Anti-inflammatory activity of ivermectin in late-stage COVID-19 may reflect activation of systemic glycine receptors
et al., Open Heart, doi:10.1136/openhrt-2021-001655, Apr 2021
Ivermectin for COVID-19
4th treatment shown to reduce risk in
August 2020, now with p < 0.00000000001 from 106 studies, recognized in 24 countries.
No treatment is 100% effective. Protocols
combine treatments.
6,300+ studies for
210+ treatments. c19early.org
|
Review suggesting that the effectiveness of ivermectin in the cytokine storm phase of COVID-19 may be, at least in part, an anti-inflammatory effect mediated by increased activation of glycine receptors on leukocytes and possibly vascular endothelium.
1.
Mothae et al., SARS-CoV-2 host-pathogen interactome: insights into more players during pathogenesis, Virology, doi:10.1016/j.virol.2025.110607.
2.
Zhang et al., Rho-GTPases subfamily: cellular defectors orchestrating viral infection, Cellular & Molecular Biology Letters, doi:10.1186/s11658-025-00722-w.
3.
Saha et al., Inhaled Dry Powder of Antiviral Agents: A Promising Approach to Treating Respiratory Viral Pathogens, Viruses, doi:10.3390/v17020252.
4.
Ulloa-Aguilar et al., The Nucleolus and Its Interactions with Viral Proteins Required for Successful Infection, Cells, doi:10.3390/cells13181591.
5.
Enyeji et al., Effective Treatment of COVID-19 Infection with Repurposed Drugs: Case Reports, Viral Immunology, doi:10.1089/vim.2024.0034.
6.
Wimalawansa, S., Unlocking Insights: Navigating COVID-19 Challenges and Emulating Future Pandemic Resilience Strategies with Strengthening Natural Immunity, Heliyon, doi:10.1016/j.heliyon.2024.e34691.
7.
Shouman et al., SARS-CoV-2-associated lymphopenia: possible mechanisms and the role of CD147, Cell Communication and Signaling, doi:10.1186/s12964-024-01718-3.
8.
Mehraeen et al., Treatments for Olfactory Dysfunction in COVID-19: A Systematic Review, International Archives of Otorhinolaryngology, doi:10.1055/s-0044-1786046.
9.
Scheim et al., Back to the Basics of SARS-CoV-2 Biochemistry: Microvascular Occlusive Glycan Bindings Govern Its Morbidities and Inform Therapeutic Responses, Viruses, doi:10.3390/v16040647.
10.
Yagisawa et al., Global trends in clinical trials of ivermectin for COVID-19—Part 2, The Japanese Journal of Antibiotics, doi:10.11553/antibiotics.77.1_45.
11.
Liu et al., Crosstalk between neutrophil extracellular traps and immune regulation: insights into pathobiology and therapeutic implications of transfusion-related acute lung injury, Frontiers in Immunology, doi:10.3389/fimmu.2023.1324021.
12.
Scheim (B) et al., Sialylated Glycan Bindings from SARS-CoV-2 Spike Protein to Blood and Endothelial Cells Govern the Severe Morbidities of COVID-19, International Journal of Molecular Sciences, doi:10.3390/ijms242317039.
13.
Yemeke et al., Impact of the COVID-19 pandemic on the quality of medical products in Zimbabwe: a qualitative study based on key informant interviews with health system stakeholders, BMJ Open, doi:10.1136/bmjopen-2022-068923.
14.
Kory, P., The Global War on Ivermectin, International Covid Summit III, European Parliament, Brussels, covid19criticalcare.com/wp-content/uploads/2023/05/GLOBAL-WAR-ON-IVERMECTIN-PARLIAMENT.pdf.
15.
Babalola et al., The Place of Ivermectin in the Management of Covid-19: State of the Evidence, Medical Research Archives, doi:10.18103/mra.v11i4.3778.
16.
