Red blood cell-hitchhiking mediated pulmonary delivery of ivermectin: Effects of nanoparticle properties
et al., International Journal of Pharmaceutics, doi:10.1016/j.ijpharm.2022.121719, Apr 2022
Ivermectin for COVID-19
4th treatment shown to reduce risk in
August 2020, now with p < 0.00000000001 from 106 studies, recognized in 24 countries.
No treatment is 100% effective. Protocols
combine treatments.
6,300+ studies for
210+ treatments. c19early.org
|
In vitro and mouse study proposing a method for improving ivermectin pharmacokinetics and bioavailability using delivery via red blood cells.
74 preclinical studies support the efficacy of ivermectin for COVID-19:
Ivermectin, better known for antiparasitic activity, is a broad spectrum antiviral with activity against many viruses including H7N771, Dengue37,72,73 , HIV-173, Simian virus 4074, Zika37,75,76 , West Nile76, Yellow Fever77,78, Japanese encephalitis77, Chikungunya78, Semliki Forest virus78, Human papillomavirus57, Epstein-Barr57, BK Polyomavirus79, and Sindbis virus78.
Ivermectin inhibits importin-α/β-dependent nuclear import of viral proteins71,73,74,80 , shows spike-ACE2 disruption at 1nM with microfluidic diffusional sizing38, binds to glycan sites on the SARS-CoV-2 spike protein preventing interaction with blood and epithelial cells and inhibiting hemagglutination41,81, shows dose-dependent inhibition of wildtype and omicron variants36, exhibits dose-dependent inhibition of lung injury61,66, may inhibit SARS-CoV-2 via IMPase inhibition37, may inhibit SARS-CoV-2 induced formation of fibrin clots resistant to degradation9, inhibits SARS-CoV-2 3CLpro54, may inhibit SARS-CoV-2 RdRp activity28, may minimize viral myocarditis by inhibiting NF-κB/p65-mediated inflammation in macrophages60, may be beneficial for COVID-19 ARDS by blocking GSDMD and NET formation82, may interfere with SARS-CoV-2's immune evasion via ORF8 binding4, may inhibit SARS-CoV-2 by disrupting CD147 interaction83-86, shows protection against inflammation, cytokine storm, and mortality in an LPS mouse model sharing key pathological features of severe COVID-1959,87, may be beneficial in severe COVID-19 by binding IGF1 to inhibit the promotion of inflammation, fibrosis, and cell proliferation that leads to lung damage8, may minimize SARS-CoV-2 induced cardiac damage40,48, may counter immune evasion by inhibiting NSP15-TBK1/KPNA1 interaction and restoring IRF3 activation88, may disrupt SARS-CoV-2 N and ORF6 protein nuclear transport and their suppression of host interferon responses1, reduces TAZ/YAP nuclear import, relieving SARS-CoV-2-driven suppression of IRF3 and NF-κB antiviral pathways35, increases Bifidobacteria which play a key role in the immune system89, has immunomodulatory51 and anti-inflammatory70,90 properties, and has an extensive and very positive safety profile91.
1.
Gayozo et al., Binding affinities analysis of ivermectin, nucleocapsid and ORF6 proteins of SARS-CoV-2 to human importins α isoforms: A computational approach, Biotecnia, doi:10.18633/biotecnia.v27.2485.
2.
Lefebvre et al., Characterization and Fluctuations of an Ivermectin Binding Site at the Lipid Raft Interface of the N-Terminal Domain (NTD) of the Spike Protein of SARS-CoV-2 Variants, Viruses, doi:10.3390/v16121836.
3.
Haque et al., Exploring potential therapeutic candidates against COVID-19: a molecular docking study, Discover Molecules, doi:10.1007/s44345-024-00005-5.
4.
Bagheri-Far et al., Non-spike protein inhibition of SARS-CoV-2 by natural products through the key mediator protein ORF8, Molecular Biology Research Communications, doi:10.22099/mbrc.2024.50245.2001.
5.
de Oliveira Só et al., In Silico Comparative Analysis of Ivermectin and Nirmatrelvir Inhibitors Interacting with the SARS-CoV-2 Main Protease, Preprints, doi:10.20944/preprints202404.1825.v1.
6.
Agamah et al., Network-based multi-omics-disease-drug associations reveal drug repurposing candidates for COVID-19 disease phases, ScienceOpen, doi:10.58647/DRUGARXIV.PR000010.v1.
7.
Oranu et al., Validation of the binding affinities and stabilities of ivermectin and moxidectin against SARS-CoV-2 receptors using molecular docking and molecular dynamics simulation, GSC Biological and Pharmaceutical Sciences, doi:10.30574/gscbps.2024.26.1.0030.
8.
Zhao et al., Identification of the shared gene signatures between pulmonary fibrosis and pulmonary hypertension using bioinformatics analysis, Frontiers in Immunology, doi:10.3389/fimmu.2023.1197752.
9.
Vottero et al., Computational Prediction of the Interaction of Ivermectin with Fibrinogen, Molecular Sciences, doi:10.3390/ijms241411449.
10.
Chellasamy et al., Docking and molecular dynamics studies of human ezrin protein with a modelled SARS-CoV-2 endodomain and their interaction with potential invasion inhibitors, Journal of King Saud University - Science, doi:10.1016/j.jksus.2022.102277.
11.
Umar et al., Inhibitory potentials of ivermectin, nafamostat, and camostat on spike protein and some nonstructural proteins of SARS-CoV-2: Virtual screening approach, Jurnal Teknologi Laboratorium, doi:10.29238/teknolabjournal.v11i1.344.
12.
Alvarado et al., Interaction of the New Inhibitor Paxlovid (PF-07321332) and Ivermectin With the Monomer of the Main Protease SARS-CoV-2: A Volumetric Study Based on Molecular Dynamics, Elastic Networks, Classical Thermodynamics and SPT, Computational Biology and Chemistry, doi:10.1016/j.compbiolchem.2022.107692.
13.
Aminpour et al., In Silico Analysis of the Multi-Targeted Mode of Action of Ivermectin and Related Compounds, Computation, doi:10.3390/computation10040051.
14.
Parvez et al., Insights from a computational analysis of the SARS-CoV-2 Omicron variant: Host–pathogen interaction, pathogenicity, and possible drug therapeutics, Immunity, Inflammation and Disease, doi:10.1002/iid3.639.
15.
Francés-Monerris et al., Microscopic interactions between ivermectin and key human and viral proteins involved in SARS-CoV-2 infection, Physical Chemistry Chemical Physics, doi:10.1039/D1CP02967C.
16.
González-Paz et al., Comparative study of the interaction of ivermectin with proteins of interest associated with SARS-CoV-2: A computational and biophysical approach, Biophysical Chemistry, doi:10.1016/j.bpc.2021.106677.
17.
González-Paz (B) et al., Structural Deformability Induced in Proteins of Potential Interest Associated with COVID-19 by binding of Homologues present in Ivermectin: Comparative Study Based in Elastic Networks Models, Journal of Molecular Liquids, doi:10.1016/j.molliq.2021.117284.
18.
Rana et al., A Computational Study of Ivermectin and Doxycycline Combination Drug Against SARS-CoV-2 Infection, Research Square, doi:10.21203/rs.3.rs-755838/v1.
19.
Muthusamy et al., Virtual Screening Reveals Potential Anti-Parasitic Drugs Inhibiting the Receptor Binding Domain of SARS-CoV-2 Spike protein, Journal of Virology & Antiviral Research, www.scitechnol.com/abstract/virtual-screening-reveals-potential-antiparasitic-drugs-inhibiting-the-receptor-binding-domain-of-sarscov2-spike-protein-16398.html.
20.
Qureshi et al., Mechanistic insights into the inhibitory activity of FDA approved ivermectin against SARS-CoV-2: old drug with new implications, Journal of Biomolecular Structure and Dynamics, doi:10.1080/07391102.2021.1906750.
21.
Schöning et al., Highly-transmissible Variants of SARS-CoV-2 May Be More Susceptible to Drug Therapy Than Wild Type Strains, Research Square, doi:10.21203/rs.3.rs-379291/v1.
22.
Bello et al., Elucidation of the inhibitory activity of ivermectin with host nuclear importin α and several SARS-CoV-2 targets, Journal of Biomolecular Structure and Dynamics, doi:10.1080/07391102.2021.1911857.
23.
