Variations in Plasma Levels of Orally Administered Ivermectin Could Hamper Its Potential Drug Repositioning: Results of a Bioequivalence Study in Mexican Population
Ernesto De La Puente, Carlos Ramos-Mundo, Elena I Flores-Pérez, Arely Vergara-Castañeda, Juan Pablo Reyes-Grajeda, Liz J Medina-Reyes, María Isabel Ruiz-Olmedo, Marco A Loza-Mejía
Pharmaceuticals, doi:10.3390/ph18081193
Background/Objectives: Despite its initial promise as a treatment for COVID-19 due to its antiviral properties, controlled randomized trials have demonstrated a lack of clinical efficacy at standard dosages. Although its overall clinical benefits remain contentious, a recent meta-analysis suggests that ivermectin may lower the risk of mechanical ventilation in COVID-19 patients. This study aims to assess the bioequivalence of different formulations of orally administered ivermectin within a Mexican population. Methods: A randomized, controlled bioequivalence study was conducted involving healthy volunteers who received two oral formulations of ivermectin. Plasma samples were collected at predetermined intervals for pharmacokinetic analysis. Results: The findings indicate significant variations in plasma concentration profiles among the evaluated formulations. Elevated inter-and intrasubject variations, independent of the formulation, highlighted implications for both clinical efficacy and safety. Conclusions: The potential repurposing of ivermectin for COVID-19 treatment raises concerns, particularly regarding the variability in plasma levels resulting from oral administration, which may impact its effectiveness. The study underscores the importance of pharmacokinetic properties in the repurposing of ivermectin as a therapeutic agent. Given the observed discrepancies in plasma levels, careful consideration of dosing and formulation is essential for optimizing clinical outcomes in potential new applications of ivermectin.
Conflicts of Interest: The authors declare no conflicts of interest.
References
Aboulfotouh, Allam, El-Badry, El-Sayed, Role of self-emulsifying drug delivery systems in optimizing the oral delivery of hydrophilic macromolecules and reducing interindividual variability, Colloids Surf. B Biointerfaces,
doi:10.1016/j.colsurfb.2018.03.034
Alaimo, Pulvirenti, Network-Based Drug Repositioning: Approaches, Resources, and Research Directions BT-Computational Methods for Drug Repurposing,
doi:10.1007/978-1-4939-8955-3_6
Algorta, Krolewiecki, Pinto, Gold, Muñoz, Pharmacokinetic Characterization and Comparative Bioavailability of an Innovative Orodispersible Fixed-Dose Combination of Ivermectin and Albendazole: A Single Dose, Open Label, Sequence Randomized, Crossover Clinical Trial in Healthy Volunteers, Front. Pharmacol,
doi:10.3389/fphar.2022.914886
Alshehri, Chhonker, Bala, Edi, Bjerum et al., Population pharmacokinetic model of ivermectin in mass drug administration against lymphatic filariasis, PLoS Negl. Trop. Dis,
doi:10.1371/journal.pntd.0011319
Banerjee, Shankar, Prasad, Formulation development and systematic optimization of stabilized ziprasidone hydrochloride capsules devoid of any food effect, Pharm. Dev. Technol,
doi:10.3109/10837450.2015.1055764
Chaccour, Casellas, Blanco-Di Matteo, Pineda, Fernandez-Montero et al., The effect of early treatment with ivermectin on viral load, symptoms and humoral response in patients with non-severe COVID-19: A pilot, double-blind, placebo-controlled, randomized clinical trial, eClinicalMedicine,
doi:10.1016/j.eclinm.2020.100720
Chaccour, Hammann, Rabinovich, Ivermectin to reduce malaria transmission I. Pharmacokinetic and pharmacodynamic considerations regarding efficacy and safety, Malar. J,
doi:10.1186/s12936-017-1801-4
Cofepris, Norma Oficial Mexicana
Constantinides, Wasan, Lipid Formulation Strategies for Enhancing Intestinal Transport and Absorption of P-Glycoprotein (P-gp) Substrate Drugs: In vitro/In vivo Case Studies, J. Pharm. Sci,
doi:10.1002/jps.20780
Crump, Ivermectin: Enigmatic multifaceted 'wonder' drug continues to surprise and exceed expectations, J. Antibiot,
doi:10.1038/ja.2017.11
Duthaler, Leisegang, Karlsson, Krähenbühl, Hammann, The effect of food on the pharmacokinetics of oral ivermectin, J. Antimicrob. Chemother,
