey.fr', 'clinicalkey.jp', 'clinicalkey.com.au', 'clinicalkey.es', 'clinicalkey.com', 'elsevier.com', 'sciencedirect.com'], 'crossmark-restriction': True}, 'published-print': {'date-parts': [[2021, 12]]}, 'DOI': '10.1016/j.compbiomed.2021.104965', 'type': 'journal-article', 'created': { 'date-parts': [[2021, 10, 22]], 'date-time': '2021-10-22T21:32:51Z', 'timestamp': 1634938371000}, 'page': '104965', 'update-policy': 'http://dx.doi.org/10.1016/elsevier_cm_policy', 'source': 'Crossref', 'is-referenced-by-count': 36, 'title': 'Potential of turmeric-derived compounds against RNA‐dependent RNA polymerase of SARS‐CoV‐2: An ' 'in-silico approach', 'prefix': '10.1016', 'volume': '139', 'author': [ {'given': 'Rahul', 'family': 'Singh', 'sequence': 'first', 'affiliation': []}, {'given': 'Vijay Kumar', 'family': 'Bhardwaj', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0002-2101-9398', 'authenticated-orcid': False, 'given': 'Rituraj', 'family': 'Purohit', 'sequence': 'additional', 'affiliation': []}], 'member': '78', 'reference': [ { 'key': '10.1016/j.compbiomed.2021.104965_bib1', 'doi-asserted-by': 'crossref', 'first-page': '514', 'DOI': '10.1016/S0140-6736(20)30154-9', 'article-title': 'A familial cluster of pneumonia associated with the 2019 novel ' 'coronavirus indicating person-to-person transmission: a study of a ' 'family cluster', 'volume': '395', 'author': 'Chan', 'year': '2020', 'journal-title': 'Lancet'}, { 'key': '10.1016/j.compbiomed.2021.104965_bib2', 'doi-asserted-by': 'crossref', 'first-page': '507', 'DOI': '10.1016/S0140-6736(20)30211-7', 'article-title': 'Epidemiological and clinical characteristics of 99 cases of 2019 novel ' 'coronavirus pneumonia in Wuhan, China: a descriptive study', 'volume': '395', 'author': 'Chen', 'year': '2020', 'journal-title': 'Lancet'}, { 'key': '10.1016/j.compbiomed.2021.104965_bib3', 'doi-asserted-by': 'crossref', 'first-page': '6785', 'DOI': '10.1074/jbc.RA120.013679', 'article-title': 'Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA ' 'polymerase from severe acute respiratory syndrome coronavirus 2 with ' 'high potency', 'volume': '295', 'author': 'Gordon', 'year': '2020', 'journal-title': 'J. Biol. Chem.'}, { 'key': '10.1016/j.compbiomed.2021.104965_bib4', 'doi-asserted-by': 'crossref', 'first-page': '1499', 'DOI': '10.1126/science.abc1560', 'article-title': 'Structural basis for inhibition of the RNA-dependent RNA polymerase ' 'from SARS-CoV-2 by remdesivir', 'volume': '368', 'author': 'Yin', 'year': '2020', 'journal-title': 'Science'}, { 'key': '10.1016/j.compbiomed.2021.104965_bib5', 'doi-asserted-by': 'crossref', 'first-page': 'E3900', 'DOI': '10.1073/pnas.1323705111', 'article-title': 'One severe acute respiratory syndrome coronavirus protein complex ' 'integrates processive RNA polymerase and exonuclease activities', 'volume': '111', 'author': 'Subissi', 'year': '2014', 'journal-title': 'Proc. Natl. Acad. Sci. U.S.A.'}, { 'key': '10.1016/j.compbiomed.2021.104965_bib6', 'doi-asserted-by': 'crossref', 'first-page': '351', 'DOI': '10.1002/wrna.1164', 'article-title': 'RNA synthetic mechanisms employed by diverse families of RNA viruses', 'volume': '4', 'author': 'Mcdonald', 'year': '2013', 'journal-title': 'Wiley Interdiscip. Rev. RNA.'