Evidence Regarding Vitamin D and Risk of COVID-19 and Its Severity
et al., Nutrients 2020, 12:11, 3361, doi:10.3390/nu12113361, Oct 2020
Vitamin D for COVID-19
8th treatment shown to reduce risk in
October 2020, now with p < 0.00000000001 from 126 studies, recognized in 18 countries.
No treatment is 100% effective. Protocols
combine treatments.
6,300+ studies for
210+ treatments. c19early.org
|
Review of vitamin D and COVID-19 concluding that the evidence seems strong enough that people and physicians can use or recommend vitamin D supplements to prevent or treat COVID-19 in light of their safety and wide therapeutic window.
1.
Jaurrieta-Largo et al., A Machine Learning Approach to Understanding the Genetic Role in COVID-19 Prognosis: The Influence of Gene Polymorphisms Related to Inflammation, Vitamin D, and ACE2, International Journal of Molecular Sciences, doi:10.3390/ijms26167975.
2.
Al-Khrasani et al., Do vitamins halt the COVID-19-evoked pro-inflammatory cytokines involved in the development of neuropathic pain?, Biomedicine & Pharmacotherapy, doi:10.1016/j.biopha.2025.118346.
3.
Kow et al., Vitamin D and COVID‐19: How much more evidence do we need?, Nutrition in Clinical Practice, doi:10.1002/ncp.11349.
4.
Bigman et al., A Comprehensive Scoping Review on Diet and Nutrition in Relation to Long COVID-19 Symptoms and Recovery, Nutrients, doi:10.3390/nu17111802.
5.
Hewison, M., COVID-19 and our understanding of vitamin D and immune function, The Journal of Steroid Biochemistry and Molecular Biology, doi:10.1016/j.jsbmb.2025.106710.
6.
Wimalawansa, S., Vitamin D Deficiency Meets Hill’s Criteria for Causation in SARS-CoV-2 Susceptibility, Complications, and Mortality: A Systematic Review, Nutrients, doi:10.3390/nu17030599.
7.
Sanduzzi Zamparelli et al., Immune-Boosting and Antiviral Effects of Antioxidants in COVID-19 Pneumonia: A Therapeutic Perspective, Life, doi:10.3390/life15010113.
8.
Fazli et al., Possible Link between Gut Microbiota, Diet, and COVID-19 Infection, Journal of Medical Bacteriology, 12:4, jmb.tums.ac.ir/index.php/jmb/article/view/525.
9.
Wojciulik et al., The impact of genetic polymorphism on course and severity of the SARS-CoV-2 infection and COVID-19 disease, Przeglad Epidemiologiczny, doi:10.32394/pe/194862.
10.
Wimalawansa (B), S., Unveiling the Interplay—Vitamin D and ACE-2 Molecular Interactions in Mitigating Complications and Deaths from SARS-CoV-2, Biology, doi:10.3390/biology13100831.
11.
Santa et al., Comparative analysis of COVID-19 responses in Japan and Africa: diet, phytochemicals, vitamin D, and gut microbiota in reducing mortality—A systematic review and meta-analysis, Frontiers in Nutrition, doi:10.3389/fnut.2024.1465324.
12.
Kaushal, A., Nutraceuticals and pharmacological to balance the transitional microbiome to extend immunity during COVID-19 and other viral infections, Journal of Translational Medicine, doi:10.1186/s12967-024-05587-9.
13.
Mu et al., Anti-inflammatory and Nutritional Interventions Against SARS-CoV-2: A Comprehensive Review, Journal of Agriculture and Food Research, doi:10.1016/j.jafr.2024.101422.
14.
Wimalawansa (C), S., Unlocking Insights: Navigating COVID-19 Challenges and Emulating Future Pandemic Resilience Strategies with Strengthening Natural Immunity, Heliyon, doi:10.1016/j.heliyon.2024.e34691.
15.
Imran et al., Therapeutic Role of Vitamin D in COVID-19 Patients, Clinical Nutrition Open Science, doi:10.1016/j.nutos.2024.07.004.
16.
Grant, W., Vitamin D and viral infections: Infectious diseases, autoimmune diseases, and cancers, Advances in Food and Nutrition Research, doi:10.1016/bs.afnr.2023.12.007.
17.
Polonowita et al., Molecular Quantum and Logic Process of Consciousness—Vitamin D Big-Data in COVID-19—A Case for Incorporating Machine Learning In Medicine, European Journal of Biomedical and Pharmaceutical sciences, doi:10.5281/zenodo.10435649.
18.
Gomaa et al., Pharmacological evaluation of vitamin D in COVID-19 and long COVID-19: recent studies confirm clinical validation and highlight metformin to improve VDR sensitivity and efficacy, Inflammopharmacology, doi:10.1007/s10787-023-01383-x.
19.
Gotelli et al., Understanding the immune-endocrine effects of vitamin D in SARS-CoV-2 infection: a role in protecting against neurodamage?, Neuroimmunomodulation, doi:10.1159/000533286.
20.
Cutolo et al., Involvement of the secosteroid vitamin D in autoimmune rheumatic diseases and COVID-19, Nature Reviews Rheumatology, doi:10.1038/s41584-023-00944-2.
21.
Schloss et al., Nutritional deficiencies that may predispose to long COVID, Inflammopharmacology, doi:10.1007/s10787-023-01183-3.
22.
Arora et al., Global Dietary and Herbal Supplement Use during COVID-19—A Scoping Review, Nutrients, doi:10.3390/nu15030771.
23.
Nicoll et al., COVID-19 Prevention: Vitamin D Is Still a Valid Remedy, Journal of Clinical Medicine, doi:10.3390/jcm11226818.
24.
Foshati et al., Antioxidants and clinical outcomes of patients with coronavirus disease 2019: A systematic review of observational and interventional studies, Food Science & Nutrition, doi:10.1002/fsn3.3034.
25.
Quesada-Gomez et al., Vitamin D Endocrine System and COVID-19: Treatment with Calcifediol, Nutrients, doi:10.3390/nu14132716.
26.
DiGuilio et al., Micronutrient Improvement of Epithelial Barrier Function in Various Disease States: A Case for Adjuvant Therapy, International Journal of Molecular Sciences, doi:10.3390/ijms23062995.
27.
Grant (B) et al., A Narrative Review of the Evidence for Variations in Serum 25-Hydroxyvitamin D Concentration Thresholds for Optimal Health, Nutrients, doi:10.3390/nu14030639.
28.
Shah Alam et al., The role of vitamin D in reducing SARS-CoV-2 infection: An update, International Immunopharmacology, doi:10.1016/j.intimp.2021.107686.
29.
Griffin et al., Perspective: Vitamin D supplementation prevents rickets and acute respiratory infections when given as daily maintenance but not as intermittent bolus: implications for COVID-19, Clinical Medicine, doi:10.7861/clinmed.2021-0035.
30.
Kohlmeier et al., When Mendelian randomisation fails, BMJ Nutrition, Prevention & Health, doi:10.1136/bmjnph-2021-000265.
31.
Brenner, H., Vitamin D Supplementation to Prevent COVID-19 Infections and Deaths—Accumulating Evidence from Epidemiological and Intervention Studies Calls for Immediate Action, Nutrients, doi:10.3390/nu13020411.
32.
Mercola et al., Evidence Regarding Vitamin D and Risk of COVID-19 and Its Severity, Nutrients 2020, 12:11, 3361, doi:10.3390/nu12113361.
33.
Basha et al., Is the shielding effect of cholecalciferol in SARS CoV-2 infection dependable? An evidence based unraveling, Clinical Epidemiology and Global Health, doi:10.1016/j.cegh.2020.10.005.
34.
Xu et al., The importance of vitamin d metabolism as a potential prophylactic, immunoregulatory and neuroprotective treatment for COVID-19, Journal of Translational Medicine, doi:10.1186/s12967-020-02488-5.
35.
Alexander et al., Early Nutritional Interventions with Zinc, Selenium and Vitamin D for Raising Anti-Viral Resistance Against Progressive COVID-19, Nutrients, doi:10.3390/nu12082358.
36.
Andrade et al., Vitamin A and D deficiencies in the prognosis of respiratory tract infections: A systematic review with perspectives for COVID-19 and a critical analysis on supplementation, SciELO preprints, doi:10.1590/SciELOPreprints.839.
37.
Grant (C) et al., Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths, Nutrients, 12:4, 988, doi:10.3390/nu12040988.
38.
