Ivermectin contributes to attenuating the severity of acute lung injury in mice
et al., Biomedicine & Pharmacotherapy, doi:10.1016/j.biopha.2022.113706, Nov 2022
Ivermectin for COVID-19
4th treatment shown to reduce risk in
August 2020, now with p < 0.00000000001 from 106 studies, recognized in 24 countries.
No treatment is 100% effective. Protocols
combine treatments.
6,300+ studies for
210+ treatments. c19early.org
|
Animal study showing dose dependent inhibition of lung injury with ivermectin. In lipopolysaccharide and bleomycin-induced mouse models of acute lung injury, treatment with ivermectin improved survival rates, body weight loss, lung injury scores, and other measures of disease severity. Ivermectin reduced inflammatory cell infiltration, pro-inflammatory cytokine levels (TNF-α and IL-6), and activity of the neutrophil enzyme myeloperoxidase in the lungs of ALI mice. Mechanistically, ivermectin appeared to inhibit activation of MAPK and NF-kB signaling pathways involved in inflammation. Ivermectin may be beneficial treating acute lung injury or acute respiratory distress syndrome from COVID-19 or other causes.
74 preclinical studies support the efficacy of ivermectin for COVID-19:
Ivermectin, better known for antiparasitic activity, is a broad spectrum antiviral with activity against many viruses including H7N771, Dengue37,72,73 , HIV-173, Simian virus 4074, Zika37,75,76 , West Nile76, Yellow Fever77,78, Japanese encephalitis77, Chikungunya78, Semliki Forest virus78, Human papillomavirus57, Epstein-Barr57, BK Polyomavirus79, and Sindbis virus78.
Ivermectin inhibits importin-α/β-dependent nuclear import of viral proteins71,73,74,80 , shows spike-ACE2 disruption at 1nM with microfluidic diffusional sizing38, binds to glycan sites on the SARS-CoV-2 spike protein preventing interaction with blood and epithelial cells and inhibiting hemagglutination41,81, shows dose-dependent inhibition of wildtype and omicron variants36, exhibits dose-dependent inhibition of lung injury61,66, may inhibit SARS-CoV-2 via IMPase inhibition37, may inhibit SARS-CoV-2 induced formation of fibrin clots resistant to degradation9, inhibits SARS-CoV-2 3CLpro54, may inhibit SARS-CoV-2 RdRp activity28, may minimize viral myocarditis by inhibiting NF-κB/p65-mediated inflammation in macrophages60, may be beneficial for COVID-19 ARDS by blocking GSDMD and NET formation82, may interfere with SARS-CoV-2's immune evasion via ORF8 binding4, may inhibit SARS-CoV-2 by disrupting CD147 interaction83-86, shows protection against inflammation, cytokine storm, and mortality in an LPS mouse model sharing key pathological features of severe COVID-1959,87, may be beneficial in severe COVID-19 by binding IGF1 to inhibit the promotion of inflammation, fibrosis, and cell proliferation that leads to lung damage8, may minimize SARS-CoV-2 induced cardiac damage40,48, may counter immune evasion by inhibiting NSP15-TBK1/KPNA1 interaction and restoring IRF3 activation88, may disrupt SARS-CoV-2 N and ORF6 protein nuclear transport and their suppression of host interferon responses1, reduces TAZ/YAP nuclear import, relieving SARS-CoV-2-driven suppression of IRF3 and NF-κB antiviral pathways35, increases Bifidobacteria which play a key role in the immune system89, has immunomodulatory51 and anti-inflammatory70,90 properties, and has an extensive and very positive safety profile91.
1.
Gayozo et al., Binding affinities analysis of ivermectin, nucleocapsid and ORF6 proteins of SARS-CoV-2 to human importins α isoforms: A computational approach, Biotecnia, doi:10.18633/biotecnia.v27.2485.
2.
Lefebvre et al., Characterization and Fluctuations of an Ivermectin Binding Site at the Lipid Raft Interface of the N-Terminal Domain (NTD) of the Spike Protein of SARS-CoV-2 Variants, Viruses, doi:10.3390/v16121836.
3.
Haque et al., Exploring potential therapeutic candidates against COVID-19: a molecular docking study, Discover Molecules, doi:10.1007/s44345-024-00005-5.
4.
Bagheri-Far et al., Non-spike protein inhibition of SARS-CoV-2 by natural products through the key mediator protein ORF8, Molecular Biology Research Communications, doi:10.22099/mbrc.2024.50245.2001.
5.
de Oliveira Só et al., In Silico Comparative Analysis of Ivermectin and Nirmatrelvir Inhibitors Interacting with the SARS-CoV-2 Main Protease, Preprints, doi:10.20944/preprints202404.1825.v1.
6.
Agamah et al., Network-based multi-omics-disease-drug associations reveal drug repurposing candidates for COVID-19 disease phases, ScienceOpen, doi:10.58647/DRUGARXIV.PR000010.v1.
7.
Oranu et al., Validation of the binding affinities and stabilities of ivermectin and moxidectin against SARS-CoV-2 receptors using molecular docking and molecular dynamics simulation, GSC Biological and Pharmaceutical Sciences, doi:10.30574/gscbps.2024.26.1.0030.
8.
Zhao et al., Identification of the shared gene signatures between pulmonary fibrosis and pulmonary hypertension using bioinformatics analysis, Frontiers in Immunology, doi:10.3389/fimmu.2023.1197752.
9.
Vottero et al., Computational Prediction of the Interaction of Ivermectin with Fibrinogen, Molecular Sciences, doi:10.3390/ijms241411449.
10.
Chellasamy et al., Docking and molecular dynamics studies of human ezrin protein with a modelled SARS-CoV-2 endodomain and their interaction with potential invasion inhibitors, Journal of King Saud University - Science, doi:10.1016/j.jksus.2022.102277.
11.
Umar et al., Inhibitory potentials of ivermectin, nafamostat, and camostat on spike protein and some nonstructural proteins of SARS-CoV-2: Virtual screening approach, Jurnal Teknologi Laboratorium, doi:10.29238/teknolabjournal.v11i1.344.
12.
Alvarado et al., Interaction of the New Inhibitor Paxlovid (PF-07321332) and Ivermectin With the Monomer of the Main Protease SARS-CoV-2: A Volumetric Study Based on Molecular Dynamics, Elastic Networks, Classical Thermodynamics and SPT, Computational Biology and Chemistry, doi:10.1016/j.compbiolchem.2022.107692.
13.
Aminpour et al., In Silico Analysis of the Multi-Targeted Mode of Action of Ivermectin and Related Compounds, Computation, doi:10.3390/computation10040051.
14.
Parvez et al., Insights from a computational analysis of the SARS-CoV-2 Omicron variant: Host–pathogen interaction, pathogenicity, and possible drug therapeutics, Immunity, Inflammation and Disease, doi:10.1002/iid3.639.
15.
Francés-Monerris et al., Microscopic interactions between ivermectin and key human and viral proteins involved in SARS-CoV-2 infection, Physical Chemistry Chemical Physics, doi:10.1039/D1CP02967C.
16.
González-Paz et al., Comparative study of the interaction of ivermectin with proteins of interest associated with SARS-CoV-2: A computational and biophysical approach, Biophysical Chemistry, doi:10.1016/j.bpc.2021.106677.
17.
González-Paz (B) et al., Structural Deformability Induced in Proteins of Potential Interest Associated with COVID-19 by binding of Homologues present in Ivermectin: Comparative Study Based in Elastic Networks Models, Journal of Molecular Liquids, doi:10.1016/j.molliq.2021.117284.
18.