Loo et al., Recent Advances in Inhaled Nanoformulations of Vaccines and Therapeutics Targeting Respiratory Viral Infections, Pharmaceutical Research, doi:10.1007/s11095-023-03520-1.
17.
Scheim (C), D., From Cold to Killer: How SARS-CoV-2 Evolved without Hemagglutinin Esterase to Agglutinate and Then Clot Blood Cells, Center for Open Science, doi:10.31219/osf.io/sgdj2.
18.
Kory (B), P., The Criminal Censorship of Ivermectin's Efficacy By The High-Impact Medical Journals - Part 1, Pierre Kory’s Medical Musings, pierrekory.substack.com/p/the-criminal-censorship-of-ivermectins.
19.
Al-kuraishy et al., Central effects of Ivermectin in alleviation of Covid-19-induced dysautonomia, Current Drug Targets, doi:10.2174/1389450123666220810102406.
20.
Schwartz, E., Does ivermectin have a place in the treatment of mild Covid-19?, New Microbes and New Infections, doi:10.1016/j.nmni.2022.100989.
21.
Marques et al., Ivermectin as a possible treatment for COVID-19: a review of the 2022 protocols, Brazilian Journal of Biology, doi:10.1590/1519-6984.258325.
22.
Semiz, S., SIT1 transporter as a potential novel target in treatment of COVID-19, Biomolecular Concepts, doi:10.1515/bmc-2021-0017.
23.
Zaidi et al., The mechanisms of action of ivermectin against SARS-CoV-2—an extensive review, The Journal of Antibiotics, doi:10.1038/s41429-021-00491-6.
24.
Behl et al., CD147-spike protein interaction in COVID-19: Get the ball rolling with a novel receptor and therapeutic target, Science of The Total Environment, doi:10.1016/j.scitotenv.2021.152072.
25.
Low et al., Repositioning Ivermectin for Covid-19 treatment: Molecular mechanisms of action against SARS-CoV-2 replication, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, doi:10.1016/j.bbadis.2021.166294.
26.
Fordham et al., The uses and abuses of systematic reviews, OSF Preprints, doi:10.31219/osf.io/mp4f2.
27.
Kow et al., Pitfalls in Reporting Sample Size Calculation Across Randomized Controlled Trials Involving Ivermectin for the treatment of COVID-19, American Journal of Therapeutics, doi:10.1097/MJT.0000000000001441.
28.
Santin et al., Ivermectin: a multifaceted drug of Nobel prize-honored distinction with indicated efficacy against a new global scourge, COVID-19, New Microbes and New Infections, doi:10.1016/j.nmni.2021.100924.
29.
Adegboro et al., A review of the anti-viral effects of ivermectin, African Journal of Clinical and Experimental Microbiology, doi:10.4314/ajcem.v22i3.2.
30.
Turkia, M., A Continuation of a Timeline of Ivermectin-Related Events in the COVID-19 Pandemic [June 30, 2021], ResearchGate, doi:10.13140/RG.2.2.16973.36326.
31.
Jagiasi et al., Variation in therapeutic strategies for the management of severe COVID-19 in India- A nationwide cross-sectional survey, The International Journal of Clinical Practice, doi:10.1111/ijcp.14574.
32.
Lind et al., Increase in Outpatient Ivermectin Dispensing in the US During the COVID-19 Pandemic: A Cross-Sectional Analysis, Journal of General Internal Medicine, doi:10.1007/s11606-021-06948-6.
33.
Wang et al., Minimum manufacturing costs, national prices and estimated global availability of new repurposed therapies for COVID-19, medRxiv, doi:10.1101/2021.06.01.21258147.
34.
Kory (C) et al., Review of the Emerging Evidence Demonstrating the Efficacy of Ivermectin in the Prophylaxis and Treatment of COVID-19, American Journal of Therapeutics, doi:10.1097/MJT.0000000000001377.
35.
DiNicolantonio et al., Anti-inflammatory activity of ivermectin in late-stage COVID-19 may reflect activation of systemic glycine receptors, Open Heart, doi:10.1136/openhrt-2021-001655.