McCullough et al., Daily oral dosing of vitamin D3 using 5000 TO 50,000 international units a day in long-term hospitalized patients: Insights from a seven year experience, The Journal of Steroid Biochemistry and Molecular Biology, doi:10.1016/j.jsbmb.2018.12.010.
39.
EFSA, Scientific Opinion on the substantiation of health claims related to vitamin D and normal function of the immune system and inflammatory response (ID 154, 159), maintenance of normal muscle function (ID 155) and maintenance of normal cardiovascular function (ID 159) pursuant to Article 13(1) of Regulation (E, EFSA Journal, doi:10.2903/j.efsa.2010.1468.
40.
EFSA (B), Scientific Opinion on the substantiation of a health claim related to vitamin D and contribution to the normal function of the immune system pursuant to Article 14 of Regulation (EC) No 1924/2006, EFSA Journal, doi:10.2903/j.efsa.2015.4096.
Mercola et al., 31 Oct 2020, peer-reviewed, 3 authors.
Evidence Regarding Vitamin D and Risk of COVID-19 and Its Severity
Nutrients, doi:10.3390/nu12113361
Vitamin D deficiency co-exists in patients with COVID-19. At this time, dark skin color, increased age, the presence of pre-existing illnesses and vitamin D deficiency are features of severe COVID disease. Of these, only vitamin D deficiency is modifiable. Through its interactions with a multitude of cells, vitamin D may have several ways to reduce the risk of acute respiratory tract infections and COVID-19: reducing the survival and replication of viruses, reducing risk of inflammatory cytokine production, increasing angiotensin-converting enzyme 2 concentrations, and maintaining endothelial integrity. Fourteen observational studies offer evidence that serum 25-hydroxyvitamin D concentrations are inversely correlated with the incidence or severity of COVID-19. The evidence to date generally satisfies Hill's criteria for causality in a biological system, namely, strength of association, consistency, temporality, biological gradient, plausibility (e.g., mechanisms), and coherence, although experimental verification is lacking. Thus, the evidence seems strong enough that people and physicians can use or recommend vitamin D supplements to prevent or treat COVID-19 in light of their safety and wide therapeutic window. In view of public health policy, however, results of large-scale vitamin D randomized controlled trials are required and are currently in progress.
References
Abhimanyu, Coussens, The role of UV radiation and vitamin D in the seasonality and outcomes of infectious disease, Photochem. Photobiol. Sci, doi:10.1039/C6PP00355A
Agrawal, Yin, Vitamin D and inflammatory diseases, J. Inflamm. Res, doi:10.2147/JIR.S63898
Annweiler, Cao, Sabatier, Point of view: Should COVID-19 patients be supplemented with vitamin D?, Maturitas, doi:10.1016/j.maturitas.2020.06.003
Annweiler, Hanotte, De L'eprevier, Sabatier, Lafaie et al., Vitamin D and survival in COVID-19 patients: A quasi-experimental study, J. Steroid Biochem. Mol. Biol, doi:10.1016/j.jsbmb.2020.105771
Autier, Boniol, Pizot, Mullie, Vitamin D status and ill health: A systematic review, Lancet Diabetes Endocrinol, doi:10.1016/S2213-8587(13)70165-7
Autier, Mullie, Macacu, Dragomir, Boniol et al., Effect of vitamin D supplementation on non-skeletal disorders: A systematic review of meta-analyses and randomised trials, Lancet Diabetes Endocrinol, doi:10.1016/S2213-8587(17)30357-1
Aygun, Vitamin D can prevent COVID-19 infection-induced multiple organ damage. Naunyn-Schmiedeberg's, Arch. Pharmacol, doi:10.1007/s00210-020-01911-4
Baktash, Hosack, Patel, Shah, Kandiah et al., Vitamin D status and outcomes for hospitalised older patients with COVID-19, Postgrad. Med. J
Bang, Novovic, Andersen, Fenger, Hansen et al., Variations in Serum 25-Hydroxyvitamin D during Acute Pancreatitis: An Exploratory Longitudinal Study, Endocr. Res, doi:10.3109/07435800.2011.554937
Barlow, Findlay, Currie, Davidson, Antiviral potential of cathelicidins, Futur. Microbiol, doi:10.2217/fmb.13.135
Bavishi, Maddox, Messerli, Coronavirus Disease 2019 (COVID-19) Infection and Renin Angiotensin System Blockers, JAMA Cardiol, doi:10.1001/jamacardio.2020.1282
Beard, Bearden, Striker, Vitamin D and the anti-viral state, J. Clin. Virol
Belančić, Kresović, Rački, Potential pathophysiological mechanisms leading to increased COVID-19 susceptibility and severity in obesity, Obes. Med, doi:10.1016/j.obmed.2020.100259
Benne, Kraaijeveld, Van Strijp, Brouwer, Harmsen et al., Interactions of Surfactant Protein a with Influenza A Viruses: Binding and Neutralization, J. Infect. Dis, doi:10.1093/infdis/171.2.335
Bertoldo, Pancheri, Zenari, Boldini, Giovanazzi et al., Serum 25-hydroxyvitamin D levels modulate the acute-phase response associated with the first nitrogen-containing bisphosphonate infusion, J. Bone Miner. Res, doi:10.1359/jbmr.090819
Bhaskar, Sinha, Banach, Mittoo, Weissert et al., Cytokine Storm in COVID-19-Immunopathological Mechanisms, Clinical Considerations, and Therapeutic Approaches: The REPROGRAM Consortium Position Paper, Front. Immunol, doi:10.3389/fimmu.2020.01648
Bombardini, Picano, Angiotensin-Converting Enzyme 2 as the Molecular Bridge between Epidemiologic and Clinical Features of COVID-19, Can. J. Cardiol, doi:10.1016/j.cjca.2020.03.026
Cannell, Vieth, Umhau, Holick, Grant et al., Epidemic influenza and vitamin D, Epidemiol. Infect, doi:10.1017/S0950268806007175
Cannell, Vieth, Willett, Zasloff, Hathcock et al., Cod Liver Oil, Vitamin A Toxicity, Frequent Respiratory Infections, and the Vitamin D Deficiency Epidemic, Ann. Otol. Rhinol. Laryngol, doi:10.1177/000348940811701112
Caricchio, Gallucci, Dass, Zhang, Gallucci et al., Preliminary predictive criteria for COVID-19 cytokine storm, Ann. Rheum. Dis, doi:10.1136/annrheumdis-2020-218323
Carlberg, Vitamin D Signaling in the Context of Innate Immunity: Focus on Human Monocytes, Front. Immunol, doi:10.3389/fimmu.2019.02211
Carpagnano, Di Lecce, Quaranta, Zito, Buonamico et al., Vitamin D deficiency as a predictor of poor prognosis in patients with acute respiratory failure due to COVID-19, J. Endocrinol. Investig, doi:10.1007/s40618-020-01370-x
Caspi, Altman, Dreher, Fulcher, Subhraveti et al., The metacyc database of metabolic pathways and enzymes and the biocyc collection of pathway/genome databases, Nucleic Acids Res, doi:10.1093/nar/gkr1014
Castillo, Costa, Barrios, Díaz, Miranda et al., Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: A pilot randomized clinical study, J. Steroid Biochem. Mol. Biol, doi:10.1016/j.jsbmb.2020.105751
Chibuzor, Graham-Kalio, Osaji, Meremikwu, Vitamin D, calcium or a combination of vitamin D and calcium for the treatment of nutritional rickets in children, Cochrane Database Syst. Rev, doi:10.1002/14651858.cd012581.pub2
