Inhibitory effects of specific combination of natural compounds against SARS-CoV-2 and its Alpha, Beta, Gamma, Delta, Kappa, and Mu variants
et al., European Journal of Microbiology and Immunology, doi:10.1556/1886.2021.00022, Jan 2022
Vitamin C for COVID-19
6th treatment shown to reduce risk in
September 2020, now with p = 0.00000002 from 75 studies, recognized in 22 countries.
No treatment is 100% effective. Protocols
combine treatments.
6,200+ studies for
200+ treatments. c19early.org
|
In vitro study testing combinations of plant extracts and micronutrients with several variants of SARS-CoV-2. A combination of vitamin C, N-acetylcysteine, curcumin, quercetin, resveratrol, theaflavin, naringenin, baicalin, and broccoli extract showed the highest inhibition of RBD binding, and also decreased RdRp, furin, and cathepsin L activity.
17 preclinical studies support the efficacy of vitamin C for COVID-19:
Vitamin C has been identified by the European Food Safety Authority (EFSA) as having sufficient evidence for a causal relationship between intake and optimal immune system function15-17.
Vitamin C plays a key role in the immune system, supporting the production and function of leukocytes, or white blood cells, which defend against infection and disease, including the production of lymphocytes, which make antibodies, and enhancing phagocytosis, the process by which immune system cells ingest and destroy viruses and infected cells.
Vitamin C is an antioxidant, protecting cells from damage caused by free radicals.
Vitamin C inhibits SARS-CoV-2 3CLpro7,11, inhibits SARS-CoV-2 infection by reducing ACE2 levels in a dose-dependent manner12, and may limit COVID-19 induced cardiac damage by acting as an antioxidant and potentially reducing the reactive oxygen species (ROS) production induced by the spike protein that contributes to the activation of profibrotic pathways9.
Vitamin C reduces inflammation, oxidative stress, and NETosis, supporting immune function and vascular protection18.
Intracellular levels of vitamin C decline during COVID-19 hospitalization suggesting ongoing utilization and depletion of vitamin C19.
Threonic acid, a metabolite of vitamin C, is lower in mild and severe cases, consistent with increased need for and metabolization of vitamin C with moderate infection, but more limited ability to produce threonic acid in severe infection due to depletion or existing lower levels of vitamin C20.
Symptomatic COVID-19 is associated with a lower frequency of natural killer (NK) cells, and vitamin C has been shown to improve NK cell numbers and functioning21,22.
1.
Najimi et al., Phytochemical Inhibitors of SARS‐CoV‐2 Entry: Targeting the ACE2‐RBD Interaction with l‐Tartaric Acid, l‐Ascorbic Acid, and Curcuma longa Extract, ChemistrySelect, doi:10.1002/slct.202406035.
2.
Rajamanickam et al., Exploring the Potential of Siddha Formulation MilagaiKudineer-Derived Phytotherapeutics Against SARS-CoV-2: An In-Silico Investigation for Antiviral Intervention, Journal of Pharmacy and Pharmacology Research, doi:10.26502/fjppr.0105.
3.
Agamah et al., Network-based multi-omics-disease-drug associations reveal drug repurposing candidates for COVID-19 disease phases, ScienceOpen, doi:10.58647/DRUGARXIV.PR000010.v1.
4.
Morales-Bayuelo et al., New findings on ligand series used as SARS-CoV-2 virus inhibitors within the frameworks of molecular docking, molecular quantum similarity and chemical reactivity indices, F1000Research, doi:10.12688/f1000research.123550.3.
5.
Alkafaas et al., A study on the effect of natural products against the transmission of B.1.1.529 Omicron, Virology Journal, doi:10.1186/s12985-023-02160-6.
6.
Pandya et al., Unravelling Vitamin B12 as a potential inhibitor against SARS-CoV-2: A computational approach, Informatics in Medicine Unlocked, doi:10.1016/j.imu.2022.100951.
7.
Malla et al., Vitamin C inhibits SARS coronavirus-2 main protease essential for viral replication, bioRxiv, doi:10.1101/2021.05.02.442358.
8.
Kumar et al., In silico virtual screening-based study of nutraceuticals predicts the therapeutic potentials of folic acid and its derivatives against COVID-19, VirusDisease, doi:10.1007/s13337-020-00643-6.
9.
Van Tin et al., Spike Protein of SARS-CoV-2 Activates Cardiac Fibrogenesis through NLRP3 Inflammasomes and NF-κB Signaling, Cells, doi:10.3390/cells13161331.
10.
Moatasim et al., Potent Antiviral Activity of Vitamin B12 against Severe Acute Respiratory Syndrome Coronavirus 2, Middle East Respiratory Syndrome Coronavirus, and Human Coronavirus 229E, Microorganisms, doi:10.3390/microorganisms11112777.
11.
Đukić et al., Inhibition of SARS-CoV-2 Mpro with Vitamin C, L-Arginine and a Vitamin C/L-Arginine Combination, Frontiers in Bioscience-Landmark, doi:10.31083/j.fbl2801008.
12.
Zuo et al., Vitamin C promotes ACE2 degradation and protects against SARS‐CoV‐2 infection, EMBO reports, doi:10.15252/embr.202256374.
13.