Udofia et al., In silico studies of selected multi-drug targeting against 3CLpro and nsp12 RNA-dependent RNA-polymerase proteins of SARS-CoV-2 and SARS-CoV, Network Modeling Analysis in Health Informatics and Bioinformatics, doi:10.1007/s13721-021-00299-2.
24.
Choudhury et al., Exploring the binding efficacy of ivermectin against the key proteins of SARS-CoV-2 pathogenesis: an in silico approach, Future Medicine, doi:10.2217/fvl-2020-0342.
25.
Kern et al., Modeling of SARS-CoV-2 Treatment Effects for Informed Drug Repurposing, Frontiers in Pharmacology, doi:10.3389/fphar.2021.625678.
26.
Saha et al., The Binding mechanism of ivermectin and levosalbutamol with spike protein of SARS-CoV-2, Structural Chemistry, doi:10.1007/s11224-021-01776-0.
27.
Eweas et al., Molecular Docking Reveals Ivermectin and Remdesivir as Potential Repurposed Drugs Against SARS-CoV-2, Frontiers in Microbiology, doi:10.3389/fmicb.2020.592908.
28.
Parvez (B) et al., Prediction of potential inhibitors for RNA-dependent RNA polymerase of SARS-CoV-2 using comprehensive drug repurposing and molecular docking approach, International Journal of Biological Macromolecules, doi:10.1016/j.ijbiomac.2020.09.098.
29.
Francés-Monerris (B) et al., Has Ivermectin Virus-Directed Effects against SARS-CoV-2? Rationalizing the Action of a Potential Multitarget Antiviral Agent, ChemRxiv, doi:10.26434/chemrxiv.12782258.v1.
30.
Kalhor et al., Repurposing of the approved small molecule drugs in order to inhibit SARS-CoV-2 S protein and human ACE2 interaction through virtual screening approaches, Journal of Biomolecular Structure and Dynamics, doi:10.1080/07391102.2020.1824816.
31.
Swargiary, A., Ivermectin as a promising RNA-dependent RNA polymerase inhibitor and a therapeutic drug against SARS-CoV2: Evidence from in silico studies, Research Square, doi:10.21203/rs.3.rs-73308/v1.
32.
Maurya, D., A Combination of Ivermectin and Doxycycline Possibly Blocks the Viral Entry and Modulate the Innate Immune Response in COVID-19 Patients, American Chemical Society (ACS), doi:10.26434/chemrxiv.12630539.v1.
33.
Lehrer et al., Ivermectin Docks to the SARS-CoV-2 Spike Receptor-binding Domain Attached to ACE2, In Vivo, 34:5, 3023-3026, doi:10.21873/invivo.12134.
34.
Suravajhala et al., Comparative Docking Studies on Curcumin with COVID-19 Proteins, Preprints, doi:10.20944/preprints202005.0439.v3.
35.
Kofler et al., M-Motif, a potential non-conventional NLS in YAP/TAZ and other cellular and viral proteins that inhibits classic protein import, iScience, doi:10.1016/j.isci.2025.112105.
36.
Shahin et al., The selective effect of Ivermectin on different human coronaviruses; in-vitro study, Research Square, doi:10.21203/rs.3.rs-4180797/v1.
37.
Jitobaom et al., Identification of inositol monophosphatase as a broad‐spectrum antiviral target of ivermectin, Journal of Medical Virology, doi:10.1002/jmv.29552.
38.
Fauquet et al., Microfluidic Diffusion Sizing Applied to the Study of Natural Products and Extracts That Modulate the SARS-CoV-2 Spike RBD/ACE2 Interaction, Molecules, doi:10.3390/molecules28248072.
39.
García-Aguilar et al., In Vitro Analysis of SARS-CoV-2 Spike Protein and Ivermectin Interaction, International Journal of Molecular Sciences, doi:10.3390/ijms242216392.
40.
Liu et al., SARS-CoV-2 viral genes Nsp6, Nsp8, and M compromise cellular ATP levels to impair survival and function of human pluripotent stem cell-derived cardiomyocytes, Stem Cell Research & Therapy, doi:10.1186/s13287-023-03485-3.
41.
Boschi et al., SARS-CoV-2 Spike Protein Induces Hemagglutination: Implications for COVID-19 Morbidities and Therapeutics and for Vaccine Adverse Effects, bioRxiv, doi:10.1101/2022.11.24.517882.
42.
De Forni et al., Synergistic drug combinations designed to fully suppress SARS-CoV-2 in the lung of COVID-19 patients, PLoS ONE, doi:10.1371/journal.pone.0276751.
43.
Saha (B) et al., Manipulation of Spray-Drying Conditions to Develop an Inhalable Ivermectin Dry Powder, Pharmaceutics, doi:10.3390/pharmaceutics14071432.
44.
Jitobaom (B) et al., Synergistic anti-SARS-CoV-2 activity of repurposed anti-parasitic drug combinations, BMC Pharmacology and Toxicology, doi:10.1186/s40360-022-00580-8.
45.
Croci et al., Liposomal Systems as Nanocarriers for the Antiviral Agent Ivermectin, International Journal of Biomaterials, doi:10.1155/2016/8043983.
46.
Zheng et al., Red blood cell-hitchhiking mediated pulmonary delivery of ivermectin: Effects of nanoparticle properties, International Journal of Pharmaceutics, doi:10.1016/j.ijpharm.2022.121719.
47.
Delandre et al., Antiviral Activity of Repurposing Ivermectin against a Panel of 30 Clinical SARS-CoV-2 Strains Belonging to 14 Variants, Pharmaceuticals, doi:10.3390/ph15040445.
48.
Liu (B) et al., Genome-wide analyses reveal the detrimental impacts of SARS-CoV-2 viral gene Orf9c on human pluripotent stem cell-derived cardiomyocytes, Stem Cell Reports, doi:10.1016/j.stemcr.2022.01.014.
49.
Segatori et al., Effect of Ivermectin and Atorvastatin on Nuclear Localization of Importin Alpha and Drug Target Expression Profiling in Host Cells from Nasopharyngeal Swabs of SARS-CoV-2- Positive Patients, Viruses, doi:10.3390/v13102084.
50.
Jitobaom (C) et al., Favipiravir and Ivermectin Showed in Vitro Synergistic Antiviral Activity against SARS-CoV-2, Research Square, doi:10.21203/rs.3.rs-941811/v1.
51.
Munson et al., Niclosamide and ivermectin modulate caspase-1 activity and proinflammatory cytokine secretion in a monocytic cell line, British Society For Nanomedicine Early Career Researcher Summer Meeting, 2021, web.archive.org/web/20230401070026/https://michealmunson.github.io/COVID.pdf.
52.
Mountain Valley MD, Mountain Valley MD Receives Successful Results From BSL-4 COVID-19 Clearance Trial on Three Variants Tested With Ivectosol™, www.globenewswire.com/en/news-release/2021/05/18/2231755/0/en/Mountain-Valley-MD-Receives-Successful-Results-From-BSL-4-COVID-19-Clearance-Trial-on-Three-Variants-Tested-With-Ivectosol.html.
53.
Yesilbag et al., Ivermectin also inhibits the replication of bovine respiratory viruses (BRSV, BPIV-3, BoHV-1, BCoV and BVDV) in vitro, Virus Research, doi:10.1016/j.virusres.2021.198384.
54.
Mody et al., Identification of 3-chymotrypsin like protease (3CLPro) inhibitors as potential anti-SARS-CoV-2 agents, Communications Biology, doi:10.1038/s42003-020-01577-x.
55.
Jeffreys et al., Remdesivir-ivermectin combination displays synergistic interaction with improved in vitro activity against SARS-CoV-2, International Journal of Antimicrobial Agents, doi:10.1016/j.ijantimicag.2022.106542.
56.
Surnar et al., Clinically Approved Antiviral Drug in an Orally Administrable Nanoparticle for COVID-19, ACS Pharmacol. Transl. Sci., doi:10.1021/acsptsci.0c00179.
57.
Li et al., Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment, J. Cellular Physiology, doi:10.1002/jcp.30055.
58.
Caly et al., The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro, Antiviral Research, doi:10.1016/j.antiviral.2020.104787.
59.
Zhang et al., Ivermectin inhibits LPS-induced production of inflammatory cytokines and improves LPS-induced survival in mice, Inflammation Research, doi:10.1007/s00011-008-8007-8.
60.
Gao et al., Ivermectin ameliorates acute myocarditis via the inhibition of importin-mediated nuclear translocation of NF-κB/p65, International Immunopharmacology, doi:10.1016/j.intimp.2024.112073.
61.