Concato, Observational Versus Experimental Studies: What's the Evidence for a Hierarchy?, NeuroRX, doi:10.1602/neurorx.1.3.341
Cook, Kursumovie, Lennane, Exclusive, Deaths of NHS staff from covid-19 analysed, Health Serv. J
Coussens, Timms, Boucher, Venton, Ashcroft et al., 1α,25-dihydroxyvitamin D3inhibits matrix metalloproteinases induced byMycobacterium tuberculosisinfection, Immunology, doi:10.1111/j.1365-2567.2008.03024.x
Crane-Godreau, Clem, Payne, Fiering, Vitamin D Deficiency and Air Pollution Exacerbate COVID-19 through Suppression of Antiviral Peptide LL37, Front. Public Health, doi:10.3389/fpubh.2020.00232
Crowe, Steur, Allen, Appleby, Travis et al., Plasma concentrations of 25-hydroxyvitamin D in meat eaters, fish eaters, vegetarians and vegans: Results from the EPIC-Oxford study, Public Health Nutr, doi:10.1017/S1368980010002454
Cui, Xu, Li, Qiao, Han et al., Vitamin D receptor activation regulates microglia polarization and oxidative stress in spontaneously hypertensive rats and angiotensin II-exposed microglial cells: Role of renin-angiotensin system, Redox Biol
D'avolio, Avataneo, Manca, Cusato, De Nicolo et al., 25-hydroxyvitamin d concentrations are lower in patients with positive pcr for sars-cov-2, Nutrients, doi:10.3390/nu12051359
Davey, Mcauley, O'kane, Matrix metalloproteinases in acute lung injury: Mediators of injury and drivers of repair, Eur. Respir. J, doi:10.1183/09031936.00032111
Dimitrov, White, Species-specific regulation of innate immunity by vitamin D signaling, J. Steroid Biochem. Mol. Biol, doi:10.1016/j.jsbmb.2015.09.016
Dürr, Sudheendra, Ramamoorthy, LL-37, the only human member of the cathelicidin family of antimicrobial peptides, Biochim. Biophys. Acta (BBA) Biomembr, doi:10.1016/j.bbamem.2006.03.030
Fara, Mitrev, Mitrev, Assas, Cytokine storm and COVID-19: A chronicle of pro-inflammatory cytokines, Open Biol, doi:10.1098/rsob.200160
France, Heatmap: Covid-19 Incidence per 100,000 Inhabitants by Age Group
Ganmaa, Uyanga, Zhou, Gantsetseg, Delgerekh et al., Vitamin D Supplements for Prevention of Tuberculosis Infection and Disease, N. Engl. J. Med, doi:10.1056/NEJMoa1915176
Garattini, Jakobsen, Wetterslev, Bertele, Banzi et al., Evidence-based clinical practice: Overview of threats to the validity of evidence and how to minimise them, Eur. J. Intern. Med, doi:10.1016/j.ejim.2016.03.020
Garvin, Alvarez, Miller, Prates, Walker et al., A mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm, eLife, doi:10.7554/eLife.59177
Gemmati, Bramanti, Serino, Secchiero, Zauli et al., COVID-19 and Individual Genetic Susceptibility/Receptivity: Role of ACE1/ACE2 Genes, Immunity, Inflammation and Coagulation. Might the Double X-Chromosome in Females Be Protective against SARS-CoV-2 Compared to the Single X-Chromosome in Males?, Int. J. Mol. Sci, doi:10.3390/ijms21103474
Gimenez, Inserra, Ferder, Garcia, Manucha, Vitamin d deficiency in african americans is associated with a high risk of severe disease and mortality by Sars-Cov-2, J. Hum. Hypertens, doi:10.1038/s41371-020-00398-z
Ginde, Liu, Camargo, Demographic Differences and Trends of Vitamin D Insufficiency in the US Population, 1988-2004, Arch. Intern. Med, doi:10.1001/archinternmed.2008.604
Gombart, Pierre, Maggini, A Review of Micronutrients and the Immune System-Working in Harmony to Reduce the Risk of Infection, Nutrients, doi:10.3390/nu12010236
Goodall, Granados, Luinstra, Pullenayegum, Coleman et al., Vitamin D3and gargling for the prevention of upper respiratory tract infections: A randomized controlled trial, BMC Infect. Dis, doi:10.1186/1471-2334-14-273
Grant, Al Anouti, Moukayed, Targeted 25-hydroxyvitamin D concentration measurements and vitamin D3 supplementation can have important patient and public health benefits, Eur. J. Clin. Nutr, doi:10.1038/s41430-020-0564-0
Grant, Boucher, Bhattoa, Lahore, Why vitamin D clinical trials should be based on 25-hydroxyvitamin D concentrations, J. Steroid Biochem. Mol. Biol, doi:10.1016/j.jsbmb.2017.08.009
Grant, Lahore, Mcdonnell, Baggerly, French et al., Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths, Nutrients, doi:10.3390/nu12040988
Grant, Mcdonnell, Statistical error in Vitamin d concentrations and covid-19 infection in UK Biobank, Diabetes Metab. Syndr. Clin. Res. Rev, doi:10.1016/j.dsx.2020.05.046
Haidich, Meta-analysis in medical research, Hippokratia
Hanff, O'harhay, Brown, Cohen, Mohareb, Is There an Association Between COVID-19 Mortality and the Renin-Angiotensin System? A Call for Epidemiologic Investigations, Clin. Infect. Dis, doi:10.1093/cid/ciaa329
Hastie, Mackay, Ho, Celis-Morales, Katikireddi et al., Vitamin D concentrations and COVID-19 infection in UK Biobank, Diabetes Metab. Syndr. Clin. Res. Rev, doi:10.1016/j.dsx.2020.04.050
Hastie, Pell, Sattar, Vitamin D and COVID-19 infection and mortality in UK Biobank, Eur. J. Nutr, doi:10.1007/s00394-020-02372-4
Hayes, Ntambi, Multiple Sclerosis: Lipids, Lymphocytes, and Vitamin D, Immunometabolism, doi:10.20900/immunometab20200019
Heaney, Guidelines for optimizing design and analysis of clinical studies of nutrient effects, Nutr. Rev, doi:10.1111/nure.12090
Henríquez, Romero, Cholecalciferol or Calcifediol in the Management of Vitamin D Deficiency, Nutrients, doi:10.3390/nu12061617
Hill, The Environment and Disease: Association or Causation?, Proc. R. Soc. Med
Hojyo, Uchida, Tanaka, Hasebe, Tanaka et al., How COVID-19 induces cytokine storm with high mortality, Inflamm. Regen, doi:10.1186/s41232-020-00146-3
Hope-Simpson, The role of season in the epidemiology of influenza, J. Hyg, doi:10.1017/S0022172400068728
Ianevski, Zusinaite, Shtaida, Kallio-Kokko, Valkonen et al., Low Temperature and Low UV Indexes Correlated with Peaks of Influenza Virus Activity in Northern Europe during 2010-2018, Viruses, doi:10.3390/v11030207
Iddir, Brito, Dingeo, Del Campo, Samouda et al., Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis, Nutrients, doi:10.3390/nu12061562
Ilahi, Armas, Heaney, Pharmacokinetics of a single, large dose of cholecalciferol, Am. J. Clin. Nutr, doi:10.1093/ajcn/87.3.688
Illness, None, Am. J. Respir. Crit. Care Med, doi:10.1164/rccm.202005-1583OC
Im, Je, Baek, Chung, Kwon et al., Nutritional status of patients with coronavirus disease 2019 (covid-19), Int. J. Infect. Dis, doi:10.1016/j.ijid.2020.08.018
Iwasaki, Saito, Zhao, Sakamoto, Hirota et al., Inflammation triggered by sars-cov-2 and ace2 augment drives multiple organ failure of severe covid-19: Molecular mechanisms and implications, Inflammation, doi:10.1007/s10753-020-01337-3
Jolliffe, Griffiths, Martineau, Vitamin D in the prevention of acute respiratory infection: Systematic review of clinical studies, J. Steroid Biochem. Mol. Biol, doi:10.1016/j.jsbmb.2012.11.017