Hajdrik et al., In Vitro Determination of Inhibitory Effects of Humic Substances Complexing Zn and Se on SARS-CoV-2 Virus Replication, Foods, doi:10.3390/foods11050694.
14.
Goc et al., Inhibitory effects of specific combination of natural compounds against SARS-CoV-2 and its Alpha, Beta, Gamma, Delta, Kappa, and Mu variants, European Journal of Microbiology and Immunology, doi:10.1556/1886.2021.00022.
15.
Galmés et al., Suboptimal Consumption of Relevant Immune System Micronutrients Is Associated with a Worse Impact of COVID-19 in Spanish Populations, Nutrients, doi:10.3390/nu14112254.
16.
Galmés (B) et al., Current State of Evidence: Influence of Nutritional and Nutrigenetic Factors on Immunity in the COVID-19 Pandemic Framework, Nutrients, doi:10.3390/nu12092738.
17.
EFSA, Scientific Opinion on the substantiation of health claims related to vitamin C and protection of DNA, proteins and lipids from oxidative damage (ID 129, 138, 143, 148), antioxidant function of lutein (ID 146), maintenance of vision (ID 141, 142), collagen formation (ID 130, 131, 136, 137, 149), function of the nervous system (ID 133), function of the immune system (ID 134), function of the immune system during and after extreme physical exercise (ID 144), non-haem iron absorption (ID 132, 147), energy-yielding metabolism (ID 135), and relief in case of irritation in the upper respiratory tract (ID 1714, 1715) pursuant to Article 13(1) of Regulation (EC) No 1924/2006, EFSA Journal, doi:10.2903/j.efsa.2009.1226.
18.
Xie et al., The role of reactive oxygen species in severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) infection-induced cell death, Cellular & Molecular Biology Letters, doi:10.1186/s11658-024-00659-6.
19.
Boerenkamp et al., Low Levels of Serum and Intracellular Vitamin C in Hospitalized COVID-19 Patients, Nutrients, doi:10.3390/nu15163653.
20.
Albóniga et al., Differential abundance of lipids and metabolites related to SARS-CoV-2 infection and susceptibility, Scientific Reports, doi:10.1038/s41598-023-40999-5.
Goc et al., 21 Jan 2022, peer-reviewed, 5 authors.
In vitro studies are an important part of preclinical research, however results may be very different in vivo.
Inhibitory effects of specific combination of natural compounds against SARS-CoV-2 and its Alpha, Beta, Gamma, Delta, Kappa, and Mu variants
doi:10.1556/1886.2021.00022
Despite vaccine availability, the global spread of COVID-19 continues, largely facilitated by emerging SARS-CoV-2 mutations. Our earlier research documented that a specific combination of plant-derived compounds can inhibit SARS-CoV-2 binding to its ACE2 receptor and controlling key cellular mechanisms of viral infectivity. In this study, we evaluated the efficacy of a defined mixture of plant extracts and micronutrients against original SARS-CoV-2 and its Alpha, Beta, Gamma, Delta, Kappa, and Mu variants. The composition containing vitamin C, N-acetylcysteine, resveratrol, theaflavin, curcumin, quercetin, naringenin, baicalin, and broccoli extract demonstrated a highest efficacy by inhibiting the receptor-binding domain (RBD) binding of SARS-CoV-2 to its cellular ACE2 receptor by 90%. In vitro exposure of test pseudo-typed variants to this formula for 1 h before or simultaneously administrated to human pulmonary cells resulted in up to 60% inhibition in their cellular entry. Additionally, this composition significantly inhibited other cellular mechanisms of viral infectivity, including the activity of viral RdRp, furin, and cathepsin L. These findings demonstrate the efficacy of natural compounds against SARS-CoV-2 including its mutated forms through pleiotropic mechanisms. Our results imply that simultaneous inhibition of multiple mechanisms of viral infection of host cells could be an effective strategy to prevent SARS-CoV-2 infection.