Abd-Elmawla et al., Suppression of NLRP3 inflammasome by ivermectin ameliorates bleomycin-induced pulmonary fibrosis, Journal of Zhejiang University-SCIENCE B, doi:10.1631/jzus.B2200385.
62.
Uematsu et al., Prophylactic administration of ivermectin attenuates SARS-CoV-2 induced disease in a Syrian Hamster Model, The Journal of Antibiotics, doi:10.1038/s41429-023-00623-0.
63.
Albariqi et al., Pharmacokinetics and Safety of Inhaled Ivermectin in Mice as a Potential COVID-19 Treatment, International Journal of Pharmaceutics, doi:10.1016/j.ijpharm.2022.121688.
64.
Errecalde et al., Safety and Pharmacokinetic Assessments of a Novel Ivermectin Nasal Spray Formulation in a Pig Model, Journal of Pharmaceutical Sciences, doi:10.1016/j.xphs.2021.01.017.
65.
Madrid et al., Safety of oral administration of high doses of ivermectin by means of biocompatible polyelectrolytes formulation, Heliyon, doi:10.1016/j.heliyon.2020.e05820.
66.
Ma et al., Ivermectin contributes to attenuating the severity of acute lung injury in mice, Biomedicine & Pharmacotherapy, doi:10.1016/j.biopha.2022.113706.
67.
de Melo et al., Attenuation of clinical and immunological outcomes during SARS-CoV-2 infection by ivermectin, EMBO Mol. Med., doi:10.15252/emmm.202114122.
68.
Arévalo et al., Ivermectin reduces in vivo coronavirus infection in a mouse experimental model, Scientific Reports, doi:10.1038/s41598-021-86679-0.
69.
Chaccour et al., Nebulized ivermectin for COVID-19 and other respiratory diseases, a proof of concept, dose-ranging study in rats, Scientific Reports, doi:10.1038/s41598-020-74084-y.
70.
Yan et al., Anti-inflammatory effects of ivermectin in mouse model of allergic asthma, Inflammation Research, doi:10.1007/s00011-011-0307-8.
71.
Götz et al., Influenza A viruses escape from MxA restriction at the expense of efficient nuclear vRNP import, Scientific Reports, doi:10.1038/srep23138.
72.
Tay et al., Nuclear localization of dengue virus (DENV) 1–4 non-structural protein 5; protection against all 4 DENV serotypes by the inhibitor Ivermectin, Antiviral Research, doi:10.1016/j.antiviral.2013.06.002.
73.
Wagstaff et al., Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus, Biochemical Journal, doi:10.1042/BJ20120150.
74.
Wagstaff (B) et al., An AlphaScreen®-Based Assay for High-Throughput Screening for Specific Inhibitors of Nuclear Import, SLAS Discovery, doi:10.1177/1087057110390360.
75.
Barrows et al., A Screen of FDA-Approved Drugs for Inhibitors of Zika Virus Infection, Cell Host & Microbe, doi:10.1016/j.chom.2016.07.004.
76.
Yang et al., The broad spectrum antiviral ivermectin targets the host nuclear transport importin α/β1 heterodimer, Antiviral Research, doi:10.1016/j.antiviral.2020.104760.
77.
Mastrangelo et al., Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug, Journal of Antimicrobial Chemotherapy, doi:10.1093/jac/dks147.
78.
Varghese et al., Discovery of berberine, abamectin and ivermectin as antivirals against chikungunya and other alphaviruses, Antiviral Research, doi:10.1016/j.antiviral.2015.12.012.
79.
Bennett et al., Role of a nuclear localization signal on the minor capsid Proteins VP2 and VP3 in BKPyV nuclear entry, Virology, doi:10.1016/j.virol.2014.10.013.
80.
Kosyna et al., The importin α/β-specific inhibitor Ivermectin affects HIF-dependent hypoxia response pathways, Biological Chemistry, doi:10.1515/hsz-2015-0171.
81.
Scheim et al., Sialylated Glycan Bindings from SARS-CoV-2 Spike Protein to Blood and Endothelial Cells Govern the Severe Morbidities of COVID-19, International Journal of Molecular Sciences, doi:10.3390/ijms242317039.
82.
Liu (C) et al., Crosstalk between neutrophil extracellular traps and immune regulation: insights into pathobiology and therapeutic implications of transfusion-related acute lung injury, Frontiers in Immunology, doi:10.3389/fimmu.2023.1324021.
83.
Shouman et al., SARS-CoV-2-associated lymphopenia: possible mechanisms and the role of CD147, Cell Communication and Signaling, doi:10.1186/s12964-024-01718-3.
84.
Scheim (B), D., Ivermectin for COVID-19 Treatment: Clinical Response at Quasi-Threshold Doses Via Hypothesized Alleviation of CD147-Mediated Vascular Occlusion, SSRN, doi:10.2139/ssrn.3636557.
85.
Scheim (C), D., From Cold to Killer: How SARS-CoV-2 Evolved without Hemagglutinin Esterase to Agglutinate and Then Clot Blood Cells, Center for Open Science, doi:10.31219/osf.io/sgdj2.
86.
Behl et al., CD147-spike protein interaction in COVID-19: Get the ball rolling with a novel receptor and therapeutic target, Science of The Total Environment, doi:10.1016/j.scitotenv.2021.152072.
87.
DiNicolantonio et al., Ivermectin may be a clinically useful anti-inflammatory agent for late-stage COVID-19, Open Heart, doi:10.1136/openhrt-2020-001350.
88.
Mothae et al., SARS-CoV-2 host-pathogen interactome: insights into more players during pathogenesis, Virology, doi:10.1016/j.virol.2025.110607.
89.
Hazan et al., Treatment with Ivermectin Increases the Population of Bifidobacterium in the Gut, ACG 2023, acg2023posters.eventscribe.net/posterspeakers.asp.
Zheng et al., 11 Apr 2022, China, peer-reviewed, 13 authors.
Contact: usnitro2004@126.com, gaocs@bmi.ac.cn.
Red blood cell-hitchhiking mediated pulmonary delivery of ivermectin: Effects of nanoparticle properties
International Journal of Pharmaceutics, doi:10.1016/j.ijpharm.2022.121719
Recent studies have demonstrated that ivermectin (IVM) exhibits antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative virus of coronavirus disease 2019 (COVID-19). However, the repurposing of IVM for the treatment of COVID-19 has presented challenges primarily due to the low IVM plasma concentration after oral administration, which was well below IC 50 . Here, a red blood cell (RBC)-hitchhiking strategy was used for the targeted delivery of IVM-loaded nanoparticles (NPs) to the lung. IVM-loaded poly (lactic-co-glycolic acid) (PLGA) NPs (IVM-PNPs) and chitosan-coating IVM-PNPs (IVM-CSPNPs) were prepared and adsorbed onto RBCs. Both RBC-hitchhiked IVM-PNPs and IVM-CSPNPs could significantly enhance IVM delivery to lungs, improve IVM accumulation in lung tissue, inhibit the inflammatory responses and finally significantly alleviate the progression of acute lung injury. Specifically, the redistribution and circulation effects were related to the properties of NPs. RBC-hitchhiked cationic IVM-CSPNPs showed a longer circulation time, slower accumulation and elimination rates, and higher anti-inflammatory activities than RBC-hitchhiked anionic IVM-PNPs. Therefore, RBC-hitchhiking provides an alternative strategy to improve IVM pharmacokinetics and bioavailability for repurposing of IVM to treat COVID-19. Furthermore, according to different redistribution effects of different NPs, RBC-hitchhiked NPs may achieve various accumulation rates and circulation times for different requirements of drug delivery.
Ethics approval and consent to participate. All procedures involving the care and handling of animals carried out with the approval of the Animal Care and Use Ethics Committee of the Beijing Institute of Pharmacology and Toxicology (Beijing, China) . This committee also approved all animal-related experiments in the current study (No. IACUC-DWZX-2020-646) . Consent for publication. All authors agreed to submit this manuscript.
CRediT authorship contribution statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Appendix A. Supplementary material Supplementary data to this article can be found online at https://doi. org/10.1016/j.ijpharm.2022.121719.
