Interaction of the New Inhibitor Paxlovid (PF-07321332) and Ivermectin With the Monomer of the Main Protease SARS-CoV-2: A Volumetric Study Based on Molecular Dynamics, Elastic Networks, Classical Thermodynamics and SPT
et al., Computational Biology and Chemistry, doi:10.1016/j.compbiolchem.2022.107692, May 2022
Ivermectin for COVID-19
4th treatment shown to reduce risk in
August 2020, now with p < 0.00000000001 from 106 studies, recognized in 24 countries.
No treatment is 100% effective. Protocols
combine treatments.
6,300+ studies for
210+ treatments. c19early.org
|
In silico study comparing ivermectin and paxlovid Mpro interaction, showing similar interaction for paxlovid and the ivermectin B1a homologue, a different mechanism for ivermectin B1b, and interaction at different sites for paxlovid.
74 preclinical studies support the efficacy of ivermectin for COVID-19:
Ivermectin, better known for antiparasitic activity, is a broad spectrum antiviral with activity against many viruses including H7N771, Dengue37,72,73 , HIV-173, Simian virus 4074, Zika37,75,76 , West Nile76, Yellow Fever77,78, Japanese encephalitis77, Chikungunya78, Semliki Forest virus78, Human papillomavirus57, Epstein-Barr57, BK Polyomavirus79, and Sindbis virus78.
Ivermectin inhibits importin-α/β-dependent nuclear import of viral proteins71,73,74,80 , shows spike-ACE2 disruption at 1nM with microfluidic diffusional sizing38, binds to glycan sites on the SARS-CoV-2 spike protein preventing interaction with blood and epithelial cells and inhibiting hemagglutination41,81, shows dose-dependent inhibition of wildtype and omicron variants36, exhibits dose-dependent inhibition of lung injury61,66, may inhibit SARS-CoV-2 via IMPase inhibition37, may inhibit SARS-CoV-2 induced formation of fibrin clots resistant to degradation9, inhibits SARS-CoV-2 3CLpro54, may inhibit SARS-CoV-2 RdRp activity28, may minimize viral myocarditis by inhibiting NF-κB/p65-mediated inflammation in macrophages60, may be beneficial for COVID-19 ARDS by blocking GSDMD and NET formation82, may interfere with SARS-CoV-2's immune evasion via ORF8 binding4, may inhibit SARS-CoV-2 by disrupting CD147 interaction83-86, shows protection against inflammation, cytokine storm, and mortality in an LPS mouse model sharing key pathological features of severe COVID-1959,87, may be beneficial in severe COVID-19 by binding IGF1 to inhibit the promotion of inflammation, fibrosis, and cell proliferation that leads to lung damage8, may minimize SARS-CoV-2 induced cardiac damage40,48, may counter immune evasion by inhibiting NSP15-TBK1/KPNA1 interaction and restoring IRF3 activation88, may disrupt SARS-CoV-2 N and ORF6 protein nuclear transport and their suppression of host interferon responses1, reduces TAZ/YAP nuclear import, relieving SARS-CoV-2-driven suppression of IRF3 and NF-κB antiviral pathways35, increases Bifidobacteria which play a key role in the immune system89, has immunomodulatory51 and anti-inflammatory70,90 properties, and has an extensive and very positive safety profile91.
1.
Gayozo et al., Binding affinities analysis of ivermectin, nucleocapsid and ORF6 proteins of SARS-CoV-2 to human importins α isoforms: A computational approach, Biotecnia, doi:10.18633/biotecnia.v27.2485.
2.
Lefebvre et al., Characterization and Fluctuations of an Ivermectin Binding Site at the Lipid Raft Interface of the N-Terminal Domain (NTD) of the Spike Protein of SARS-CoV-2 Variants, Viruses, doi:10.3390/v16121836.
3.
Haque et al., Exploring potential therapeutic candidates against COVID-19: a molecular docking study, Discover Molecules, doi:10.1007/s44345-024-00005-5.
4.
Bagheri-Far et al., Non-spike protein inhibition of SARS-CoV-2 by natural products through the key mediator protein ORF8, Molecular Biology Research Communications, doi:10.22099/mbrc.2024.50245.2001.
5.
de Oliveira Só et al., In Silico Comparative Analysis of Ivermectin and Nirmatrelvir Inhibitors Interacting with the SARS-CoV-2 Main Protease, Preprints, doi:10.20944/preprints202404.1825.v1.
6.
Agamah et al., Network-based multi-omics-disease-drug associations reveal drug repurposing candidates for COVID-19 disease phases, ScienceOpen, doi:10.58647/DRUGARXIV.PR000010.v1.
7.