}, { 'key': '10.1016/j.compbiomed.2021.104965_bib7', 'doi-asserted-by': 'crossref', 'first-page': '8416', 'DOI': '10.1093/nar/gkv838', 'article-title': 'Discovery of an essential nucleotidylating activity associated with a ' 'newly delineated conserved domain in the RNA polymerase-containing ' 'protein of all nidoviruses', 'volume': '43', 'author': 'Lehmann', 'year': '2015', 'journal-title': 'Nucleic Acids Res.'}, { 'key': '10.1016/j.compbiomed.2021.104965_bib8', 'doi-asserted-by': 'crossref', 'DOI': '10.1038/s41467-019-10280-3', 'article-title': 'Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 ' 'co-factors', 'volume': '10', 'author': 'Kirchdoerfer', 'year': '2019', 'journal-title': 'Nat. Commun.'}, { 'key': '10.1016/j.compbiomed.2021.104965_bib9', 'doi-asserted-by': 'crossref', 'first-page': '22505', 'DOI': '10.1073/pnas.1007626107', 'article-title': 'Structural basis for active site closure by the poliovirus ' 'RNA-dependent RNA polymerase', 'volume': '107', 'author': 'Gong', 'year': '2010', 'journal-title': 'Proc. Natl. Acad. Sci. U.S.A.'}, { 'key': '10.1016/j.compbiomed.2021.104965_bib10', 'doi-asserted-by': 'crossref', 'DOI': '10.1016/j.antiviral.2020.104793', 'article-title': 'Remdesivir and SARS-CoV-2: structural requirements at both nsp12 RdRp ' 'and nsp14 Exonuclease active-sites', 'volume': '178', 'author': 'Shannon', 'year': '2020', 'journal-title': 'Antivir. Res.'}, { 'key': '10.1016/j.compbiomed.2021.104965_bib11', 'doi-asserted-by': 'crossref', 'first-page': '269', 'DOI': '10.1038/s41422-020-0282-0', 'article-title': 'Remdesivir and chloroquine effectively inhibit the recently emerged ' 'novel coronavirus (2019-nCoV) in vitro', 'volume': '30', 'author': 'Wang', 'year': '2020', 'journal-title': 'Cell Res.'}, { 'key': '10.1016/j.compbiomed.2021.104965_bib12', 'doi-asserted-by': 'crossref', 'first-page': '929', 'DOI': '10.1056/NEJMoa2001191', 'article-title': 'First case of 2019 novel coronavirus in the United States, N', 'volume': '382', 'author': 'Holshue', 'year': '2020', 'journal-title': 'Engl. J. Med.'}, { 'key': '10.1016/j.compbiomed.2021.104965_bib13', 'doi-asserted-by': 'crossref', 'DOI': '10.1155/2014/186864', 'article-title': 'A review on antibacterial, antiviral, and antifungal activity of ' 'curcumin', 'volume': '2014', 'author': 'Zorofchian Moghadamtousi', 'year': '2014', 'journal-title': 'BioMed Res. Int.'}, { 'key': '10.1016/j.compbiomed.2021.104965_bib14', 'doi-asserted-by': 'crossref', 'first-page': '148', 'DOI': '10.1016/j.antiviral.2017.03.014', 'article-title': 'Curcumin inhibits Zika and chikungunya virus infection by inhibiting ' 'cell binding', 'volume': '142', 'author': 'Mounce', 'year': '2017', 'journal-title': 'Antivir. Res.'}, { 'key': '10.1016/j.compbiomed.2021.104965_bib15', 'doi-asserted-by': 'crossref', 'first-page': '1069', 'DOI': '10.1080/00032719.2012.751541', 'article-title': 'Biochemical composition of curcuma longa L. Accessions', 'volume': '46', 'author': 'Niranjan', 'year': '2013', 'journal-title': 'Anal. Lett.'}, { 'key': '10.1016/j.compbiomed.2021.104965_bib16', 'doi-asserted-by': 'crossref', 'first-page': '20091', 'DOI': '10.3390/molecules191220091', 'article-title': 'The chemistry of curcumin: from extraction to therapeutic agent', 'volume': '19', 'author': 'Priyadarsini', 'year': '2014', 'journal-title': 'Molecules'}, { 'key': '10.1016/j.compbiomed.2021.104965_bib17', 'doi-asserted-by': 'crossref', 'first-page': '6424', 'DOI': '10.1021/acs.jctc.7b00719', 'article-title': 'Efficient geometry minimization and transition structure optimization ' 'using interpolated potential energy surfaces and iteratively updated ' 'hessians', 'volume': '13', 'author': 'Zheng', 'year': '2017', 'journal-title': 'J. Chem. Theor. Comput.'