References
Acharya, Sahoo, PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect, Adv. Drug Deliv. Rev
Ahmed, Aljaeid, Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery, Drug Des Devel Ther
Ahmed, Karim, Ross, Hossain, Clemens et al., A five-day course of ivermectin for the treatment of COVID-19 may reduce the duration of illness, International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases
Anselmo, Gupta, Zern, Pan, Zakrewsky et al., Delivering nanoparticles to lungs while avoiding liver and spleen through adsorption on red blood cells, ACS Nano
Anselmo, Mitragotri, Cell-mediated delivery of nanoparticles: taking advantage of circulatory cells to target nanoparticles, J Control Release
Bertrand, Grenier, Mahmoudi, Lima, Appel et al., Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics, Nat. Commun
Brenner, Mitragotri, Muzykantov, Red Blood Cell Hitchhiking: A Novel Approach for Vascular Delivery of Nanocarriers, Annu Rev Biomed Eng
Brenner, Pan, Myerson, Marcos-Contreras, Villa et al., Red blood cell-hitchhiking boosts delivery of nanocarriers to chosen organs by orders of magnitude, Nat. Commun
Caly, Druce, Catton, Jans, Wagstaff, The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro, Antiviral research
Casals, Pfaller, Duschl, Oostingh, Puntes, Time evolution of the nanoparticle protein corona, ACS Nano
Chambers, Mitragotri, Prolonged circulation of large polymeric nanoparticles by non-covalent adsorption on erythrocytes, J Control Release
Cohen, The immunopathogenesis of sepsis, Nature
Croci, Bottaro, Chan, Watanabe, Pezzullo et al., Liposomal Systems as Nanocarriers for the Antiviral Agent Ivermectin, International journal of biomaterials
Ding, Lv, Zheng, Lu, Liu et al., RBC-hitchhiking chitosan nanoparticles loading methylprednisolone for lung-targeting delivery, J Control Release
Fang, Gao, Hao, Liu, microRNA-1246 mediates lipopolysaccharideinduced pulmonary endothelial cell apoptosis and acute lung injury by targeting angiotensin-converting enzyme 2, American journal of translational research
Formiga, Leblanc, De Souza Rebouças, Farias, De Oliveira et al., Ivermectin: an award-winning drug with expected antiviral activity against COVID-19, J Control Release
Foroozesh, Hamidi, Zarrin, Mohammadi-Samani, Montaseri, Preparation and in-vitro characterization of tramadol-loaded carrier erythrocytes for long-term intravenous delivery, The Journal of pharmacy and pharmacology
Glassman, Villa, Ukidve, Zhao, Smith et al., Vascular Drug Delivery Using Carrier Red Blood Cells: Focus on RBC Surface Loading and Pharmacokinetics, The AAPS journal
Gustafson, Holt-Casper, Grainger, Ghandehari, Nanoparticle Uptake: The Phagocyte Problem, Nano Today
Heidary, Gharebaghi, Ivermectin: a systematic review from antiviral effects to COVID-19 complementary regimen, The Journal of antibiotics
Hoemann, Rodríguez González, Guzmán-Morales, Chen, Jalali Dil et al., Chitosan coatings with distinct innate immune bioactivities differentially stimulate angiogenesis, osteogenesis and chondrogenesis in polycaprolactone scaffolds with controlled interconnecting pore size, Bioact. Mater
Hu, Lei, Wang, Cao, Yang et al., Phagocyte-membrane-coated and laser-responsive nanoparticles control primary and metastatic cancer by inducing anti-tumor immunity, Biomaterials
Ibrahim, Abd-Elgawad, Soliman, Jablonski, Nanoparticlebased topical ophthalmic formulations for sustained celecoxib release, J. Pharm. Sci
Jermain, Hanafin, Cao, Lifschitz, Lanusse et al., Development of a Minimal Physiologically-Based Pharmacokinetic Model to Simulate Lung Exposure in Humans Following Oral Administration of Ivermectin for COVID-19 Drug Repurposing, J. Pharm. Sci
Ju, Liu, He, Gu, Liu et al., MicroRNA-27a alleviates LPS-induced acute lung injury in mice via inhibiting inflammation and apoptosis through modulating TLR4/MyD88/NF-κB pathway, Georgetown. Tex.)
Kaur, Shekhar, Sharma, Sarma, Prakash et al., Ivermectin as a potential drug for treatment of COVID-19: an in-sync review with clinical and computational attributes, Pharmacological reports
Krolewiecki, Lifschitz, Moragas, Travacio, Valentini et al., Antiviral effect of high-dose ivermectin in adults with COVID-19: A proof-of-concept randomized trial, EClinicalMedicine
Lee, Park, Jung, Bae, Kim, Mechanism for phosphatidylserine-dependent erythrophagocytosis in mouse liver, Blood
Li, Jin, Luo, Wang, Zhu et al., Size Dependency of Circulation and Biodistribution of Biomimetic Nanoparticles: Red Blood Cell Membrane-Coated Nanoparticles, Cells
Li, Zhao, Zhan, Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment, J. Cell. Physiol
Liu, An, Jia, Wang, Wu et al., Macrophagemimic shape changeable nanomedicine retained in tumor for multimodal therapy of breast cancer, J Control Release
López-Medina, López, Hurtado, Dávalos, Ramirez et al., Effect of Ivermectin on Time to Resolution of Symptoms Among Adults With Mild COVID-19: A Randomized Clinical Trial, JAMA
Mahmudpour, Roozbeh, Keshavarz, Farrokhi, Nabipour, COVID-19 cytokine storm: The anger of inflammation, Cytokine
Malek, Alper, Izumo, Hemodynamic shear stress and its role in atherosclerosis, JAMA
Matthay, Ware, Zimmerman, The acute respiratory distress syndrome, J Clin Invest
Mock, Matthews, Strauss, Burmeister, Schmidt et al., Red blood cell volume can be independently determined in vitro using sheep and human red blood cells labeled at different densities of biotin, Transfusion
Mohanty, Sahoo, Padhy, Targeting Some Enzymes with Repurposing Approved Pharmaceutical Drugs for Expeditious Antiviral Approaches Against Newer Strains of COVID-19, AAPS PharmSciTech
Mokra, Kosutova, Biomarkers in acute lung injury, Respir. Physiol. Neurobiol
Onoue, Yamada, Chan, Nanodrugs: pharmacokinetics and safety, Int. J. Nanomed
Pan, Vargas-Morales, Zern, Anselmo, Gupta et al., The Effect of Polymeric Nanoparticles on Biocompatibility of Carrier Red Blood Cells, PloS one
Perry, Reuter, Kai, Herlihy, Jones et al., PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics, Nano Lett
Peña-Silva, Duffull, Steer, Jaramillo-Rincon, Gwee et al., Pharmacokinetic considerations on the repurposing of ivermectin for treatment of COVID-19, Br. J. Clin. Pharmacol
Schmith, Zhou, Lohmer, The Approved Dose of Ivermectin Alone is not the Ideal Dose for the Treatment of COVID-19, Clin. Pharmacol. Ther
Surnar, Kamran, Shah, Basu, Kolishetti et al., Orally Administrable Therapeutic Synthetic Nanoparticle for Zika Virus, ACS Nano
Tenzer, Docter, Kuharev, Musyanovych, Fetz et al., Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology, Nat. Nanotechnol
Trailovic, Ivanovic, Varagić, Ivermectin effects on motor coordination and contractions of isolated rat diaphragm, Res. Vet. Sci
Trailovic, Nedeljkovic, Central and peripheral neurotoxic effects of ivermectin in rats, The Journal of veterinary medical science
Villa, Anselmo, Mitragotri, Muzykantov, Red blood cells: Supercarriers for drugs, biologicals, and nanoparticles and inspiration for advanced delivery systems, Adv. Drug Deliv. Rev
Villa, Pan, Zaitsev, Cines, Siegel et al., Delivery of drugs bound to erythrocytes: new avenues for an old intravascular carrier, Therapeutic delivery
Villa, Seghatchian, Muzykantov, Drug delivery by erythrocytes: "Primum non nocere, Transfus Apher Sci
Wagstaff, Rawlinson, Hearps, Jans, An AlphaScreen®-based assay for high-throughput screening for specific inhibitors of nuclear import, J. Biomol. Screen
Wang, Zhou, Ding, Liu, Tai et al., Red blood cell-hitchhiking chitosan nanoparticles for prolonged blood circulation time of vitamin K(1), International journal of pharmaceutics
Xia, Kovochich, Liong, Zink, Nel, Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways, ACS Nano
Yan, Ci, Chen, Chen, Li et al., Antiinflammatory effects of ivermectin in mouse model of allergic asthma, Inflamm Res
Yang, Atkinson, Wang, Lee, Bogoyevitch et al., The broad spectrum antiviral ivermectin targets the host nuclear transport importin α/β1 heterodimer, Antiviral research