doi:10.1093/jac/dkz466
Duthaler, Suenderhauf, Karlsson, Hussner, Meyer Zu Schwabedissen et al., Population pharmacokinetics of oral ivermectin in venous plasma and dried blood spots in healthy volunteers, Br. J. Clin. Pharmacol,
doi:10.1111/bcp.13840
Favela-Mendoza, Rangel-Villalobos, Fricke-Galindo, Ortega-Vázquez, Martínez-Cortés et al., Genetic variability among Mexican Mestizo and Amerindian populations based on three ABCB1 polymorphisms, Mol. Biol. Rep,
doi:10.1007/s11033-018-4419-x
Fernandes, Van Oudtshoorn, Tam, González, Aurela et al., The bioequivalence study design recommendations for immediate-release solid oral dosage forms in the international pharmaceutical regulators programme participating regulators and organisations: Differences and commonalities, J. Pharm. Pharm. Sci,
doi:10.3389/jpps.2024.12398
Gardon, Boussinesq, Kamgno, Gardon-Wendel, Demanga-Ngangue; Duke, Effects of standard and high doses of ivermectin on adult worms of Onchocerca volvulus: A randomised controlled trial, Lancet,
doi:10.1016/S0140-6736(02)09456-4
Gera, Sampathi, Maddukuri, Dodoala, Junnuthula et al., Therapeutic Potential of Naringenin Nanosuspension: In Vitro and In Vivo Anti-Osteoporotic Studies, Pharmaceutics,
doi:10.3390/pharmaceutics14071449
González Canga, Sahagún Prieto, Diez Liébana, Fernández Martínez, Sierra et al., The Pharmacokinetics and Interactions of Ivermectin in Humans-A Mini-review, AAPS J,
doi:10.1208/s12248-007-9000-9
González Canga, Sahagún Prieto, José Diez Liébana, Martínez, Vega et al., The pharmacokinetics and metabolism of ivermectin in domestic animal species, Vet. J,
doi:10.1016/j.tvjl.2007.07.011
Guzzo, Furtek, Porras, Chen, Tipping et al., Tolerability, and Pharmacokinetics of Escalating High Doses of Ivermectin in Healthy Adult Subjects, J. Clin. Pharmacol,
doi:10.1177/009127002237994
Halder, Pradhan, Kar, Ghosh, Rath, Nanotherapeutics approaches to overcome P-glycoprotein-mediated multi-drug resistance in cancer, Nanomed. Nanotechnol. Biol. Med,
doi:10.1016/j.nano.2021.102494
Huang, Zhang, Teaching an old dog new tricks: Drug discovery by repositioning natural products and their derivatives, Drug Discov. Today,
doi:10.1016/j.drudis.2022.02.007
Jourdan, Bureau, Rochais, Dallemagne, Drug repositioning: A brief overview, J. Pharm. Pharmacol,
doi:10.1111/jphp.13273
Kim, Shim, Yee, Choi, Gwak, Effects of CYP3A4*22 polymorphism on trough concentration of tacrolimus in kidney transplantation: A systematic review and meta-analysis, Front. Pharmacol,
doi:10.3389/fphar.2023.1201083
Lifschitz, Virkel, Sallovitz, Sutra, Galtier et al., Comparative distribution of ivermectin and doramectin to parasite location tissues in cattle, Vet. Parasitol,
doi:10.1016/S0304-4017(99)00175-2
Low, Yip, Lal, Repositioning Ivermectin for COVID-19 treatment: Molecular mechanisms of action against SARS-CoV-2 replication, Biochim. Biophys. Acta (BBA) Mol. Basis Dis,
doi:10.1016/j.bbadis.2021.166294
Maji, Mahajan, Sriram, Medtiya, Vasave et al., Solid self emulsifying drug delivery system: Superior mode for oral delivery of hydrophobic cargos, J. Control. Release,
doi:10.1016/j.jconrel.2021.08.013
Marcolino, Meira, Guimarães, Motta, Chagas et al., Systematic review and meta-analysis of ivermectin for treatment of COVID-19: Evidence beyond the hype, BMC Infect. Dis,
doi:10.1186/s12879-022-07589-8
Mittal, Mittal, Repurposing old molecules for new indications: Defining pillars of success from lessons in the past, Eur. J. Pharmacol,
doi:10.1016/j.ejphar.2021.174569
Murteira, Millier, Ghezaiel, Lamure, Drug Reformulations and Repositioning in the Pharmaceutical Industry and Their Impact on Market Access: Regulatory Implications, J. Mark. Access Health Policy,
doi:10.3402/jmahp.v2.22813
Muñoz, Ballester, Antonijoan, Gich, Rodríguez et al., Safety and pharmacokinetic profile of fixed-dose ivermectin with an innovative 18mg tablet in healthy adult volunteers, PLoS Negl. Trop. Dis,
doi:10.1371/journal.pntd.0006020
Naggie, Boulware, Lindsell, Stewart, Slandzicki et al., Effect of Higher-Dose Ivermectin for 6 Days vs Placebo on Time to Sustained Recovery in Outpatients with COVID-19: A Randomized Clinical Trial, JAMA,