}, { 'key': '10.1016/j.compbiomed.2021.104965_bib18', 'first-page': '98', 'article-title': 'Dassault systemes BIOVIA, discovery studio modelling environment, ' 'release 4.5', 'author': 'Studio', 'year': '2015', 'journal-title': 'Accelrys Softw. Inc.'}, { 'key': '10.1016/j.compbiomed.2021.104965_bib19', 'first-page': '671', 'article-title': 'CHARMM general force field: a force field for drug-like molecules ' 'compatible with the CHARMM all-atom additive biological force fields', 'volume': '31', 'author': 'Vanommeslaeghe', 'year': '2010', 'journal-title': 'J. Comput. Chem.'}, { 'key': '10.1016/j.compbiomed.2021.104965_bib20', 'doi-asserted-by': 'crossref', 'first-page': '1701', 'DOI': '10.1002/jcc.20291', 'article-title': 'GROMACS: fast, flexible, and free', 'volume': '26', 'author': 'Van Der Spoel', 'year': '2005', 'journal-title': 'J. Comput. Chem.'}, { 'key': '10.1016/j.compbiomed.2021.104965_bib21', 'doi-asserted-by': 'crossref', 'first-page': '7182', 'DOI': '10.1063/1.328693', 'article-title': 'Polymorphic transitions in single crystals: a new molecular dynamics ' 'method', 'volume': '52', 'author': 'Parrinello', 'year': '1981', 'journal-title': 'J. Appl. Phys.'}, { 'key': '10.1016/j.compbiomed.2021.104965_bib22', 'doi-asserted-by': 'crossref', 'first-page': '1463', 'DOI': '10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H', 'article-title': 'LINCS: a linear constraint solver for molecular simulations', 'volume': '18', 'author': 'Hess', 'year': '1997', 'journal-title': 'J. Comput. Chem.'}, { 'key': '10.1016/j.compbiomed.2021.104965_bib23', 'doi-asserted-by': 'crossref', 'first-page': '10089', 'DOI': '10.1063/1.464397', 'article-title': 'Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems', 'volume': '98', 'author': 'Darden', 'year': '1993', 'journal-title': 'J. Chem. Phys.'}, { 'key': '10.1016/j.compbiomed.2021.104965_bib24', 'doi-asserted-by': 'crossref', 'first-page': '1951', 'DOI': '10.1021/ci500020m', 'article-title': 'G-mmpbsa -A GROMACS tool for high-throughput MM-PBSA calculations', 'volume': '54', 'author': 'Kumari', 'year': '2014', 'journal-title': 'J. Chem. Inf. Model.'}, { 'key': '10.1016/j.compbiomed.2021.104965_bib25', 'doi-asserted-by': 'crossref', 'first-page': '1068', 'DOI': '10.3389/fphar.2021.675287', 'article-title': 'Curcumin as a potential treatment for COVID-19', 'volume': '12', 'author': 'Rattis', 'year': '2021', 'journal-title': 'Front. Pharmacol.'}, { 'key': '10.1016/j.compbiomed.2021.104965_bib26', 'doi-asserted-by': 'crossref', 'first-page': '1', 'DOI': '10.1186/s43094-020-00126-x', 'article-title': 'Activity of phytochemical constituents of Curcuma longa (turmeric) and ' 'Andrographis paniculata against coronavirus (COVID-19): an in silico ' 'approach', 'volume': '6', 'author': 'Rajagopal', 'year': '2020', 'journal-title': 'Futur. J. Pharm. Sci.'