Yang, Li, Gu, Fan, The application of nanoparticles in cancer immunotherapy: Targeting tumor microenvironment, Bioact. Mater
Yao, Yang, Wang, Liu, Zheng et al., Aging erythrocyte membranes as biomimetic nanometer carriers of livertargeting chromium poisoning treatment, Drug Deliv
Yu, Malugin, Ghandehari, Impact of silica nanoparticle design on cellular toxicity and hemolytic activity, ACS Nano
Zelepukin, Yaremenko, Shipunova, Babenyshev, Balalaeva et al., Nanoparticle-based drug delivery via RBC-hitchhiking for the inhibition of lung metastases growth, Nanoscale
Zhang, Qiu, Guo, Lian, Xu et al., Autologous Red Blood Cell Delivery of Betamethasone Phosphate Sodium for Long Anti-Inflammation, Pharmaceutics
Zhang, Song, Ci, An, Ju et al., Ivermectin inhibits LPS-induced production of inflammatory cytokines and improves LPS-induced survival in mice, Inflamm. Res
Zhang, Wu, Yu, Ruan, He et al., Ligand Size and Conformation Affect the Behavior of Nanoparticles Coated with in Vitro and in Vivo Protein Corona, ACS Appl. Mater. Interfaces
Öcal, Arıca-Yegin, Vural, Goracinova, Çalıs, 5-Fluorouracil-loaded PLA/PLGA PEG-PPG-PEG polymeric nanoparticles: formulation, in vitro characterization and cell culture studies, Drug Dev. Ind. Pharm
DOI record:
{
"DOI": "10.1016/j.ijpharm.2022.121719",
"ISSN": [
"0378-5173"
],
"URL": "http://dx.doi.org/10.1016/j.ijpharm.2022.121719",
"alternative-id": [
"S0378517322002745"
],
"article-number": "121719",
"assertion": [
{
"label": "This article is maintained by",
"name": "publisher",
"value": "Elsevier"
},
{
"label": "Article Title",
"name": "articletitle",
"value": "Red blood cell-hitchhiking mediated pulmonary delivery of ivermectin: Effects of nanoparticle properties"
},
{
"label": "Journal Title",
"name": "journaltitle",
"value": "International Journal of Pharmaceutics"
},
{
"label": "CrossRef DOI link to publisher maintained version",
"name": "articlelink",
"value": "https://doi.org/10.1016/j.ijpharm.2022.121719"
},
{
"label": "Content Type",
"name": "content_type",
"value": "article"
},
{
"label": "Copyright",
"name": "copyright",
"value": "© 2022 Elsevier B.V. All rights reserved."
}
],
"author": [
{
"affiliation": [],
"family": "Zheng",
"given": "Jinpeng",
"sequence": "first"
},
{
"affiliation": [],
"family": "Lu",
"given": "Caihong",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Ding",
"given": "Yaning",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Zhang",
"given": "Jinbang",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Tan",
"given": "Fangyun",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Liu",
"given": "Jingzhou",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Yang",
"given": "Guobao",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Wang",
"given": "Yuli",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Li",
"given": "Zhiping",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Yang",
"given": "Meiyan",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Yang",
"given": "Yang",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Gong",
"given": "Wei",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Gao",
"given": "Chunsheng",
"sequence": "additional"
}
],
"container-title": [
"International Journal of Pharmaceutics"
],
"content-domain": {
"crossmark-restriction": true,
"domain": [
"elsevier.com",
"sciencedirect.com"
]
},
"created": {
"date-parts": [
[
2022,
4,
4
]
],
"date-time": "2022-04-04T15:30:17Z",
"timestamp": 1649086217000
},
"deposited": {
"date-parts": [
[
2022,
4,
12
]
],
"date-time": "2022-04-12T02:03:23Z",
"timestamp": 1649729003000
},
"funder": [
{
"DOI": "10.13039/501100013076",
"award": [
"2018ZX09711003-008-001"
],
"doi-asserted-by": "publisher",
"name": "National Major Science and Technology Projects of China"
}
],
"indexed": {
"date-parts": [
[
2022,
4,
12
]
],
"date-time": "2022-04-12T02:41:46Z",
"timestamp": 1649731306658
},
"is-referenced-by-count": 0,
"issn-type": [
{
"type": "print",
"value": "0378-5173"
}
],
"issued": {
"date-parts": [
[
2022,
5
]
]
},
"language": "en",
"license": [
{
"URL": "https://www.elsevier.com/tdm/userlicense/1.0/",
"content-version": "tdm",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2022,
5,
1
]
],
"date-time": "2022-05-01T00:00:00Z",
"timestamp": 1651363200000
}
}
],
"link": [
{
"URL": "https://api.elsevier.com/content/article/PII:S0378517322002745?httpAccept=text/xml",
"content-type": "text/xml",
"content-version": "vor",
"intended-application": "text-mining"
},
{
"URL": "https://api.elsevier.com/content/article/PII:S0378517322002745?httpAccept=text/plain",
"content-type": "text/plain",
"content-version": "vor",
"intended-application": "text-mining"
}
],
"member": "78",
"original-title": [],
"page": "121719",
"prefix": "10.1016",
"published": {
"date-parts": [
[
2022,
5
]
]
},
"published-print": {
"date-parts": [
[
2022,
5
]
]
},
"publisher": "Elsevier BV",
"reference": [
{
"DOI": "10.1016/j.addr.2010.10.008",
"article-title": "PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect",
"author": "Acharya",
"doi-asserted-by": "crossref",
"first-page": "170",
"issue": "3",
"journal-title": "Adv. Drug Deliv. Rev.",
"key": "10.1016/j.ijpharm.2022.121719_b0005",
"volume": "63",
"year": "2011"
},
{
"DOI": "10.1016/j.ijid.2020.11.191",
"article-title": "A five-day course of ivermectin for the treatment of COVID-19 may reduce the duration of illness",
"author": "Ahmed",
"doi-asserted-by": "crossref",
"first-page": "214",
"journal-title": "International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases",
"key": "10.1016/j.ijpharm.2022.121719_b0010",
"volume": "103",
"year": "2021"
},
{
"DOI": "10.2147/DDDT.S99651",
"article-title": "Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery",
"author": "Ahmed",
"doi-asserted-by": "crossref",
"first-page": "483",
"journal-title": "Drug Des Devel Ther",
"key": "10.1016/j.ijpharm.2022.121719_b0015",
"volume": "10",
"year": "2016"
},
{
"DOI": "10.1021/nn404853z",
"article-title": "Delivering nanoparticles to lungs while avoiding liver and spleen through adsorption on red blood cells",
"author": "Anselmo",
"doi-asserted-by": "crossref",
"first-page": "11129",
"issue": "12",
"journal-title": "ACS Nano",
"key": "10.1016/j.ijpharm.2022.121719_b0020",
"volume": "7",
"year": "2013"
},
{
"DOI": "10.1016/j.jconrel.2014.03.050",
"article-title": "Cell-mediated delivery of nanoparticles: taking advantage of circulatory cells to target nanoparticles",
"author": "Anselmo",
"doi-asserted-by": "crossref",
"first-page": "531",
"journal-title": "J Control Release",
"key": "10.1016/j.ijpharm.2022.121719_b0025",
"volume": "190",
"year": "2014"
},
{
"DOI": "10.1038/s41467-017-00600-w",
"article-title": "Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics",
"author": "Bertrand",
"doi-asserted-by": "crossref",
"first-page": "777",
"journal-title": "Nat. Commun.",
"key": "10.1016/j.ijpharm.2022.121719_b0030",
"volume": "8",
"year": "2017"
},
{
"DOI": "10.1146/annurev-bioeng-121219-024239",
"article-title": "Red Blood Cell Hitchhiking: A Novel Approach for Vascular Delivery of Nanocarriers",
"author": "Brenner",
"doi-asserted-by": "crossref",
"first-page": "225",
"issue": "1",
"journal-title": "Annu Rev Biomed Eng",
"key": "10.1016/j.ijpharm.2022.121719_b0035",
"volume": "23",
"year": "2021"
},
{
"DOI": "10.1038/s41467-018-05079-7",
"article-title": "Red blood cell-hitchhiking boosts delivery of nanocarriers to chosen organs by orders of magnitude",
"author": "Brenner",
"doi-asserted-by": "crossref",
"first-page": "2684",
"journal-title": "Nat. Commun.",
"key": "10.1016/j.ijpharm.2022.121719_b0040",
"volume": "9",
"year": "2018"
},
{
"DOI": "10.1016/j.antiviral.2020.104787",
"doi-asserted-by": "crossref",
"key": "10.1016/j.ijpharm.2022.121719_b0045",
"unstructured": "Caly, L., Druce, J.D., Catton, M.G., Jans, D.A., Wagstaff, K.M., 2020. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral research 178, 104787."