Rana et al., A Computational Study of Ivermectin and Doxycycline Combination Drug Against SARS-CoV-2 Infection, Research Square, doi:10.21203/rs.3.rs-755838/v1.
19.
Muthusamy et al., Virtual Screening Reveals Potential Anti-Parasitic Drugs Inhibiting the Receptor Binding Domain of SARS-CoV-2 Spike protein, Journal of Virology & Antiviral Research, www.scitechnol.com/abstract/virtual-screening-reveals-potential-antiparasitic-drugs-inhibiting-the-receptor-binding-domain-of-sarscov2-spike-protein-16398.html.
20.
Qureshi et al., Mechanistic insights into the inhibitory activity of FDA approved ivermectin against SARS-CoV-2: old drug with new implications, Journal of Biomolecular Structure and Dynamics, doi:10.1080/07391102.2021.1906750.
21.
Schöning et al., Highly-transmissible Variants of SARS-CoV-2 May Be More Susceptible to Drug Therapy Than Wild Type Strains, Research Square, doi:10.21203/rs.3.rs-379291/v1.
22.
Bello et al., Elucidation of the inhibitory activity of ivermectin with host nuclear importin α and several SARS-CoV-2 targets, Journal of Biomolecular Structure and Dynamics, doi:10.1080/07391102.2021.1911857.
23.
Udofia et al., In silico studies of selected multi-drug targeting against 3CLpro and nsp12 RNA-dependent RNA-polymerase proteins of SARS-CoV-2 and SARS-CoV, Network Modeling Analysis in Health Informatics and Bioinformatics, doi:10.1007/s13721-021-00299-2.
24.
Choudhury et al., Exploring the binding efficacy of ivermectin against the key proteins of SARS-CoV-2 pathogenesis: an in silico approach, Future Medicine, doi:10.2217/fvl-2020-0342.
25.
Kern et al., Modeling of SARS-CoV-2 Treatment Effects for Informed Drug Repurposing, Frontiers in Pharmacology, doi:10.3389/fphar.2021.625678.
26.
Saha et al., The Binding mechanism of ivermectin and levosalbutamol with spike protein of SARS-CoV-2, Structural Chemistry, doi:10.1007/s11224-021-01776-0.
27.
Eweas et al., Molecular Docking Reveals Ivermectin and Remdesivir as Potential Repurposed Drugs Against SARS-CoV-2, Frontiers in Microbiology, doi:10.3389/fmicb.2020.592908.
28.
Parvez (B) et al., Prediction of potential inhibitors for RNA-dependent RNA polymerase of SARS-CoV-2 using comprehensive drug repurposing and molecular docking approach, International Journal of Biological Macromolecules, doi:10.1016/j.ijbiomac.2020.09.098.
29.
Francés-Monerris (B) et al., Has Ivermectin Virus-Directed Effects against SARS-CoV-2? Rationalizing the Action of a Potential Multitarget Antiviral Agent, ChemRxiv, doi:10.26434/chemrxiv.12782258.v1.
30.
Kalhor et al., Repurposing of the approved small molecule drugs in order to inhibit SARS-CoV-2 S protein and human ACE2 interaction through virtual screening approaches, Journal of Biomolecular Structure and Dynamics, doi:10.1080/07391102.2020.1824816.
31.
Swargiary, A., Ivermectin as a promising RNA-dependent RNA polymerase inhibitor and a therapeutic drug against SARS-CoV2: Evidence from in silico studies, Research Square, doi:10.21203/rs.3.rs-73308/v1.
32.
Maurya, D., A Combination of Ivermectin and Doxycycline Possibly Blocks the Viral Entry and Modulate the Innate Immune Response in COVID-19 Patients, American Chemical Society (ACS), doi:10.26434/chemrxiv.12630539.v1.
33.
Lehrer et al., Ivermectin Docks to the SARS-CoV-2 Spike Receptor-binding Domain Attached to ACE2, In Vivo, 34:5, 3023-3026, doi:10.21873/invivo.12134.
34.
Suravajhala et al., Comparative Docking Studies on Curcumin with COVID-19 Proteins, Preprints, doi:10.20944/preprints202005.0439.v3.
35.
Kofler et al., M-Motif, a potential non-conventional NLS in YAP/TAZ and other cellular and viral proteins that inhibits classic protein import, iScience, doi:10.1016/j.isci.2025.112105.
36.
Shahin et al., The selective effect of Ivermectin on different human coronaviruses; in-vitro study, Research Square, doi:10.21203/rs.3.rs-4180797/v1.
37.
Jitobaom et al., Identification of inositol monophosphatase as a broad‐spectrum antiviral target of ivermectin, Journal of Medical Virology, doi:10.1002/jmv.29552.
38.
Fauquet et al., Microfluidic Diffusion Sizing Applied to the Study of Natural Products and Extracts That Modulate the SARS-CoV-2 Spike RBD/ACE2 Interaction, Molecules, doi:10.3390/molecules28248072.
39.
García-Aguilar et al., In Vitro Analysis of SARS-CoV-2 Spike Protein and Ivermectin Interaction, International Journal of Molecular Sciences, doi:10.3390/ijms242216392.
40.
Liu et al., SARS-CoV-2 viral genes Nsp6, Nsp8, and M compromise cellular ATP levels to impair survival and function of human pluripotent stem cell-derived cardiomyocytes, Stem Cell Research & Therapy, doi:10.1186/s13287-023-03485-3.
41.
Boschi et al., SARS-CoV-2 Spike Protein Induces Hemagglutination: Implications for COVID-19 Morbidities and Therapeutics and for Vaccine Adverse Effects, bioRxiv, doi:10.1101/2022.11.24.517882.
42.
De Forni et al., Synergistic drug combinations designed to fully suppress SARS-CoV-2 in the lung of COVID-19 patients, PLoS ONE, doi:10.1371/journal.pone.0276751.
43.
Saha (B) et al., Manipulation of Spray-Drying Conditions to Develop an Inhalable Ivermectin Dry Powder, Pharmaceutics, doi:10.3390/pharmaceutics14071432.
44.
Jitobaom (B) et al., Synergistic anti-SARS-CoV-2 activity of repurposed anti-parasitic drug combinations, BMC Pharmacology and Toxicology, doi:10.1186/s40360-022-00580-8.
45.
Croci et al., Liposomal Systems as Nanocarriers for the Antiviral Agent Ivermectin, International Journal of Biomaterials, doi:10.1155/2016/8043983.
46.
Zheng et al., Red blood cell-hitchhiking mediated pulmonary delivery of ivermectin: Effects of nanoparticle properties, International Journal of Pharmaceutics, doi:10.1016/j.ijpharm.2022.121719.
47.
Delandre et al., Antiviral Activity of Repurposing Ivermectin against a Panel of 30 Clinical SARS-CoV-2 Strains Belonging to 14 Variants, Pharmaceuticals, doi:10.3390/ph15040445.
48.
Liu (B) et al., Genome-wide analyses reveal the detrimental impacts of SARS-CoV-2 viral gene Orf9c on human pluripotent stem cell-derived cardiomyocytes, Stem Cell Reports, doi:10.1016/j.stemcr.2022.01.014.
49.
Segatori et al., Effect of Ivermectin and Atorvastatin on Nuclear Localization of Importin Alpha and Drug Target Expression Profiling in Host Cells from Nasopharyngeal Swabs of SARS-CoV-2- Positive Patients, Viruses, doi:10.3390/v13102084.
50.
Jitobaom (C) et al., Favipiravir and Ivermectin Showed in Vitro Synergistic Antiviral Activity against SARS-CoV-2, Research Square, doi:10.21203/rs.3.rs-941811/v1.
51.