References
Andreano, Piccini, Licastro, Casalino, Johnson et al., SARS-CoV-2 escape from a highly neutralizing COVID-19 convalescent plasma, Proc Natl Acad Sci, doi:10.1073/pnas.2103154118
Barbour, Rayya, Houssam, El-Hakim, Niedzwiecki et al., Alleviation of histopathologic effects of avian influenza virus by a specific nutrient synergy, Int J Appl Res Vet Med
Chakraborty, Maity, COVID-19 outbreak: migration, effects on society, global environment and prevention, Sci Total Environ, doi:10.1016/j.scitotenv.2020.138882
Collier, Marco, Ferreira, Meng, Datir et al., Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccineelicited antibodies, Nature, doi:10.1038/s41586-021-03412-7
Deryabin, Lvov, Botikov, Ivanov, Kalinovsky et al., Effects of a nutrient mixture on infectious properties of the highly pathogenic strain of avian influenza virus A/H5N1, Biofactors, doi:10.1002/biof.5520330201
Du, He, Zhou, Liu, Zheng et al., The spike protein of SARS-CoV-a target for vaccine and therapeutic development, Nat Rev Microbiol, doi:10.1038/nrmicro2090
Du, Yang, Zhou, Lu, Li et al., MERS-CoV spike protein: a key target for antivirals, Expert Opin Ther Targets, doi:10.1080/14728222.2017.1271415
Dyson, Hill, Moore, Curran-Sebastian, Tildesley et al., Possible future waves of SARS-CoV-2 infection generated by variants of concern with a range of characteristics, Nat Commun, doi:10.1038/s41467-021-25915-7
Fehr, Perlman, Coronaviruses: an overview of their replication and pathogenesis, Methods Mol Biol, doi:10.1007/978-1-4939-2438-7_1
Follis, York, Nunberg, Furin cleavage of the SARS coronavirus spike glycoprotein enhances cell-cell fusion but does not affect virion entry, Virology, doi:10.1016/j.virol.2006.02.003
Glowacka, Bertram, Müller, Allen, Soilleux et al., Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response, J Virol
Goc, Ivanov, Ivanova, Chatterjee, Rath et al., Simultaneous inhibition of SARS-CoV-2 infectivity by a specific combination of plant-derived compounds, Eur J Bio Biotech, doi:10.24018/ejbio.2021.2.5.258
Goc, Niedzwiecki, Rath, Polyunsaturated u-3 fatty acids inhibit ACE2-controlled SARS-CoV-2 binding and cellular entry, Sci Rep, doi:10.1038/s41598-021-84850-1
Goc, Sumera, Rath, Niedzwiecki, Phenolic compounds disrupt spike-mediated receptor-binding and entry of SARS-CoV-2 pseudo-virions, PLOS ONE, doi:10.1371/journal.pone.0253489
Gopinath, Jokinen, Kurkinen, Pentikäinen, Screening of natural products targeting SARS-CoV-2-ACE2 receptor interface -A MixMD based HTVS pipeline, Front Chem, doi:10.3389/fchem.2020.589769
Ivanov, Goc, Ivanova, Niedzwiecki, Rath, Inhibition of ACE2 expression by Ascorbic acid alone and its combination with other natural compounds, Infect Dis Res Trmt (Auckl), doi:10.1177/1178633721994605
Ivanov, Ivanova, Niedzwiecki, Rath, Effective and safe global public health strategy to fight the COVID-19 pandemic: specific micronutrient combination inhibits Coronavirus cell-entry receptor (ACE2) expression, J Cell Med Nat Health
Jariwalla, Gangapurkar, Pandit, Kalinovsky, Niedzwiecki et al., Micronutrient cooperation in suppression of HIV production in chronically and latently infected cells, Mol Med Rep, doi:10.3892/mmr_00000268
Jariwalla, Roomi, Gangapurkar, Kalinovsky, Niedzwiecki et al., Suppression of influenza A virus nuclear antigen production and neuraminidase activity by a nutrient mixture containing ascorbic acid, green tea extract and amino acids, Biofactors, doi:10.1002/biof.5520310101
Johnson, Xie, Kumari, Lokugamage, Muruato et al., Furin cleavage site is key to SARS-CoV-2 pathogenesis, doi:10.1101/2020.08.26.268854%20Preprint
Li, Structure, function, and evolution of coronavirus spike proteins, Annu Rev Virol, doi:10.1146/annurev-virology-110615-042301
Liu, Luo, Libby, Shi, Cathepsin L-selective inhibitors: a potentially promising treatment for COVID-19 patients, Pharmacol Ther, doi:10.1016/j.pharmthera.2020.107587
Ming, Qiang, Involvement of spike protein, furin, and ACE2 in SARS-CoV-2-related cardiovascular complications, SN Compr Clin Med, doi:10.1007/s42399-020-00400-2
Muchtaridi, Fauzi, Ikram, Gazzali, Wahab, Natural flavonoids as potential angiotensin-converting enzyme 2 inhibitors for anti-SARS-CoV-2, Molecules, doi:10.3390/molecules25173980
Simmons, Gosalia, Rennekamp, Reeves, Diamond et al., Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry, Proc Natl Acad Sci
Tian, Huang, Fang, Wu, Furin DB: A database of 20-residue furin cleavage site motifs, substrates and their associated drugs, Int J Mol Sci, doi:10.3390/ijms12021060
Yang, Chen, Hamdoun, Coghi, Ng et al., Corilagin prevents SARS-CoV-2 infection by targeting RBD-ACE2 binding, Phytomedicine, doi:10.1016/j.phymed.2021.153591