},
{
"DOI": "10.1021/nn901372t",
"article-title": "Time evolution of the nanoparticle protein corona",
"author": "Casals",
"doi-asserted-by": "crossref",
"first-page": "3623",
"issue": "7",
"journal-title": "ACS Nano",
"key": "10.1016/j.ijpharm.2022.121719_b0050",
"volume": "4",
"year": "2010"
},
{
"DOI": "10.1016/j.jconrel.2004.08.005",
"article-title": "Prolonged circulation of large polymeric nanoparticles by non-covalent adsorption on erythrocytes",
"author": "Chambers",
"doi-asserted-by": "crossref",
"first-page": "111",
"issue": "1",
"journal-title": "J Control Release",
"key": "10.1016/j.ijpharm.2022.121719_b0055",
"volume": "100",
"year": "2004"
},
{
"DOI": "10.1038/nature01326",
"article-title": "The immunopathogenesis of sepsis",
"author": "Cohen",
"doi-asserted-by": "crossref",
"first-page": "885",
"issue": "6917",
"journal-title": "Nature",
"key": "10.1016/j.ijpharm.2022.121719_b0060",
"volume": "420",
"year": "2002"
},
{
"DOI": "10.1155/2016/8043983",
"article-title": "Liposomal Systems as Nanocarriers for the Antiviral Agent Ivermectin",
"author": "Croci",
"doi-asserted-by": "crossref",
"first-page": "1",
"journal-title": "International journal of biomaterials",
"key": "10.1016/j.ijpharm.2022.121719_b0065",
"volume": "2016",
"year": "2016"
},
{
"DOI": "10.1016/j.jconrel.2021.12.018",
"article-title": "RBC-hitchhiking chitosan nanoparticles loading methylprednisolone for lung-targeting delivery",
"author": "Ding",
"doi-asserted-by": "crossref",
"first-page": "702",
"journal-title": "J Control Release",
"key": "10.1016/j.ijpharm.2022.121719_b0070",
"volume": "341",
"year": "2021"
},
{
"article-title": "microRNA-1246 mediates lipopolysaccharide-induced pulmonary endothelial cell apoptosis and acute lung injury by targeting angiotensin-converting enzyme 2",
"author": "Fang",
"first-page": "1287",
"journal-title": "American journal of translational research",
"key": "10.1016/j.ijpharm.2022.121719_b0075",
"volume": "9",
"year": "2017"
},
{
"DOI": "10.1016/j.jconrel.2020.10.009",
"article-title": "Ivermectin: an award-winning drug with expected antiviral activity against COVID-19",
"author": "Formiga",
"doi-asserted-by": "crossref",
"first-page": "758",
"journal-title": "J Control Release",
"key": "10.1016/j.ijpharm.2022.121719_b0080",
"volume": "329",
"year": "2021"
},
{
"DOI": "10.1111/j.2042-7158.2010.01207.x",
"article-title": "Preparation and in-vitro characterization of tramadol-loaded carrier erythrocytes for long-term intravenous delivery",
"author": "Foroozesh",
"doi-asserted-by": "crossref",
"first-page": "322",
"journal-title": "The Journal of pharmacy and pharmacology",
"key": "10.1016/j.ijpharm.2022.121719_b0085",
"volume": "63",
"year": "2011"
},
{
"DOI": "10.3390/pharmaceutics12050440",
"article-title": "Vascular Drug Delivery Using Carrier Red Blood Cells: Focus on RBC Surface Loading and Pharmacokinetics",
"author": "Glassman",
"doi-asserted-by": "crossref",
"first-page": "440",
"journal-title": "Pharmaceutics",
"key": "10.1016/j.ijpharm.2022.121719_b0090",
"volume": "12",
"year": "2020"
},
{
"DOI": "10.1208/s12248-007-9000-9",
"article-title": "The pharmacokinetics and interactions of ivermectin in humans–a mini-review",
"author": "González Canga",
"doi-asserted-by": "crossref",
"first-page": "42",
"issue": "1",
"journal-title": "The AAPS journal",
"key": "10.1016/j.ijpharm.2022.121719_b0095",
"volume": "10",
"year": "2008"
},
{
"DOI": "10.1016/j.nantod.2015.06.006",
"article-title": "Nanoparticle Uptake: The Phagocyte Problem",
"author": "Gustafson",
"doi-asserted-by": "crossref",
"first-page": "487",
"issue": "4",
"journal-title": "Nano Today",
"key": "10.1016/j.ijpharm.2022.121719_b0100",
"volume": "10",
"year": "2015"
},
{
"DOI": "10.1038/s41429-020-0336-z",
"article-title": "Ivermectin: a systematic review from antiviral effects to COVID-19 complementary regimen",
"author": "Heidary",
"doi-asserted-by": "crossref",
"first-page": "593",
"issue": "9",
"journal-title": "The Journal of antibiotics",
"key": "10.1016/j.ijpharm.2022.121719_b0105",
"volume": "73",
"year": "2020"
},
{
"DOI": "10.1016/j.bioactmat.2021.09.012",
"article-title": "Chitosan coatings with distinct innate immune bioactivities differentially stimulate angiogenesis, osteogenesis and chondrogenesis in poly-caprolactone scaffolds with controlled interconnecting pore size",
"author": "Hoemann",
"doi-asserted-by": "crossref",
"first-page": "430",
"journal-title": "Bioact. Mater.",
"key": "10.1016/j.ijpharm.2022.121719_b0110",
"volume": "10",
"year": "2022"
},
{
"DOI": "10.1016/j.biomaterials.2020.120159",
"doi-asserted-by": "crossref",
"key": "10.1016/j.ijpharm.2022.121719_b0115",
"unstructured": "Hu, C., Lei, T., Wang, Y., Cao, J., Yang, X., Qin, L., Liu, R., Zhou, Y., Tong, F., Umeshappa, C.S., Gao, H., 2020. Phagocyte-membrane-coated and laser-responsive nanoparticles control primary and metastatic cancer by inducing anti-tumor immunity. Biomaterials 255, 120159."
},
{
"DOI": "10.1002/jps.23417",
"article-title": "Nanoparticle-based topical ophthalmic formulations for sustained celecoxib release",
"author": "Ibrahim",
"doi-asserted-by": "crossref",
"first-page": "1036",
"journal-title": "J. Pharm. Sci.",
"key": "10.1016/j.ijpharm.2022.121719_b0120",
"volume": "102",
"year": "2013"
},
{
"DOI": "10.1016/j.xphs.2020.08.024",
"article-title": "Development of a Minimal Physiologically-Based Pharmacokinetic Model to Simulate Lung Exposure in Humans Following Oral Administration of Ivermectin for COVID-19 Drug Repurposing",
"author": "Jermain",
"doi-asserted-by": "crossref",
"first-page": "3574",
"issue": "12",
"journal-title": "J. Pharm. Sci.",
"key": "10.1016/j.ijpharm.2022.121719_b0125",
"volume": "109",
"year": "2020"
},
{
"article-title": "MicroRNA-27a alleviates LPS-induced acute lung injury in mice via inhibiting inflammation and apoptosis through modulating TLR4/MyD88/NF-κB pathway. Cell cycle (Georgetown",
"author": "Ju",
"first-page": "2001",
"journal-title": "Tex.)",
"key": "10.1016/j.ijpharm.2022.121719_b0130",
"volume": "17",
"year": "2018"
},
{
"DOI": "10.1007/s43440-020-00195-y",
"article-title": "Ivermectin as a potential drug for treatment of COVID-19: an in-sync review with clinical and computational attributes",
"author": "Kaur",
"doi-asserted-by": "crossref",
"first-page": "736",
"issue": "3",
"journal-title": "Pharmacological reports : PR",
"key": "10.1016/j.ijpharm.2022.121719_b0135",
"volume": "73",
"year": "2021"
},
{
"DOI": "10.1016/j.eclinm.2021.100959",
"doi-asserted-by": "crossref",
"key": "10.1016/j.ijpharm.2022.121719_b0140",
"unstructured": "Krolewiecki, A., Lifschitz, A., Moragas, M., Travacio, M., Valentini, R., Alonso, D.F., Solari, R., Tinelli, M.A., Cimino, R.O., Álvarez, L., Fleitas, P.E., Ceballos, L., Golemba, M., Fernández, F., Fernández de Oliveira, D., Astudillo, G., Baeck, I., Farina, J., Cardama, G.A., Mangano, A., Spitzer, E., Gold, S., Lanusse, C., 2021. Antiviral effect of high-dose ivermectin in adults with COVID-19: A proof-of-concept randomized trial. EClinicalMedicine 37, 100959."