Munson et al., Niclosamide and ivermectin modulate caspase-1 activity and proinflammatory cytokine secretion in a monocytic cell line, British Society For Nanomedicine Early Career Researcher Summer Meeting, 2021, web.archive.org/web/20230401070026/https://michealmunson.github.io/COVID.pdf.
52.
Mountain Valley MD, Mountain Valley MD Receives Successful Results From BSL-4 COVID-19 Clearance Trial on Three Variants Tested With Ivectosol™, www.globenewswire.com/en/news-release/2021/05/18/2231755/0/en/Mountain-Valley-MD-Receives-Successful-Results-From-BSL-4-COVID-19-Clearance-Trial-on-Three-Variants-Tested-With-Ivectosol.html.
53.
Yesilbag et al., Ivermectin also inhibits the replication of bovine respiratory viruses (BRSV, BPIV-3, BoHV-1, BCoV and BVDV) in vitro, Virus Research, doi:10.1016/j.virusres.2021.198384.
54.
Mody et al., Identification of 3-chymotrypsin like protease (3CLPro) inhibitors as potential anti-SARS-CoV-2 agents, Communications Biology, doi:10.1038/s42003-020-01577-x.
55.
Jeffreys et al., Remdesivir-ivermectin combination displays synergistic interaction with improved in vitro activity against SARS-CoV-2, International Journal of Antimicrobial Agents, doi:10.1016/j.ijantimicag.2022.106542.
56.
Surnar et al., Clinically Approved Antiviral Drug in an Orally Administrable Nanoparticle for COVID-19, ACS Pharmacol. Transl. Sci., doi:10.1021/acsptsci.0c00179.
57.
Li et al., Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment, J. Cellular Physiology, doi:10.1002/jcp.30055.
58.
Caly et al., The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro, Antiviral Research, doi:10.1016/j.antiviral.2020.104787.
59.
Zhang et al., Ivermectin inhibits LPS-induced production of inflammatory cytokines and improves LPS-induced survival in mice, Inflammation Research, doi:10.1007/s00011-008-8007-8.
60.
Gao et al., Ivermectin ameliorates acute myocarditis via the inhibition of importin-mediated nuclear translocation of NF-κB/p65, International Immunopharmacology, doi:10.1016/j.intimp.2024.112073.
61.
Abd-Elmawla et al., Suppression of NLRP3 inflammasome by ivermectin ameliorates bleomycin-induced pulmonary fibrosis, Journal of Zhejiang University-SCIENCE B, doi:10.1631/jzus.B2200385.
62.
Uematsu et al., Prophylactic administration of ivermectin attenuates SARS-CoV-2 induced disease in a Syrian Hamster Model, The Journal of Antibiotics, doi:10.1038/s41429-023-00623-0.
63.
Albariqi et al., Pharmacokinetics and Safety of Inhaled Ivermectin in Mice as a Potential COVID-19 Treatment, International Journal of Pharmaceutics, doi:10.1016/j.ijpharm.2022.121688.
64.
Errecalde et al., Safety and Pharmacokinetic Assessments of a Novel Ivermectin Nasal Spray Formulation in a Pig Model, Journal of Pharmaceutical Sciences, doi:10.1016/j.xphs.2021.01.017.
65.
Madrid et al., Safety of oral administration of high doses of ivermectin by means of biocompatible polyelectrolytes formulation, Heliyon, doi:10.1016/j.heliyon.2020.e05820.
66.
Ma et al., Ivermectin contributes to attenuating the severity of acute lung injury in mice, Biomedicine & Pharmacotherapy, doi:10.1016/j.biopha.2022.113706.
67.
de Melo et al., Attenuation of clinical and immunological outcomes during SARS-CoV-2 infection by ivermectin, EMBO Mol. Med., doi:10.15252/emmm.202114122.
68.
Arévalo et al., Ivermectin reduces in vivo coronavirus infection in a mouse experimental model, Scientific Reports, doi:10.1038/s41598-021-86679-0.
69.
Chaccour et al., Nebulized ivermectin for COVID-19 and other respiratory diseases, a proof of concept, dose-ranging study in rats, Scientific Reports, doi:10.1038/s41598-020-74084-y.
70.
Yan et al., Anti-inflammatory effects of ivermectin in mouse model of allergic asthma, Inflammation Research, doi:10.1007/s00011-011-0307-8.
71.
Götz et al., Influenza A viruses escape from MxA restriction at the expense of efficient nuclear vRNP import, Scientific Reports, doi:10.1038/srep23138.
72.
Tay et al., Nuclear localization of dengue virus (DENV) 1–4 non-structural protein 5; protection against all 4 DENV serotypes by the inhibitor Ivermectin, Antiviral Research, doi:10.1016/j.antiviral.2013.06.002.
73.
Wagstaff et al., Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus, Biochemical Journal, doi:10.1042/BJ20120150.
74.
Wagstaff (B) et al., An AlphaScreen®-Based Assay for High-Throughput Screening for Specific Inhibitors of Nuclear Import, SLAS Discovery, doi:10.1177/1087057110390360.
75.
Barrows et al., A Screen of FDA-Approved Drugs for Inhibitors of Zika Virus Infection, Cell Host & Microbe, doi:10.1016/j.chom.2016.07.004.
76.
Yang et al., The broad spectrum antiviral ivermectin targets the host nuclear transport importin α/β1 heterodimer, Antiviral Research, doi:10.1016/j.antiviral.2020.104760.
77.
Mastrangelo et al., Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug, Journal of Antimicrobial Chemotherapy, doi:10.1093/jac/dks147.
78.
Varghese et al., Discovery of berberine, abamectin and ivermectin as antivirals against chikungunya and other alphaviruses, Antiviral Research, doi:10.1016/j.antiviral.2015.12.012.
79.
Bennett et al., Role of a nuclear localization signal on the minor capsid Proteins VP2 and VP3 in BKPyV nuclear entry, Virology, doi:10.1016/j.virol.2014.10.013.
80.
Kosyna et al., The importin α/β-specific inhibitor Ivermectin affects HIF-dependent hypoxia response pathways, Biological Chemistry, doi:10.1515/hsz-2015-0171.
81.
Scheim et al., Sialylated Glycan Bindings from SARS-CoV-2 Spike Protein to Blood and Endothelial Cells Govern the Severe Morbidities of COVID-19, International Journal of Molecular Sciences, doi:10.3390/ijms242317039.
82.
Liu (C) et al., Crosstalk between neutrophil extracellular traps and immune regulation: insights into pathobiology and therapeutic implications of transfusion-related acute lung injury, Frontiers in Immunology, doi:10.3389/fimmu.2023.1324021.
83.
Shouman et al., SARS-CoV-2-associated lymphopenia: possible mechanisms and the role of CD147, Cell Communication and Signaling, doi:10.1186/s12964-024-01718-3.
84.
Scheim (B), D., Ivermectin for COVID-19 Treatment: Clinical Response at Quasi-Threshold Doses Via Hypothesized Alleviation of CD147-Mediated Vascular Occlusion, SSRN, doi:10.2139/ssrn.3636557.
85.
Scheim (C), D., From Cold to Killer: How SARS-CoV-2 Evolved without Hemagglutinin Esterase to Agglutinate and Then Clot Blood Cells, Center for Open Science, doi:10.31219/osf.io/sgdj2.
86.
Behl et al., CD147-spike protein interaction in COVID-19: Get the ball rolling with a novel receptor and therapeutic target, Science of The Total Environment, doi:10.1016/j.scitotenv.2021.152072.
87.
DiNicolantonio et al., Ivermectin may be a clinically useful anti-inflammatory agent for late-stage COVID-19, Open Heart, doi:10.1136/openhrt-2020-001350.
88.