Zhang, Cui, Li, Wang, Yu et al., Ten emerging SARS-CoV-2 spike variants exhibit variable infectivity, animal tropism, and antibody neutralization, Commun Biol, doi:10.1038/s42003-021-02728-4
Zhang, Hamdoun, Chen, Yang, Ip et al., Identification of natural compounds as SARS-CoV-2 entry inhibitors by molecular docking-based virtual screening with biolayer interferometry, Pharmacol Res, doi:10.1016/j.phrs.2021.105820
Zhang, Rao, Li, Zhu, Liu et al., High dose vitamin C infusion for the treatment of critically ill COVID-19, Ann Intensive Care, doi:10.1186/s13613-020-00792-3
DOI record:
{
"DOI": "10.1556/1886.2021.00022",
"ISSN": [
"2062-509X",
"2062-8633"
],
"URL": "http://dx.doi.org/10.1556/1886.2021.00022",
"abstract": "<jats:title>Abstract</jats:title>\n <jats:p>Despite vaccine availability, the global spread of COVID-19 continues, largely facilitated by emerging SARS-CoV-2 mutations. Our earlier research documented that a specific combination of plant-derived compounds can inhibit SARS-CoV-2 binding to its ACE2 receptor and controlling key cellular mechanisms of viral infectivity. In this study, we evaluated the efficacy of a defined mixture of plant extracts and micronutrients against original SARS-CoV-2 and its Alpha, Beta, Gamma, Delta, Kappa, and Mu variants. The composition containing vitamin C, N-acetylcysteine, resveratrol, theaflavin, curcumin, quercetin, naringenin, baicalin, and broccoli extract demonstrated a highest efficacy by inhibiting the receptor-binding domain (RBD) binding of SARS-CoV-2 to its cellular ACE2 receptor by 90%. <jats:italic>In vitro</jats:italic> exposure of test pseudo-typed variants to this formula for 1 h before or simultaneously administrated to human pulmonary cells resulted in up to 60% inhibition in their cellular entry. Additionally, this composition significantly inhibited other cellular mechanisms of viral infectivity, including the activity of viral RdRp, furin, and cathepsin L. These findings demonstrate the efficacy of natural compounds against SARS-CoV-2 including its mutated forms through pleiotropic mechanisms. Our results imply that simultaneous inhibition of multiple mechanisms of viral infection of host cells could be an effective strategy to prevent SARS-CoV-2 infection.</jats:p>",
"author": [
{
"affiliation": [
{
"name": "Dr. Rath Research Institute, 5941 Optical Ct., San Jose, CA 95138, USA"
}
],
"family": "Goc",
"given": "Anna",
"sequence": "first"
},
{
"ORCID": "http://orcid.org/0000-0003-1275-8583",
"affiliation": [
{
"name": "Dr. Rath Research Institute, 5941 Optical Ct., San Jose, CA 95138, USA"
}
],
"authenticated-orcid": true,
"family": "Niedzwiecki",
"given": "Aleksandra",
"sequence": "additional"
},
{
"affiliation": [
{
"name": "Dr. Rath Research Institute, 5941 Optical Ct., San Jose, CA 95138, USA"
}
],
"family": "Ivanov",
"given": "Vadim",
"sequence": "additional"
},
{
"affiliation": [
{
"name": "Dr. Rath Research Institute, 5941 Optical Ct., San Jose, CA 95138, USA"
}
],
"family": "Ivanova",
"given": "Svetlana",
"sequence": "additional"
},
{
"affiliation": [
{
"name": "Dr. Rath Research Institute, 5941 Optical Ct., San Jose, CA 95138, USA"
}
],
"family": "Rath",
"given": "Matthias",
"sequence": "additional"
}
],
"container-title": [
"European Journal of Microbiology and Immunology"
],
"content-domain": {
"crossmark-restriction": true,
"domain": [
"akjournals.com"
]
},
"created": {
"date-parts": [
[
2022,
1,
21
]
],
"date-time": "2022-01-21T10:45:13Z",
"timestamp": 1642761913000
},
"deposited": {
"date-parts": [
[
2022,
1,
23
]
],
"date-time": "2022-01-23T02:42:05Z",
"timestamp": 1642905725000
},
"funder": [
{
"name": "Dr. Rath Health Foundation"
}
],
"indexed": {
"date-parts": [
[
2022,
1,
23
]
],
"date-time": "2022-01-23T03:11:22Z",
"timestamp": 1642907482391
},
"is-referenced-by-count": 0,
"issn-type": [
{
"type": "print",
"value": "2062-509X"
},
{
"type": "electronic",
"value": "2062-8633"
}
],
"issued": {
"date-parts": [
[
2022,
1,
21
]
]
},
"license": [
{
"URL": "https://creativecommons.org/licenses/by-nc/4.0/",
"content-version": "unspecified",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2022,
1,
21
]
],
"date-time": "2022-01-21T00:00:00Z",
"timestamp": 1642723200000
}
}
],
"link": [
{
"URL": "https://akjournals.com/view/journals/1886/aop/article-10.1556-1886.2021.00022/article-10.1556-1886.2021.00022.xml",
"content-type": "text/html",
"content-version": "vor",
"intended-application": "text-mining"
},
{
"URL": "https://akjournals.com/downloadpdf/journals/1886/aop/article-10.1556-1886.2021.00022/article-10.1556-1886.2021.00022.xml",
"content-type": "text/html",
"content-version": "vor",