},
{
"DOI": "10.1182/blood-2010-10-313239",
"article-title": "Mechanism for phosphatidylserine-dependent erythrophagocytosis in mouse liver",
"author": "Lee",
"doi-asserted-by": "crossref",
"first-page": "5215",
"journal-title": "Blood",
"key": "10.1016/j.ijpharm.2022.121719_b0145",
"volume": "117",
"year": "2011"
},
{
"DOI": "10.3390/cells8080881",
"article-title": "Size Dependency of Circulation and Biodistribution of Biomimetic Nanoparticles: Red Blood Cell Membrane-Coated Nanoparticles",
"author": "Li",
"doi-asserted-by": "crossref",
"first-page": "881",
"issue": "8",
"journal-title": "Cells",
"key": "10.1016/j.ijpharm.2022.121719_b0150",
"volume": "8",
"year": "2019"
},
{
"DOI": "10.1002/jcp.30055",
"article-title": "Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment",
"author": "Li",
"doi-asserted-by": "crossref",
"first-page": "2959",
"issue": "4",
"journal-title": "J. Cell. Physiol.",
"key": "10.1016/j.ijpharm.2022.121719_b0155",
"volume": "236",
"year": "2021"
},
{
"DOI": "10.1016/j.jconrel.2020.02.043",
"article-title": "Macrophage-mimic shape changeable nanomedicine retained in tumor for multimodal therapy of breast cancer",
"author": "Liu",
"doi-asserted-by": "crossref",
"first-page": "589",
"journal-title": "J Control Release",
"key": "10.1016/j.ijpharm.2022.121719_b0160",
"volume": "321",
"year": "2020"
},
{
"DOI": "10.1001/jama.2021.3071",
"article-title": "Effect of Ivermectin on Time to Resolution of Symptoms Among Adults With Mild COVID-19: A Randomized Clinical Trial",
"author": "López-Medina",
"doi-asserted-by": "crossref",
"first-page": "1426",
"journal-title": "JAMA",
"key": "10.1016/j.ijpharm.2022.121719_b0165",
"volume": "325",
"year": "2021"
},
{
"DOI": "10.1016/j.cyto.2020.155151",
"doi-asserted-by": "crossref",
"key": "10.1016/j.ijpharm.2022.121719_b0170",
"unstructured": "Mahmudpour, M., Roozbeh, J., Keshavarz, M., Farrokhi, S., Nabipour, I., 2020. COVID-19 cytokine storm: The anger of inflammation. Cytokine 133, 155151."
},
{
"DOI": "10.1001/jama.282.21.2035",
"article-title": "Hemodynamic shear stress and its role in atherosclerosis",
"author": "Malek",
"doi-asserted-by": "crossref",
"first-page": "2035",
"journal-title": "JAMA",
"key": "10.1016/j.ijpharm.2022.121719_b0175",
"volume": "282",
"year": "1999"
},
{
"DOI": "10.1172/JCI60331",
"article-title": "The acute respiratory distress syndrome",
"author": "Matthay",
"doi-asserted-by": "crossref",
"first-page": "2731",
"issue": "8",
"journal-title": "J Clin Invest",
"key": "10.1016/j.ijpharm.2022.121719_b0180",
"volume": "122",
"year": "2012"
},
{
"DOI": "10.1111/j.1537-2995.2009.02095.x",
"article-title": "Red blood cell volume can be independently determined in vitro using sheep and human red blood cells labeled at different densities of biotin",
"author": "Mock",
"doi-asserted-by": "crossref",
"first-page": "1178",
"journal-title": "Transfusion",
"key": "10.1016/j.ijpharm.2022.121719_b0185",
"volume": "49",
"year": "2009"
},
{
"DOI": "10.1208/s12249-021-02089-5",
"article-title": "Targeting Some Enzymes with Repurposing Approved Pharmaceutical Drugs for Expeditious Antiviral Approaches Against Newer Strains of COVID-19",
"author": "Mohanty",
"doi-asserted-by": "crossref",
"first-page": "214",
"journal-title": "AAPS PharmSciTech",
"key": "10.1016/j.ijpharm.2022.121719_b0190",
"volume": "22",
"year": "2021"
},
{
"DOI": "10.1016/j.resp.2014.10.006",
"article-title": "Biomarkers in acute lung injury",
"author": "Mokra",
"doi-asserted-by": "crossref",
"first-page": "52",
"journal-title": "Respir. Physiol. Neurobiol.",
"key": "10.1016/j.ijpharm.2022.121719_b0195",
"volume": "209",
"year": "2015"
},
{
"DOI": "10.3109/03639045.2013.775581",
"article-title": "5-Fluorouracil-loaded PLA/PLGA PEG-PPG-PEG polymeric nanoparticles: formulation, in vitro characterization and cell culture studies",
"author": "Öcal",
"doi-asserted-by": "crossref",
"first-page": "560",
"issue": "4",
"journal-title": "Drug Dev. Ind. Pharm.",
"key": "10.1016/j.ijpharm.2022.121719_b0200",
"volume": "40",
"year": "2014"
},
{
"DOI": "10.2147/IJN.S38378",
"article-title": "Nanodrugs: pharmacokinetics and safety",
"author": "Onoue",
"doi-asserted-by": "crossref",
"first-page": "1025",
"journal-title": "Int. J. Nanomed.",
"key": "10.1016/j.ijpharm.2022.121719_b0205",
"volume": "9",
"year": "2014"
},
{
"DOI": "10.1371/journal.pone.0152074",
"doi-asserted-by": "crossref",
"key": "10.1016/j.ijpharm.2022.121719_b0210",
"unstructured": "Pan, D., Vargas-Morales, O., Zern, B., Anselmo, A.C., Gupta, V., Zakrewsky, M., Mitragotri, S., Muzykantov, V., 2016. The Effect of Polymeric Nanoparticles on Biocompatibility of Carrier Red Blood Cells. PloS one 11, e0152074."