Mothae et al., SARS-CoV-2 host-pathogen interactome: insights into more players during pathogenesis, Virology, doi:10.1016/j.virol.2025.110607.
89.
Hazan et al., Treatment with Ivermectin Increases the Population of Bifidobacterium in the Gut, ACG 2023, acg2023posters.eventscribe.net/posterspeakers.asp.
Ma et al., 30 Nov 2022, China, peer-reviewed, 11 authors.
Contact: jpwangchina@henu.edu.cn.
Ivermectin contributes to attenuating the severity of acute lung injury in mice
Biomedicine & Pharmacotherapy, doi:10.1016/j.biopha.2022.113706
Ivermectin has been proposed as a potential anti-inflammatory drug in addition to its antiparasitic activity. Here we investigated the potential role of ivermectin in the pathogenesis of acute lung injury (ALI) using the lipopolysaccharide (LPS)-or bleomycin (BLM)-induced mice models. Male C57BL/6 mice were given ivermectin orally every day for the remainder of the experiment at doses of 1 or 2 mg/kg after 24 h of LPS or BLM treatment. Ivermectin reversed severe lung injury caused by LPS or BLM challenge, including mortality, changes in diffuse ground-glass and consolidation shadows on lung CT imaging, lung histopathological scores, lung wet/dry ratio, and protein content in the bronchoalveolar lavage fluid (BALF). Furthermore, ivermectin also reduced total lung BALF inflammatory cells, infiltrating neutrophils, myeloperoxidase activity, and plasma TNF-α and IL-6 levels in mice treated with LPS or BLM. Finally, the mechanism study showed that LPS or BLM administration increased JNK, Erk1/2, and p38 MAPK phosphorylation while decreasing IκBα expression, an inhibitor of NF-κB. However, ivermectin increased IκBα expression but blocked elevated phosphorylated JNK and p38 MAPK, not Erk1/2, in both ALI mice. These findings suggested that ivermectin may alleviate ALI caused by LPS or BLM in mice, partly via lowering the inflammatory response, which is mediated at least by the inhibition of MAPK and NF-κB signaling. Collectively, ivermectin might be used to treat acute lung injury/acute respiratory distress syndrome.
Conflict of interest statement The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Appendix A. Supporting information Supplementary data associated with this article can be found in the online version at doi:10.1016/j.biopha.2022.113706.
References
Alharthy, Faqihi, Memish, Karakitsos, Lung injury in COVID-19-an emerging hypothesis, ACS Chem. Neurosci
Aratani, Myeloperoxidase: its role for host defense, inflammation, and neutrophil function, Arch. Biochem. Biophys
Aryannejad, Tabary, Noroozi, Mashinchi, Iranshahi et al., Anti-inflammatory Effects of ivermectin in the treatment of acetic acid-induced colitis in rats: involvement of GABAB receptors, Dig. Dis. Sci
Biber, Harmelin, Lev, Ram, Shaham et al., The effect of ivermectin on the viral load and culture viability in early treatment of non-hospitalized patients with mild COVID-19 -A double-blind, randomized placebo-controlled trial, Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis
Biber, Harmelin, Lev, Ram, Shaham et al., The effect of ivermectin on the viral load and culture viability in early treatment of non-hospitalized patients with mild COVID-19 -a double-blind, randomized placebo-controlled trial, Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis
Borges, Pithon-Curi, Curi, Hatanaka, COVID-19 and neutrophils: the relationship between hyperinflammation and neutrophil extracellular traps, Mediat. Inflamm
Buonfrate, Chesini, Martini, Roncaglioni, Fernandez et al., High-dose ivermectin for early treatment of COVID-19 (COVER study): a randomised, doubleblind, multicentre, phase II, dose-finding, proof-of-concept clinical trial, Int. J. Antimicrob. Agents
Castro, Gregianin, Burger, Continuous high-dose ivermectin appears to be safe in patients with acute myelogenous leukemia and could inform clinical repurposing for COVID-19 infection, Leuk. Lymphoma
Chang, Karin, Mammalian MAP kinase signalling cascades, Nature
Chen, Kubo, Ivermectin and its target molecules: shared and unique modulation mechanisms of ion channels and receptors by ivermectin, J. Physiol
Chen, Wan, Zhou, Li, Wei, Ursolic acid attenuates lipopolysaccharideinduced acute lung injury in a mouse model, Immunotherapy
Dushianthan, Grocott, Postle, Cusack, Acute respiratory distress syndrome and acute lung injury, Postgrad. Med. J
El-Benna, Hurtado-Nedelec, Marzaioli, Marie, Gougerot-Pocidalo et al., Priming of the neutrophil respiratory burst: role in host defense and inflammation, Immunol. Rev
Fan, Brodie, Slutsky, Acute respiratory distress syndrome: advances in diagnosis and treatment, JAMA
Gong, Guo, Li, Yuan, Shang et al., BML-111, a lipoxin receptor agonist, protects haemorrhagic shock-induced acute lung injury in rats, Resuscitation
Gorial, Mashhadani, Sayaly, Dakhil, Almashhadani et al., Effectiveness of ivermectin as add-on therapy in COVID-19 management
He, Zhou, Yu, Wang, Deng et al., Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms, Pharmacol. Res
Huang, Xiu, Zhang, Zhang, The Role of Macrophages in the Pathogenesis of ALI/ARDS, Mediat. Inflamm
Huppert, Matthay, Ware, Pathogenesis of acute respiratory distress syndrome, Semin. Respir. Crit. Care Med
Jagrosse, Dean, Rahman, Nilsson, RNAi therapeutic strategies for acute respiratory distress syndrome, Transl. Res. J. Lab. Clin. Med
Khongthaw, Dulta, Chauhan, Kumar, Ighalo, Lycopene: a therapeutic strategy against coronavirus disease 19 (COVID-19), Inflammopharmacology
Kim, Lee, Yang, Lee, Effenberger et al., Immunopathogenesis and treatment of cytokine storm in COVID-19, Theranostics
Kumar, Page, Peti, The interaction of p38 with its upstream kinase MKK6, Protein Sci
Kyriakis, Avruch, Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update, Physiol. Rev
Laing, Gillan, Devaney, Ivermectin -old drug, new tricks? Trends Parasitol
Lee, Na, Surh, Resolution of inflammation as a novel chemopreventive strategy, Semin. Immunopathol
Lewis, Pritchard, Thomas, Smith, Pharmacological agents for adults with acute respiratory distress syndrome, Cochrane Database Syst. Rev
Li, Zhan, Anti-parasite drug ivermectin can suppress ovarian cancer by regulating lncRNA-EIF4A3-mRNA axes, EPMA J
Ma, None
Martin, Jans, Antivirals that target the host IMPα/β1-virus interface, Biochem. Soc. Trans
Martin, Robertson, Choudhary, Ivermectin: an anthelmintic, an insecticide, and much more, Trends Parasitol
Matute-Bello, Downey, Moore, Groshong, Matthay et al., Acute Lung Injury in Animals Study Group, An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals, Am. J. Respir. Cell Mol. Biol