"intended-application": "syndication"
},
{
"URL": "https://akjournals.com/downloadpdf/journals/1886/aop/article-10.1556-1886.2021.00022/article-10.1556-1886.2021.00022.xml",
"content-type": "unspecified",
"content-version": "vor",
"intended-application": "similarity-checking"
}
],
"member": "425",
"original-title": [],
"prefix": "10.1556",
"published": {
"date-parts": [
[
2022,
1,
21
]
]
},
"published-print": {
"date-parts": [
[
2022,
1,
21
]
]
},
"publisher": "Akademiai Kiado Zrt.",
"reference": [
{
"DOI": "10.1038/nrmicro2090",
"article-title": "The spike protein of SARS-CoV-a target for vaccine and therapeutic development",
"author": "Du",
"doi-asserted-by": "crossref",
"first-page": "226",
"journal-title": "Nat Rev Microbiol",
"key": "ref81",
"volume": "7",
"year": "2009"
},
{
"DOI": "10.1007/s42399-020-00400-2",
"article-title": "Involvement of spike protein, furin, and ACE2 in SARS-CoV-2-related cardiovascular complications",
"author": "Ming",
"doi-asserted-by": "crossref",
"first-page": "1103",
"journal-title": "SN Compr Clin Med",
"key": "ref251",
"volume": "2",
"year": "2020"
},
{
"DOI": "10.1038/s41586-021-03412-7",
"article-title": "Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies",
"author": "Collier",
"doi-asserted-by": "crossref",
"first-page": "136",
"journal-title": "Nature",
"key": "ref371",
"volume": "593",
"year": "2021"
},
{
"DOI": "10.1128/JVI.02232-10",
"article-title": "Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response",
"author": "Glowacka",
"doi-asserted-by": "crossref",
"first-page": "4122",
"journal-title": "J Virol",
"key": "ref111",
"volume": "85",
"year": "2011"
},
{
"article-title": "Inhibition of ACE2 expression by Ascorbic acid alone and its combination with other natural compounds",
"author": "Ivanov",
"first-page": "1",
"journal-title": "Infect Dis Res Trmt (Auckl)",
"key": "ref201",
"volume": "14",
"year": "2021"
},
{
"DOI": "10.1128/JVI.02232-10",
"article-title": "Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response",
"author": "Glowacka",
"doi-asserted-by": "crossref",
"first-page": "4122",
"journal-title": "J Virol",
"key": "ref431",
"volume": "85",
"year": "2011"
},
{
"DOI": "10.1007/978-1-4939-2438-7_1",
"article-title": "Coronaviruses: an overview of their replication and pathogenesis",
"author": "Fehr",
"doi-asserted-by": "crossref",
"first-page": "1",
"journal-title": "Methods Mol Biol",
"key": "ref421",
"volume": "1282",
"year": "2015"
},
{
"DOI": "10.3390/ijms12021060",
"article-title": "A database of 20-residue furin cleavage site motifs, substrates and their associated drugs",
"author": "Tian",
"doi-asserted-by": "crossref",
"first-page": "1060",
"journal-title": "Int J Mol Sci",
"key": "ref221",
"volume": "12",
"year": "2011"
},
{
"DOI": "10.1038/nrmicro2090",
"article-title": "The spike protein of SARS-CoV-a target for vaccine and therapeutic development",
"author": "Du",
"doi-asserted-by": "crossref",
"first-page": "226",
"journal-title": "Nat Rev Microbiol",
"key": "ref401",
"volume": "7",
"year": "2009"
},
{
"DOI": "10.1016/j.phrs.2021.105820",
"article-title": "Identification of natural compounds as SARS-CoV-2 entry inhibitors by molecular docking-based virtual screening with bio-layer interferometry",
"author": "Zhang",
"doi-asserted-by": "crossref",
"first-page": "105820",
"journal-title": "Pharmacol Res",
"key": "ref131",
"volume": "172",
"year": "2021"
},
{
"article-title": "Furin cleavage site is key to SARS-CoV-2 pathogenesis",
"author": "Johnson",
"first-page": "268854",
"journal-title": "bioRxiv",
"key": "ref241",
"year": "2020"
},
{
"DOI": "10.1073/pnas.2103154118",
"article-title": "SARS-CoV-2 escape from a highly neutralizing COVID-19 convalescent plasma",
"author": "Andreano",
"doi-asserted-by": "crossref",
"journal-title": "Proc Natl Acad Sci USA",
"key": "ref31",
"volume": "118",
"year": "2021"
},
{
"DOI": "10.1016/j.phymed.2021.153591",
"article-title": "Corilagin prevents SARS-CoV-2 infection by targeting RBD-ACE2 binding",
"author": "Yang",
"doi-asserted-by": "crossref",
"first-page": "153591",
"journal-title": "Phytomedicine",
"key": "ref161",
"volume": "87",
"year": "2021"
},
{
"DOI": "10.1016/j.virol.2006.02.003",
"article-title": "Furin cleavage of the SARS coronavirus spike glycoprotein enhances cell-cell fusion but does not affect virion entry",
"author": "Follis",
"doi-asserted-by": "crossref",
"first-page": "358",
"journal-title": "Virology",
"key": "ref551",
"volume": "350",
"year": "2006"
},
{
"DOI": "10.1073/pnas.2103154118",
"article-title": "SARS-CoV-2 escape from a highly neutralizing COVID-19 convalescent plasma",
"author": "Andreano",
"doi-asserted-by": "crossref",