Junaid, Ejaz, Abdalla, Abosalif, Ullah et al., Effective immune functions of micronutrients against Sars-Cov-2, Nutrients, doi:10.3390/nu12102992
Kanikarla-Marie, Jain, 1,25(OH) 2 D 3 inhibits oxidative stress and monocyte adhesion by mediating the upregulation of GCLC and GSH in endothelial cells treated with acetoacetate (ketosis), J. Steroid Biochem. Mol. Biol, doi:10.1016/j.jsbmb.2016.03.002
Kara, Ekiz, Ricci, Kara, Chang et al., Scientific Strabismus' or two related pandemics: Coronavirus disease and vitamin D deficiency, Br. J. Nutr, doi:10.1017/S0007114520001749
Karonova, Andreeva, Vashukova, Serum 25(Oh)D Level in Patients with Covid-19, J. Infectol, doi:10.22625/2072-6732-2020-12-3-21-27
Kaufman, Niles, Kroll, Bi, Holick, SARS-CoV-2 positivity rates associated with circulating 25-hydroxyvitamin D levels, PLoS ONE, doi:10.1371/journal.pone.0239252
Kim, Meza, Clarke, Kim, Hickner, Vitamin D and Endothelial Function, Nutrients, doi:10.3390/nu12020575
Korber, Fischer, Gnanakaran, Yoon, Theiler et al., Tracking changes in sars-cov-2 spike: Evidence that d614g increases infectivity of the covid-19 virus, Cell, doi:10.1016/j.cell.2020.06.043
Kox, Waalders, Kooistra, Gerretsen, Pickkers, Cytokine Levels in Critically Ill Patients With COVID-19 and Other Conditions, JAMA, doi:10.1001/jama.2020.17052
Krishnan, Ochola, Mundy, Jones, Kruger et al., Acute fluid shifts influence the assessment of serum vitamin D status in critically ill patients, Crit. Care, doi:10.1186/cc9341
Krishnan, Trump, Johnson, Feldman, The role of vitamin D in cancer prevention and treatment, Endocrinol. Metab. Clin. N. Am, doi:10.1016/j.ecl.2010.02.011
Kroll, Bi, Garber, Kaufman, Liu et al., Temporal Relationship between Vitamin D Status and Parathyroid Hormone in the United States, PLoS ONE, doi:10.1371/journal.pone.0118108
Kumar, Gupta, Banerjee, Letter: Does vitamin d have a potential role against Covid-19?, Aliment. Pharmacol. Ther, doi:10.1111/apt.15801
Laaksi, Ruohola, Tuohimaa, Auvinen, Haataja et al., An association of serum vitamin D concentrations < 40 nmol/L with acute respiratory tract infection in young Finnish men, Am. J. Clin. Nutr, doi:10.1093/ajcn/86.3.714
Lahore, Covid-19 Intervention Trial Summary
Lang, Aspinall, Vitamin D Status and the Host Resistance to Infections: What It Is Currently (Not) Understood, Clin. Ther, doi:10.1016/j.clinthera.2017.04.004
Leikina, Delanoe-Ayari, Melikov, Cho, Chen et al., Carbohydrate-binding molecules inhibit viral fusion and entry by crosslinking membrane glycoproteins, Nat. Immunol, doi:10.1038/ni1248
Levine, Whitsett, Hartshorn, Crouch, Korfhagen, Surfactant Protein D Enhances Clearance of Influenza A Virus from the Lung In Vivo, J. Immunol, doi:10.4049/jimmunol.167.10.5868
Li, Qiao, Uskokovic, Xiang, Zheng et al., A negative endocrine regulator of the renin-angiotensin system and blood pressure, J. Steroid Biochem. Mol. Biol, doi:10.1016/j.jsbmb.2004.03.004
Li, Reeves, Wang, Bassat, Brooks et al., Global patterns in monthly activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus: A systematic analysis, Lancet Glob. Health
Li, Wang, Nair, Global Seasonality of Human Seasonal Coronaviruses: A Clue for Postpandemic Circulating Season of Severe Acute Respiratory Syndrome Coronavirus 2?, J. Infect. Dis
Lin, Zhao, Zhou, Zhou, Xu, Coronavirus disease 2019 (COVID-19): Cytokine storms, hyper-inflammatory phenotypes, and acute respiratory distress syndrome, Genes Dis, doi:10.1016/j.gendis.2020.06.009
Liu, Luo, Libby, Shi, Cathepsin L-selective inhibitors: A potentially promising treatment for COVID-19 patients, Pharmacol. Ther, doi:10.1016/j.pharmthera.2020.107587
Macaya, Paeres, Valls, Fernández-Ortiz, Del Castillo et al., Interaction between age and vitamin D deficiency in severe COVID-19 infection, Nutrición Hospitalaria, doi:10.20960/nh.03193
Mahdavi, A brief review of interplay between vitamin D and angiotensin-converting enzyme 2: Implications for a potential treatment for COVID-19, Rev. Med. Virol, doi:10.1002/rmv.2119
Mahmudpour, Roozbeh, Keshavarz, Farrokhi, Nabipour, COVID-19 cytokine storm: The anger of inflammation, Cytokine, doi:10.1016/j.cyto.2020.155151
Manson, Cook, Lee, Christen, Bassuk et al., Vitamin d supplements and prevention of cancer and cardiovascular disease, N. Engl. J. Med, doi:10.1056/NEJMoa1809944
Manson, Crooks, Naja, Ledlie, Goulden et al., COVID-19-associated hyperinflammation and escalation of patient care: A retrospective longitudinal cohort study, Lancet Rheumatol, doi:10.1016/S2665-9913(20)30275-7
Martineau, Jolliffe, Demaret, Vitamin D and Tuberculosis, Vitamin D
Martineau, Jolliffe, Greenberg, Aloia, Bergman et al., Vitamin D supplementation to prevent acute respiratory infections: Individual participant data meta-analysis, Health Technol. Assess, doi:10.3310/hta23020
Mcelvaney, Mcevoy, Mcelvaney, Carroll, Murphy et al., Characterization of the Inflammatory Response to Severe COVID-19
Meftahi, Jangravi, Sahraei, Bahari, The possible pathophysiology mechanism of cytokine storm in elderly adults with COVID-19 infection: The contribution of "inflame-aging, Inflamm. Res, doi:10.1007/s00011-020-01372-8
Meltzer, Best, Zhang, Vokes, Arora et al., Association of Vitamin D Status and Other Clinical Characteristics with COVID-19 Test Results, JAMA Netw. Open, doi:10.1001/jamanetworkopen.2020.19722
Merad, Martin, Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages, Nat. Rev. Immunol, doi:10.1038/s41577-020-0331-4
Merzon, Tworowski, Gorohovski, Vinker, Cohen et al., Low plasma 25(OH) vitamin D level is associated with increased risk of COVID-19 infection: An Israeli population-based study, FEBS J, doi:10.1111/febs.15495
Mitri, Muraru, Pittas, Vitamin D and type 2 diabetes: A systematic review, Eur. J. Clin. Nutr, doi:10.1038/ejcn.2011.118
Morris, Bortolasci, Puri, Olive, Marx et al., The pathophysiology of sars-cov-2: A suggested model and therapeutic approach, Life Sci, doi:10.1016/j.lfs.2020.118166
Murthi, Davies-Tuck, Lappas, Singh, Mockler et al., Maternal 25-hydroxyvitamin D is inversely correlated with foetal serotonin, Clin. Endocrinol, doi:10.1111/cen.13281
Newens, Filteau, Tomkins, Plasma 25-hydroxyvitamin D does not vary over the course of a malarial infection, Trans. R. Soc. Trop. Med. Hyg, doi:10.1016/j.trstmh.2005.06.022
Noronha, Matuschak, Magnesium in critical illness: Metabolism, assessment, and treatment, Intensiv. Care Med, doi:10.1007/s00134-002-1281-y
Ohaegbulam, Swalih, Patel, Smith, Perrin, Vitamin D Supplementation in COVID-19 Patients, Am. J. Ther, doi:10.1097/MJT.0000000000001222