36.
Turkia (B), M., A timeline of ivermectin-related events in the COVID-19 pandemic, Research Gate, www.researchgate.net/publication/350610718_A_Timeline_of_Ivermectin-Related_Events_in_the_COVID-19_Pandemic_April_3_2021.
37.
Wehbe et al., Repurposing Ivermectin for COVID-19: Molecular Aspects and Therapeutic Possibilities, Front. Immunol., doi:10.3389/fimmu.2021.663586.
38.
Yagisawa (B) et al., Global trends in clinical studies of ivermectin in COVID-19, The Japanese Journal of Antibiotics, 74-1, Mar 2021, jja-contents.wdc-jp.com/pdf/JJA74/74-1-open/74-1_44-95.pdf.
39.
Jans et al., The broad spectrum host-directed agent ivermectin as an antiviral for SARS-CoV-2 ?, Biochemical and Biophysical Research Communications, doi:10.1016/j.bbrc.2020.10.042.
40.
Kory (D) et al., Review of the Emerging Evidence Demonstrating the Efficacy of Ivermectin in the Prophylaxis and Treatment of COVID-19, Frontiers in Pharmacology, doi:10.3389/fphar.2021.643369.
41.
Formiga et al., Ivermectin: an award-winning drug with expected antiviral activity against COVID-19, J. Control Release, doi:10.1016/j.jconrel.2020.10.009.
42.
Scheim (D), D., Ivermectin for COVID-19 Treatment: Clinical Response at Quasi-Threshold Doses Via Hypothesized Alleviation of CD147-Mediated Vascular Occlusion, SSRN, doi:10.2139/ssrn.3636557.
43.
Turkia (C), M., FLCCC Alliance MATH+ ascorbic acid and I-MASK+ ivermectin protocols for COVID-19 — a brief review, ResearchGate, www.researchgate.net/profile/Mika_Turkia/publication/345694745_FLCCC_Alliance_MATH_ascorbic_acid_and_I-MASK_ivermectin_protocols_for_COVID-19_-_A_Brief_Review/links/5fab010f4585150781078260/FLCCC-Alliance-MATH-ascorbic-acid-and-I-MASK-ivermectin-protocols-for-COVID-19-A-Brief-Review.pdf.
44.
Jans (B) et al., Ivermectin as a Broad-Spectrum Host-Directed Antiviral: The Real Deal?, Cells 2020, 9:9, 2100, doi:10.3390/cells9092100.
45.
Elkholy et al., Ivermectin: A Closer Look at a Potential Remedy, Cureus, doi:10.7759/cureus.10378.
46.
DiNicolantonio (B) et al., Ivermectin may be a clinically useful anti-inflammatory agent for late-stage COVID-19, Open Heart, doi:10.1136/openhrt-2020-001350.
47.
Vora et al., White paper on Ivermectin as a potential therapy for COVID-19, Indian Journal of Tuberculosis, doi:10.1016/j.ijtb.2020.07.031.
DiNicolantonio et al., 19 Apr 2021, peer-reviewed, 3 authors.
Anti-inflammatory activity of ivermectin in late-stage COVID-19 may reflect activation of systemic glycine receptors
Open Heart, doi:10.1136/openhrt-2021-001655
somewhat analogous anti-inflammatory protection in COVID-19, as has previously been suggested. 26 27 However, in light of accumulating evidence that ivermectin may have important utility for the primary prevention of COVID-19, it is likely that it also exerts an antiviral effect with respect to SARS-CoV-2, as suggested by in vitro studies. 3 28 It is not clear whether glycine receptor agonism might have anything to do with this effect.