Mowery, Terzian, Nelson, Acute lung injury, Curr. Probl. Surg
Nair, Chauhan, Saha, Kubatzky, Conceptual evolution of cell signaling, Int J. Mol. Sci
Nambara, Masuda, Nishio, Kuramitsu, Tobo et al., Antitumor effects of the antiparasitic agent ivermectin via inhibition of Yes-associated protein 1 expression in gastric cancer, Oncotarget
Nathan, Ding, Nonresolving inflammation, Cell
Nishio, Sugimachi, Goto, Wang, Morikawa et al., Dysregulated YAP1/TAZ and TGF-β signaling mediate hepatocarcinogenesis in Mob1a/1b-deficient mice, Proc. Natl. Acad. Sci. USA
Nova, Skovierova, Calkovska, Alveolar-capillary membrane-related pulmonary cells as a target in endotoxin-induced acute lung injury, Int. J. Mol. Sci
Rai, Yadav, Singh, Singh, Ursolic acid attenuates oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in MPTP-induced Parkinsonian mouse model, J. Chem. Neuroanat
Rai, Zahra, Singh, Birla, Keswani et al., Anti-inflammatory activity of ursolic acid in MPTP-induced Parkinsonian mouse model, Neurotox. Res
Rajter, Sherman, Fatteh, Vogel, Sacks et al., Use of ivermectin is associated with lower mortality in hospitalized patients with coronavirus disease 2019: the ivermectin in COVID nineteen study, Chest
Raza, Shahin, Zhai, Li, Alvisi et al., Ivermectin inhibits bovine herpesvirus 1 DNA polymerase nuclear import and interferes with viral replication, Microorganisms
Reusch, Domenico, Bonaguro, Schulte-Schrepping, Baßler et al., Neutrophils in COVID-19
Saguil, Fargo, Acute respiratory distress syndrome: diagnosis and management, Am. Fam. Physician
Sanchez, Mechanical ventilation in patients subjected to extracorporeal membrane oxygenation (ECMO), Med. Intensiv
Singh, Rai, Birla, Zahra, Kumar et al., Effect of chlorogenic acid supplementation in MPTP-intoxicated mouse, Front. Pharmacol
Singh, Rai, Birla, Zahra, Rathore et al., Neuroprotective effect of chlorogenic acid on mitochondrial dysfunctionmediated apoptotic death of DA neurons in a parkinsonian mouse model, Oxid. Med. Cell. Longev
Taniguchi, Karin, NF-kappaB, inflammation, immunity and cancer: coming of age, Nat. Rev. Immunol
Ventre, Rozières, Lenief, Albert, Rossio et al., Topical ivermectin improves allergic skin inflammation
Wilkins, Steer, Cranswick, Gwee, Question 1: is it safe to use ivermectin in children less than five years of age and weighing less than 15 kg?, Arch. Dis. Child
Williams, Berg, Reskallah, Yuan, Eltzschig, Acute respiratory distress syndrome, Anesthesiology
Yan, Ci, Chen, Chen, Li et al., Anti-inflammatory effects of ivermectin in mouse model of allergic asthma, Inflamm. Res. Off. J. Eur. Histamine Res. Soc
Ye, Wang, Mao, The pathogenesis and treatment of the `Cytokine Storm' in COVID-19, J. Infect
Yong, Koh, Moon, The p38 MAPK inhibitors for the treatment of inflammatory diseases and cancer, Expert Opin. Investig. Drugs
Zahra, Rai, Birla, Singh, Rathore et al., Neuroprotection of rotenone-induced Parkinsonism by ursolic acid in PD mouse model, CNS Neurol. Disord. Drug Targets
Zhang, Song, Ci, An, Ju et al., Ivermectin inhibits LPS-induced production of inflammatory cytokines and improves LPS-induced survival in mice, Inflamm. Res. Off. J. Eur. Histamine Res. Soc
Zhang, Song, Xiong, Ci, Li et al., Inhibitory effects of ivermectin on nitric oxide and prostaglandin E2 production in LPS-stimulated RAW 264.7 macrophages, Int. Immunopharmacol
Zhou, Dai, Huang, Neutrophils in acute lung injury
Zhou, Wu, Ning, Wu, Xu et al., Ivermectin has new application in inhibiting colorectal cancer cell growth, Front. Pharmacol
DOI record:
{
"DOI": "10.1016/j.biopha.2022.113706",
"ISSN": [
"0753-3322"
],
"URL": "http://dx.doi.org/10.1016/j.biopha.2022.113706",
"alternative-id": [
"S0753332222010952"
],
"article-number": "113706",
"assertion": [
{
"label": "This article is maintained by",
"name": "publisher",
"value": "Elsevier"
},
{
"label": "Article Title",
"name": "articletitle",
"value": "Ivermectin contributes to attenuating the severity of acute lung injury in mice"
},
{
"label": "Journal Title",
"name": "journaltitle",
"value": "Biomedicine & Pharmacotherapy"
},
{
"label": "CrossRef DOI link to publisher maintained version",
"name": "articlelink",
"value": "https://doi.org/10.1016/j.biopha.2022.113706"
},
{
"label": "Content Type",
"name": "content_type",
"value": "article"
},
{
"label": "Copyright",
"name": "copyright",
"value": "© 2022 The Authors. Published by Elsevier Masson SAS."
}
],
"author": [
{
"affiliation": [],
"family": "Ma",
"given": "Yuanqiao",
"sequence": "first"
},
{
"affiliation": [],
"family": "Xu",
"given": "Xiaoxiao",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Wu",
"given": "Hang",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Li",
"given": "Changbo",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Zhong",
"given": "Peijie",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Liu",
"given": "Zejin",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Ma",
"given": "Chuang",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Liu",
"given": "Wenhua",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Wang",
"given": "Chenyu",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Zhang",
"given": "Yijie",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Wang",
"given": "Junpeng",
"sequence": "additional"
}
],
"container-title": "Biomedicine & Pharmacotherapy",
"container-title-short": "Biomedicine & Pharmacotherapy",
"content-domain": {
"crossmark-restriction": true,
"domain": [
"clinicalkey.fr",
"clinicalkey.jp",
"clinicalkey.es",
"clinicalkey.com.au",
"clinicalkey.com",
"em-consulte.com",
"elsevier.com",
"sciencedirect.com"
]
},
"created": {
"date-parts": [
[
2022,
9,
15
]
],
"date-time": "2022-09-15T10:37:53Z",
"timestamp": 1663238273000
},
"deposited": {
"date-parts": [
[
2023,
4,
10
]
],
"date-time": "2023-04-10T10:49:10Z",
"timestamp": 1681123750000
},
"indexed": {
"date-parts": [
[
2023,
4,
10
]
],
"date-time": "2023-04-10T11:11:45Z",
"timestamp": 1681125105051
},
"is-referenced-by-count": 2,
"issued": {
"date-parts": [
[
2022,
11
]
]
},
"language": "en",
"license": [
{
"URL": "https://www.elsevier.com/tdm/userlicense/1.0/",
"content-version": "tdm",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2022,
11,
1
]
],
"date-time": "2022-11-01T00:00:00Z",
"timestamp": 1667260800000
}
},
{
"URL": "http://creativecommons.org/licenses/by-nc-nd/4.0/",
"content-version": "vor",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2022,
9,
13
]
],
"date-time": "2022-09-13T00:00:00Z",
"timestamp": 1663027200000
}
}