Orkaby, Djousse, Manson, Vitamin D supplements and prevention of cardiovascular disease, Curr. Opin. Cardiol, doi:10.1097/HCO.0000000000000675
Panagiotou, Tee, Ihsan, Athar, Marchitelli et al., Low serum 25-hydroxyvitamin D (25[OH]D) levels in patients hospitalised with COVID-19 are associated with greater disease severity: Results of a local audit of practice, Clin. Endocrinol, doi:10.1111/cen.14276
Panfili, Roversi, D'argenio, Rossi, Cappa et al., Possible role of vitamin D in Covid-19 infection in pediatric population, J. Endocrinol. Investig, doi:10.1007/s40618-020-01327-0
Park, Kwon, Choi, Kang, Choe et al., Virus isolation from the first patient with sars-cov-2 in korea, J. Korean Med. Sci
Parlak, Ertürk, Ça G, Sebin, Gümüşdere, The effect of inflammatory cytokines and the level of vitamin D on prognosis in Crimean-Congo hemorrhagic fever, Int. J. Clin. Exp. Med
Phillips, Park, Robinson, Jones, The Perfect Storm: COVID-19 Health Disparities in US Blacks, J. Racial Ethn. Health Disparities, doi:10.1007/s40615-020-00871-y
Phokela, Peleg, Moya, Alcorn, Regulation of human pulmonary surfactant protein gene expression by 1α,25-dihydroxyvitamin D3, Am. J. Physiol. Cell. Mol. Physiol
Pittas, Dawson-Hughes, Sheehan, Ware, Knowler et al., Vitamin D Supplementation and Prevention of Type 2 Diabetes, N. Engl. J. Med, doi:10.1056/NEJMoa1900906
Pizzini, Aichner, Sahanic, Böhm, Egger et al., Impact of Vitamin D Deficiency on COVID-19-A Prospective Analysis from the CovILD Registry, Nutrients, doi:10.3390/nu12092775
Pérez, Nieto, Martínez-Cuazitl, Mercado, Tort, La deficiencia de vitamina D es un factor de riesgo de mortalidad en pacientes con COVID-19, Rev. Sanid. Mil, doi:10.35366/93773
Qin, Zhou, Hu, Zhang, Yang et al., Dysregulation of Immune Response in Patients with Coronavirus 2019 (COVID-19) in Wuhan, China, Clin. Infect. Dis, doi:10.1093/cid/ciaa248
Quesada-Gomez, Castillo, Bouillon, Vitamin d receptor stimulation to reduce acute respiratory distress syndrome (ards) in patients with Coronavirus sars-cov-2 infections: Revised ms sbmb 2020_166, J. Steroid Biochem. Mol. Biol, doi:10.1016/j.jsbmb.2020.105719
Radujkovic, Hippchen, Tiwari-Heckler, Dreher, Boxberger et al., Vitamin D Deficiency and Outcome of COVID-19 Patients, Nutrients, doi:10.3390/nu12092757
Reid, Toole, Knox, Talwar, Harten et al., The relation between acute changes in the systemic inflammatory response and plasma 25-hydroxyvitamin D concentrations after elective knee arthroplasty, Am. J. Clin. Nutr
Rejnmark, Bislev, Cashman, Eiríksdottir, Gaksch et al., Non-skeletal health effects of vitamin D supplementation: A systematic review on findings from meta-analyses summarizing trial data, PLoS ONE, doi:10.1371/journal.pone.0180512
Rolf, Clinical characteristics of Covid-19 in China, N. Engl. J. Med, doi:10.1056/NEJMc2005203
Rondanelli, Miccono, Lamburghini, Avanzato, Riva et al., Self-Care for Common Colds: The Pivotal Role of Vitamin D, Vitamin C, Zinc, and Echinacea in Three Main Immune Interactive Clusters (Physical Barriers, Innate and Adaptive Immunity) Involved during an Episode of Common Colds-Practical Advice on Dosages and on the Time to Take These Nutrients/Botanicals in order to Prevent or Treat Common Colds, Evid.-Based Complement. Altern. Med, doi:10.1155/2018/5813095
Ross, Manson, Abrams, Aloia, Brannon et al., Report on Dietary Reference Intakes for Calcium and Vitamin D from the Institute of Medicine: What Clinicians Need to Know, J. Clin. Endocrinol. Metab, doi:10.1210/jc.2010-2704
Ross, Manson, Abrams, Aloia, Brannon et al., The 2011 dietary reference intakes for calcium and vitamin d: What dietetics practitioners need to know, J. Am. Diet. Assoc, doi:10.1016/j.jada.2011.01.004
Roy, Matson, Herlekar, Response to 'vitamin d concentrations and covid-19 infection in uk biobank, Diabetes Metab. Syndr, doi:10.1016/j.dsx.2020.05.049
Rusciano, Bagnoli, Galeazzi, The fight against covid-19: The role of drugs and food supplements, J. Pharm. Pharm. Res
Sackett, Evidence-based medicine, Semin. Perinatol, doi:10.1016/S0146-0005(97)80013-4
Shaman, Pitzer, Viboud, Grenfell, Lipsitch, Absolute humidity and the seasonal onset of influenza in the continental united states, PLoS Biol, doi:10.1371/annotation/35686514-b7a9-4f65-9663-7baefc0d63c0
Shin, Jo, Antimicrobial Peptides in Innate Immunity against Mycobacteria, Immune Netw, doi:10.4110/in.2011.11.5.245
Silva, Furlanetto, Does serum 25-hydroxyvitamin D decrease during acute-phase response? A systematic review, Nutr. Res, doi:10.1016/j.nutres.2014.12.008
Speeckaert, Delanghe, Association between low vitamin D and COVID-19: Don't forget the vitamin D binding protein, Aging Clin. Exp. Res, doi:10.1007/s40520-020-01607-y
Strickland, Powell-Young, Reyes-Miranda, Alzaghari, Giger, African-americans have a higher propensity for death from covid-19: Rationale and causation, J. Natl. Black Nurses Assoc
Swaminathan, Magnesium Metabolism and its Disorders, Clin. Biochem. Rev
Tay, Poh, Rénia, Macary, Ng, The trinity of COVID-19: Immunity, inflammation and intervention, Nat. Rev. Immunol, doi:10.1038/s41577-020-0311-8
Timms, Mannan, Hitman, Noonan, Mills et al., Circulating MMP9, vitamin D and variation in the TIMP-1 response with VDR genotype: Mechanisms for inflammatory damage in chronic disorders?, QJM Int. J. Med, doi:10.1093/qjmed/95.12.787
Ueland, Holter, Holten, Müller, Lind et al., Distinct and early increase in circulating MMP-9 in COVID-19 patients with respiratory failure, J. Infect, doi:10.1016/j.jinf.2020.06.061
Urashima, Segawa, Okazaki, Kurihara, Wada et al., Randomized trial of vitamin D supplementation to prevent seasonal influenza A in schoolchildren, Am. J. Clin. Nutr, doi:10.3945/ajcn.2009.29094
Uwitonze, Razzaque, Role of Magnesium in Vitamin D Activation and Function, J. Am. Osteopat. Assoc, doi:10.7556/jaoa.2018.037
Valcour, Blocki, Hawkins, Rao, Effects of Age and Serum 25-OH-Vitamin D on Serum Parathyroid Hormone Levels, J. Clin. Endocrinol. Metab, doi:10.1210/jc.2012-2276
Vanderweele, Principles of confounder selection, Eur. J. Epidemiol, doi:10.1007/s10654-019-00494-6
Waldron, Ashby, Cornes, Bechervaise, Razavi et al., Vitamin D: A negative acute phase reactant, J. Clin. Pathol, doi:10.1136/jclinpath-2012-201301
Webb, Peltan, Jensen, Hoda, Hunter et al., Clinical criteria for covid-19-associated hyperinflammaotry syndrome: A cohort study, Lancet Rheumatol, doi:10.1016/S2665-9913(20)30343-X
Xu, Yang, Chen, Luo, Zhang et al., Vitamin D alleviates lipopolysaccharide-induced acute lung injury via regulation of the renin-angiotensin system, Mol. Med. Rep, doi:10.3892/mmr.2017.7546
Yancy, COVID-19 and African Americans, JAMA, doi:10.1001/jama.2020.6548
Ye, Tang, Liao, Shaw, Deng et al., Does Serum Vitamin D Level Affect COVID-19 Infection and Its Severity?-A Case-Control Study, J. Am. Coll. Nutr, doi:10.1080/07315724.2020.1826005