References
Baudou, Lespine, Durrieu, Serious Ivermectin Toxicity and Human ABCB1 Nonsense Mutations, N Engl J Med, doi:10.1056/NEJMc1917344
Caly, Druce, Catton, The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro, Antiviral Res, doi:10.1016/j.antiviral.2020.104787
Didier, Loor, Decreased biotolerability for ivermectin and cyclosporin A in mice exposed to potent P-glycoprotein inhibitors, Int J Cancer, doi:10.1002/ijc.2910630220
Ding, Svingen, Pedersen, Plasma glycine and risk of acute myocardial infarction in patients with suspected stable angina pectoris, J Am Heart Assoc, doi:10.1161/JAHA.115.002621
Dinicolantonio, Barroso, Mccarty, Ivermectin may be a clinically useful anti-inflammatory agent for late-stage COVID-19, Open Heart, doi:10.1136/openhrt-2020-001350
Dinicolantonio, Mccarty, Thrombotic complications of COVID-19 may reflect an upregulation of endothelial tissue factor expression that is contingent on activation of endosomal NADPH oxidase, Open Heart, doi:10.1136/openhrt-2020-001337
Froh, Thurman, Wheeler, Molecular evidence for a glycine-gated chloride channel in macrophages and leukocytes, Am J Physiol Gastrointest Liver Physiol, doi:10.1152/ajpgi.00503.2001
Ikejima, Iimuro, Forman, A diet containing glycine improves survival in endotoxin shock in the rat, Am J Physiol, doi:10.1152/ajpgi.1996.271.1.G97
Ikejima, Qu, Stachlewitz, Kupffer cells contain a glycine-gated chloride channel, Am J Physiol, doi:10.1152/ajpgi.1997.272.6.G1581
Li, Bradford, Wheeler, Dietary glycine prevents peptidoglycan polysaccharide-induced reactive arthritis in the rat: role for glycine-gated chloride channel, Infect Immun, doi:10.1128/IAI.69.9.5883-5891.2001
Li, Can glycine mitigate COVID-19 associated tissue damage and cytokine storm?, Radiat Res, doi:10.1667/RADE-20-00146.1
Lynagh, Webb, Dixon, Molecular determinants of ivermectin sensitivity at the glycine receptor chloride channel, J Biol Chem, doi:10.1074/jbc.M111.262634
Lynch, Molecular structure and function of the glycine receptor chloride channel, Physiol Rev, doi:10.1152/physrev.00042.2003
Mccarty, Iloki-Assanga, Lujan, Activated glycine receptors may decrease endosomal NADPH oxidase activity by opposing ClC-3-mediated efflux of chloride from endosomes, Med Hypotheses, doi:10.1016/j.mehy.2019.01.012
Mealey, Bentjen, Gay, Ivermectin sensitivity in collies is associated with a deletion mutation of the MDR1 gene, Pharmacogenetics, doi:10.1097/00008571-200111000-00012
Rodrigues, De Sá, Ishimoto, Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients, J Exp Med, doi:10.1084/jem.20201707
Schmith, Zhou, Lohmer, The Approved dose of ivermectin alone is not the ideal dose for the treatment of COVID-19, Clin Pharmacol Ther, doi:10.1002/cpt.1889
Shan, Haddrill, Lynch, Ivermectin, Ivermectin, an unconventional agonist of the glycine receptor chloride channel, J Biol Chem, doi:10.1074/jbc.M011264200
Viktorov, Ivermectin inhibits activation of Kupffer cells induced by lipopolysaccharide toxin
Wang, Lynch, A comparison of glycine-and ivermectinmediated conformational changes in the glycine receptor ligandbinding domain, Int J Biochem Cell Biol, doi:10.1016/j.biocel.2011.11.005
Wheeler, Ikejema, Enomoto, Glycine: a new antiinflammatory immunonutrient, Cell Mol Life Sci, doi:10.1007/s000180050030