}, { 'key': '10.1016/j.compbiomed.2021.104965_bib27', 'doi-asserted-by': 'crossref', 'DOI': '10.3389/fmed.2021.672629', 'article-title': 'Phytochemical moieties from Indian traditional medicine for targeting ' 'dual hotspots on SARS-CoV-2 spike protein: an integrative in-silico ' 'approach', 'volume': '8', 'author': 'Umashankar', 'year': '2021', 'journal-title': 'Front. Med.'}, { 'key': '10.1016/j.compbiomed.2021.104965_bib28', 'doi-asserted-by': 'crossref', 'DOI': '10.1016/j.compbiomed.2021.104631', 'article-title': 'Identification of potential plant bioactive as SARS-CoV-2 Spike protein ' 'and human ACE2 fusion inhibitors', 'volume': '136', 'author': 'Singh', 'year': '2021', 'journal-title': 'Comput. Biol. Med.'}, { 'key': '10.1016/j.compbiomed.2021.104965_bib29', 'doi-asserted-by': 'crossref', 'first-page': '154', 'DOI': '10.1038/s41586-020-2368-8', 'article-title': 'Structure of replicating SARS-CoV-2 polymerase', 'volume': '584', 'author': 'Hillen', 'year': '2020', 'journal-title': 'Nature'}, { 'key': '10.1016/j.compbiomed.2021.104965_bib30', 'doi-asserted-by': 'crossref', 'first-page': '779', 'DOI': '10.1126/science.abb7498', 'article-title': 'Structure of the RNA-dependent RNA polymerase from COVID-19 virus', 'volume': '368', 'author': 'Gao', 'year': '2020', 'journal-title': 'Science'}, { 'key': '10.1016/j.compbiomed.2021.104965_bib31', 'doi-asserted-by': 'crossref', 'first-page': '645', 'DOI': '10.3389/fmed.2021.684020', 'article-title': 'Bioactive molecules of Tea as potential inhibitors for RNA-dependent ' 'RNA polymerase of SARS-CoV-2', 'volume': '8', 'author': 'Bhardwaj', 'year': '2021', 'journal-title': 'Front. Med.'}, { 'key': '10.1016/j.compbiomed.2021.104965_bib32', 'doi-asserted-by': 'crossref', 'article-title': 'Explicit-solvent molecular dynamics simulations revealed conformational ' 'regain and aggregation inhibition of I113T SOD1 by Himalayan bioactive ' 'molecules', 'author': 'Kumar', 'year': '2021', 'journal-title': 'J. Mol. Liq.', 'DOI': '10.1016/j.molliq.2021.116798'}, { 'key': '10.1016/j.compbiomed.2021.104965_bib33', 'doi-asserted-by': 'crossref', 'DOI': '10.1016/j.compbiomed.2020.104117', 'article-title': 'Evaluation of acridinedione analogs as potential SARS-CoV-2 main ' 'protease inhibitors and their comparison with repurposed anti-viral ' 'drugs', 'volume': '128', 'author': 'Bhardwaj', 'year': '2021', 'journal-title': 'Comput. Biol. Med.'}, { 'key': '10.1016/j.compbiomed.2021.104965_bib34', 'article-title': 'A computational approach for rational discovery of inhibitors for ' 'non-structural protein 1 of SARS-CoV-2, Comput', 'author': 'Singh', 'year': '2021', 'journal-title': 'Biol. Med.'}, { 'key': '10.1016/j.compbiomed.2021.104965_bib35', 'article-title': 'An in-silico evaluation of different bioactive molecules of Tea for ' 'their inhibition potency against non structural protein-15 of ' 'SARS-CoV-2', 'author': 'Sharma', 'year': '2020', 'journal-title': 'Food Chem.'}, { 'key': '10.1016/j.compbiomed.2021.104965_bib36', 'article-title': 'In-silico evaluation of bioactive compounds from tea as potential ' 'SARS-CoV-2 nonstructural protein 16 inhibitors', 'author': 'Singh', 'year': '2021', 'journal-title': 'J. Tradit. Complement. Med'}, { 'key': '10.1016/j.compbiomed.2021.104965_bib37', 'first-page': '1', 'article-title': 'Identification of bioactive molecules from tea plant as SARS-CoV-2 main ' 'protease inhibitors', 'author': 'Bhardwaj', 'year': '2020', 'journal-title': 'J. Biomol. Struct. Dyn.'