doi:10.1001/jama.2023.1650
Nguyen, Duong, Maeng, Pharmaceutical Formulations with P-Glycoprotein Inhibitory Effect as Promising Approaches for Enhancing Oral Drug Absorption and Bioavailability, Pharmaceutics,
doi:10.3390/pharmaceutics13071103
O' Sullivan, Blake, Berntgen, Salmonson, Welink, on behalf of the Pharmacokinetics Working Party. Overview of the European Medicines Agency's Development of Product-Specific Bioequivalence Guidelines, Clin. Pharmacol. Ther,
doi:10.1002/cpt.957
Ozeki, Nagahama, Fujita, Suzuki, Sugino et al., Influence of CYP3A4/5 and ABC transporter polymorphisms on lenvatinib plasma trough concentrations in Japanese patients with thyroid cancer, Sci. Rep,
doi:10.1038/s41598-019-41820-y
Ponce, Green, Strassle, Nápoles, Positive and negative aspects of the COVID-19 pandemic among a diverse sample of US adults: An exploratory mixed-methods analysis of online survey data, BMC Public Health,
doi:10.1186/s12889-023-17491-w
Rangaraj, Sampathi, Junnuthula, Kolimi, Mandati et al., Fast-Fed Variability: Insights into Drug Delivery, Molecular Manifestations, and Regulatory Aspects, Pharmaceutics,
doi:10.3390/pharmaceutics14091807
Reis, Silva, Silva, Thabane, Milagres et al., Effect of Early Treatment with Ivermectin among Patients with COVID-19, N. Engl. J. Med,
doi:10.1056/NEJMoa2115869
Reyes-Hernández, Lares-Asseff, Sosa-Macias, Vega, Albores et al., A Comparative Study of CYP3A4 Polymorphisms in Mexican Amerindian and Mestizo Populations, Pharmacology,
doi:10.1159/000109983
Seo, Jin, Yoo, Pharmacokinetic considerations for enhancing drug repurposing opportunities of anthelmintics: Niclosamide as a case study, Biomed. Pharmacother,
doi:10.1016/j.biopha.2024.116394
Talevi, Bellera, Challenges and opportunities with drug repurposing: Finding strategies to find alternative uses of therapeutics, Expert Opin. Drug Discov,
doi:10.1080/17460441.2020.1704729
Wagstaff, Sivakumaran, Heaton, Harrich, Jans, Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus, Biochem. J,
doi:10.1042/BJ20120150
Wang, Aldahdooh, Hu, Yang, Vähä-Koskela et al., DrugRepo: A novel approach to repurposing drugs based on chemical and genomic features, Sci. Rep,
doi:10.1038/s41598-022-24980-2
Wang, Chen, Chen, Wang, Influence of ABCB1 Gene Polymorphism on Rivaroxaban Blood Concentration and Hemorrhagic Events in Patients With Atrial Fibrillation, Front. Pharmacol,
doi:10.3389/fphar.2021.639854
DOI record:
{
"DOI": "10.3390/ph18081193",
"ISSN": [
"1424-8247"
],
"URL": "http://dx.doi.org/10.3390/ph18081193",
"abstract": "<jats:p>Background/Objectives: Despite its initial promise as a treatment for COVID-19 due to its antiviral properties, controlled randomized trials have demonstrated a lack of clinical efficacy at standard dosages. Although its overall clinical benefits remain contentious, a recent meta-analysis suggests that ivermectin may lower the risk of mechanical ventilation in COVID-19 patients. This study aims to assess the bioequivalence of different formulations of orally administered ivermectin within a Mexican population. Methods: A randomized, controlled bioequivalence study was conducted involving healthy volunteers who received two oral formulations of ivermectin. Plasma samples were collected at predetermined intervals for pharmacokinetic analysis. Results: The findings indicate significant variations in plasma concentration profiles among the evaluated formulations. Elevated inter- and intrasubject variations, independent of the formulation, highlighted implications for both clinical efficacy and safety. Conclusions: The potential repurposing of ivermectin for COVID-19 treatment raises concerns, particularly regarding the variability in plasma levels resulting from oral administration, which may impact its effectiveness. The study underscores the importance of pharmacokinetic properties in the repurposing of ivermectin as a therapeutic agent. Given the observed discrepancies in plasma levels, careful consideration of dosing and formulation is essential for optimizing clinical outcomes in potential new applications of ivermectin.</jats:p>",
"alternative-id": [
"ph18081193"
],
"author": [
{
"affiliation": [
{