Wheeler, Rose, Yamashima, Dietary glycine blunts lung inflammatory cell influx following acute endotoxin, Am J Physiol Lung Cell Mol Physiol, doi:10.1152/ajplung.2000.279.2.L390
Wheeler, Stachlewitz, Yamashina, Glycine-gated chloride channels in neutrophils attenuate calcium influx and superoxide production, Faseb J, doi:10.1096/fasebj.14.3.476
Wheeler, Thurman, Production of superoxide and TNF-alpha from alveolar macrophages is blunted by glycine, Am J Physiol, doi:10.1152/ajplung.1999.277.5.L952
Yamashina, Konno, Wheeler, Endothelial cells contain a glycine-gated chloride channel, Nutr Cancer, doi:10.1207/S15327914NC402_17
Zhang, Ma, Jiang, Glycine attenuates lipopolysaccharideinduced acute lung injury by regulating NLRP3 inflammasome and NRF2 signaling, Nutrients, doi:10.3390/nu12030611
Zhang, Song, Ci, Ivermectin inhibits LPS-induced production of inflammatory cytokines and improves LPS-induced survival in mice, Inflamm Res, doi:10.1007/s00011-008-8007-8
DOI record:
{
"DOI": "10.1136/openhrt-2021-001655",
"ISSN": [
"2053-3624"
],
"URL": "http://dx.doi.org/10.1136/openhrt-2021-001655",
"alternative-id": [
"10.1136/openhrt-2021-001655"
],
"author": [
{
"ORCID": "http://orcid.org/0000-0002-7888-1528",
"affiliation": [],
"authenticated-orcid": false,
"family": "DiNicolantonio",
"given": "James J",
"sequence": "first"
},
{
"affiliation": [],
"family": "Barroso-Aranda",
"given": "Jorge",
"sequence": "additional"
},
{
"affiliation": [],
"family": "McCarty",
"given": "Mark F",
"sequence": "additional"
}
],
"container-title": "Open Heart",
"container-title-short": "Open Heart",
"content-domain": {
"crossmark-restriction": true,
"domain": [
"bmj.com"
]
},
"created": {
"date-parts": [
[
2021,
4,
19
]
],
"date-time": "2021-04-19T16:39:13Z",
"timestamp": 1618850353000
},
"deposited": {
"date-parts": [
[
2021,
4,
19
]
],
"date-time": "2021-04-19T16:39:54Z",
"timestamp": 1618850394000
},
"indexed": {
"date-parts": [
[
2023,
4,
11
]
],
"date-time": "2023-04-11T08:08:39Z",
"timestamp": 1681200519757
},
"is-referenced-by-count": 6,
"issue": "1",
"issued": {
"date-parts": [
[
2021,
4
]
]
},
"journal-issue": {
"issue": "1",
"published-online": {
"date-parts": [
[
2021,
4,
19
]
]
},
"published-print": {
"date-parts": [
[
2021,
4
]
]
}
},
"language": "en",
"license": [
{
"URL": "http://creativecommons.org/licenses/by-nc/4.0/",
"content-version": "unspecified",
"delay-in-days": 18,
"start": {
"date-parts": [
[
2021,
4,
19
]
],
"date-time": "2021-04-19T00:00:00Z",
"timestamp": 1618790400000
}
}
],
"link": [
{
"URL": "https://syndication.highwire.org/content/doi/10.1136/openhrt-2021-001655",
"content-type": "unspecified",
"content-version": "vor",
"intended-application": "similarity-checking"
}
],
"member": "239",
"original-title": [],
"page": "e001655",
"prefix": "10.1136",
"published": {
"date-parts": [
[
2021,
4
]
]
},
"published-online": {
"date-parts": [
[
2021,
4,
19
]
]
},
"published-print": {
"date-parts": [
[
2021,
4
]
]
},
"publisher": "BMJ",
"reference": [
{
"DOI": "10.1007/s00011-008-8007-8",
"doi-asserted-by": "publisher",
"key": "2021041909351020000_8.1.e001655.1"
},
{
"DOI": "10.1136/openhrt-2020-001350",
"doi-asserted-by": "publisher",
"key": "2021041909351020000_8.1.e001655.2"
},
{
"key": "2021041909351020000_8.1.e001655.3",
"unstructured": "Covid Analysis . Ivermectin is effective for COVID-19: real-time meta analysis of 44 studies, 2021."