"journal-title": "Proc Natl Acad Sci USA",
"key": "ref351",
"volume": "118",
"year": "2021"
},
{
"article-title": "Micronutrient cooperation in suppression of HIV production in chronically and latently infected cells",
"author": "Jariwalla",
"first-page": "377",
"journal-title": "Mol Med Rep",
"key": "ref601",
"volume": "3",
"year": "2010"
},
{
"article-title": "Micronutrient cooperation in suppression of HIV production in chronically and latently infected cells",
"author": "Jariwalla",
"first-page": "377",
"journal-title": "Mol Med Rep",
"key": "ref281",
"volume": "3",
"year": "2010"
},
{
"DOI": "10.3390/molecules25173980",
"article-title": "Natural flavonoids as potential angiotensin-converting enzyme 2 inhibitors for anti-SARS-CoV-2",
"author": "Muchtaridi",
"doi-asserted-by": "crossref",
"first-page": "3980",
"journal-title": "Molecules",
"key": "ref141",
"volume": "25",
"year": "2020"
},
{
"DOI": "10.3389/fchem.2020.589769",
"article-title": "Screening of natural products targeting SARS-CoV-2-ACE2 receptor interface -A MixMD based HTVS pipeline",
"author": "Gopinath",
"doi-asserted-by": "crossref",
"first-page": "589769",
"journal-title": "Front Chem",
"key": "ref151",
"volume": "8",
"year": "2020"
},
{
"DOI": "10.1002/biof.5520310101",
"article-title": "Suppression of influenza A virus nuclear antigen production and neuraminidase activity by a nutrient mixture containing ascorbic acid, green tea extract and amino acids",
"author": "Jariwalla",
"doi-asserted-by": "crossref",
"first-page": "1",
"journal-title": "Biofactors",
"key": "ref621",
"volume": "31",
"year": "2001"
},
{
"DOI": "10.1038/s41586-021-03412-7",
"article-title": "Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies",
"author": "Collier",
"doi-asserted-by": "crossref",
"first-page": "136",
"journal-title": "Nature",
"key": "ref51",
"volume": "593",
"year": "2021"
},
{
"DOI": "10.24018/ejbio.2021.2.5.258",
"article-title": "Simultaneous inhibition of SARS-CoV-2 infectivity by a specific combination of plant-derived compounds",
"author": "Goc",
"doi-asserted-by": "crossref",
"first-page": "24",
"journal-title": "Eur J Bio Biotech",
"key": "ref171",
"volume": "2",
"year": "2021"
},
{
"DOI": "10.1080/14728222.2017.1271415",
"article-title": "MERS-CoV spike protein: a key target for antivirals",
"author": "Du",
"doi-asserted-by": "crossref",
"first-page": "131",
"journal-title": "Expert Opin Ther Targets",
"key": "ref91",
"volume": "21",
"year": "2017"
},
{
"DOI": "10.1016/j.phrs.2021.105820",
"article-title": "Identification of natural compounds as SARS-CoV-2 entry inhibitors by molecular docking-based virtual screening with bio-layer interferometry",
"author": "Zhang",
"doi-asserted-by": "crossref",
"first-page": "105820",
"journal-title": "Pharmacol Res",
"key": "ref451",
"volume": "172",
"year": "2021"
},
{
"DOI": "10.1002/biof.5520310101",
"article-title": "Suppression of influenza A virus nuclear antigen production and neuraminidase activity by a nutrient mixture containing ascorbic acid, green tea extract and amino acids",
"author": "Jariwalla",
"doi-asserted-by": "crossref",
"first-page": "1",
"journal-title": "Biofactors",
"key": "ref301",
"volume": "31",
"year": "2001"
},
{
"DOI": "10.1016/j.scitotenv.2020.138882",
"article-title": "COVID-19 outbreak: migration, effects on society, global environment and prevention",
"author": "Chakraborty",
"doi-asserted-by": "crossref",
"first-page": "138882",
"journal-title": "Sci Total Environ",
"key": "ref01",
"volume": "728",
"year": "2020"
},
{
"DOI": "10.1371/journal.pone.0253489",
"article-title": "Phenolic compounds disrupt spike-mediated receptor-binding and entry of SARS-CoV-2 pseudo-virions",
"author": "Goc",
"doi-asserted-by": "crossref",
"journal-title": "PLOS ONE",
"key": "ref501",
"volume": "16",
"year": "2021"
},
{
"DOI": "10.1002/biof.5520330201",
"article-title": "Effects of a nutrient mixture on infectious properties of the highly pathogenic strain of avian influenza virus A/H5N1",
"author": "Deryabin",
"doi-asserted-by": "crossref",
"first-page": "85",
"journal-title": "Biofactors",
"key": "ref611",
"volume": "33",
"year": "2008"
},
{
"DOI": "10.1371/journal.pone.0253489",
"article-title": "Phenolic compounds disrupt spike-mediated receptor-binding and entry of SARS-CoV-2 pseudo-virions",
"author": "Goc",
"doi-asserted-by": "crossref",
"journal-title": "PLOS ONE",
"key": "ref181",
"volume": "16",
"year": "2021"
},
{
"DOI": "10.1186/s13613-020-00792-3",
"article-title": "High dose vitamin C infusion for the treatment of critically ill COVID-19",
"author": "Zhang",
"doi-asserted-by": "crossref",
"first-page": "5",
"journal-title": "Ann Intensive Care",
"key": "ref631",