"name": "Chemical Sciences School, Universidad La Salle-México, Benjamín Franklin 45, Mexico City 06140, Mexico"
}
],
"family": "de la Puente",
"given": "Ernesto",
"sequence": "first"
},
{
"affiliation": [
{
"name": "Chemical Sciences School, Universidad La Salle-México, Benjamín Franklin 45, Mexico City 06140, Mexico"
}
],
"family": "Ramos-Mundo",
"given": "Carlos",
"sequence": "additional"
},
{
"affiliation": [
{
"name": "Chemical Sciences School, Universidad La Salle-México, Benjamín Franklin 45, Mexico City 06140, Mexico"
}
],
"family": "Flores-Pérez",
"given": "Elena I.",
"sequence": "additional"
},
{
"affiliation": [
{
"name": "Research Group on Development and Innovation in Health and Nutrition Promotion and Education, Universidad La Salle-México, Benjamín Franklin 45, Mexico City 06140, Mexico"
}
],
"family": "Vergara-Castañeda",
"given": "Arely",
"sequence": "additional"
},
{
"ORCID": "https://orcid.org/0000-0001-6498-3286",
"affiliation": [
{
"name": "Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Mexico City 14610, Mexico"
}
],
"authenticated-orcid": false,
"family": "Reyes-Grajeda",
"given": "Juan Pablo",
"sequence": "additional"
},
{
"affiliation": [
{
"name": "Facultad de Química, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico"
}
],
"family": "Medina-Reyes",
"given": "Liz J.",
"sequence": "additional"
},
{
"affiliation": [
{
"name": "Chemical Sciences School, Universidad La Salle-México, Benjamín Franklin 45, Mexico City 06140, Mexico"
}
],
"family": "Ruiz-Olmedo",
"given": "María Isabel",
"sequence": "additional"
},
{
"ORCID": "https://orcid.org/0000-0002-8449-0806",
"affiliation": [
{
"name": "Design, Isolation, and Synthesis of Bioactive Molecules Research Group, Universidad La Salle-México, Benjamín Franklin 45, Mexico City 06140, Mexico"
}
],
"authenticated-orcid": false,
"family": "Loza-Mejía",
"given": "Marco A.",
"sequence": "additional"
}
],
"container-title": "Pharmaceuticals",
"container-title-short": "Pharmaceuticals",
"content-domain": {
"crossmark-restriction": false,
"domain": []
},
"created": {
"date-parts": [
[
2025,
8,
13
]
],
"date-time": "2025-08-13T09:43:01Z",
"timestamp": 1755078181000
},
"deposited": {
"date-parts": [
[
2025,
8,
13
]
],
"date-time": "2025-08-13T09:48:50Z",
"timestamp": 1755078530000
},
"indexed": {
"date-parts": [
[
2025,
8,
15
]
],
"date-time": "2025-08-15T02:35:59Z",
"timestamp": 1755225359640,
"version": "3.43.0"
},
"is-referenced-by-count": 0,
"issue": "8",
"issued": {
"date-parts": [
[
2025,
8,
13
]
]
},
"journal-issue": {
"issue": "8",
"published-online": {
"date-parts": [
[
2025,
8
]
]
}
},
"language": "en",
"license": [
{
"URL": "https://creativecommons.org/licenses/by/4.0/",
"content-version": "vor",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2025,
8,
13
]
],
"date-time": "2025-08-13T00:00:00Z",
"timestamp": 1755043200000
}
}
],
"link": [
{
"URL": "https://www.mdpi.com/1424-8247/18/8/1193/pdf",
"content-type": "unspecified",
"content-version": "vor",
"intended-application": "similarity-checking"
}
],
"member": "1968",
"original-title": [],
"page": "1193",
"prefix": "10.3390",
"published": {
"date-parts": [
[
2025,
8,
13
]
]
},
"published-online": {
"date-parts": [
[
2025,
8,
13
]
]
},
"publisher": "MDPI AG",
"reference": [
{
"DOI": "10.1007/978-1-4939-8955-3",
"doi-asserted-by": "crossref",
"key": "ref_1",
"unstructured": "Vanhaelen, Q. (2019). Network-Based Drug Repositioning: Approaches, Resources, and Research Directions BT-Computational Methods for Drug Repurposing. Computational Methods for Drug Repurposing, Springer."
},
{
"DOI": "10.1016/j.drudis.2022.02.007",
"article-title": "Teaching an old dog new tricks: Drug discovery by repositioning natural products and their derivatives",
"author": "Huang",
"doi-asserted-by": "crossref",
"first-page": "1936",
"journal-title": "Drug Discov. Today",
"key": "ref_2",
"volume": "27",
"year": "2022"
},
{
"DOI": "10.1038/s41598-022-24980-2",
"doi-asserted-by": "crossref",
"key": "ref_3",
"unstructured": "Wang, Y., Aldahdooh, J., Hu, Y., Yang, H., Vähä-Koskela, M., Tang, J., and Tanoli, Z. (2022). DrugRepo: A novel approach to repurposing drugs based on chemical and genomic features. Sci. Rep., 12."
},
{
"DOI": "10.1186/s12889-023-17491-w",
"doi-asserted-by": "crossref",
"key": "ref_4",
"unstructured": "Ponce, S.A., Green, A., Strassle, P.D., and Nápoles, A.M. (2024). Positive and negative aspects of the COVID-19 pandemic among a diverse sample of US adults: An exploratory mixed-methods analysis of online survey data. BMC Public Health, 24."
},
{
"DOI": "10.1186/s12879-022-07589-8",
"doi-asserted-by": "crossref",
"key": "ref_5",
"unstructured": "Marcolino, M.S., Meira, K.C., Guimarães, N.S., Motta, P.P., Chagas, V.S., Kelles, S.M.B., de Sá, L.C., Valacio, R.A., and Ziegelmann, P.K. (2022). Systematic review and meta-analysis of ivermectin for treatment of COVID-19: Evidence beyond the hype. BMC Infect. Dis., 22."
},
{
"DOI": "10.1016/j.bbadis.2021.166294",
"doi-asserted-by": "crossref",
"key": "ref_6",
"unstructured": "Low, Z.Y., Yip, A.J.W., and Lal, S.K. (2022). Repositioning Ivermectin for COVID-19 treatment: Molecular mechanisms of action against SARS-CoV-2 replication. Biochim. Biophys. Acta (BBA) Mol. Basis Dis., 1868."
},
{
"DOI": "10.1016/j.antiviral.2020.104787",
"article-title": "The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro",
"author": "Caly",
"doi-asserted-by": "crossref",
"first-page": "104787",
"journal-title": "Antiviral Res.",
"key": "ref_7",
"volume": "178",
"year": "2020"
},
{
"DOI": "10.1016/j.eclinm.2020.100720",
"article-title": "The effect of early treatment with ivermectin on viral load, symptoms and humoral response in patients with non-severe COVID-19: A pilot, double-blind, placebo-controlled, randomized clinical trial",
"author": "Chaccour",
"doi-asserted-by": "crossref",
"first-page": "100720",
"journal-title": "eClinicalMedicine",
"key": "ref_8",
"volume": "32",
"year": "2021"
},
{
"DOI": "10.1056/NEJMoa2115869",
"article-title": "Effect of Early Treatment with Ivermectin among Patients with COVID-19",
"author": "Reis",
"doi-asserted-by": "crossref",
"first-page": "1721",
"journal-title": "N. Engl. J. Med.",
"key": "ref_9",
"volume": "386",
"year": "2022"
},
{
"DOI": "10.1001/jama.2023.1650",
"article-title": "Effect of Higher-Dose Ivermectin for 6 Days vs Placebo on Time to Sustained Recovery in Outpatients with COVID-19: A Randomized Clinical Trial",
"author": "Naggie",
"doi-asserted-by": "crossref",
"first-page": "888",
"journal-title": "JAMA",
"key": "ref_10",
"volume": "329",
"year": "2023"
},
{
"DOI": "10.1016/j.heliyon.2024.e27647",
"article-title": "Ivermectin for treatment of COVID-19: A systematic review and meta-analysis",
"author": "Song",
"doi-asserted-by": "crossref",
"first-page": "e27647",
"journal-title": "Heliyon",
"key": "ref_11",
"volume": "10",
"year": "2024"
},
{
"DOI": "10.1038/ja.2017.11",
"article-title": "Ivermectin: Enigmatic multifaceted ‘wonder’ drug continues to surprise and exceed expectations",
"author": "Crump",
"doi-asserted-by": "crossref",
"first-page": "495",
"journal-title": "J. Antibiot.",
"key": "ref_12",
"volume": "70",
"year": "2017"
},
{
"DOI": "10.1080/17460441.2020.1704729",
"article-title": "Challenges and opportunities with drug repurposing: Finding strategies to find alternative uses of therapeutics",
"author": "Talevi",
"doi-asserted-by": "crossref",
"first-page": "397",
"journal-title": "Expert Opin. Drug Discov.",
"key": "ref_13",
"volume": "15",
"year": "2020"
},
{
"DOI": "10.1111/jphp.13273",
"article-title": "Drug repositioning: A brief overview",
"author": "Jourdan",
"doi-asserted-by": "crossref",
"first-page": "1145",
"journal-title": "J. Pharm. Pharmacol.",
"key": "ref_14",
"volume": "72",
"year": "2020"
},
{
"DOI": "10.1016/j.biopha.2024.116394",
"doi-asserted-by": "crossref",
"key": "ref_15",
"unstructured": "Seo, J.I., Jin, G., and Yoo, H.H. (2024). Pharmacokinetic considerations for enhancing drug repurposing opportunities of anthelmintics: Niclosamide as a case study. Biomed. Pharmacother., 173."
},
{
"DOI": "10.1208/s12248-007-9000-9",
"article-title": "The Pharmacokinetics and Interactions of Ivermectin in Humans—A Mini-review",
"doi-asserted-by": "crossref",
"first-page": "42",
"journal-title": "AAPS J.",
"key": "ref_16",
"volume": "10",
"year": "2008"
},
{
"DOI": "10.1016/j.tvjl.2007.07.011",
"article-title": "The pharmacokinetics and metabolism of ivermectin in domestic animal species",
"author": "Vega",
"doi-asserted-by": "crossref",
"first-page": "25",
"journal-title": "Vet. J.",
"key": "ref_17",
"volume": "179",
"year": "2009"
},
{
"DOI": "10.1111/bcp.13840",
"article-title": "Population pharmacokinetics of oral ivermectin in venous plasma and dried blood spots in healthy volunteers",
"author": "Duthaler",
"doi-asserted-by": "crossref",
"first-page": "626",
"journal-title": "Br. J. Clin. Pharmacol.",
"key": "ref_18",
"volume": "85",
"year": "2019"
},
{
"article-title": "The effect of food on the pharmacokinetics of oral ivermectin",
"author": "Duthaler",
"first-page": "438",
"journal-title": "J. Antimicrob. Chemother.",
"key": "ref_19",
"volume": "75",
"year": "2020"
},
{
"DOI": "10.1042/BJ20120150",
"article-title": "Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus",
"author": "Wagstaff",
"doi-asserted-by": "crossref",
"first-page": "851",
"journal-title": "Biochem. J.",
"key": "ref_20",
"volume": "443",
"year": "2012"
},
{
"DOI": "10.3389/jpps.2024.12398",
"article-title": "The bioequivalence study design recommendations for immediate-release solid oral dosage forms in the international pharmaceutical regulators programme participating regulators and organisations: Differences and commonalities",
"author": "Fernandes",
"doi-asserted-by": "crossref",
"first-page": "12398",
"journal-title": "J. Pharm. Pharm. Sci.",
"key": "ref_21",
"volume": "27",
"year": "2024"
},
{
"DOI": "10.1371/journal.pntd.0006020",
"doi-asserted-by": "crossref",
"key": "ref_22",
"unstructured": "Muñoz, J., Ballester, M.R., Antonijoan, R.M., Gich, I., Rodríguez, M., Colli, E., Gold, S., and Krolewiecki, A.J. (2018). Safety and pharmacokinetic profile of fixed-dose ivermectin with an innovative 18mg tablet in healthy adult volunteers. PLoS Negl. Trop. Dis., 12."
},
{
"DOI": "10.1177/009127002237994",
"article-title": "Safety, Tolerability, and Pharmacokinetics of Escalating High Doses of Ivermectin in Healthy Adult Subjects",
"author": "Guzzo",
"doi-asserted-by": "crossref",
"first-page": "1122",
"journal-title": "J. Clin. Pharmacol.",
"key": "ref_23",
"volume": "42",
"year": "2002"
},
{
"DOI": "10.3389/fphar.2022.914886",
"doi-asserted-by": "crossref",
"key": "ref_24",
"unstructured": "Algorta, J., Krolewiecki, A., Pinto, F., Gold, S., and Muñoz, J. (2022). Pharmacokinetic Characterization and Comparative Bioavailability of an Innovative Orodispersible Fixed-Dose Combination of Ivermectin and Albendazole: A Single Dose, Open Label, Sequence Randomized, Crossover Clinical Trial in Healthy Volunteers. Front. Pharmacol., 13."
},
{
"DOI": "10.1186/s12936-017-1801-4",
"article-title": "Ivermectin to reduce malaria transmission I. Pharmacokinetic and pharmacodynamic considerations regarding efficacy and safety",
"author": "Chaccour",
"doi-asserted-by": "crossref",
"first-page": "161",
"journal-title": "Malar. J.",
"key": "ref_25",
"volume": "16",
"year": "2017"
},
{
"DOI": "10.1016/j.ijpharm.2016.04.013",
"article-title": "Prediction of positive food effect: Bioavailability enhancement of BCS class II drugs",
"author": "Raman",
"doi-asserted-by": "crossref",
"first-page": "110",
"journal-title": "Int. J. Pharm.",
"key": "ref_26",
"volume": "506",
"year": "2016"
},
{
"DOI": "10.3389/fphar.2023.1201083",
"doi-asserted-by": "crossref",
"key": "ref_27",
"unstructured": "Kim, J.S., Shim, S., Yee, J., Choi, K.H., and Gwak, H.S. (2023). Effects of CYP3A4*22 polymorphism on trough concentration of tacrolimus in kidney transplantation: A systematic review and meta-analysis. Front. Pharmacol., 14."
},
{
"DOI": "10.1038/s41598-019-41820-y",
"doi-asserted-by": "crossref",
"key": "ref_28",
"unstructured": "Ozeki, T., Nagahama, M., Fujita, K., Suzuki, A., Sugino, K., Ito, K., and Miura, M. (2019). Influence of CYP3A4/5 and ABC transporter polymorphisms on lenvatinib plasma trough concentrations in Japanese patients with thyroid cancer. Sci. Rep., 9."
},
{
"DOI": "10.3389/fphar.2021.639854",
"doi-asserted-by": "crossref",
"key": "ref_29",
"unstructured": "Wang, Y., Chen, M., Chen, H., and Wang, F. (2021). Influence of ABCB1 Gene Polymorphism on Rivaroxaban Blood Concentration and Hemorrhagic Events in Patients With Atrial Fibrillation. Front. Pharmacol., 12."
},
{
"article-title": "A Comparative Study of CYP3A4 Polymorphisms in Mexican Amerindian and Mestizo Populations",
"author": "Vega",
"first-page": "97",
"journal-title": "Pharmacology",
"key": "ref_30",
"volume": "81",
"year": "2007"
},
{
"DOI": "10.1007/s11033-018-4419-x",
"article-title": "Genetic variability among Mexican Mestizo and Amerindian populations based on three ABCB1 polymorphisms",
"doi-asserted-by": "crossref",
"first-page": "2525",
"journal-title": "Mol. Biol. Rep.",
"key": "ref_31",
"volume": "45",
"year": "2018"
},
{
"DOI": "10.3390/pharmaceutics13071103",
"doi-asserted-by": "crossref",
"key": "ref_32",
"unstructured": "Nguyen, T.-T.-L., Duong, V.-A., and Maeng, H.-J. (2021). Pharmaceutical Formulations with P-Glycoprotein Inhibitory Effect as Promising Approaches for Enhancing Oral Drug Absorption and Bioavailability. Pharmaceutics, 13."
},
{
"DOI": "10.1002/jps.20780",
"article-title": "Lipid Formulation Strategies for Enhancing Intestinal Transport and Absorption of P-Glycoprotein (P-gp) Substrate Drugs: In vitro/In vivo Case Studies",
"author": "Constantinides",
"doi-asserted-by": "crossref",
"first-page": "235",
"journal-title": "J. Pharm. Sci.",
"key": "ref_33",
"volume": "96",
"year": "2007"
},
{
"DOI": "10.1016/j.jconrel.2021.08.013",
"article-title": "Solid self emulsifying drug delivery system: Superior mode for oral delivery of hydrophobic cargos",
"author": "Maji",
"doi-asserted-by": "crossref",
"first-page": "646",
"journal-title": "J. Control. Release",
"key": "ref_34",
"volume": "337",
"year": "2021"
},
{
"DOI": "10.1016/j.nano.2021.102494",
"doi-asserted-by": "crossref",
"key": "ref_35",
"unstructured": "Halder, J., Pradhan, D., Kar, B., Ghosh, G., and Rath, G. (2022). Nanotherapeutics approaches to overcome P-glycoprotein-mediated multi-drug resistance in cancer. Nanomed. Nanotechnol. Biol. Med., 40."
},
{
"DOI": "10.1002/cpt.957",
"article-title": "Overview of the European Medicines Agency’s Development of Product-Specific Bioequivalence Guidelines",
"author": "Blake",
"doi-asserted-by": "crossref",
"first-page": "539",
"journal-title": "Clin. Pharmacol. Ther.",
"key": "ref_36",
"volume": "104",
"year": "2018"
},
{
"DOI": "10.1371/journal.pntd.0011319",
"doi-asserted-by": "crossref",
"key": "ref_37",
"unstructured": "Alshehri, A., Chhonker, Y.S., Bala, V., Edi, C., Bjerum, C.M., Koudou, B.G., John, L.N., Mitjà, O., Marks, M., and King, C.L. (2023). Population pharmacokinetic model of ivermectin in mass drug administration against lymphatic filariasis. PLoS Negl. Trop. Dis., 17."
},
{
"DOI": "10.1002/1099-081X(200001)21:1<23::AID-BDD212>3.0.CO;2-V",
"article-title": "Effect of food on the pharmacokinetics of osmotic controlled-release methylphenidate HCl in healthy subjects",
"author": "Modi",
"doi-asserted-by": "crossref",
"first-page": "23",
"journal-title": "Biopharm. Drug Dispos.",
"key": "ref_38",
"volume": "21",
"year": "2000"
},
{
"article-title": "Formulation development and systematic optimization of stabilized ziprasidone hydrochloride capsules devoid of any food effect",
"author": "Banerjee",
"first-page": "775",
"journal-title": "Pharm. Dev. Technol.",
"key": "ref_39",
"volume": "21",
"year": "2016"
},
{
"DOI": "10.3390/pharmaceutics14071449",
"doi-asserted-by": "crossref",
"key": "ref_40",
"unstructured": "Gera, S., Sampathi, S., Maddukuri, S., Dodoala, S., Junnuthula, V., and Dyawanapelly, S. (2022). Therapeutic Potential of Naringenin Nanosuspension: In Vitro and In Vivo Anti-Osteoporotic Studies. Pharmaceutics, 14."
},
{
"DOI": "10.1016/j.colsurfb.2018.03.034",
"article-title": "Role of self-emulsifying drug delivery systems in optimizing the oral delivery of hydrophilic macromolecules and reducing interindividual variability",
"author": "AboulFotouh",
"doi-asserted-by": "crossref",
"first-page": "82",
"journal-title": "Colloids Surf. B Biointerfaces",
"key": "ref_41",
"volume": "167",
"year": "2018"
},
{
"DOI": "10.3390/pharmaceutics14091807",
"doi-asserted-by": "crossref",
"key": "ref_42",
"unstructured": "Rangaraj, N., Sampathi, S., Junnuthula, V., Kolimi, P., Mandati, P., Narala, S., Nyavanandi, D., and Dyawanapelly, S. (2022). Fast-Fed Variability: Insights into Drug Delivery, Molecular Manifestations, and Regulatory Aspects. Pharmaceutics, 14."
},
{
"DOI": "10.3402/jmahp.v2.22813",
"article-title": "Drug Reformulations and Repositioning in the Pharmaceutical Industry and Their Impact on Market Access: Regulatory Implications",
"author": "Murteira",
"doi-asserted-by": "crossref",
"first-page": "22813",
"journal-title": "J. Mark. Access Health Policy",
"key": "ref_43",
"volume": "2",
"year": "2014"
},
{
"DOI": "10.1016/j.ejphar.2021.174569",
"article-title": "Repurposing old molecules for new indications: Defining pillars of success from lessons in the past",
"author": "Mittal",
"doi-asserted-by": "crossref",
"first-page": "174569",
"journal-title": "Eur. J. Pharmacol.",
"key": "ref_44",
"volume": "912",
"year": "2021"
},
{
"DOI": "10.1016/S0304-4017(99)00175-2",
"article-title": "Comparative distribution of ivermectin and doramectin to parasite location tissues in cattle",
"author": "Lifschitz",
"doi-asserted-by": "crossref",
"first-page": "327",
"journal-title": "Vet. Parasitol.",
"key": "ref_45",
"volume": "87",
"year": "2000"
},
{
"DOI": "10.1016/S0140-6736(02)09456-4",
"article-title": "Effects of standard and high doses of ivermectin on adult worms of Onchocerca volvulus: A randomised controlled trial",
"author": "Gardon",
"doi-asserted-by": "crossref",
"first-page": "203",
"journal-title": "Lancet",
"key": "ref_46",
"volume": "360",
"year": "2002"
},
{
"key": "ref_47",
"unstructured": "(2021, March 15). COFEPRIS. Norma Oficial Mexicana NOM-177-SSA1-2013; Que Establece las Pruebas y Procedimientos Para Demostrar Que un Medicamento es Intercambiable. Requisitos a Que Deben Sujetarse los Terceros Autorizados Que Realicen las Pruebas de Intercambiabilidad. Requisitos Para Realizar los Estudios de Biocomparabilidad. Requisitos a Que Deben Sujetarse los Terceros Autorizados, Centros de Investigación o Instituciones Hospitalarias Que Realicen las Pruebas de Biocomparabilidad; Diario Oficial de la Federación (DOF). Published on 20 September 2013. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5314833&fecha=20/09/2013#gsc.tab=0."
}
],
"reference-count": 47,
"references-count": 47,
"relation": {},
"resource": {
"primary": {
"URL": "https://www.mdpi.com/1424-8247/18/8/1193"
}
},
"score": 1,
"short-title": [],
"source": "Crossref",
"subject": [],
"subtitle": [],
"title": "Variations in Plasma Levels of Orally Administered Ivermectin Could Hamper Its Potential Drug Repositioning: Results of a Bioequivalence Study in Mexican Population",
"type": "journal-article",
"volume": "18"
}