},
{
"DOI": "10.1074/jbc.M011264200",
"doi-asserted-by": "publisher",
"key": "2021041909351020000_8.1.e001655.4"
},
{
"DOI": "10.1074/jbc.M111.262634",
"doi-asserted-by": "publisher",
"key": "2021041909351020000_8.1.e001655.5"
},
{
"DOI": "10.1016/j.biocel.2011.11.005",
"article-title": "A comparison of glycine- and ivermectin-mediated conformational changes in the glycine receptor ligand-binding domain",
"author": "Wang",
"doi-asserted-by": "crossref",
"first-page": "335",
"journal-title": "Int J Biochem Cell Biol",
"key": "2021041909351020000_8.1.e001655.6",
"volume": "44",
"year": "2012"
},
{
"DOI": "10.1007/s000180050030",
"doi-asserted-by": "publisher",
"key": "2021041909351020000_8.1.e001655.7"
},
{
"article-title": "Kupffer cells contain a glycine-gated chloride channel",
"author": "Ikejima",
"first-page": "G1581",
"journal-title": "Am J Physiol",
"key": "2021041909351020000_8.1.e001655.8",
"volume": "272",
"year": "1997"
},
{
"DOI": "10.1128/IAI.69.9.5883-5891.2001",
"doi-asserted-by": "publisher",
"key": "2021041909351020000_8.1.e001655.9"
},
{
"DOI": "10.1152/ajpgi.00503.2001",
"doi-asserted-by": "publisher",
"key": "2021041909351020000_8.1.e001655.10"
},
{
"DOI": "10.1152/ajplung.2000.279.2.L390",
"article-title": "Dietary glycine blunts lung inflammatory cell influx following acute endotoxin",
"author": "Wheeler",
"doi-asserted-by": "crossref",
"first-page": "L390",
"journal-title": "Am J Physiol Lung Cell Mol Physiol",
"key": "2021041909351020000_8.1.e001655.11",
"volume": "279",
"year": "2000"
},
{
"DOI": "10.1096/fasebj.14.3.476",
"article-title": "Glycine-gated chloride channels in neutrophils attenuate calcium influx and superoxide production",
"author": "Wheeler",
"doi-asserted-by": "crossref",
"first-page": "476",
"journal-title": "Faseb J",
"key": "2021041909351020000_8.1.e001655.12",
"volume": "14",
"year": "2000"
},
{
"article-title": "Production of superoxide and TNF-alpha from alveolar macrophages is blunted by glycine",
"author": "Wheeler",
"first-page": "L952",
"journal-title": "Am J Physiol",
"key": "2021041909351020000_8.1.e001655.13",
"volume": "277",
"year": "1999"
},
{
"DOI": "10.1207/S15327914NC402_17",
"doi-asserted-by": "publisher",
"key": "2021041909351020000_8.1.e001655.14"
},
{
"DOI": "10.1016/j.mehy.2019.01.012",
"article-title": "Activated glycine receptors may decrease endosomal NADPH oxidase activity by opposing ClC-3-mediated efflux of chloride from endosomes",
"author": "McCarty",
"doi-asserted-by": "crossref",
"first-page": "125",
"journal-title": "Med Hypotheses",
"key": "2021041909351020000_8.1.e001655.15",
"volume": "123",
"year": "2019"
},
{
"article-title": "A diet containing glycine improves survival in endotoxin shock in the rat",
"author": "Ikejima",
"first-page": "G97",
"journal-title": "Am J Physiol",
"key": "2021041909351020000_8.1.e001655.16",
"volume": "271",
"year": "1996"
},
{
"DOI": "10.1084/jem.20201707",
"article-title": "Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients",
"author": "Rodrigues",
"doi-asserted-by": "crossref",
"journal-title": "J Exp Med",
"key": "2021041909351020000_8.1.e001655.17",
"volume": "218",
"year": "2021"
},
{