],
"link": [
{
"URL": "https://api.elsevier.com/content/article/PII:S0753332222010952?httpAccept=text/xml",
"content-type": "text/xml",
"content-version": "vor",
"intended-application": "text-mining"
},
{
"URL": "https://api.elsevier.com/content/article/PII:S0753332222010952?httpAccept=text/plain",
"content-type": "text/plain",
"content-version": "vor",
"intended-application": "text-mining"
}
],
"member": "78",
"original-title": [],
"page": "113706",
"prefix": "10.1016",
"published": {
"date-parts": [
[
2022,
11
]
]
},
"published-print": {
"date-parts": [
[
2022,
11
]
]
},
"publisher": "Elsevier BV",
"reference": [
{
"article-title": "Acute respiratory distress syndrome: diagnosis and management",
"author": "Saguil",
"first-page": "730",
"issue": "12",
"journal-title": "Am. Fam. Physician",
"key": "10.1016/j.biopha.2022.113706_bib1",
"volume": "101",
"year": "2020"
},
{
"DOI": "10.1097/ALN.0000000000003571",
"article-title": "Acute respiratory distress syndrome",
"author": "Williams",
"doi-asserted-by": "crossref",
"first-page": "270",
"issue": "2",
"journal-title": "Anesthesiology",
"key": "10.1016/j.biopha.2022.113706_bib2",
"volume": "134",
"year": "2021"
},
{
"article-title": "Mechanical ventilation in patients subjected to extracorporeal membrane oxygenation (ECMO)",
"author": "Sanchez",
"first-page": "491",
"issue": "8",
"journal-title": "Med. Intensiv.",
"key": "10.1016/j.biopha.2022.113706_bib3",
"volume": "41",
"year": "2017"
},
{
"DOI": "10.1001/jama.2017.21907",
"article-title": "Acute respiratory distress syndrome: advances in diagnosis and treatment",
"author": "Fan",
"doi-asserted-by": "crossref",
"first-page": "698",
"issue": "7",
"journal-title": "JAMA",
"key": "10.1016/j.biopha.2022.113706_bib4",
"volume": "319",
"year": "2018"
},
{
"article-title": "RNAi therapeutic strategies for acute respiratory distress syndrome",
"author": "Jagrosse",
"first-page": "30",
"journal-title": "Transl. Res. J. Lab. Clin. Med.",
"key": "10.1016/j.biopha.2022.113706_bib5",
"volume": "214",
"year": "2019"
},
{
"DOI": "10.1055/s-0039-1683996",
"article-title": "Pathogenesis of acute respiratory distress syndrome",
"author": "Huppert",
"doi-asserted-by": "crossref",
"first-page": "31",
"issue": "1",
"journal-title": "Semin. Respir. Crit. Care Med.",
"key": "10.1016/j.biopha.2022.113706_bib6",
"volume": "40",
"year": "2019"
},
{
"DOI": "10.1016/j.cpsurg.2020.100777",
"article-title": "Acute lung injury",
"author": "Mowery",
"doi-asserted-by": "crossref",
"issue": "5",
"journal-title": "Curr. Probl. Surg.",
"key": "10.1016/j.biopha.2022.113706_bib7",
"volume": "57",
"year": "2020"
},
{
"DOI": "10.1016/j.phrs.2020.105224",
"article-title": "Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms",
"author": "He",
"doi-asserted-by": "crossref",
"journal-title": "Pharmacol. Res.",
"key": "10.1016/j.biopha.2022.113706_bib8",
"volume": "163",
"year": "2021"
},
{
"article-title": "Pharmacological agents for adults with acute respiratory distress syndrome",
"author": "Lewis",
"journal-title": "Cochrane Database Syst. Rev.",
"key": "10.1016/j.biopha.2022.113706_bib9",
"volume": "7",
"year": "2019"
},
{
"DOI": "10.1016/j.pt.2017.02.004",
"article-title": "Ivermectin - old drug, new tricks?",
"author": "Laing",
"doi-asserted-by": "crossref",
"first-page": "463",
"issue": "6",
"journal-title": "Trends Parasitol.",
"key": "10.1016/j.biopha.2022.113706_bib10",
"volume": "33",
"year": "2017"
},
{
"DOI": "10.1113/JP275236",
"article-title": "Ivermectin and its target molecules: shared and unique modulation mechanisms of ion channels and receptors by ivermectin",
"author": "Chen",
"doi-asserted-by": "crossref",
"first-page": "1833",
"issue": "10",
"journal-title": "J. Physiol.",
"key": "10.1016/j.biopha.2022.113706_bib11",
"volume": "596",
"year": "2018"
},
{
"DOI": "10.1080/10428194.2020.1786559",
"article-title": "Continuous high-dose ivermectin appears to be safe in patients with acute myelogenous leukemia and could inform clinical repurposing for COVID-19 infection",
"author": "Castro",
"doi-asserted-by": "crossref",
"first-page": "2536",
"issue": "10",
"journal-title": "Leuk. Lymphoma",
"key": "10.1016/j.biopha.2022.113706_bib12",
"volume": "61",
"year": "2020"
},
{
"DOI": "10.1016/j.ijantimicag.2021.106516",
"article-title": "High-dose ivermectin for early treatment of COVID-19 (COVER study): a randomised, double-blind, multicentre, phase II, dose-finding, proof-of-concept clinical trial",
"author": "Buonfrate",
"doi-asserted-by": "crossref",
"issue": "2",
"journal-title": "Int. J. Antimicrob. Agents",
"key": "10.1016/j.biopha.2022.113706_bib13",
"volume": "59",
"year": "2022"
},
{
"DOI": "10.1136/archdischild-2017-314505",
"article-title": "Question 1: is it safe to use ivermectin in children less than five years of age and weighing less than 15 kg?",
"author": "Wilkins",
"doi-asserted-by": "crossref",
"first-page": "514",
"issue": "5",
"journal-title": "Arch. Dis. Child.",
"key": "10.1016/j.biopha.2022.113706_bib14",
"volume": "103",
"year": "2018"
},
{
"DOI": "10.1042/BST20200568",
"article-title": "Antivirals that target the host IMPα/β1-virus interface",
"author": "Martin",
"doi-asserted-by": "crossref",
"first-page": "281",
"issue": "1",
"journal-title": "Biochem. Soc. Trans.",
"key": "10.1016/j.biopha.2022.113706_bib15",
"volume": "49",
"year": "2021"
},
{
"DOI": "10.3390/microorganisms8030409",
"article-title": "Ivermectin inhibits bovine herpesvirus 1 DNA polymerase nuclear import and interferes with viral replication",
"author": "Raza",
"doi-asserted-by": "crossref",
"issue": "3",
"journal-title": "Microorganisms",
"key": "10.1016/j.biopha.2022.113706_bib16",
"volume": "8",
"year": "2020"
},
{
"DOI": "10.1016/j.pt.2020.10.005",
"article-title": "Ivermectin: an anthelmintic, an insecticide, and much more",
"author": "Martin",
"doi-asserted-by": "crossref",
"first-page": "48",
"issue": "1",
"journal-title": "Trends Parasitol.",
"key": "10.1016/j.biopha.2022.113706_bib17",
"volume": "37",
"year": "2021"
},
{
"DOI": "10.1007/s13167-020-00209-y",
"article-title": "Anti-parasite drug ivermectin can suppress ovarian cancer by regulating lncRNA-EIF4A3-mRNA axes",
"author": "Li",
"doi-asserted-by": "crossref",
"first-page": "289",
"issue": "2",
"journal-title": "EPMA J.",
"key": "10.1016/j.biopha.2022.113706_bib18",
"volume": "11",
"year": "2020"
},
{
"article-title": "Ivermectin has new application in inhibiting colorectal cancer cell growth",
"author": "Zhou",
"journal-title": "Front. Pharmacol.",
"key": "10.1016/j.biopha.2022.113706_bib19",
"volume": "12",