"volume": "11",
"year": "2021"
},
{
"DOI": "10.1080/14728222.2017.1271415",
"article-title": "MERS-CoV spike protein: a key target for antivirals",
"author": "Du",
"doi-asserted-by": "crossref",
"first-page": "131",
"journal-title": "Expert Opin Ther Targets",
"key": "ref411",
"volume": "21",
"year": "2017"
},
{
"DOI": "10.1146/annurev-virology-110615-042301",
"article-title": "Structure, function, and evolution of coronavirus spike proteins",
"author": "Li",
"doi-asserted-by": "crossref",
"first-page": "237",
"journal-title": "Annu Rev Virol",
"key": "ref71",
"volume": "3",
"year": "2016"
},
{
"DOI": "10.1038/s41598-021-84850-1",
"article-title": "Polyunsaturated ω-3 fatty acids inhibit ACE2-controlled SARS-CoV-2 binding and cellular entry",
"author": "Goc",
"doi-asserted-by": "crossref",
"first-page": "5207",
"journal-title": "Sci Rep",
"key": "ref191",
"volume": "11",
"year": "2021"
},
{
"DOI": "10.1016/j.virol.2006.02.003",
"article-title": "Furin cleavage of the SARS coronavirus spike glycoprotein enhances cell-cell fusion but does not affect virion entry",
"author": "Follis",
"doi-asserted-by": "crossref",
"first-page": "358",
"journal-title": "Virology",
"key": "ref231",
"volume": "350",
"year": "2006"
},
{
"DOI": "10.1007/s42399-020-00400-2",
"article-title": "Involvement of spike protein, furin, and ACE2 in SARS-CoV-2-related cardiovascular complications",
"author": "Ming",
"doi-asserted-by": "crossref",
"first-page": "1103",
"journal-title": "SN Compr Clin Med",
"key": "ref571",
"volume": "2",
"year": "2020"
},
{
"DOI": "10.1016/j.scitotenv.2020.138882",
"article-title": "COVID-19 outbreak: migration, effects on society, global environment and prevention",
"author": "Chakraborty",
"doi-asserted-by": "crossref",
"first-page": "138882",
"journal-title": "Sci Total Environ",
"key": "ref321",
"volume": "728",
"year": "2020"
},
{
"DOI": "10.3389/fchem.2020.589769",
"article-title": "Screening of natural products targeting SARS-CoV-2-ACE2 receptor interface -A MixMD based HTVS pipeline",
"author": "Gopinath",
"doi-asserted-by": "crossref",
"first-page": "589769",
"journal-title": "Front Chem",
"key": "ref471",
"volume": "8",
"year": "2020"
},
{
"DOI": "10.1038/s41467-021-25915-7",
"article-title": "Possible future waves of SARS-CoV-2 infection generated by variants of concern with a range of characteristics",
"author": "Dyson",
"doi-asserted-by": "crossref",
"first-page": "5730",
"journal-title": "Nat Commun",
"key": "ref61",
"volume": "12",
"year": "2021"
},
{
"article-title": "Alleviation of histopathologic effects of avian influenza virus by a specific nutrient synergy",
"author": "Barbour",
"first-page": "9",
"journal-title": "Int J Appl Res Vet Med",
"key": "ref271",
"volume": "5",
"year": "2007"
},
{
"DOI": "10.1038/s42003-021-02728-4",
"article-title": "Ten emerging SARS-CoV-2 spike variants exhibit variable infectivity, animal tropism, and antibody neutralization",
"author": "Zhang",
"doi-asserted-by": "crossref",
"first-page": "1196",
"journal-title": "Commun Biol",
"key": "ref41",
"volume": "4",
"year": "2021"
},
{
"DOI": "10.1146/annurev-virology-110615-042301",
"article-title": "Structure, function, and evolution of coronavirus spike proteins",
"author": "Li",
"doi-asserted-by": "crossref",
"first-page": "237",
"journal-title": "Annu Rev Virol",
"key": "ref391",
"volume": "3",
"year": "2016"
},
{
"DOI": "10.1073/pnas.0505577102",
"article-title": "Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry",
"author": "Simmons",
"doi-asserted-by": "crossref",
"first-page": "11876",
"journal-title": "Proc Natl Acad Sci",
"key": "ref441",
"volume": "102",
"year": "2005"
},
{
"DOI": "10.24018/ejbio.2021.2.5.258",
"article-title": "Simultaneous inhibition of SARS-CoV-2 infectivity by a specific combination of plant-derived compounds",
"author": "Goc",
"doi-asserted-by": "crossref",
"first-page": "24",
"journal-title": "Eur J Bio Biotech",
"key": "ref491",
"volume": "2",
"year": "2021"
},
{
"DOI": "10.1007/978-1-4939-2438-7_1",
"article-title": "Coronaviruses: an overview of their replication and pathogenesis",
"author": "Fehr",
"doi-asserted-by": "crossref",
"first-page": "1",
"journal-title": "Methods Mol Biol",
"key": "ref101",
"volume": "1282",
"year": "2015"
},
{
"article-title": "Inhibition of ACE2 expression by Ascorbic acid alone and its combination with other natural compounds",
"author": "Ivanov",
"first-page": "1",
"journal-title": "Infect Dis Res Trmt (Auckl)",
"key": "ref521",
"volume": "14",
"year": "2021"
},
{
"DOI": "10.1016/j.phymed.2021.153591",
"article-title": "Corilagin prevents SARS-CoV-2 infection by targeting RBD-ACE2 binding",
"author": "Yang",