Yehia, Winegar, Fogel, Fakih, Ottenbacher et al., Association of Race With Mortality Among Patients Hospitalized With Coronavirus Disease 2019 (COVID-19) at 92 US Hospitals, JAMA Netw. Open, doi:10.1001/jamanetworkopen.2020.18039
Zhang, Mccullough, Tecson, Vitamin D deficiency in association with endothelial dysfunction: Implications for patients withCOVID-19, Rev. Cardiovasc. Med, doi:10.31083/j.rcm.2020.03.131
Zhang, Niu, Meta-analysis of randomized controlled trials on vitamin D supplement and cancer incidence and mortality, Biosci. Rep, doi:10.1042/BSR20190369
Zhang, Tecson, Mccullough, Endothelial dysfunction contributes to COVID-19-associated vascular inflammation and coagulopathy, Rev. Cardiovasc. Med, doi:10.31083/j.rcm.2020.03.126
Zheng, Yang, Hu, Li, Wang et al., Vitamin d attenuates lung injury via stimulating epithelial repair, reducing epithelial cell apoptosis and inhibits tgf-beta induced epithelial to mesenchymal transition, Biochem. Pharmacol
Zhou, Yang, Chi, Dong, Lv et al., Comorbidities and the risk of severe or fatal outcomes associated with coronavirus disease 2019: A systematic review and meta-analysis, Int. J. Infect. Dis, doi:10.1016/j.ijid.2020.07.029
Zisi, Challa, Makis, The association between vitamin D status and infectious diseases of the respiratory system in infancy and childhood, Hormones, doi:10.1007/s42000-019-00155-z
Zittermann, Ernst, Birschmann, Dittrich, Effect of Vitamin D or Activated Vitamin D on Circulating 1,25-Dihydroxyvitamin D Concentrations: A Systematic Review and Metaanalysis of Randomized Controlled Trials, Clin. Chem, doi:10.1373/clinchem.2015.244913
DOI record:
{
"DOI": "10.3390/nu12113361",
"ISSN": [
"2072-6643"
],
"URL": "http://dx.doi.org/10.3390/nu12113361",
"abstract": "<jats:p>Vitamin D deficiency co-exists in patients with COVID-19. At this time, dark skin color, increased age, the presence of pre-existing illnesses and vitamin D deficiency are features of severe COVID disease. Of these, only vitamin D deficiency is modifiable. Through its interactions with a multitude of cells, vitamin D may have several ways to reduce the risk of acute respiratory tract infections and COVID-19: reducing the survival and replication of viruses, reducing risk of inflammatory cytokine production, increasing angiotensin-converting enzyme 2 concentrations, and maintaining endothelial integrity. Fourteen observational studies offer evidence that serum 25-hydroxyvitamin D concentrations are inversely correlated with the incidence or severity of COVID-19. The evidence to date generally satisfies Hill’s criteria for causality in a biological system, namely, strength of association, consistency, temporality, biological gradient, plausibility (e.g., mechanisms), and coherence, although experimental verification is lacking. Thus, the evidence seems strong enough that people and physicians can use or recommend vitamin D supplements to prevent or treat COVID-19 in light of their safety and wide therapeutic window. In view of public health policy, however, results of large-scale vitamin D randomized controlled trials are required and are currently in progress.</jats:p>",
"alternative-id": [
"nu12113361"
],
"author": [
{
"affiliation": [],
"family": "Mercola",
"given": "Joseph",
"sequence": "first"
},
{
"ORCID": "http://orcid.org/0000-0002-1439-3285",
"affiliation": [],
"authenticated-orcid": false,
"family": "Grant",
"given": "William B.",
"sequence": "additional"
},
{
"ORCID": "http://orcid.org/0000-0003-2764-6533",
"affiliation": [],
"authenticated-orcid": false,
"family": "Wagner",
"given": "Carol L.",
"sequence": "additional"
}
],
"container-title": "Nutrients",
"container-title-short": "Nutrients",
"content-domain": {
"crossmark-restriction": false,
"domain": []
},
"created": {
"date-parts": [
[
2020,
11,
1
]
],
"date-time": "2020-11-01T01:39:56Z",
"timestamp": 1604194796000
},
"deposited": {
"date-parts": [
[
2020,
11,
5
]
],
"date-time": "2020-11-05T14:21:55Z",
"timestamp": 1604586115000
},
"indexed": {
"date-parts": [
[
2024,
5,
11
]
],
"date-time": "2024-05-11T03:07:19Z",
"timestamp": 1715396839716
},
"is-referenced-by-count": 191,
"issue": "11",
"issued": {
"date-parts": [
[
2020,
10,
31
]
]
},
"journal-issue": {
"issue": "11",
"published-online": {
"date-parts": [
[
2020,
11
]
]
}
},
"language": "en",
"license": [
{
"URL": "https://creativecommons.org/licenses/by/4.0/",
"content-version": "unspecified",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2020,
10,
31
]
],
"date-time": "2020-10-31T00:00:00Z",
"timestamp": 1604102400000
}
}
],
"link": [
{
"URL": "https://www.mdpi.com/2072-6643/12/11/3361/pdf",
"content-type": "unspecified",
"content-version": "vor",
"intended-application": "similarity-checking"
}
],
"member": "1968",
"original-title": [],
"page": "3361",
"prefix": "10.3390",
"published": {
"date-parts": [
[
2020,
10,
31
]
]
},
"published-online": {
"date-parts": [
[
2020,
10,
31
]
]
},
"publisher": "MDPI AG",
"reference": [
{
"DOI": "10.1002/14651858.cd012581.pub2",
"doi-asserted-by": "publisher",
"key": "ref1"
},
{
"DOI": "10.2147/JIR.S63898",
"doi-asserted-by": "publisher",
"key": "ref2"
},
{
"DOI": "10.1007/s40618-020-01327-0",
"doi-asserted-by": "publisher",
"key": "ref3"
},
{
"DOI": "10.3389/fimmu.2019.02211",
"doi-asserted-by": "publisher",
"key": "ref4"
},
{
"DOI": "10.1056/NEJMoa1809944",
"doi-asserted-by": "publisher",
"key": "ref5"
},
{
"DOI": "10.1038/s41430-020-0564-0",
"doi-asserted-by": "publisher",
"key": "ref6"
},
{
"DOI": "10.1056/NEJMoa1900906",
"doi-asserted-by": "publisher",
"key": "ref7"
},
{
"DOI": "10.3310/hta23020",
"doi-asserted-by": "publisher",
"key": "ref8"
},
{
"DOI": "10.20900/immunometab20200019",
"doi-asserted-by": "publisher",
"key": "ref9"
},
{
"key": "ref10",
"unstructured": "Covid-19 Coronavirus Pandemic\n https://www.worldometers.info/coronavirus/"
},
{
"DOI": "10.1038/ejcn.2011.118",
"doi-asserted-by": "publisher",
"key": "ref11"
},
{
"DOI": "10.1371/journal.pone.0118108",
"doi-asserted-by": "publisher",
"key": "ref12"
},
{
"DOI": "10.1001/jama.2020.6548",
"doi-asserted-by": "publisher",
"key": "ref13"
},
{
"DOI": "10.1001/jamanetworkopen.2020.18039",
"doi-asserted-by": "publisher",
"key": "ref14"
},
{
"DOI": "10.1001/archinternmed.2008.604",
"doi-asserted-by": "publisher",
"key": "ref15"
},
{
"DOI": "10.1136/annrheumdis-2020-218323",
"doi-asserted-by": "publisher",
"key": "ref16"
},
{
"DOI": "10.1093/cid/ciaa248",
"doi-asserted-by": "publisher",
"key": "ref17"
},
{
"key": "ref18",
"unstructured": "Studies for Vitamin D, Covid19\n https://clinicaltrials.gov/ct2/results?cond=COVID19&term=vitamin+D&cntry=&state=&city=&dist="
},
{