"year": "2021"
},
{
"DOI": "10.18632/oncotarget.22587",
"article-title": "Antitumor effects of the antiparasitic agent ivermectin via inhibition of Yes-associated protein 1 expression in gastric cancer",
"author": "Nambara",
"doi-asserted-by": "crossref",
"first-page": "107666",
"issue": "64",
"journal-title": "Oncotarget",
"key": "10.1016/j.biopha.2022.113706_bib20",
"volume": "8",
"year": "2017"
},
{
"DOI": "10.1073/pnas.1517188113",
"article-title": "Dysregulated YAP1/TAZ and TGF-β signaling mediate hepatocarcinogenesis in Mob1a/1b-deficient mice",
"author": "Nishio",
"doi-asserted-by": "crossref",
"first-page": "E71",
"issue": "1",
"journal-title": "Proc. Natl. Acad. Sci. USA",
"key": "10.1016/j.biopha.2022.113706_bib21",
"volume": "113",
"year": "2016"
},
{
"article-title": "Ivermectin inhibits LPS-induced production of inflammatory cytokines and improves LPS-induced survival in mice",
"author": "Zhang",
"first-page": "524",
"issue": "11",
"journal-title": "Inflamm. Res. Off. J. Eur. Histamine Res. Soc.",
"key": "10.1016/j.biopha.2022.113706_bib22",
"volume": "57",
"year": "2008"
},
{
"article-title": "Anti-inflammatory Effects of ivermectin in the treatment of acetic acid-induced colitis in rats: involvement of GABAB receptors",
"author": "Aryannejad",
"journal-title": "Dig. Dis. Sci.",
"key": "10.1016/j.biopha.2022.113706_bib23",
"year": "2021"
},
{
"article-title": "Anti-inflammatory effects of ivermectin in mouse model of allergic asthma",
"author": "Yan",
"first-page": "589",
"issue": "6",
"journal-title": "Inflamm. Res. Off. J. Eur. Histamine Res. Soc.",
"key": "10.1016/j.biopha.2022.113706_bib24",
"volume": "60",
"year": "2011"
},
{
"DOI": "10.1111/all.13118",
"article-title": "Topical ivermectin improves allergic skin inflammation",
"author": "Ventre",
"doi-asserted-by": "crossref",
"first-page": "1212",
"issue": "8",
"journal-title": "Allergy",
"key": "10.1016/j.biopha.2022.113706_bib25",
"volume": "72",
"year": "2017"
},
{
"DOI": "10.1016/j.chest.2020.10.009",
"article-title": "Use of ivermectin is associated with lower mortality in hospitalized patients with coronavirus disease 2019: the ivermectin in COVID nineteen study",
"author": "Rajter",
"doi-asserted-by": "crossref",
"first-page": "85",
"issue": "1",
"journal-title": "Chest",
"key": "10.1016/j.biopha.2022.113706_bib26",
"volume": "159",
"year": "2021"
},
{
"article-title": "Effectiveness of ivermectin as add-on therapy in COVID-19 management (pilot trial)",
"author": "Gorial",
"journal-title": "MedRxiv",
"key": "10.1016/j.biopha.2022.113706_bib27",
"year": "2020"
},
{
"article-title": "The effect of ivermectin on the viral load and culture viability in early treatment of non-hospitalized patients with mild COVID-19 - a double-blind, randomized placebo-controlled trial",
"author": "Biber",
"journal-title": "Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis.",
"key": "10.1016/j.biopha.2022.113706_bib28",
"year": "2022"
},
{
"DOI": "10.1016/j.cell.2010.02.029",
"article-title": "Nonresolving inflammation",
"author": "Nathan",
"doi-asserted-by": "crossref",
"first-page": "871",
"issue": "6",
"journal-title": "Cell",
"key": "10.1016/j.biopha.2022.113706_bib29",
"volume": "140",
"year": "2010"
},
{
"DOI": "10.1111/imr.12447",
"article-title": "Priming of the neutrophil respiratory burst: role in host defense and inflammation",
"author": "El-Benna",
"doi-asserted-by": "crossref",
"first-page": "180",
"issue": "1",
"journal-title": "Immunol. Rev.",
"key": "10.1016/j.biopha.2022.113706_bib30",
"volume": "273",
"year": "2016"
},
{
"DOI": "10.3389/fphar.2018.00757",
"article-title": "Effect of chlorogenic acid supplementation in MPTP-intoxicated mouse",
"author": "Singh",
"doi-asserted-by": "crossref",
"first-page": "757",
"journal-title": "Front. Pharmacol.",
"key": "10.1016/j.biopha.2022.113706_bib31",
"volume": "9",
"year": "2018"
},
{
"DOI": "10.1155/2020/6571484",
"article-title": "Neuroprotective effect of chlorogenic acid on mitochondrial dysfunction-mediated apoptotic death of DA neurons in a parkinsonian mouse model",
"author": "Singh",
"doi-asserted-by": "crossref",
"journal-title": "Oxid. Med. Cell. Longev.",
"key": "10.1016/j.biopha.2022.113706_bib32",
"volume": "2020",
"year": "2020"
},
{
"DOI": "10.2174/1871527319666200812224457",
"article-title": "Neuroprotection of rotenone-induced Parkinsonism by ursolic acid in PD mouse model",
"author": "Zahra",
"doi-asserted-by": "crossref",
"first-page": "527",
"issue": "7",
"journal-title": "CNS Neurol. Disord. Drug Targets",
"key": "10.1016/j.biopha.2022.113706_bib33",
"volume": "19",
"year": "2020"
},
{
"DOI": "10.1007/s12640-019-00038-6",
"article-title": "Anti-inflammatory activity of ursolic acid in MPTP-induced Parkinsonian mouse model",
"author": "Rai",
"doi-asserted-by": "crossref",
"first-page": "452",
"issue": "3",
"journal-title": "Neurotox. Res.",
"key": "10.1016/j.biopha.2022.113706_bib34",
"volume": "36",
"year": "2019"
},
{
"DOI": "10.1016/j.jchemneu.2015.12.002",
"article-title": "Ursolic acid attenuates oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in MPTP-induced Parkinsonian mouse model",
"author": "Rai",
"doi-asserted-by": "crossref",
"first-page": "41",
"journal-title": "J. Chem. Neuroanat.",
"key": "10.1016/j.biopha.2022.113706_bib35",
"volume": "71",
"year": "2016"
},
{
"DOI": "10.2217/imt.12.144",
"article-title": "Ursolic acid attenuates lipopolysaccharide-induced acute lung injury in a mouse model",
"author": "Chen",
"doi-asserted-by": "crossref",
"first-page": "39",
"issue": "1",
"journal-title": "Immunotherapy",
"key": "10.1016/j.biopha.2022.113706_bib36",
"volume": "5",
"year": "2013"
},
{
"article-title": "The effect of ivermectin on the viral load and culture viability in early treatment of non-hospitalized patients with mild COVID-19 - A double-blind, randomized placebo-controlled trial",
"author": "Biber",
"journal-title": "Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis.",
"key": "10.1016/j.biopha.2022.113706_bib37",
"year": "2022"
},
{
"DOI": "10.1016/j.resuscitation.2011.12.035",
"article-title": "BML-111, a lipoxin receptor agonist, protects haemorrhagic shock-induced acute lung injury in rats",
"author": "Gong",
"doi-asserted-by": "crossref",
"first-page": "907",
"issue": "7",
"journal-title": "Resuscitation",
"key": "10.1016/j.biopha.2022.113706_bib38",
"volume": "83",
"year": "2012"
},
{
"DOI": "10.1007/s00281-013-0363-y",
"article-title": "Resolution of inflammation as a novel chemopreventive strategy",
"author": "Lee",
"doi-asserted-by": "crossref",
"first-page": "151",