"article-title": "Glycine attenuates lipopolysaccharide-induced acute lung injury by regulating NLRP3 inflammasome and NRF2 signaling",
"author": "Zhang",
"journal-title": "Nutrients",
"key": "2021041909351020000_8.1.e001655.18",
"volume": "12",
"year": "2020"
},
{
"article-title": "[Ivermectin inhibits activation of Kupffer cells induced by lipopolysaccharide toxin]",
"author": "Viktorov",
"first-page": "3",
"journal-title": "Antibiot Khimioter",
"key": "2021041909351020000_8.1.e001655.19",
"volume": "48",
"year": "2003"
},
{
"DOI": "10.1002/cpt.1889",
"article-title": "The Approved dose of ivermectin alone is not the ideal dose for the treatment of COVID-19",
"author": "Schmith",
"doi-asserted-by": "crossref",
"first-page": "762",
"journal-title": "Clin Pharmacol Ther",
"key": "2021041909351020000_8.1.e001655.20",
"volume": "108",
"year": "2020"
},
{
"DOI": "10.1152/physrev.00042.2003",
"doi-asserted-by": "publisher",
"key": "2021041909351020000_8.1.e001655.21"
},
{
"article-title": "Plasma glycine and risk of acute myocardial infarction in patients with suspected stable angina pectoris",
"author": "Ding",
"journal-title": "J Am Heart Assoc",
"key": "2021041909351020000_8.1.e001655.22",
"volume": "5",
"year": "2015"
},
{
"DOI": "10.1002/ijc.2910630220",
"article-title": "Decreased biotolerability for ivermectin and cyclosporin A in mice exposed to potent P-glycoprotein inhibitors",
"author": "Didier",
"doi-asserted-by": "crossref",
"first-page": "263",
"journal-title": "Int J Cancer",
"key": "2021041909351020000_8.1.e001655.23",
"volume": "63",
"year": "1995"
},
{
"DOI": "10.1097/00008571-200111000-00012",
"doi-asserted-by": "publisher",
"key": "2021041909351020000_8.1.e001655.24"
},
{
"DOI": "10.1056/NEJMc1917344",
"article-title": "Serious Ivermectin Toxicity and Human ABCB1 Nonsense Mutations",
"author": "Baudou",
"doi-asserted-by": "crossref",
"first-page": "787",
"journal-title": "N Engl J Med",
"key": "2021041909351020000_8.1.e001655.25",
"volume": "383",
"year": "2020"
},
{
"DOI": "10.1136/openhrt-2020-001337",
"doi-asserted-by": "publisher",
"key": "2021041909351020000_8.1.e001655.26"
},
{
"DOI": "10.1667/RADE-20-00146.1",
"article-title": "Can glycine mitigate COVID-19 associated tissue damage and cytokine storm?",
"author": "Li",
"doi-asserted-by": "crossref",
"first-page": "199",
"journal-title": "Radiat Res",
"key": "2021041909351020000_8.1.e001655.27",
"volume": "194",
"year": "2020"
},
{
"DOI": "10.1016/j.antiviral.2020.104787",
"article-title": "The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro",
"author": "Caly",
"doi-asserted-by": "crossref",
"journal-title": "Antiviral Res",
"key": "2021041909351020000_8.1.e001655.28",
"volume": "178",
"year": "2020"
}
],
"reference-count": 28,
"references-count": 28,
"relation": {},
"resource": {
"primary": {
"URL": "https://openheart.bmj.com/lookup/doi/10.1136/openhrt-2021-001655"
}
},
"score": 1,
"short-title": [],
"source": "Crossref",
"subject": [
"Cardiology and Cardiovascular Medicine"
],
"subtitle": [],
"title": "Anti-inflammatory activity of ivermectin in late-stage COVID-19 may reflect activation of systemic glycine receptors",
"type": "journal-article",
"update-policy": "http://dx.doi.org/10.1136/crossmarkpolicy",
"volume": "8"
}