"DOI": "10.1007/s10654-019-00494-6",
"doi-asserted-by": "publisher",
"key": "ref19"
},
{
"DOI": "10.1016/j.dsx.2020.05.046",
"doi-asserted-by": "publisher",
"key": "ref20"
},
{
"DOI": "10.1016/j.dsx.2020.05.049",
"doi-asserted-by": "publisher",
"key": "ref21"
},
{
"DOI": "10.1016/j.dsx.2020.04.050",
"doi-asserted-by": "publisher",
"key": "ref22"
},
{
"DOI": "10.3390/nu12051359",
"doi-asserted-by": "publisher",
"key": "ref23"
},
{
"DOI": "10.1111/cen.14276",
"doi-asserted-by": "publisher",
"key": "ref24"
},
{
"DOI": "10.1007/s40618-020-01370-x",
"doi-asserted-by": "publisher",
"key": "ref25"
},
{
"DOI": "10.1016/j.ijid.2020.08.018",
"doi-asserted-by": "publisher",
"key": "ref26"
},
{
"DOI": "10.22625/2072-6732-2020-12-3-21-27",
"doi-asserted-by": "publisher",
"key": "ref27"
},
{
"DOI": "10.35366/93773",
"doi-asserted-by": "publisher",
"key": "ref28"
},
{
"DOI": "10.1136/postgradmedj-2020-138712",
"doi-asserted-by": "publisher",
"key": "ref29"
},
{
"DOI": "10.1007/s00394-020-02372-4",
"doi-asserted-by": "publisher",
"key": "ref30"
},
{
"DOI": "10.3390/nu12092757",
"doi-asserted-by": "publisher",
"key": "ref31"
},
{
"DOI": "10.1210/jc.2012-2276",
"doi-asserted-by": "publisher",
"key": "ref32"
},
{
"DOI": "10.3390/nu12092775",
"doi-asserted-by": "publisher",
"key": "ref33"
},
{
"DOI": "10.20960/nh.03193",
"doi-asserted-by": "publisher",
"key": "ref34"
},
{
"DOI": "10.1080/07315724.2020.1826005",
"doi-asserted-by": "publisher",
"key": "ref35"
},
{
"DOI": "10.1111/febs.15495",
"doi-asserted-by": "publisher",
"key": "ref36"
},
{
"DOI": "10.1001/jamanetworkopen.2020.19722",
"doi-asserted-by": "publisher",
"key": "ref37"
},
{
"DOI": "10.1371/journal.pone.0239252",
"doi-asserted-by": "publisher",
"key": "ref38"
},
{
"DOI": "10.1002/rmv.2119",
"doi-asserted-by": "publisher",
"key": "ref39"
},
{
"DOI": "10.1016/j.jada.2011.01.004",
"doi-asserted-by": "publisher",
"key": "ref40"
},
{
"DOI": "10.1210/jc.2010-2704",
"doi-asserted-by": "publisher",
"key": "ref41"
},
{
"DOI": "10.1016/j.cell.2020.06.043",
"doi-asserted-by": "publisher",
"key": "ref42"
},
{
"article-title": "African-americans have a higher propensity for death from covid-19: Rationale and causation",
"author": "Strickland",
"first-page": "1",
"journal-title": "J. Natl. Black Nurses Assoc.",
"key": "ref43",
"volume": "31",
"year": "2020"
},
{
"DOI": "10.1016/S2213-8587(13)70165-7",
"doi-asserted-by": "publisher",
"key": "ref44"
},
{
"DOI": "10.1016/S2213-8587(17)30357-1",
"doi-asserted-by": "publisher",
"key": "ref45"
},
{
"DOI": "10.1111/nure.12090",
"doi-asserted-by": "publisher",
"key": "ref46"
},
{
"DOI": "10.1016/j.jsbmb.2017.08.009",
"doi-asserted-by": "publisher",
"key": "ref47"
},
{
"DOI": "10.1097/HCO.0000000000000675",
"doi-asserted-by": "publisher",
"key": "ref48"
},
{
"DOI": "10.1042/BSR20190369",
"doi-asserted-by": "publisher",
"key": "ref49"
},
{
"DOI": "10.1016/j.nutres.2014.12.008",
"doi-asserted-by": "publisher",
"key": "ref50"
},
{
"DOI": "10.1186/cc9341",
"doi-asserted-by": "publisher",
"key": "ref51"
},
{
"DOI": "10.3945/ajcn.110.008490",
"doi-asserted-by": "publisher",
"key": "ref52"
},
{
"DOI": "10.1136/jclinpath-2012-201301",
"doi-asserted-by": "publisher",
"key": "ref53"
},
{
"DOI": "10.1016/j.ecl.2010.02.011",
"doi-asserted-by": "publisher",
"key": "ref54"
},
{
"DOI": "10.1016/j.trstmh.2005.06.022",
"doi-asserted-by": "publisher",
"key": "ref55"
},
{
"DOI": "10.3109/07435800.2011.554937",
"doi-asserted-by": "publisher",
"key": "ref56"
},
{
"DOI": "10.1359/jbmr.090819",
"doi-asserted-by": "publisher",
"key": "ref57"
},
{
"DOI": "10.1097/MJT.0000000000001222",
"doi-asserted-by": "publisher",
"key": "ref58"
},
{
"DOI": "10.1016/j.jsbmb.2020.105751",
"doi-asserted-by": "publisher",
"key": "ref59"
},
{
"DOI": "10.3390/nu12061617",
"doi-asserted-by": "publisher",
"key": "ref60"
},
{
"DOI": "10.1016/j.ijid.2020.07.029",
"doi-asserted-by": "publisher",
"key": "ref61"
},
{
"DOI": "10.1016/j.jsbmb.2020.105771",
"doi-asserted-by": "publisher",
"key": "ref62"
},
{
"DOI": "10.1093/ajcn/87.3.688",
"doi-asserted-by": "publisher",
"key": "ref63"
},
{
"DOI": "10.1016/j.jcv.2010.12.006",
"doi-asserted-by": "publisher",
"key": "ref64"
},
{
"DOI": "10.4110/in.2011.11.5.245",
"doi-asserted-by": "publisher",
"key": "ref65"
},
{
"DOI": "10.1016/j.jsbmb.2015.09.016",
"doi-asserted-by": "publisher",
"key": "ref66"
},
{
"DOI": "10.1016/B978-0-12-809963-6.00103-6",
"article-title": "Vitamin D and Tuberculosis",
"author": "Martineau",
"doi-asserted-by": "crossref",
"first-page": "915",
"journal-title": "Vitamin D",
"key": "ref67",
"volume": "2",
"year": "2018"
},
{
"DOI": "10.1017/S0950268806007175",
"doi-asserted-by": "publisher",
"key": "ref68"
},
{
"DOI": "10.2217/fmb.13.135",
"doi-asserted-by": "publisher",
"key": "ref69"
},
{
"DOI": "10.3389/fpubh.2020.00232",
"doi-asserted-by": "publisher",
"key": "ref70"
},
{
"DOI": "10.1017/S0007114520001749",
"doi-asserted-by": "publisher",
"key": "ref71"
},
{
"DOI": "10.1016/j.bbamem.2006.03.030",
"doi-asserted-by": "publisher",
"key": "ref72"
},
{
"DOI": "10.1038/ni1248",
"doi-asserted-by": "publisher",
"key": "ref73"
},
{
"DOI": "10.1016/j.lfs.2020.118166",
"doi-asserted-by": "publisher",
"key": "ref74"
},
{
"DOI": "10.1164/rccm.202005-1583OC",
"doi-asserted-by": "publisher",
"key": "ref75"
},
{
"DOI": "10.3390/nu12040988",
"doi-asserted-by": "publisher",
"key": "ref76"
},
{
"DOI": "10.3389/fimmu.2020.01648",
"doi-asserted-by": "publisher",
"key": "ref77"
},
{
"DOI": "10.1098/rsob.200160",
"doi-asserted-by": "publisher",
"key": "ref78"
},
{
"DOI": "10.1016/j.cyto.2020.155151",
"doi-asserted-by": "publisher",
"key": "ref79"
},
{
"DOI": "10.1001/jama.2020.17052",
"doi-asserted-by": "publisher",
"key": "ref80"
},
{
"DOI": "10.1016/j.pharmthera.2020.107587",
"doi-asserted-by": "publisher",
"key": "ref81"
},
{
"DOI": "10.1016/S2665-9913(20)30275-7",
"doi-asserted-by": "publisher",
"key": "ref82"
},
{
"DOI": "10.1016/S2665-9913(20)30343-X",
"doi-asserted-by": "publisher",
"key": "ref83"
},
{
"DOI": "10.1016/j.gendis.2020.06.009",
"doi-asserted-by": "publisher",
"key": "ref84"
},
{
"DOI": "10.1007/s00011-020-01372-8",
"doi-asserted-by": "publisher",
"key": "ref85"
},
{
"DOI": "10.1186/s41232-020-00146-3",
"doi-asserted-by": "publisher",
"key": "ref86"
},
{
"DOI": "10.1007/s10753-020-01337-3",
"doi-asserted-by": "publisher",
"key": "ref87"
},
{
"DOI": "10.1038/s41577-020-0331-4",
"doi-asserted-by": "publisher",
"key": "ref88"
},
{
"DOI": "10.3346/jkms.2020.35.e84",
"doi-asserted-by": "publisher",
"key": "ref89"
},
{
"DOI": "10.1016/j.cjca.2020.03.026",
"doi-asserted-by": "publisher",
"key": "ref90"
},
{
"DOI": "10.1093/infdis/171.2.335",
"doi-asserted-by": "publisher",
"key": "ref91"
},
{
"DOI": "10.4049/jimmunol.167.10.5868",