},
{
"DOI": "10.1111/bcp.14476",
"article-title": "Pharmacokinetic considerations on the repurposing of ivermectin for treatment of COVID-19",
"author": "Peña‐Silva",
"doi-asserted-by": "crossref",
"first-page": "1589",
"issue": "3",
"journal-title": "Br. J. Clin. Pharmacol.",
"key": "10.1016/j.ijpharm.2022.121719_b0215",
"volume": "87",
"year": "2021"
},
{
"DOI": "10.1021/nl302638g",
"article-title": "PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics",
"author": "Perry",
"doi-asserted-by": "crossref",
"first-page": "5304",
"issue": "10",
"journal-title": "Nano Lett",
"key": "10.1016/j.ijpharm.2022.121719_b0220",
"volume": "12",
"year": "2012"
},
{
"DOI": "10.1002/cpt.1889",
"article-title": "The Approved Dose of Ivermectin Alone is not the Ideal Dose for the Treatment of COVID-19",
"author": "Schmith",
"doi-asserted-by": "crossref",
"first-page": "762",
"issue": "4",
"journal-title": "Clin. Pharmacol. Ther.",
"key": "10.1016/j.ijpharm.2022.121719_b0225",
"volume": "108",
"year": "2020"
},
{
"DOI": "10.1021/acsnano.9b02807",
"article-title": "Orally Administrable Therapeutic Synthetic Nanoparticle for Zika Virus",
"author": "Surnar",
"doi-asserted-by": "crossref",
"first-page": "11034",
"issue": "10",
"journal-title": "ACS Nano",
"key": "10.1016/j.ijpharm.2022.121719_b0230",
"volume": "13",
"year": "2019"
},
{
"DOI": "10.1038/nnano.2013.181",
"article-title": "Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology",
"author": "Tenzer",
"doi-asserted-by": "crossref",
"first-page": "772",
"issue": "10",
"journal-title": "Nat. Nanotechnol.",
"key": "10.1016/j.ijpharm.2022.121719_b0235",
"volume": "8",
"year": "2013"
},
{
"DOI": "10.1016/j.rvsc.2010.09.016",
"article-title": "Ivermectin effects on motor coordination and contractions of isolated rat diaphragm",
"author": "Trailovic",
"doi-asserted-by": "crossref",
"first-page": "426",
"issue": "3",
"journal-title": "Res. Vet. Sci.",
"key": "10.1016/j.ijpharm.2022.121719_b0240",
"volume": "91",
"year": "2011"
},
{
"DOI": "10.1292/jvms.10-0424",
"article-title": "Central and peripheral neurotoxic effects of ivermectin in rats",
"author": "Trailovic",
"doi-asserted-by": "crossref",
"first-page": "591",
"issue": "5",
"journal-title": "The Journal of veterinary medical science",
"key": "10.1016/j.ijpharm.2022.121719_b0245",
"volume": "73",
"year": "2011"
},
{
"DOI": "10.1016/j.addr.2016.02.007",
"article-title": "Red blood cells: Supercarriers for drugs, biologicals, and nanoparticles and inspiration for advanced delivery systems",
"author": "Villa",
"doi-asserted-by": "crossref",
"first-page": "88",
"journal-title": "Adv. Drug Deliv. Rev.",
"key": "10.1016/j.ijpharm.2022.121719_b0250",
"volume": "106",
"year": "2016"
},
{
"DOI": "10.4155/tde.15.34",
"article-title": "Delivery of drugs bound to erythrocytes: new avenues for an old intravascular carrier",
"author": "Villa",
"doi-asserted-by": "crossref",
"first-page": "795",
"issue": "7",
"journal-title": "Therapeutic delivery",
"key": "10.1016/j.ijpharm.2022.121719_b0255",
"volume": "6",
"year": "2015"
},
{
"DOI": "10.1016/j.transci.2016.10.017",
"article-title": "Drug delivery by erythrocytes: “Primum non nocere”",
"author": "Villa",
"doi-asserted-by": "crossref",
"first-page": "275",
"issue": "3",
"journal-title": "Transfus Apher Sci",
"key": "10.1016/j.ijpharm.2022.121719_b0260",
"volume": "55",
"year": "2016"
},
{
"DOI": "10.1177/1087057110390360",
"article-title": "An AlphaScreen®-based assay for high-throughput screening for specific inhibitors of nuclear import",
"author": "Wagstaff",
"doi-asserted-by": "crossref",
"first-page": "192",
"issue": "2",
"journal-title": "J. Biomol. Screen.",
"key": "10.1016/j.ijpharm.2022.121719_b0265",
"volume": "16",
"year": "2011"
},
{
"DOI": "10.1016/j.ijpharm.2020.120084",
"doi-asserted-by": "crossref",
"key": "10.1016/j.ijpharm.2022.121719_b0275",
"unstructured": "Wang, Y., Zhou, C., Ding, Y., Liu, M., Tai, Z., Jin, Q., Yang, Y., Li, Z., Yang, M., Gong, W., Gao, C., 2021. Red blood cell-hitchhiking chitosan nanoparticles for prolonged blood circulation time of vitamin K(1). International journal of pharmaceutics 592, 120084."
},
{
"DOI": "10.1002/jcp.1040770208",
"article-title": "Cell surface negativity and the binding of positively charged particles",
"author": "Weiss",
"doi-asserted-by": "crossref",
"first-page": "179",
"issue": "2",
"journal-title": "J. Cell. Physiol.",
"key": "10.1016/j.ijpharm.2022.121719_b0280",
"volume": "77",
"year": "1971"
},
{
"DOI": "10.1021/nn700256c",
"article-title": "Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways",
"author": "Xia",
"doi-asserted-by": "crossref",
"first-page": "85",
"issue": "1",
"journal-title": "ACS Nano",
"key": "10.1016/j.ijpharm.2022.121719_b0285",
"volume": "2",
"year": "2008"
},
{
"DOI": "10.1007/s00011-011-0307-8",
"article-title": "Anti-inflammatory effects of ivermectin in mouse model of allergic asthma",
"author": "Yan",
"doi-asserted-by": "crossref",
"first-page": "589",
"issue": "6",
"journal-title": "Inflamm Res",
"key": "10.1016/j.ijpharm.2022.121719_b0290",
"volume": "60",
"year": "2011"
},
{
"DOI": "10.1016/j.bioactmat.2020.12.010",
"article-title": "The application of nanoparticles in cancer immunotherapy: Targeting tumor microenvironment",
"author": "Yang",
"doi-asserted-by": "crossref",
"first-page": "1973",
"issue": "7",
"journal-title": "Bioact. Mater.",
"key": "10.1016/j.ijpharm.2022.121719_b0295",
"volume": "6",
"year": "2021"
},
{
"DOI": "10.1016/j.antiviral.2020.104760",
"doi-asserted-by": "crossref",
"key": "10.1016/j.ijpharm.2022.121719_b0300",
"unstructured": "Yang, S.N.Y., Atkinson, S.C., Wang, C., Lee, A., Bogoyevitch, M.A., Borg, N.A., Jans, D.A., 2020. The broad spectrum antiviral ivermectin targets the host nuclear transport importin α/β1 heterodimer. Antiviral research 177, 104760."
},
{
"DOI": "10.1080/10717544.2021.1949075",
"article-title": "Aging erythrocyte membranes as biomimetic nanometer carriers of liver-targeting chromium poisoning treatment",
"author": "Yao",
"doi-asserted-by": "crossref",
"first-page": "1455",
"issue": "1",
"journal-title": "Drug Deliv",
"key": "10.1016/j.ijpharm.2022.121719_b0305",
"volume": "28",
"year": "2021"
},
{
"DOI": "10.1021/nn2013904",
"article-title": "Impact of silica nanoparticle design on cellular toxicity and hemolytic activity",
"author": "Yu",
"doi-asserted-by": "crossref",
"first-page": "5717",
"issue": "7",
"journal-title": "ACS Nano",
"key": "10.1016/j.ijpharm.2022.121719_b0310",
"volume": "5",
"year": "2011"
},
{
"DOI": "10.1039/C8NR07730D",
"article-title": "Nanoparticle-based drug delivery via RBC-hitchhiking for the inhibition of lung metastases growth",
"author": "Zelepukin",
"doi-asserted-by": "crossref",
"first-page": "1636",
"issue": "4",
"journal-title": "Nanoscale",
"key": "10.1016/j.ijpharm.2022.121719_b0315",
"volume": "11",
"year": "2019"
},
{
"DOI": "10.1021/acsami.7b16096",
"article-title": "Ligand Size and Conformation Affect the Behavior of Nanoparticles Coated with in Vitro and in Vivo Protein Corona",
"author": "Zhang",
"doi-asserted-by": "crossref",
"first-page": "9094",
"issue": "10",
"journal-title": "ACS Appl. Mater. Interfaces",
"key": "10.1016/j.ijpharm.2022.121719_b0320",
"volume": "10",
"year": "2018"
},
{
"DOI": "10.3390/pharmaceutics10040286",
"article-title": "Autologous Red Blood Cell Delivery of Betamethasone Phosphate Sodium for Long Anti-Inflammation",
"author": "Zhang",
"doi-asserted-by": "crossref",
"first-page": "286",
"journal-title": "Pharmaceutics",
"key": "10.1016/j.ijpharm.2022.121719_b0325",
"volume": "10",
"year": "2018"
},
{
"DOI": "10.1007/s00011-008-8007-8",
"article-title": "Ivermectin inhibits LPS-induced production of inflammatory cytokines and improves LPS-induced survival in mice",
"author": "Zhang",
"doi-asserted-by": "crossref",
"first-page": "524",
"issue": "11",
"journal-title": "Inflamm. Res.",
"key": "10.1016/j.ijpharm.2022.121719_b0330",
"volume": "57",
"year": "2008"
}
],
"reference-count": 65,
"references-count": 65,
"relation": {},
"resource": {
"primary": {
"URL": "https://linkinghub.elsevier.com/retrieve/pii/S0378517322002745"
}
},
"score": 1,
"short-container-title": [
"International Journal of Pharmaceutics"
],
"short-title": [],
"source": "Crossref",
"subject": [
"Pharmaceutical Science"
],
"subtitle": [],
"title": [
"Red blood cell-hitchhiking mediated pulmonary delivery of ivermectin: Effects of nanoparticle properties"
],
"type": "journal-article",
"update-policy": "http://dx.doi.org/10.1016/elsevier_cm_policy",
"volume": "619"
}