"issue": "2",
"journal-title": "Semin. Immunopathol.",
"key": "10.1016/j.biopha.2022.113706_bib39",
"volume": "35",
"year": "2013"
},
{
"DOI": "10.7150/thno.49713",
"article-title": "Immunopathogenesis and treatment of cytokine storm in COVID-19",
"author": "Kim",
"doi-asserted-by": "crossref",
"first-page": "316",
"issue": "1",
"journal-title": "Theranostics",
"key": "10.1016/j.biopha.2022.113706_bib40",
"volume": "11",
"year": "2021"
},
{
"DOI": "10.1016/j.jinf.2020.03.037",
"article-title": "The pathogenesis and treatment of the `Cytokine Storm' in COVID-19",
"author": "Ye",
"doi-asserted-by": "crossref",
"first-page": "607",
"issue": "6",
"journal-title": "J. Infect.",
"key": "10.1016/j.biopha.2022.113706_bib41",
"volume": "80",
"year": "2020"
},
{
"DOI": "10.1155/2018/1264913",
"article-title": "The Role of Macrophages in the Pathogenesis of ALI/ARDS",
"author": "Huang",
"doi-asserted-by": "crossref",
"journal-title": "Mediat. Inflamm.",
"key": "10.1016/j.biopha.2022.113706_bib42",
"volume": "2018",
"year": "2018"
},
{
"DOI": "10.1155/2020/8829674",
"article-title": "COVID-19 and neutrophils: the relationship between hyperinflammation and neutrophil extracellular traps",
"author": "Borges",
"doi-asserted-by": "crossref",
"journal-title": "Mediat. Inflamm.",
"key": "10.1016/j.biopha.2022.113706_bib43",
"volume": "2020",
"year": "2020"
},
{
"DOI": "10.3389/fimmu.2021.652470",
"article-title": "Neutrophils in COVID-19",
"author": "Reusch",
"doi-asserted-by": "crossref",
"journal-title": "Front. Immunol.",
"key": "10.1016/j.biopha.2022.113706_bib44",
"volume": "12",
"year": "2021"
},
{
"DOI": "10.1021/acschemneuro.0c00422",
"article-title": "Lung injury in COVID-19-an emerging hypothesis",
"author": "Alharthy",
"doi-asserted-by": "crossref",
"first-page": "2156",
"issue": "15",
"journal-title": "ACS Chem. Neurosci.",
"key": "10.1016/j.biopha.2022.113706_bib45",
"volume": "11",
"year": "2020"
},
{
"DOI": "10.1007/s10787-022-01061-4",
"article-title": "Lycopene: a therapeutic strategy against coronavirus disease 19 (COVID- 19)",
"author": "Khongthaw",
"doi-asserted-by": "crossref",
"journal-title": "Inflammopharmacology",
"key": "10.1016/j.biopha.2022.113706_bib46",
"year": "2022"
},
{
"DOI": "10.2741/4051",
"article-title": "Neutrophils in acute lung injury",
"author": "Zhou",
"doi-asserted-by": "crossref",
"first-page": "2278",
"issue": "6",
"journal-title": "Front. Biosci. (Landmark Ed. )",
"key": "10.1016/j.biopha.2022.113706_bib47",
"volume": "17",
"year": "2012"
},
{
"DOI": "10.3390/ijms20040831",
"article-title": "Alveolar-capillary membrane-related pulmonary cells as a target in endotoxin-induced acute lung injury",
"author": "Nova",
"doi-asserted-by": "crossref",
"issue": "4",
"journal-title": "Int. J. Mol. Sci.",
"key": "10.1016/j.biopha.2022.113706_bib48",
"volume": "20",
"year": "2019"
},
{
"DOI": "10.1136/pgmj.2011.118398",
"article-title": "Acute respiratory distress syndrome and acute lung injury",
"author": "Dushianthan",
"doi-asserted-by": "crossref",
"first-page": "612",
"issue": "1031",
"journal-title": "Postgrad. Med. J.",
"key": "10.1016/j.biopha.2022.113706_bib49",
"volume": "87",
"year": "2011"
},
{
"DOI": "10.1165/rcmb.2009-0210ST",
"article-title": "An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals",
"author": "Matute-Bello",
"doi-asserted-by": "crossref",
"first-page": "725",
"issue": "5",
"journal-title": "Am. J. Respir. Cell Mol. Biol.",
"key": "10.1016/j.biopha.2022.113706_bib50",
"volume": "44",
"year": "2011"
},
{
"DOI": "10.1016/j.abb.2018.01.004",
"article-title": "Myeloperoxidase: its role for host defense, inflammation, and neutrophil function",
"author": "Aratani",
"doi-asserted-by": "crossref",
"first-page": "47",
"journal-title": "Arch. Biochem. Biophys.",
"key": "10.1016/j.biopha.2022.113706_bib51",
"volume": "640",
"year": "2018"
},
{
"DOI": "10.3390/ijms20133292",
"article-title": "Conceptual evolution of cell signaling",
"author": "Nair",
"doi-asserted-by": "crossref",
"issue": "13",
"journal-title": "Int J. Mol. Sci.",
"key": "10.1016/j.biopha.2022.113706_bib52",
"volume": "20",
"year": "2019"
},
{
"DOI": "10.1038/35065000",
"article-title": "Mammalian MAP kinase signalling cascades",
"author": "Chang",
"doi-asserted-by": "crossref",
"first-page": "37",
"issue": "6824",
"journal-title": "Nature",
"key": "10.1016/j.biopha.2022.113706_bib53",
"volume": "410",
"year": "2001"
},
{
"DOI": "10.1152/physrev.00028.2011",
"article-title": "Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update",
"author": "Kyriakis",
"doi-asserted-by": "crossref",
"first-page": "689",
"issue": "2",
"journal-title": "Physiol. Rev.",
"key": "10.1016/j.biopha.2022.113706_bib54",
"volume": "92",
"year": "2012"
},
{
"DOI": "10.1002/pro.4039",
"article-title": "The interaction of p38 with its upstream kinase MKK6",
"author": "Kumar",
"doi-asserted-by": "crossref",
"first-page": "908",
"issue": "4",
"journal-title": "Protein Sci.",
"key": "10.1016/j.biopha.2022.113706_bib55",
"volume": "30",
"year": "2021"
},
{
"DOI": "10.1517/13543780903321490",
"article-title": "The p38 MAPK inhibitors for the treatment of inflammatory diseases and cancer",
"author": "Yong",
"doi-asserted-by": "crossref",
"first-page": "1893",
"issue": "12",
"journal-title": "Expert Opin. Investig. Drugs",
"key": "10.1016/j.biopha.2022.113706_bib56",
"volume": "18",
"year": "2009"
},
{
"DOI": "10.1016/j.intimp.2008.12.016",
"article-title": "Inhibitory effects of ivermectin on nitric oxide and prostaglandin E2 production in LPS-stimulated RAW 264.7 macrophages",
"author": "Zhang",
"doi-asserted-by": "crossref",
"first-page": "354",
"issue": "3",
"journal-title": "Int. Immunopharmacol.",
"key": "10.1016/j.biopha.2022.113706_bib57",
"volume": "9",
"year": "2009"
},
{
"DOI": "10.1038/nri.2017.142",
"article-title": "NF-kappaB, inflammation, immunity and cancer: coming of age",
"author": "Taniguchi",
"doi-asserted-by": "crossref",
"first-page": "309",
"issue": "5",
"journal-title": "Nat. Rev. Immunol.",
"key": "10.1016/j.biopha.2022.113706_bib58",
"volume": "18",
"year": "2018"
}
],
"reference-count": 58,
"references-count": 58,
"relation": {},
"resource": {
"primary": {
"URL": "https://linkinghub.elsevier.com/retrieve/pii/S0753332222010952"
}
},
"score": 1,
"short-title": [],
"source": "Crossref",
"subject": [
"Pharmacology",
"General Medicine"
],
"subtitle": [],
"title": "Ivermectin contributes to attenuating the severity of acute lung injury in mice",
"type": "journal-article",
"update-policy": "http://dx.doi.org/10.1016/elsevier_cm_policy",
"volume": "155"
}