"doi-asserted-by": "crossref",
"first-page": "153591",
"journal-title": "Phytomedicine",
"key": "ref481",
"volume": "87",
"year": "2021"
},
{
"DOI": "10.1016/j.pharmthera.2020.107587",
"article-title": "Cathepsin L-selective inhibitors: a potentially promising treatment for COVID-19 patients",
"author": "Liu",
"doi-asserted-by": "crossref",
"first-page": "107587",
"journal-title": "Pharmacol Ther",
"key": "ref211",
"volume": "213",
"year": "2020"
},
{
"DOI": "10.1038/s42003-021-02728-4",
"article-title": "Ten emerging SARS-CoV-2 spike variants exhibit variable infectivity, animal tropism, and antibody neutralization",
"author": "Zhang",
"doi-asserted-by": "crossref",
"first-page": "1196",
"journal-title": "Commun Biol",
"key": "ref361",
"volume": "4",
"year": "2021"
},
{
"article-title": "Furin cleavage site is key to SARS-CoV-2 pathogenesis",
"author": "Johnson",
"first-page": "268854",
"journal-title": "bioRxiv",
"key": "ref561",
"year": "2020"
},
{
"article-title": "Effective and safe global public health strategy to fight the COVID-19 pandemic: specific micronutrient combination inhibits Coronavirus cell-entry receptor (ACE2) expression",
"author": "Ivanov",
"journal-title": "J Cell Med Nat Health",
"key": "ref261",
"year": "2020"
},
{
"DOI": "10.1002/biof.5520330201",
"article-title": "Effects of a nutrient mixture on infectious properties of the highly pathogenic strain of avian influenza virus A/H5N1",
"author": "Deryabin",
"doi-asserted-by": "crossref",
"first-page": "85",
"journal-title": "Biofactors",
"key": "ref291",
"volume": "33",
"year": "2008"
},
{
"DOI": "10.1038/s41467-021-25915-7",
"article-title": "Possible future waves of SARS-CoV-2 infection generated by variants of concern with a range of characteristics",
"author": "Dyson",
"doi-asserted-by": "crossref",
"first-page": "5730",
"journal-title": "Nat Commun",
"key": "ref381",
"volume": "12",
"year": "2021"
},
{
"article-title": "Effective and safe global public health strategy to fight the COVID-19 pandemic: specific micronutrient combination inhibits Coronavirus cell-entry receptor (ACE2) expression",
"author": "Ivanov",
"journal-title": "J Cell Med Nat Health",
"key": "ref581",
"year": "2020"
},
{
"DOI": "10.1186/s13613-020-00792-3",
"article-title": "High dose vitamin C infusion for the treatment of critically ill COVID-19",
"author": "Zhang",
"doi-asserted-by": "crossref",
"first-page": "5",
"journal-title": "Ann Intensive Care",
"key": "ref311",
"volume": "11",
"year": "2021"
},
{
"article-title": "Alleviation of histopathologic effects of avian influenza virus by a specific nutrient synergy",
"author": "Barbour",
"first-page": "9",
"journal-title": "Int J Appl Res Vet Med",
"key": "ref591",
"volume": "5",
"year": "2007"
},
{
"DOI": "10.1038/s41598-021-84850-1",
"article-title": "Polyunsaturated ω-3 fatty acids inhibit ACE2-controlled SARS-CoV-2 binding and cellular entry",
"author": "Goc",
"doi-asserted-by": "crossref",
"first-page": "5207",
"journal-title": "Sci Rep",
"key": "ref511",
"volume": "11",
"year": "2021"
},
{
"DOI": "10.3390/molecules25173980",
"article-title": "Natural flavonoids as potential angiotensin-converting enzyme 2 inhibitors for anti-SARS-CoV-2",
"author": "Muchtaridi",
"doi-asserted-by": "crossref",
"first-page": "3980",
"journal-title": "Molecules",
"key": "ref461",
"volume": "25",
"year": "2020"
},
{
"DOI": "10.1016/j.pharmthera.2020.107587",
"article-title": "Cathepsin L-selective inhibitors: a potentially promising treatment for COVID-19 patients",
"author": "Liu",
"doi-asserted-by": "crossref",
"first-page": "107587",
"journal-title": "Pharmacol Ther",
"key": "ref531",
"volume": "213",
"year": "2020"
},
{
"DOI": "10.1073/pnas.0505577102",
"article-title": "Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry",
"author": "Simmons",
"doi-asserted-by": "crossref",
"first-page": "11876",
"journal-title": "Proc Natl Acad Sci",
"key": "ref121",
"volume": "102",
"year": "2005"
},
{
"DOI": "10.3390/ijms12021060",
"article-title": "A database of 20-residue furin cleavage site motifs, substrates and their associated drugs",
"author": "Tian",
"doi-asserted-by": "crossref",
"first-page": "1060",
"journal-title": "Int J Mol Sci",
"key": "ref541",
"volume": "12",
"year": "2011"
}
],
"reference-count": 60,
"references-count": 60,
"relation": {},
"score": 1,
"short-container-title": [
"EuJMI"
],
"short-title": [],
"source": "Crossref",
"subtitle": [],
"title": [
"Inhibitory effects of specific combination of natural compounds against SARS-CoV-2 and its Alpha, Beta, Gamma, Delta, Kappa, and Mu variants"
],
"type": "journal-article",
"update-policy": "http://dx.doi.org/10.1556/policypage.crossmark.crossref.1"
}