"doi-asserted-by": "publisher",
"key": "ref92"
},
{
"DOI": "10.1152/ajplung.00129.2004",
"doi-asserted-by": "publisher",
"key": "ref93"
},
{
"DOI": "10.3390/ijms21103474",
"doi-asserted-by": "publisher",
"key": "ref94"
},
{
"DOI": "10.1016/j.jsbmb.2004.03.004",
"doi-asserted-by": "publisher",
"key": "ref95"
},
{
"DOI": "10.1056/NEJMc2005203",
"doi-asserted-by": "publisher",
"key": "ref96"
},
{
"DOI": "10.1001/jamacardio.2020.1282",
"doi-asserted-by": "publisher",
"key": "ref97"
},
{
"DOI": "10.1007/s40520-020-01607-y",
"doi-asserted-by": "publisher",
"key": "ref98"
},
{
"DOI": "10.3892/mmr.2017.7546",
"doi-asserted-by": "publisher",
"key": "ref99"
},
{
"DOI": "10.1016/j.redox.2019.101295",
"doi-asserted-by": "publisher",
"key": "ref100"
},
{
"DOI": "10.1007/s00210-020-01911-4",
"doi-asserted-by": "publisher",
"key": "ref101"
},
{
"DOI": "10.1373/clinchem.2015.244913",
"doi-asserted-by": "publisher",
"key": "ref102"
},
{
"DOI": "10.1093/cid/ciaa329",
"doi-asserted-by": "publisher",
"key": "ref103"
},
{
"DOI": "10.1111/apt.15801",
"doi-asserted-by": "publisher",
"key": "ref104"
},
{
"DOI": "10.1016/j.jsbmb.2020.105719",
"doi-asserted-by": "publisher",
"key": "ref105"
},
{
"DOI": "10.1038/s41577-020-0311-8",
"doi-asserted-by": "publisher",
"key": "ref106"
},
{
"DOI": "10.31083/j.rcm.2020.03.126",
"doi-asserted-by": "publisher",
"key": "ref107"
},
{
"DOI": "10.31083/j.rcm.2020.03.131",
"doi-asserted-by": "publisher",
"key": "ref108"
},
{
"DOI": "10.1016/j.jsbmb.2016.03.002",
"doi-asserted-by": "publisher",
"key": "ref109"
},
{
"DOI": "10.3390/nu12020575",
"doi-asserted-by": "publisher",
"key": "ref110"
},
{
"DOI": "10.1016/j.bcp.2020.113955",
"doi-asserted-by": "publisher",
"key": "ref111"
},
{
"DOI": "10.1183/09031936.00032111",
"doi-asserted-by": "publisher",
"key": "ref112"
},
{
"DOI": "10.1016/j.jinf.2020.06.061",
"doi-asserted-by": "publisher",
"key": "ref113"
},
{
"DOI": "10.1093/qjmed/95.12.787",
"doi-asserted-by": "publisher",
"key": "ref114"
},
{
"DOI": "10.1111/j.1365-2567.2008.03024.x",
"doi-asserted-by": "publisher",
"key": "ref115"
},
{
"DOI": "10.7554/eLife.59177",
"doi-asserted-by": "publisher",
"key": "ref116"
},
{
"DOI": "10.3390/nu12010236",
"doi-asserted-by": "publisher",
"key": "ref117"
},
{
"DOI": "10.1155/2018/5813095",
"doi-asserted-by": "publisher",
"key": "ref118"
},
{
"DOI": "10.1016/j.clinthera.2017.04.004",
"doi-asserted-by": "publisher",
"key": "ref119"
},
{
"DOI": "10.1039/C6PP00355A",
"doi-asserted-by": "publisher",
"key": "ref120"
},
{
"DOI": "10.1016/j.jsbmb.2012.11.017",
"doi-asserted-by": "publisher",
"key": "ref121"
},
{
"DOI": "10.1186/1471-2334-14-273",
"doi-asserted-by": "publisher",
"key": "ref122"
},
{
"DOI": "10.1093/ajcn/86.3.714",
"doi-asserted-by": "publisher",
"key": "ref123"
},
{
"DOI": "10.1177/000348940811701112",
"doi-asserted-by": "publisher",
"key": "ref124"
},
{
"DOI": "10.1016/j.obmed.2020.100259",
"doi-asserted-by": "publisher",
"key": "ref125"
},
{
"article-title": "The effect of inflammatory cytokines and the level of vitamin D on prognosis in Crimean-Congo hemorrhagic fever",
"author": "Parlak",
"first-page": "18302",
"journal-title": "Int. J. Clin. Exp. Med.",
"key": "ref126",
"volume": "8",
"year": "2015"
},
{
"DOI": "10.1017/S0022172400068728",
"doi-asserted-by": "publisher",
"key": "ref127"
},
{
"DOI": "10.1016/S2214-109X(19)30264-5",
"doi-asserted-by": "publisher",
"key": "ref128"
},
{
"DOI": "10.1093/infdis/jiaa436",
"doi-asserted-by": "publisher",
"key": "ref129"
},
{
"DOI": "10.1371/annotation/35686514-b7a9-4f65-9663-7baefc0d63c0",
"doi-asserted-by": "publisher",
"key": "ref130"
},
{
"DOI": "10.3390/v11030207",
"doi-asserted-by": "publisher",
"key": "ref131"
},
{
"key": "ref132",
"unstructured": "Heatmap: Covid-19 Incidence per 100,000 Inhabitants by Age Group\n https://guillaumepressiat.shinyapps.io/covid-si-dep/?reg=11%7c93%7c32"
},
{
"DOI": "10.1007/s40615-020-00871-y",
"doi-asserted-by": "publisher",
"key": "ref133"
},
{
"DOI": "10.1038/s41371-020-00398-z",
"doi-asserted-by": "publisher",
"key": "ref134"
},
{
"article-title": "Exclusive: Deaths of NHS staff from covid-19 analysed",
"author": "Cook",
"first-page": "7027471",
"journal-title": "Health Serv. J.",
"key": "ref135",
"year": "2020"
},
{
"DOI": "10.1017/S1368980010002454",
"doi-asserted-by": "publisher",
"key": "ref136"
},
{
"DOI": "10.1177/003591576505800503",
"doi-asserted-by": "publisher",
"key": "ref137"
},
{
"DOI": "10.1016/j.maturitas.2020.06.003",
"doi-asserted-by": "publisher",
"key": "ref138"
},
{
"DOI": "10.1371/journal.pone.0180512",
"doi-asserted-by": "publisher",
"key": "ref139"
},
{
"DOI": "10.1007/s42000-019-00155-z",
"doi-asserted-by": "publisher",
"key": "ref140"
},
{
"DOI": "10.1016/S0146-0005(97)80013-4",
"doi-asserted-by": "publisher",
"key": "ref141"
},
{
"DOI": "10.1602/neurorx.1.3.341",
"doi-asserted-by": "publisher",
"key": "ref142"
},
{
"article-title": "Meta-analysis in medical research",
"author": "Haidich",
"first-page": "29",
"journal-title": "Hippokratia",
"key": "ref143",
"volume": "14",
"year": "2010"
},
{
"DOI": "10.1016/j.ejim.2016.03.020",
"doi-asserted-by": "publisher",
"key": "ref144"
},
{
"DOI": "10.1111/cen.13281",
"doi-asserted-by": "publisher",
"key": "ref145"
},
{
"DOI": "10.3945/ajcn.2009.29094",
"doi-asserted-by": "publisher",
"key": "ref146"
},
{
"DOI": "10.1056/NEJMoa1915176",
"doi-asserted-by": "publisher",
"key": "ref147"
},
{
"DOI": "10.7556/jaoa.2018.037",
"doi-asserted-by": "publisher",
"key": "ref148"
},
{
"DOI": "10.1093/nar/gkr1014",
"doi-asserted-by": "publisher",
"key": "ref149"
},
{
"article-title": "Magnesium Metabolism and its Disorders",
"author": "Swaminathan",
"first-page": "47",
"journal-title": "Clin. Biochem. Rev.",
"key": "ref150",
"volume": "24",
"year": "2003"
},
{
"DOI": "10.1007/s00134-002-1281-y",
"doi-asserted-by": "publisher",
"key": "ref151"
},
{
"DOI": "10.3390/nu12061562",
"doi-asserted-by": "publisher",
"key": "ref152"
},
{
"article-title": "The fight against covid-19: The role of drugs and food supplements",
"author": "Rusciano",
"first-page": "1",
"journal-title": "J. Pharm. Pharm. Res.",
"key": "ref153",
"volume": "3",
"year": "2020"
},
{
"DOI": "10.3390/nu12102992",
"doi-asserted-by": "publisher",
"key": "ref154"
},
{
"key": "ref155",
"unstructured": "Covid-19 Intervention Trial Summary\n https://vitamindwiki.com/tiki-index.php?page_id=11728"
}
],
"reference-count": 155,
"references-count": 155,
"relation": {},
"resource": {
"primary": {
"URL": "https://www.mdpi.com/2072-6643/12/11/3361"
}
},
"score": 1,
"short-title": [],
"source": "Crossref",
"subject": [],
"subtitle": [],
"title": "Evidence Regarding Vitamin D and Risk of COVID-19 and Its Severity",
"type": "journal-article",
"volume": "12"
}