}, { 'key': '10.1016/j.compbiomed.2021.104965_bib38', 'doi-asserted-by': 'crossref', 'DOI': '10.1371/journal.pone.0251801', 'article-title': 'Natural plant products as potential inhibitors of RNA dependent RNA ' 'polymerase of Severe Acute Respiratory Syndrome Coronavirus-2', 'volume': '16', 'author': 'Koulgi', 'year': '2021', 'journal-title': 'PLoS One'}, { 'key': '10.1016/j.compbiomed.2021.104965_bib39', 'first-page': '1', 'article-title': 'Computational molecular docking and virtual screening revealed ' 'promising SARS-CoV-2 drugs, Precis', 'volume': '4', 'author': 'Hosseini', 'year': '2021', 'journal-title': 'Clin. Med.'}, { 'key': '10.1016/j.compbiomed.2021.104965_bib40', 'doi-asserted-by': 'crossref', 'DOI': '10.1016/j.compbiomed.2021.104613', 'article-title': 'In silico investigation on the inhibitory effect of fungal secondary ' 'metabolites on RNA dependent RNA polymerase of SARS-CoV-II: a docking ' 'and molecular dynamic simulation study', 'volume': '135', 'author': 'Ebrahimi', 'year': '2021', 'journal-title': 'Comput. Biol. Med.'}, { 'key': '10.1016/j.compbiomed.2021.104965_bib41', 'doi-asserted-by': 'crossref', 'DOI': '10.1016/j.compbiomed.2021.104325', 'article-title': 'Structural insights on the interaction potential of natural leads ' 'against major protein targets of SARS-CoV-2: molecular modelling, ' 'docking and dynamic simulation studies', 'volume': '132', 'author': 'Skariyachan', 'year': '2021', 'journal-title': 'Comput. Biol. Med.'}], 'container-title': 'Computers in Biology and Medicine', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://api.elsevier.com/content/article/PII:S0010482521007599?httpAccept=text/xml', 'content-type': 'text/xml', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://api.elsevier.com/content/article/PII:S0010482521007599?httpAccept=text/plain', 'content-type': 'text/plain', 'content-version': 'vor', 'intended-application': 'text-mining'}], 'deposited': { 'date-parts': [[2022, 12, 22]], 'date-time': '2022-12-22T18:01:32Z', 'timestamp': 1671732092000}, 'score': 1, 'resource': {'primary': {'URL': 'https://linkinghub.elsevier.com/retrieve/pii/S0010482521007599'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2021, 12]]}, 'references-count': 41, 'alternative-id': ['S0010482521007599'], 'URL': 'http://dx.doi.org/10.1016/j.compbiomed.2021.104965', 'relation': {}, 'ISSN': ['0010-4825'], 'subject': ['Health Informatics', 'Computer Science Applications'], 'container-title-short': 'Computers in Biology and Medicine', 'published': {'date-parts': [[2021, 12]]}, 'assertion': [ {'value': 'Elsevier', 'name': 'publisher', 'label': 'This article is maintained by'}, { 'value': 'Potential of turmeric-derived compounds against RNA‐dependent RNA polymerase of ' 'SARS‐CoV‐2: An in-silico approach', 'name': 'articletitle', 'label': 'Article Title'}, { 'value': 'Computers in Biology and Medicine', 'name': 'journaltitle', 'label': 'Journal Title'}, { 'value': 'https://doi.org/10.1016/j.compbiomed.2021.104965', 'name': 'articlelink', 'label': 'CrossRef DOI link to publisher maintained version'}, {'value': 'article', 'name': 'content_type', 'label': 'Content Type'}, { 'value': '© 2021 Elsevier Ltd. All rights reserved.', 'name': 'copyright', 'label': 'Copyright'}], 'article-number': '104965'}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit