Ivermectin ameliorates acute myocarditis via the inhibition of importin-mediated nuclear translocation of NF-κB/p65
et al., International Immunopharmacology, doi:10.1016/j.intimp.2024.112073, Apr 2024
Ivermectin for COVID-19
4th treatment shown to reduce risk in
August 2020, now with p < 0.00000000001 from 106 studies, recognized in 24 countries.
No treatment is 100% effective. Protocols
combine treatments.
6,300+ studies for
210+ treatments. c19early.org
|
Mouse study showing that ivermectin improves cardiac function and reduces inflammation in models of viral and autoimmune myocarditis. Authors found that ivermectin inhibited the nuclear translocation of NF-κB/p65 in macrophages by targeting importin β, thereby reducing levels of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α. These effects were confirmed in both Coxsackie B3 virus (CVB3)-induced myocarditis and experimental autoimmune myocarditis (EAM) in BALB/c mice, as well as in CVB3-infected RAW264.7 macrophages treated with ivermectin or a selective NF-κB/p65 nuclear translocation inhibitor, cTN50. While not directly tested against SARS-CoV-2, these findings suggest that ivermectin's ability to suppress NF-κB/p65-mediated inflammation in macrophages may be beneficial in the context of COVID-19-associated myocarditis and cytokine storm.
74 preclinical studies support the efficacy of ivermectin for COVID-19:
Ivermectin, better known for antiparasitic activity, is a broad spectrum antiviral with activity against many viruses including H7N771, Dengue37,72,73 , HIV-173, Simian virus 4074, Zika37,75,76 , West Nile76, Yellow Fever77,78, Japanese encephalitis77, Chikungunya78, Semliki Forest virus78, Human papillomavirus57, Epstein-Barr57, BK Polyomavirus79, and Sindbis virus78.
Ivermectin inhibits importin-α/β-dependent nuclear import of viral proteins71,73,74,80 , shows spike-ACE2 disruption at 1nM with microfluidic diffusional sizing38, binds to glycan sites on the SARS-CoV-2 spike protein preventing interaction with blood and epithelial cells and inhibiting hemagglutination41,81, shows dose-dependent inhibition of wildtype and omicron variants36, exhibits dose-dependent inhibition of lung injury61,66, may inhibit SARS-CoV-2 via IMPase inhibition37, may inhibit SARS-CoV-2 induced formation of fibrin clots resistant to degradation9, inhibits SARS-CoV-2 3CLpro54, may inhibit SARS-CoV-2 RdRp activity28, may minimize viral myocarditis by inhibiting NF-κB/p65-mediated inflammation in macrophages60, may be beneficial for COVID-19 ARDS by blocking GSDMD and NET formation82, may interfere with SARS-CoV-2's immune evasion via ORF8 binding4, may inhibit SARS-CoV-2 by disrupting CD147 interaction83-86, shows protection against inflammation, cytokine storm, and mortality in an LPS mouse model sharing key pathological features of severe COVID-1959,87, may be beneficial in severe COVID-19 by binding IGF1 to inhibit the promotion of inflammation, fibrosis, and cell proliferation that leads to lung damage8, may minimize SARS-CoV-2 induced cardiac damage40,48, may counter immune evasion by inhibiting NSP15-TBK1/KPNA1 interaction and restoring IRF3 activation88, may disrupt SARS-CoV-2 N and ORF6 protein nuclear transport and their suppression of host interferon responses1, reduces TAZ/YAP nuclear import, relieving SARS-CoV-2-driven suppression of IRF3 and NF-κB antiviral pathways35, increases Bifidobacteria which play a key role in the immune system89, has immunomodulatory51 and anti-inflammatory70,90 properties, and has an extensive and very positive safety profile91.
1.
Gayozo et al., Binding affinities analysis of ivermectin, nucleocapsid and ORF6 proteins of SARS-CoV-2 to human importins α isoforms: A computational approach, Biotecnia, doi:10.18633/biotecnia.v27.2485.
2.
Lefebvre et al., Characterization and Fluctuations of an Ivermectin Binding Site at the Lipid Raft Interface of the N-Terminal Domain (NTD) of the Spike Protein of SARS-CoV-2 Variants, Viruses, doi:10.3390/v16121836.
3.
Haque et al., Exploring potential therapeutic candidates against COVID-19: a molecular docking study, Discover Molecules, doi:10.1007/s44345-024-00005-5.
4.
Bagheri-Far et al., Non-spike protein inhibition of SARS-CoV-2 by natural products through the key mediator protein ORF8, Molecular Biology Research Communications, doi:10.22099/mbrc.2024.50245.2001.
5.
de Oliveira Só et al., In Silico Comparative Analysis of Ivermectin and Nirmatrelvir Inhibitors Interacting with the SARS-CoV-2 Main Protease, Preprints, doi:10.20944/preprints202404.1825.v1.
6.
Agamah et al., Network-based multi-omics-disease-drug associations reveal drug repurposing candidates for COVID-19 disease phases, ScienceOpen, doi:10.58647/DRUGARXIV.PR000010.v1.
7.
Oranu et al., Validation of the binding affinities and stabilities of ivermectin and moxidectin against SARS-CoV-2 receptors using molecular docking and molecular dynamics simulation, GSC Biological and Pharmaceutical Sciences, doi:10.30574/gscbps.2024.26.1.0030.
8.
Zhao et al., Identification of the shared gene signatures between pulmonary fibrosis and pulmonary hypertension using bioinformatics analysis, Frontiers in Immunology, doi:10.3389/fimmu.2023.1197752.
9.
Vottero et al., Computational Prediction of the Interaction of Ivermectin with Fibrinogen, Molecular Sciences, doi:10.3390/ijms241411449.
10.
Chellasamy et al., Docking and molecular dynamics studies of human ezrin protein with a modelled SARS-CoV-2 endodomain and their interaction with potential invasion inhibitors, Journal of King Saud University - Science, doi:10.1016/j.jksus.2022.102277.
11.
Umar et al., Inhibitory potentials of ivermectin, nafamostat, and camostat on spike protein and some nonstructural proteins of SARS-CoV-2: Virtual screening approach, Jurnal Teknologi Laboratorium, doi:10.29238/teknolabjournal.v11i1.344.
12.
Alvarado et al., Interaction of the New Inhibitor Paxlovid (PF-07321332) and Ivermectin With the Monomer of the Main Protease SARS-CoV-2: A Volumetric Study Based on Molecular Dynamics, Elastic Networks, Classical Thermodynamics and SPT, Computational Biology and Chemistry, doi:10.1016/j.compbiolchem.2022.107692.
13.
Aminpour et al., In Silico Analysis of the Multi-Targeted Mode of Action of Ivermectin and Related Compounds, Computation, doi:10.3390/computation10040051.
14.
Parvez et al., Insights from a computational analysis of the SARS-CoV-2 Omicron variant: Host–pathogen interaction, pathogenicity, and possible drug therapeutics, Immunity, Inflammation and Disease, doi:10.1002/iid3.639.
15.
Francés-Monerris et al., Microscopic interactions between ivermectin and key human and viral proteins involved in SARS-CoV-2 infection, Physical Chemistry Chemical Physics, doi:10.1039/D1CP02967C.
16.
González-Paz et al., Comparative study of the interaction of ivermectin with proteins of interest associated with SARS-CoV-2: A computational and biophysical approach, Biophysical Chemistry, doi:10.1016/j.bpc.2021.106677.
17.
González-Paz (B) et al., Structural Deformability Induced in Proteins of Potential Interest Associated with COVID-19 by binding of Homologues present in Ivermectin: Comparative Study Based in Elastic Networks Models, Journal of Molecular Liquids, doi:10.1016/j.molliq.2021.117284.
18.
Rana et al., A Computational Study of Ivermectin and Doxycycline Combination Drug Against SARS-CoV-2 Infection, Research Square, doi:10.21203/rs.3.rs-755838/v1.
19.
Muthusamy et al., Virtual Screening Reveals Potential Anti-Parasitic Drugs Inhibiting the Receptor Binding Domain of SARS-CoV-2 Spike protein, Journal of Virology & Antiviral Research, www.scitechnol.com/abstract/virtual-screening-reveals-potential-antiparasitic-drugs-inhibiting-the-receptor-binding-domain-of-sarscov2-spike-protein-16398.html.
20.
Qureshi et al., Mechanistic insights into the inhibitory activity of FDA approved ivermectin against SARS-CoV-2: old drug with new implications, Journal of Biomolecular Structure and Dynamics, doi:10.1080/07391102.2021.1906750.
21.
Schöning et al., Highly-transmissible Variants of SARS-CoV-2 May Be More Susceptible to Drug Therapy Than Wild Type Strains, Research Square, doi:10.21203/rs.3.rs-379291/v1.
22.
Bello et al., Elucidation of the inhibitory activity of ivermectin with host nuclear importin α and several SARS-CoV-2 targets, Journal of Biomolecular Structure and Dynamics, doi:10.1080/07391102.2021.1911857.
23.
Udofia et al., In silico studies of selected multi-drug targeting against 3CLpro and nsp12 RNA-dependent RNA-polymerase proteins of SARS-CoV-2 and SARS-CoV, Network Modeling Analysis in Health Informatics and Bioinformatics, doi:10.1007/s13721-021-00299-2.
24.
Choudhury et al., Exploring the binding efficacy of ivermectin against the key proteins of SARS-CoV-2 pathogenesis: an in silico approach, Future Medicine, doi:10.2217/fvl-2020-0342.
25.
Kern et al., Modeling of SARS-CoV-2 Treatment Effects for Informed Drug Repurposing, Frontiers in Pharmacology, doi:10.3389/fphar.2021.625678.
26.
Saha et al., The Binding mechanism of ivermectin and levosalbutamol with spike protein of SARS-CoV-2, Structural Chemistry, doi:10.1007/s11224-021-01776-0.
27.
Eweas et al., Molecular Docking Reveals Ivermectin and Remdesivir as Potential Repurposed Drugs Against SARS-CoV-2, Frontiers in Microbiology, doi:10.3389/fmicb.2020.592908.
28.
Parvez (B) et al., Prediction of potential inhibitors for RNA-dependent RNA polymerase of SARS-CoV-2 using comprehensive drug repurposing and molecular docking approach, International Journal of Biological Macromolecules, doi:10.1016/j.ijbiomac.2020.09.098.
29.
Francés-Monerris (B) et al., Has Ivermectin Virus-Directed Effects against SARS-CoV-2? Rationalizing the Action of a Potential Multitarget Antiviral Agent, ChemRxiv, doi:10.26434/chemrxiv.12782258.v1.
30.
Kalhor et al., Repurposing of the approved small molecule drugs in order to inhibit SARS-CoV-2 S protein and human ACE2 interaction through virtual screening approaches, Journal of Biomolecular Structure and Dynamics, doi:10.1080/07391102.2020.1824816.
31.
Swargiary, A., Ivermectin as a promising RNA-dependent RNA polymerase inhibitor and a therapeutic drug against SARS-CoV2: Evidence from in silico studies, Research Square, doi:10.21203/rs.3.rs-73308/v1.
32.
Maurya, D., A Combination of Ivermectin and Doxycycline Possibly Blocks the Viral Entry and Modulate the Innate Immune Response in COVID-19 Patients, American Chemical Society (ACS), doi:10.26434/chemrxiv.12630539.v1.
33.
Lehrer et al., Ivermectin Docks to the SARS-CoV-2 Spike Receptor-binding Domain Attached to ACE2, In Vivo, 34:5, 3023-3026, doi:10.21873/invivo.12134.
34.
Suravajhala et al., Comparative Docking Studies on Curcumin with COVID-19 Proteins, Preprints, doi:10.20944/preprints202005.0439.v3.
35.
Kofler et al., M-Motif, a potential non-conventional NLS in YAP/TAZ and other cellular and viral proteins that inhibits classic protein import, iScience, doi:10.1016/j.isci.2025.112105.
36.
Shahin et al., The selective effect of Ivermectin on different human coronaviruses; in-vitro study, Research Square, doi:10.21203/rs.3.rs-4180797/v1.
37.
Jitobaom et al., Identification of inositol monophosphatase as a broad‐spectrum antiviral target of ivermectin, Journal of Medical Virology, doi:10.1002/jmv.29552.
38.
Fauquet et al., Microfluidic Diffusion Sizing Applied to the Study of Natural Products and Extracts That Modulate the SARS-CoV-2 Spike RBD/ACE2 Interaction, Molecules, doi:10.3390/molecules28248072.
39.
García-Aguilar et al., In Vitro Analysis of SARS-CoV-2 Spike Protein and Ivermectin Interaction, International Journal of Molecular Sciences, doi:10.3390/ijms242216392.
40.
Liu et al., SARS-CoV-2 viral genes Nsp6, Nsp8, and M compromise cellular ATP levels to impair survival and function of human pluripotent stem cell-derived cardiomyocytes, Stem Cell Research & Therapy, doi:10.1186/s13287-023-03485-3.
41.
Boschi et al., SARS-CoV-2 Spike Protein Induces Hemagglutination: Implications for COVID-19 Morbidities and Therapeutics and for Vaccine Adverse Effects, bioRxiv, doi:10.1101/2022.11.24.517882.
42.
De Forni et al., Synergistic drug combinations designed to fully suppress SARS-CoV-2 in the lung of COVID-19 patients, PLoS ONE, doi:10.1371/journal.pone.0276751.
43.
Saha (B) et al., Manipulation of Spray-Drying Conditions to Develop an Inhalable Ivermectin Dry Powder, Pharmaceutics, doi:10.3390/pharmaceutics14071432.
44.
Jitobaom (B) et al., Synergistic anti-SARS-CoV-2 activity of repurposed anti-parasitic drug combinations, BMC Pharmacology and Toxicology, doi:10.1186/s40360-022-00580-8.
45.
Croci et al., Liposomal Systems as Nanocarriers for the Antiviral Agent Ivermectin, International Journal of Biomaterials, doi:10.1155/2016/8043983.
46.
Zheng et al., Red blood cell-hitchhiking mediated pulmonary delivery of ivermectin: Effects of nanoparticle properties, International Journal of Pharmaceutics, doi:10.1016/j.ijpharm.2022.121719.
47.
Delandre et al., Antiviral Activity of Repurposing Ivermectin against a Panel of 30 Clinical SARS-CoV-2 Strains Belonging to 14 Variants, Pharmaceuticals, doi:10.3390/ph15040445.
48.
Liu (B) et al., Genome-wide analyses reveal the detrimental impacts of SARS-CoV-2 viral gene Orf9c on human pluripotent stem cell-derived cardiomyocytes, Stem Cell Reports, doi:10.1016/j.stemcr.2022.01.014.
49.
Segatori et al., Effect of Ivermectin and Atorvastatin on Nuclear Localization of Importin Alpha and Drug Target Expression Profiling in Host Cells from Nasopharyngeal Swabs of SARS-CoV-2- Positive Patients, Viruses, doi:10.3390/v13102084.
50.
Jitobaom (C) et al., Favipiravir and Ivermectin Showed in Vitro Synergistic Antiviral Activity against SARS-CoV-2, Research Square, doi:10.21203/rs.3.rs-941811/v1.
51.
Munson et al., Niclosamide and ivermectin modulate caspase-1 activity and proinflammatory cytokine secretion in a monocytic cell line, British Society For Nanomedicine Early Career Researcher Summer Meeting, 2021, web.archive.org/web/20230401070026/https://michealmunson.github.io/COVID.pdf.
52.
Mountain Valley MD, Mountain Valley MD Receives Successful Results From BSL-4 COVID-19 Clearance Trial on Three Variants Tested With Ivectosol™, www.globenewswire.com/en/news-release/2021/05/18/2231755/0/en/Mountain-Valley-MD-Receives-Successful-Results-From-BSL-4-COVID-19-Clearance-Trial-on-Three-Variants-Tested-With-Ivectosol.html.
53.
Yesilbag et al., Ivermectin also inhibits the replication of bovine respiratory viruses (BRSV, BPIV-3, BoHV-1, BCoV and BVDV) in vitro, Virus Research, doi:10.1016/j.virusres.2021.198384.
54.
Mody et al., Identification of 3-chymotrypsin like protease (3CLPro) inhibitors as potential anti-SARS-CoV-2 agents, Communications Biology, doi:10.1038/s42003-020-01577-x.
55.
Jeffreys et al., Remdesivir-ivermectin combination displays synergistic interaction with improved in vitro activity against SARS-CoV-2, International Journal of Antimicrobial Agents, doi:10.1016/j.ijantimicag.2022.106542.
56.
Surnar et al., Clinically Approved Antiviral Drug in an Orally Administrable Nanoparticle for COVID-19, ACS Pharmacol. Transl. Sci., doi:10.1021/acsptsci.0c00179.
57.
Li et al., Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment, J. Cellular Physiology, doi:10.1002/jcp.30055.
58.
Caly et al., The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro, Antiviral Research, doi:10.1016/j.antiviral.2020.104787.
59.
Zhang et al., Ivermectin inhibits LPS-induced production of inflammatory cytokines and improves LPS-induced survival in mice, Inflammation Research, doi:10.1007/s00011-008-8007-8.
60.
Gao et al., Ivermectin ameliorates acute myocarditis via the inhibition of importin-mediated nuclear translocation of NF-κB/p65, International Immunopharmacology, doi:10.1016/j.intimp.2024.112073.
61.
Abd-Elmawla et al., Suppression of NLRP3 inflammasome by ivermectin ameliorates bleomycin-induced pulmonary fibrosis, Journal of Zhejiang University-SCIENCE B, doi:10.1631/jzus.B2200385.
62.
Uematsu et al., Prophylactic administration of ivermectin attenuates SARS-CoV-2 induced disease in a Syrian Hamster Model, The Journal of Antibiotics, doi:10.1038/s41429-023-00623-0.
63.
Albariqi et al., Pharmacokinetics and Safety of Inhaled Ivermectin in Mice as a Potential COVID-19 Treatment, International Journal of Pharmaceutics, doi:10.1016/j.ijpharm.2022.121688.
64.
Errecalde et al., Safety and Pharmacokinetic Assessments of a Novel Ivermectin Nasal Spray Formulation in a Pig Model, Journal of Pharmaceutical Sciences, doi:10.1016/j.xphs.2021.01.017.
65.
Madrid et al., Safety of oral administration of high doses of ivermectin by means of biocompatible polyelectrolytes formulation, Heliyon, doi:10.1016/j.heliyon.2020.e05820.
66.
Ma et al., Ivermectin contributes to attenuating the severity of acute lung injury in mice, Biomedicine & Pharmacotherapy, doi:10.1016/j.biopha.2022.113706.
67.
de Melo et al., Attenuation of clinical and immunological outcomes during SARS-CoV-2 infection by ivermectin, EMBO Mol. Med., doi:10.15252/emmm.202114122.
68.
Arévalo et al., Ivermectin reduces in vivo coronavirus infection in a mouse experimental model, Scientific Reports, doi:10.1038/s41598-021-86679-0.
69.
Chaccour et al., Nebulized ivermectin for COVID-19 and other respiratory diseases, a proof of concept, dose-ranging study in rats, Scientific Reports, doi:10.1038/s41598-020-74084-y.
70.
Yan et al., Anti-inflammatory effects of ivermectin in mouse model of allergic asthma, Inflammation Research, doi:10.1007/s00011-011-0307-8.
71.
Götz et al., Influenza A viruses escape from MxA restriction at the expense of efficient nuclear vRNP import, Scientific Reports, doi:10.1038/srep23138.
72.
Tay et al., Nuclear localization of dengue virus (DENV) 1–4 non-structural protein 5; protection against all 4 DENV serotypes by the inhibitor Ivermectin, Antiviral Research, doi:10.1016/j.antiviral.2013.06.002.
73.
Wagstaff et al., Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus, Biochemical Journal, doi:10.1042/BJ20120150.
74.
Wagstaff (B) et al., An AlphaScreen®-Based Assay for High-Throughput Screening for Specific Inhibitors of Nuclear Import, SLAS Discovery, doi:10.1177/1087057110390360.
75.
Barrows et al., A Screen of FDA-Approved Drugs for Inhibitors of Zika Virus Infection, Cell Host & Microbe, doi:10.1016/j.chom.2016.07.004.
76.
Yang et al., The broad spectrum antiviral ivermectin targets the host nuclear transport importin α/β1 heterodimer, Antiviral Research, doi:10.1016/j.antiviral.2020.104760.
77.
Mastrangelo et al., Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug, Journal of Antimicrobial Chemotherapy, doi:10.1093/jac/dks147.
78.
Varghese et al., Discovery of berberine, abamectin and ivermectin as antivirals against chikungunya and other alphaviruses, Antiviral Research, doi:10.1016/j.antiviral.2015.12.012.
79.
Bennett et al., Role of a nuclear localization signal on the minor capsid Proteins VP2 and VP3 in BKPyV nuclear entry, Virology, doi:10.1016/j.virol.2014.10.013.
80.
Kosyna et al., The importin α/β-specific inhibitor Ivermectin affects HIF-dependent hypoxia response pathways, Biological Chemistry, doi:10.1515/hsz-2015-0171.
81.
Scheim et al., Sialylated Glycan Bindings from SARS-CoV-2 Spike Protein to Blood and Endothelial Cells Govern the Severe Morbidities of COVID-19, International Journal of Molecular Sciences, doi:10.3390/ijms242317039.
82.
Liu (C) et al., Crosstalk between neutrophil extracellular traps and immune regulation: insights into pathobiology and therapeutic implications of transfusion-related acute lung injury, Frontiers in Immunology, doi:10.3389/fimmu.2023.1324021.
83.
Shouman et al., SARS-CoV-2-associated lymphopenia: possible mechanisms and the role of CD147, Cell Communication and Signaling, doi:10.1186/s12964-024-01718-3.
84.
Scheim (B), D., Ivermectin for COVID-19 Treatment: Clinical Response at Quasi-Threshold Doses Via Hypothesized Alleviation of CD147-Mediated Vascular Occlusion, SSRN, doi:10.2139/ssrn.3636557.
85.
Scheim (C), D., From Cold to Killer: How SARS-CoV-2 Evolved without Hemagglutinin Esterase to Agglutinate and Then Clot Blood Cells, Center for Open Science, doi:10.31219/osf.io/sgdj2.
86.
Behl et al., CD147-spike protein interaction in COVID-19: Get the ball rolling with a novel receptor and therapeutic target, Science of The Total Environment, doi:10.1016/j.scitotenv.2021.152072.
87.
DiNicolantonio et al., Ivermectin may be a clinically useful anti-inflammatory agent for late-stage COVID-19, Open Heart, doi:10.1136/openhrt-2020-001350.
88.
Mothae et al., SARS-CoV-2 host-pathogen interactome: insights into more players during pathogenesis, Virology, doi:10.1016/j.virol.2025.110607.
89.
Hazan et al., Treatment with Ivermectin Increases the Population of Bifidobacterium in the Gut, ACG 2023, acg2023posters.eventscribe.net/posterspeakers.asp.
Gao et al., 17 Apr 2024, peer-reviewed, 6 authors.
DOI record:
{
"DOI": "10.1016/j.intimp.2024.112073",
"ISSN": [
"1567-5769"
],
"URL": "http://dx.doi.org/10.1016/j.intimp.2024.112073",
"alternative-id": [
"S1567576924005915"
],
"article-number": "112073",
"assertion": [
{
"label": "This article is maintained by",
"name": "publisher",
"value": "Elsevier"
},
{
"label": "Article Title",
"name": "articletitle",
"value": "Ivermectin ameliorates acute myocarditis via the inhibition of importin-mediated nuclear translocation of NF-κB/p65"
},
{
"label": "Journal Title",
"name": "journaltitle",
"value": "International Immunopharmacology"
},
{
"label": "CrossRef DOI link to publisher maintained version",
"name": "articlelink",
"value": "https://doi.org/10.1016/j.intimp.2024.112073"
},
{
"label": "Content Type",
"name": "content_type",
"value": "article"
},
{
"label": "Copyright",
"name": "copyright",
"value": "© 2024 Elsevier B.V. All rights reserved."
}
],
"author": [
{
"ORCID": "http://orcid.org/0009-0009-8016-8025",
"affiliation": [],
"authenticated-orcid": false,
"family": "Gao",
"given": "Xu",
"sequence": "first"
},
{
"affiliation": [],
"family": "Xuan",
"given": "Yunling",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Zhou",
"given": "Zhou",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Chen",
"given": "Chen",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Wen Wang",
"given": "Dao",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Wen",
"given": "Zheng",
"sequence": "additional"
}
],
"container-title": "International Immunopharmacology",
"container-title-short": "International Immunopharmacology",
"content-domain": {
"crossmark-restriction": true,
"domain": [
"elsevier.com",
"sciencedirect.com"
]
},
"created": {
"date-parts": [
[
2024,
4,
17
]
],
"date-time": "2024-04-17T22:12:54Z",
"timestamp": 1713391974000
},
"deposited": {
"date-parts": [
[
2024,
4,
17
]
],
"date-time": "2024-04-17T22:13:16Z",
"timestamp": 1713391996000
},
"indexed": {
"date-parts": [
[
2024,
4,
18
]
],
"date-time": "2024-04-18T02:20:52Z",
"timestamp": 1713406852190
},
"is-referenced-by-count": 0,
"issued": {
"date-parts": [
[
2024,
5
]
]
},
"language": "en",
"license": [
{
"URL": "https://www.elsevier.com/tdm/userlicense/1.0/",
"content-version": "tdm",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2024,
5,
1
]
],
"date-time": "2024-05-01T00:00:00Z",
"timestamp": 1714521600000
}
},
{
"URL": "https://www.elsevier.com/legal/tdmrep-license",
"content-version": "tdm",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2024,
5,
1
]
],
"date-time": "2024-05-01T00:00:00Z",
"timestamp": 1714521600000
}
},
{
"URL": "https://doi.org/10.15223/policy-017",
"content-version": "stm-asf",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2024,
5,
1
]
],
"date-time": "2024-05-01T00:00:00Z",
"timestamp": 1714521600000
}
},
{
"URL": "https://doi.org/10.15223/policy-037",
"content-version": "stm-asf",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2024,
5,
1
]
],
"date-time": "2024-05-01T00:00:00Z",
"timestamp": 1714521600000
}
},
{
"URL": "https://doi.org/10.15223/policy-012",
"content-version": "stm-asf",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2024,
5,
1
]
],
"date-time": "2024-05-01T00:00:00Z",
"timestamp": 1714521600000
}
},
{
"URL": "https://doi.org/10.15223/policy-029",
"content-version": "stm-asf",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2024,
5,
1
]
],
"date-time": "2024-05-01T00:00:00Z",
"timestamp": 1714521600000
}
},
{
"URL": "https://doi.org/10.15223/policy-004",
"content-version": "stm-asf",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2024,
5,
1
]
],
"date-time": "2024-05-01T00:00:00Z",
"timestamp": 1714521600000
}
}
],
"link": [
{
"URL": "https://api.elsevier.com/content/article/PII:S1567576924005915?httpAccept=text/xml",
"content-type": "text/xml",
"content-version": "vor",
"intended-application": "text-mining"
},
{
"URL": "https://api.elsevier.com/content/article/PII:S1567576924005915?httpAccept=text/plain",
"content-type": "text/plain",
"content-version": "vor",
"intended-application": "text-mining"
}
],
"member": "78",
"original-title": [],
"page": "112073",
"prefix": "10.1016",
"published": {
"date-parts": [
[
2024,
5
]
]
},
"published-print": {
"date-parts": [
[
2024,
5
]
]
},
"publisher": "Elsevier BV",
"reference": [
{
"DOI": "10.1056/NEJMra2114478",
"article-title": "Myocarditis",
"author": "Basso",
"doi-asserted-by": "crossref",
"first-page": "1488",
"issue": "16",
"journal-title": "N. Engl. J. Med",
"key": "10.1016/j.intimp.2024.112073_b0005",
"volume": "387",
"year": "2022"
},
{
"DOI": "10.1186/s12889-023-15539-5",
"article-title": "Global, regional, and national burdens of myocarditis, 1990–2019: systematic analysis from GBD 2019: GBD for myocarditis",
"author": "Wang",
"doi-asserted-by": "crossref",
"first-page": "714",
"issue": "1",
"journal-title": "BMC. Public. Health",
"key": "10.1016/j.intimp.2024.112073_b0010",
"volume": "23",
"year": "2023"
},
{
"DOI": "10.1161/CIRCULATIONAHA.121.058457",
"article-title": "Genetic architecture of acute myocarditis and the overlap with inherited cardiomyopathy",
"author": "Lota",
"doi-asserted-by": "crossref",
"first-page": "1123",
"issue": "15",
"journal-title": "Circulation",
"key": "10.1016/j.intimp.2024.112073_b0015",
"volume": "146",
"year": "2022"
},
{
"DOI": "10.1016/j.gheart.2014.01.007",
"article-title": "The global burden of myocarditis: part 1: a systematic literature review for the Global Burden of Diseases, Injuries, and Risk Factors 2010 study",
"author": "Cooper",
"doi-asserted-by": "crossref",
"first-page": "121",
"issue": "1",
"journal-title": "Glob. Heart",
"key": "10.1016/j.intimp.2024.112073_b0020",
"volume": "9",
"year": "2014"
},
{
"DOI": "10.1038/nrcardio.2015.108",
"article-title": "Viral myocarditis–diagnosis, treatment options, and current controversies",
"author": "Pollack",
"doi-asserted-by": "crossref",
"first-page": "670",
"issue": "11",
"journal-title": "Nat. Rev. Cardiol",
"key": "10.1016/j.intimp.2024.112073_b0025",
"volume": "12",
"year": "2015"
},
{
"DOI": "10.1161/CIRCRESAHA.115.306573",
"article-title": "Myocarditis",
"author": "Fung",
"doi-asserted-by": "crossref",
"first-page": "496",
"issue": "3",
"journal-title": "Circulat. Res.",
"key": "10.1016/j.intimp.2024.112073_b0030",
"volume": "118",
"year": "2016"
},
{
"DOI": "10.2217/fmb.15.5",
"article-title": "Coxsackievirus B3 replication and pathogenesis",
"author": "Garmaroudi",
"doi-asserted-by": "crossref",
"first-page": "629",
"issue": "4",
"journal-title": "Future. Microbiol",
"key": "10.1016/j.intimp.2024.112073_b0035",
"volume": "10",
"year": "2015"
},
{
"DOI": "10.3389/fcvm.2019.00064",
"article-title": "Myocarditis in humans and in experimental animal models",
"author": "Blyszczuk",
"doi-asserted-by": "crossref",
"first-page": "64",
"journal-title": "Front. Cardiovasc. Med.",
"key": "10.1016/j.intimp.2024.112073_b0040",
"volume": "6",
"year": "2019"
},
{
"DOI": "10.1007/s000590050020",
"article-title": "Experimental autoimmune myocarditis and its pathomechanism",
"author": "Izumi",
"doi-asserted-by": "crossref",
"first-page": "274",
"issue": "3",
"journal-title": "Herz",
"key": "10.1016/j.intimp.2024.112073_b0045",
"volume": "25",
"year": "2000"
},
{
"DOI": "10.2174/1381612821666150316123711",
"article-title": "Mouse models of autoimmune diseases - autoimmune myocarditis",
"author": "Muller",
"doi-asserted-by": "crossref",
"first-page": "2498",
"issue": "18",
"journal-title": "Curr. Pharm. Des",
"key": "10.1016/j.intimp.2024.112073_b0050",
"volume": "21",
"year": "2015"
},
{
"DOI": "10.1016/j.antiviral.2023.105588",
"article-title": "Importin alpha/beta-dependent nuclear transport of human parvovirus B19 nonstructural protein 1 is essential for viral replication",
"author": "Alvisi",
"doi-asserted-by": "crossref",
"journal-title": "Antiviral. Res",
"key": "10.1016/j.intimp.2024.112073_b0055",
"volume": "213",
"year": "2023"
},
{
"DOI": "10.3390/cells8030281",
"article-title": "Novel flavivirus antiviral that targets the host nuclear transport importin alpha/beta1 heterodimer",
"author": "Yang",
"doi-asserted-by": "crossref",
"issue": "3",
"journal-title": "Cells",
"key": "10.1016/j.intimp.2024.112073_b0060",
"volume": "8",
"year": "2019"
},
{
"DOI": "10.1371/journal.ppat.1006823",
"article-title": "Importin alpha1 is required for nuclear import of herpes simplex virus proteins and capsid assembly in fibroblasts and neurons",
"author": "Dohner",
"doi-asserted-by": "crossref",
"first-page": "e1006823",
"issue": "1",
"journal-title": "PLoS. Pathog",
"key": "10.1016/j.intimp.2024.112073_b0065",
"volume": "14",
"year": "2018"
},
{
"DOI": "10.1016/j.antiviral.2013.06.002",
"article-title": "Nuclear localization of dengue virus (DENV) 1–4 non-structural protein 5; protection against all 4 DENV serotypes by the inhibitor Ivermectin",
"author": "Tay",
"doi-asserted-by": "crossref",
"first-page": "301",
"issue": "3",
"journal-title": "Antiviral. Res",
"key": "10.1016/j.intimp.2024.112073_b0070",
"volume": "99",
"year": "2013"
},
{
"DOI": "10.1186/s13071-020-04391-w",
"article-title": "Systemic profile of immune factors in an elderly Italian population affected by chronic strongyloidiasis",
"author": "Tiberti",
"doi-asserted-by": "crossref",
"first-page": "515",
"issue": "1",
"journal-title": "Parasit. Vectors",
"key": "10.1016/j.intimp.2024.112073_b0075",
"volume": "13",
"year": "2020"
},
{
"DOI": "10.1371/journal.pntd.0010340",
"article-title": "Onchocerca volvulus-specific antibody and cellular responses in onchocerciasis patients treated annually with ivermectin for 30 years and exposed to parasite transmission in central Togo",
"author": "Johanns",
"doi-asserted-by": "crossref",
"first-page": "e0010340",
"issue": "5",
"journal-title": "PLoS. Negl. Trop. Dis",
"key": "10.1016/j.intimp.2024.112073_b0080",
"volume": "16",
"year": "2022"
},
{
"DOI": "10.1016/j.antiviral.2020.104760",
"article-title": "The broad spectrum antiviral ivermectin targets the host nuclear transport importin alpha/beta1 heterodimer",
"author": "Yang",
"doi-asserted-by": "crossref",
"journal-title": "Antiviral. Res",
"key": "10.1016/j.intimp.2024.112073_b0085",
"volume": "177",
"year": "2020"
},
{
"DOI": "10.1042/BJ20120150",
"article-title": "Ivermectin is a specific inhibitor of importin alpha/beta-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus",
"author": "Wagstaff",
"doi-asserted-by": "crossref",
"first-page": "851",
"issue": "3",
"journal-title": "Biochem. J.",
"key": "10.1016/j.intimp.2024.112073_b0090",
"volume": "443",
"year": "2012"
},
{
"DOI": "10.1016/j.antiviral.2012.06.008",
"article-title": "Nuclear trafficking of proteins from RNA viruses: potential target for antivirals?",
"author": "Caly",
"doi-asserted-by": "crossref",
"first-page": "202",
"issue": "3",
"journal-title": "Antiviral. Res",
"key": "10.1016/j.intimp.2024.112073_b0095",
"volume": "95",
"year": "2012"
},
{
"DOI": "10.3390/v14112468",
"article-title": "Ivermectin Inhibits HBV Entry into the Nucleus by Suppressing KPNA2",
"author": "Nakanishi",
"doi-asserted-by": "crossref",
"issue": "11",
"journal-title": "Viruses",
"key": "10.1016/j.intimp.2024.112073_b0100",
"volume": "14",
"year": "2022"
},
{
"DOI": "10.1016/j.diagmicrobio.2019.03.012",
"article-title": "Lack of efficacy of ivermectin for prevention of a lethal Zika virus infection in a murine system",
"author": "Ketkar",
"doi-asserted-by": "crossref",
"first-page": "38",
"issue": "1",
"journal-title": "Diagn. Microbiol. Infect. Dis",
"key": "10.1016/j.intimp.2024.112073_b0105",
"volume": "95",
"year": "2019"
},
{
"DOI": "10.1186/s12941-020-00368-w",
"article-title": "Ivermectin, a new candidate therapeutic against SARS-CoV-2/COVID-19",
"author": "Sharun",
"doi-asserted-by": "crossref",
"first-page": "23",
"issue": "1",
"journal-title": "Ann. Clin. Microbiol. Antimicrob",
"key": "10.1016/j.intimp.2024.112073_b0110",
"volume": "19",
"year": "2020"
},
{
"DOI": "10.1093/jac/dkac339",
"article-title": "Suppression of classical nuclear import pathway by importazole and ivermectin inhibits rotavirus replication",
"author": "Sarkar",
"doi-asserted-by": "crossref",
"first-page": "3443",
"issue": "12",
"journal-title": "J. Antimicrob. Chemother",
"key": "10.1016/j.intimp.2024.112073_b0115",
"volume": "77",
"year": "2022"
},
{
"DOI": "10.1016/j.micpath.2021.104914",
"article-title": "Antiviral potential of ivermectin against foot-and-mouth disease virus, serotype O, A and Asia-1",
"author": "Naeem",
"doi-asserted-by": "crossref",
"journal-title": "Microb. Pathog",
"key": "10.1016/j.intimp.2024.112073_b0120",
"volume": "155",
"year": "2021"
},
{
"DOI": "10.1016/j.antiviral.2018.09.010",
"article-title": "Ivermectin inhibits DNA polymerase UL42 of pseudorabies virus entrance into the nucleus and proliferation of the virus in vitro and vivo",
"author": "Lv",
"doi-asserted-by": "crossref",
"first-page": "55",
"journal-title": "Antiviral. Res",
"key": "10.1016/j.intimp.2024.112073_b0125",
"volume": "159",
"year": "2018"
},
{
"DOI": "10.1016/j.bbadis.2021.166294",
"article-title": "Repositioning Ivermectin for Covid-19 treatment: Molecular mechanisms of action against SARS-CoV-2 replication",
"author": "Low",
"doi-asserted-by": "crossref",
"issue": "2",
"journal-title": "Biochim. Biophys. Acta. Mol. Basis. Dis",
"key": "10.1016/j.intimp.2024.112073_b0130",
"volume": "1868",
"year": "2022"
},
{
"DOI": "10.1038/s41598-021-86679-0",
"article-title": "Ivermectin reduces in vivo coronavirus infection in a mouse experimental model",
"author": "Arevalo",
"doi-asserted-by": "crossref",
"first-page": "7132",
"issue": "1",
"journal-title": "Sci. Rep",
"key": "10.1016/j.intimp.2024.112073_b0135",
"volume": "11",
"year": "2021"
},
{
"DOI": "10.3389/fcimb.2021.700502",
"article-title": "Combination treatment with remdesivir and ivermectin exerts highly synergistic and potent antiviral activity against murine coronavirus infection",
"author": "Tan",
"doi-asserted-by": "crossref",
"journal-title": "Front. Cell. Infect. Microbiol",
"key": "10.1016/j.intimp.2024.112073_b0140",
"volume": "11",
"year": "2021"
},
{
"DOI": "10.1016/j.jiph.2022.03.014",
"article-title": "Combined therapy with ivermectin and doxycycline can effectively alleviate the cytokine storm of COVID-19 infection amid vaccination drive: A narrative review",
"author": "Sharma",
"doi-asserted-by": "crossref",
"first-page": "566",
"issue": "5",
"journal-title": "J. Infect. Public. Health",
"key": "10.1016/j.intimp.2024.112073_b0145",
"volume": "15",
"year": "2022"
},
{
"DOI": "10.1002/jcp.30055",
"article-title": "Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment",
"author": "Li",
"doi-asserted-by": "crossref",
"first-page": "2959",
"issue": "4",
"journal-title": "J. Cell. Physiol",
"key": "10.1016/j.intimp.2024.112073_b0150",
"volume": "236",
"year": "2021"
},
{
"DOI": "10.1016/j.jacc.2022.02.003",
"author": "Writing",
"doi-asserted-by": "crossref",
"first-page": "1717",
"issue": "17",
"journal-title": "J. Am. Coll. Cardiol",
"key": "10.1016/j.intimp.2024.112073_b0155",
"volume": "79",
"year": "2022"
},
{
"DOI": "10.1007/s00011-008-8007-8",
"article-title": "Ivermectin inhibits LPS-induced production of inflammatory cytokines and improves LPS-induced survival in mice",
"author": "Zhang",
"doi-asserted-by": "crossref",
"first-page": "524",
"issue": "11",
"journal-title": "Inflamm. Res",
"key": "10.1016/j.intimp.2024.112073_b0160",
"volume": "57",
"year": "2008"
},
{
"DOI": "10.1016/j.biopha.2022.113706",
"article-title": "Ivermectin contributes to attenuating the severity of acute lung injury in mice",
"author": "Ma",
"doi-asserted-by": "crossref",
"journal-title": "Biomed. Pharmacother",
"key": "10.1016/j.intimp.2024.112073_b0165",
"volume": "155",
"year": "2022"
},
{
"DOI": "10.1371/journal.pone.0110183",
"article-title": "The “genomic storm” induced by bacterial endotoxin is calmed by a nuclear transport modifier that attenuates localized and systemic inflammation",
"author": "DiGiandomenico",
"doi-asserted-by": "crossref",
"first-page": "e110183",
"issue": "10",
"journal-title": "PLoS. One",
"key": "10.1016/j.intimp.2024.112073_b0170",
"volume": "9",
"year": "2014"
},
{
"DOI": "10.15252/emmm.201708743",
"article-title": "P2X4 receptor controls microglia activation and favors remyelination in autoimmune encephalitis",
"author": "Zabala",
"doi-asserted-by": "crossref",
"issue": "8",
"journal-title": "Embo Mol Med",
"key": "10.1016/j.intimp.2024.112073_bib326",
"volume": "10",
"year": "2018"
},
{
"DOI": "10.1007/s10753-023-01829-y",
"article-title": "Ivermectin Protects Against Experimental Autoimmune Encephalomyelitis in Mice by Modulating the Th17/Treg Balance Involved in the IL-2/STAT5 Pathway",
"author": "Xie",
"doi-asserted-by": "crossref",
"first-page": "1626",
"issue": "5",
"journal-title": "Inflammation",
"key": "10.1016/j.intimp.2024.112073_bib327",
"volume": "46",
"year": "2023"
},
{
"DOI": "10.1111/fcp.12902",
"article-title": "Evaluation of therapeutic potential of ivermectin against complete Freund’s adjuvant-induced arthritis in rats: Involvement of inflammatory mediators",
"author": "Khan",
"doi-asserted-by": "crossref",
"first-page": "971",
"issue": "5",
"journal-title": "Fund Clin Pharmacol",
"key": "10.1016/j.intimp.2024.112073_bib328",
"volume": "37",
"year": "2023"
},
{
"key": "10.1016/j.intimp.2024.112073_b0175",
"unstructured": "C. National Research Council Committee for the Update of the Guide for the, A. Use of Laboratory, The National Academies Collection: Reports funded by National Institutes of Health, Guide for the Care and Use of Laboratory Animals, National Academies Press (US) Copyright © 2011, National Academy of Sciences., Washington (DC), 2011."
},
{
"DOI": "10.1007/s00203-019-01734-9",
"article-title": "Antiviral activity of five filamentous cyanobacteria against coxsackievirus B3 and rotavirus",
"author": "Deyab",
"doi-asserted-by": "crossref",
"first-page": "213",
"issue": "2",
"journal-title": "Arch. Microbiol",
"key": "10.1016/j.intimp.2024.112073_b0180",
"volume": "202",
"year": "2020"
},
{
"DOI": "10.1016/j.yjmcc.2022.05.012",
"article-title": "Standardised method for cardiomyocyte isolation and purification from individual murine neonatal, infant, and adult hearts",
"author": "Nicks",
"doi-asserted-by": "crossref",
"first-page": "47",
"journal-title": "J. Mol. Cell. Cardiol",
"key": "10.1016/j.intimp.2024.112073_b0185",
"volume": "170",
"year": "2022"
},
{
"DOI": "10.2144/000112517",
"article-title": "ImageJ for microscopy",
"author": "Collins",
"doi-asserted-by": "crossref",
"first-page": "25",
"issue": "1 Suppl",
"journal-title": "Biotechniques",
"key": "10.1016/j.intimp.2024.112073_b0190",
"volume": "43",
"year": "2007"
},
{
"DOI": "10.1007/978-1-4939-7871-7_20",
"article-title": "Analysis of protein-protein interaction by co-IP in human cells",
"author": "Tang",
"doi-asserted-by": "crossref",
"first-page": "289",
"journal-title": "Methods. Mol. Biol",
"key": "10.1016/j.intimp.2024.112073_b0195",
"volume": "1794",
"year": "2018"
},
{
"DOI": "10.4049/immunohorizons.1900064",
"article-title": "Protection from endotoxin shock by selective targeting of proinflammatory signaling to the nucleus mediated by importin alpha 5",
"author": "Liu",
"doi-asserted-by": "crossref",
"first-page": "440",
"issue": "9",
"journal-title": "Immunohorizons",
"key": "10.1016/j.intimp.2024.112073_b0200",
"volume": "3",
"year": "2019"
},
{
"DOI": "10.1016/j.isci.2022.103865",
"doi-asserted-by": "crossref",
"key": "10.1016/j.intimp.2024.112073_b0205",
"unstructured": "N. Lasrado, N. Borcherding, R. Arumugam, T.K. Starr, J. Reddy, Dissecting the cellular landscape and transcriptome network in viral myocarditis by single-cell RNA sequencing, iScience 25(3) (2022) 103865. doi: 10.1016/j.isci.2022.103865."
},
{
"DOI": "10.1161/CIRCULATIONAHA.121.056730",
"article-title": "Identification of pathogenic immune cell subsets associated with checkpoint inhibitor-induced myocarditis",
"author": "Zhu",
"doi-asserted-by": "crossref",
"first-page": "316",
"issue": "4",
"journal-title": "Circulation",
"key": "10.1016/j.intimp.2024.112073_b0210",
"volume": "146",
"year": "2022"
},
{
"DOI": "10.1016/j.intimp.2019.04.052",
"article-title": "THE NF-kB AND IkB PROTEINS",
"author": "Shen",
"doi-asserted-by": "crossref",
"first-page": "193",
"journal-title": "Int. Immunopharmacol",
"key": "10.1016/j.intimp.2024.112073_b0220",
"volume": "73",
"year": "2019"
},
{
"DOI": "10.1074/jbc.270.24.14255",
"article-title": "Inhibition of nuclear translocation of transcription factor NF-kappa B by a synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence",
"author": "Lin",
"doi-asserted-by": "crossref",
"first-page": "14255",
"issue": "24",
"journal-title": "J. Biol. Chem",
"key": "10.1016/j.intimp.2024.112073_b0225",
"volume": "270",
"year": "1995"
},
{
"DOI": "10.3389/fcell.2022.760509",
"article-title": "Identification of cardiac CircRNAs in mice with CVB3-induced myocarditis",
"author": "Nie",
"doi-asserted-by": "crossref",
"journal-title": "Front. Cell. Dev. Biol",
"key": "10.1016/j.intimp.2024.112073_b0230",
"volume": "10",
"year": "2022"
},
{
"DOI": "10.1002/jmv.28473",
"article-title": "Analysis of long noncoding RNAs and messenger RNAs expression profiles in the hearts of mice with acute viral myocarditis",
"author": "Xue",
"doi-asserted-by": "crossref",
"first-page": "e28473",
"issue": "2",
"journal-title": "J. Med. Virol",
"key": "10.1016/j.intimp.2024.112073_b0235",
"volume": "95",
"year": "2023"
},
{
"DOI": "10.1161/CIRCIMAGING.122.014071",
"article-title": "Imaging targets to visualize the cardiac immune landscape in heart failure",
"author": "Wienecke",
"doi-asserted-by": "crossref",
"first-page": "e014071",
"issue": "1",
"journal-title": "Circ. Cardiovasc. Imaging",
"key": "10.1016/j.intimp.2024.112073_b0240",
"volume": "16",
"year": "2023"
},
{
"DOI": "10.1039/D2LC01070D",
"article-title": "Mitigating neutrophil trafficking and cardiotoxicity with DS-IkL in a microphysiological system of a cytokine storm",
"author": "Shirure",
"doi-asserted-by": "crossref",
"first-page": "3050",
"issue": "13",
"journal-title": "Lab. Chip",
"key": "10.1016/j.intimp.2024.112073_b0245",
"volume": "23",
"year": "2023"
},
{
"DOI": "10.1161/CIRCRESAHA.121.318005",
"article-title": "Immune cells and immunotherapy for cardiac injury and repair",
"author": "Rurik",
"doi-asserted-by": "crossref",
"first-page": "1766",
"issue": "11",
"journal-title": "Circ. Res.",
"key": "10.1016/j.intimp.2024.112073_b0250",
"volume": "128",
"year": "2021"
},
{
"DOI": "10.1161/CIRCULATIONAHA.121.058411",
"doi-asserted-by": "crossref",
"key": "10.1016/j.intimp.2024.112073_b0255",
"unstructured": "R. Dhingra, I. Rabinovich-Nikitin, S. Rothman, M. Guberman, H. Gang, V. Margulets, D.S. Jassal, K.N. Alagarsamy, S. Dhingra, C. Valenzuela Ripoll, F. Billia, A. Diwan, A. Javaheri, L.A. Kirshenbaum, Proteasomal degradation of TRAF2 mediates mitochondrial dysfunction in doxorubicin-cardiomyopathy, Circulation 146(12) (2022) 934-954. doi: 10.1161/CIRCULATIONAHA.121.058411."
},
{
"DOI": "10.1038/s41598-021-91395-w",
"article-title": "Hyperlipidemic hypersensitivity to lethal microbial inflammation and its reversal by selective targeting of nuclear transport shuttles",
"author": "Liu",
"doi-asserted-by": "crossref",
"first-page": "11907",
"issue": "1",
"journal-title": "Sci. Rep",
"key": "10.1016/j.intimp.2024.112073_b0260",
"volume": "11",
"year": "2021"
},
{
"DOI": "10.1016/j.cellsig.2018.01.011",
"article-title": "Importins α and β signaling mediates endothelial cell inflammation and barrier disruption",
"author": "Leonard",
"doi-asserted-by": "crossref",
"first-page": "103",
"journal-title": "Cell. Signal",
"key": "10.1016/j.intimp.2024.112073_b0265",
"volume": "44",
"year": "2018"
},
{
"DOI": "10.1016/j.bcp.2021.114501",
"article-title": "Natural lactucopicrin alleviates importin-alpha3-mediated NF-kappaB activation in inflammated endothelial cells and improves sepsis in mice",
"author": "Weng",
"doi-asserted-by": "crossref",
"journal-title": "Biochem. Pharmacol",
"key": "10.1016/j.intimp.2024.112073_b0270",
"volume": "186",
"year": "2021"
},
{
"DOI": "10.1007/s10620-015-3948-6",
"article-title": "Karyopherin alpha 2 promotes the inflammatory response in rat pancreatic acinar cells via facilitating NF-κB activation",
"author": "Cai",
"doi-asserted-by": "crossref",
"first-page": "747",
"issue": "3",
"journal-title": "Digest. Dis. Sci",
"key": "10.1016/j.intimp.2024.112073_b0275",
"volume": "61",
"year": "2016"
},
{
"DOI": "10.1016/j.ceb.2019.01.001",
"article-title": "Inhibitors of nuclear transport",
"author": "Jans",
"doi-asserted-by": "crossref",
"first-page": "50",
"journal-title": "Curr. Opin. Cell. Biol",
"key": "10.1016/j.intimp.2024.112073_b0280",
"volume": "58",
"year": "2019"
},
{
"DOI": "10.1038/cr.2011.13",
"article-title": "NF-kappaB in immunobiology",
"author": "Hayden",
"doi-asserted-by": "crossref",
"first-page": "223",
"issue": "2",
"journal-title": "Cell. Res",
"key": "10.1016/j.intimp.2024.112073_b0285",
"volume": "21",
"year": "2011"
},
{
"DOI": "10.1002/rmv.2131",
"article-title": "An overview of the immune mechanisms of viral myocarditis",
"author": "Lasrado",
"doi-asserted-by": "crossref",
"first-page": "1",
"issue": "6",
"journal-title": "Rev. Med. Virol",
"key": "10.1016/j.intimp.2024.112073_b0290",
"volume": "30",
"year": "2020"
},
{
"DOI": "10.1371/journal.pone.0179468",
"article-title": "Survival, bacterial clearance and thrombocytopenia are improved in polymicrobial sepsis by targeting nuclear transport shuttles",
"author": "Veach",
"doi-asserted-by": "crossref",
"first-page": "e0179468",
"issue": "6",
"journal-title": "PLoS. One",
"key": "10.1016/j.intimp.2024.112073_b0295",
"volume": "12",
"year": "2017"
},
{
"DOI": "10.1093/eurheartj/ehab447",
"article-title": "The JAK-STAT pathway: an emerging target for cardiovascular disease in rheumatoid arthritis and myeloproliferative neoplasms",
"author": "Baldini",
"doi-asserted-by": "crossref",
"first-page": "4389",
"issue": "42",
"journal-title": "Eur. Heart. J",
"key": "10.1016/j.intimp.2024.112073_b0300",
"volume": "42",
"year": "2021"
},
{
"DOI": "10.1016/j.immuni.2012.03.013",
"article-title": "The JAK-STAT pathway at twenty",
"author": "Stark",
"doi-asserted-by": "crossref",
"first-page": "503",
"issue": "4",
"journal-title": "Immunity",
"key": "10.1016/j.intimp.2024.112073_b0305",
"volume": "36",
"year": "2012"
},
{
"DOI": "10.1161/CIRCRESAHA.119.316167",
"article-title": "AP-1 Contributes to chromatin accessibility to promote sarcomere disassembly and cardiomyocyte protrusion during Zebrafish heart regeneration",
"author": "Beisaw",
"doi-asserted-by": "crossref",
"first-page": "1760",
"issue": "12",
"journal-title": "Circ. Res.",
"key": "10.1016/j.intimp.2024.112073_b0310",
"volume": "126",
"year": "2020"
},
{
"DOI": "10.1371/journal.pone.0073294",
"article-title": "The AP-1 transcription factor c-Jun prevents stress-imposed maladaptive remodeling of the heart",
"author": "Windak",
"doi-asserted-by": "crossref",
"first-page": "e73294",
"issue": "9",
"journal-title": "PLoS. One",
"key": "10.1016/j.intimp.2024.112073_b0315",
"volume": "8",
"year": "2013"
},
{
"article-title": "The mechanism of the NFAT transcription factor family involved in oxidative stress response",
"author": "Zhang",
"journal-title": "J. Cardiol",
"key": "10.1016/j.intimp.2024.112073_b0320",
"year": "2023"
},
{
"DOI": "10.1073/pnas.0812911106",
"article-title": "NFAT isoforms control activity-dependent muscle fiber type specification",
"author": "Calabria",
"doi-asserted-by": "crossref",
"first-page": "13335",
"issue": "32",
"journal-title": "Proc. Natl. Acad. Sci. U. S. A",
"key": "10.1016/j.intimp.2024.112073_b0325",
"volume": "106",
"year": "2009"
}
],
"reference-count": 67,
"references-count": 67,
"relation": {},
"resource": {
"primary": {
"URL": "https://linkinghub.elsevier.com/retrieve/pii/S1567576924005915"
}
},
"score": 1,
"short-title": [],
"source": "Crossref",
"subject": [
"Pharmacology",
"Immunology",
"Immunology and Allergy"
],
"subtitle": [],
"title": "Ivermectin ameliorates acute myocarditis via the inhibition of importin-mediated nuclear translocation of NF-κB/p65",
"type": "journal-article",
"update-policy": "http://dx.doi.org/10.1016/elsevier_cm_policy",
"volume": "133"
}