Oranu et al., Validation of the binding affinities and stabilities of ivermectin and moxidectin against SARS-CoV-2 receptors using molecular docking and molecular dynamics simulation, GSC Biological and Pharmaceutical Sciences, doi:10.30574/gscbps.2024.26.1.0030.
8.
Zhao et al., Identification of the shared gene signatures between pulmonary fibrosis and pulmonary hypertension using bioinformatics analysis, Frontiers in Immunology, doi:10.3389/fimmu.2023.1197752.
9.
Vottero et al., Computational Prediction of the Interaction of Ivermectin with Fibrinogen, Molecular Sciences, doi:10.3390/ijms241411449.
10.
Chellasamy et al., Docking and molecular dynamics studies of human ezrin protein with a modelled SARS-CoV-2 endodomain and their interaction with potential invasion inhibitors, Journal of King Saud University - Science, doi:10.1016/j.jksus.2022.102277.
11.
Umar et al., Inhibitory potentials of ivermectin, nafamostat, and camostat on spike protein and some nonstructural proteins of SARS-CoV-2: Virtual screening approach, Jurnal Teknologi Laboratorium, doi:10.29238/teknolabjournal.v11i1.344.
12.
Alvarado et al., Interaction of the New Inhibitor Paxlovid (PF-07321332) and Ivermectin With the Monomer of the Main Protease SARS-CoV-2: A Volumetric Study Based on Molecular Dynamics, Elastic Networks, Classical Thermodynamics and SPT, Computational Biology and Chemistry, doi:10.1016/j.compbiolchem.2022.107692.
13.
Aminpour et al., In Silico Analysis of the Multi-Targeted Mode of Action of Ivermectin and Related Compounds, Computation, doi:10.3390/computation10040051.
14.
Parvez et al., Insights from a computational analysis of the SARS-CoV-2 Omicron variant: Host–pathogen interaction, pathogenicity, and possible drug therapeutics, Immunity, Inflammation and Disease, doi:10.1002/iid3.639.
15.
Francés-Monerris et al., Microscopic interactions between ivermectin and key human and viral proteins involved in SARS-CoV-2 infection, Physical Chemistry Chemical Physics, doi:10.1039/D1CP02967C.
16.
González-Paz et al., Comparative study of the interaction of ivermectin with proteins of interest associated with SARS-CoV-2: A computational and biophysical approach, Biophysical Chemistry, doi:10.1016/j.bpc.2021.106677.
17.
González-Paz (B) et al., Structural Deformability Induced in Proteins of Potential Interest Associated with COVID-19 by binding of Homologues present in Ivermectin: Comparative Study Based in Elastic Networks Models, Journal of Molecular Liquids, doi:10.1016/j.molliq.2021.117284.
18.
Rana et al., A Computational Study of Ivermectin and Doxycycline Combination Drug Against SARS-CoV-2 Infection, Research Square, doi:10.21203/rs.3.rs-755838/v1.
19.
Muthusamy et al., Virtual Screening Reveals Potential Anti-Parasitic Drugs Inhibiting the Receptor Binding Domain of SARS-CoV-2 Spike protein, Journal of Virology & Antiviral Research, www.scitechnol.com/abstract/virtual-screening-reveals-potential-antiparasitic-drugs-inhibiting-the-receptor-binding-domain-of-sarscov2-spike-protein-16398.html.
20.
Qureshi et al., Mechanistic insights into the inhibitory activity of FDA approved ivermectin against SARS-CoV-2: old drug with new implications, Journal of Biomolecular Structure and Dynamics, doi:10.1080/07391102.2021.1906750.
21.
Schöning et al., Highly-transmissible Variants of SARS-CoV-2 May Be More Susceptible to Drug Therapy Than Wild Type Strains, Research Square, doi:10.21203/rs.3.rs-379291/v1.
22.
Bello et al., Elucidation of the inhibitory activity of ivermectin with host nuclear importin α and several SARS-CoV-2 targets, Journal of Biomolecular Structure and Dynamics, doi:10.1080/07391102.2021.1911857.
23.
Udofia et al., In silico studies of selected multi-drug targeting against 3CLpro and nsp12 RNA-dependent RNA-polymerase proteins of SARS-CoV-2 and SARS-CoV, Network Modeling Analysis in Health Informatics and Bioinformatics, doi:10.1007/s13721-021-00299-2.
24.
Choudhury et al., Exploring the binding efficacy of ivermectin against the key proteins of SARS-CoV-2 pathogenesis: an in silico approach, Future Medicine, doi:10.2217/fvl-2020-0342.
25.
Kern et al., Modeling of SARS-CoV-2 Treatment Effects for Informed Drug Repurposing, Frontiers in Pharmacology, doi:10.3389/fphar.2021.625678.
26.
Saha et al., The Binding mechanism of ivermectin and levosalbutamol with spike protein of SARS-CoV-2, Structural Chemistry, doi:10.1007/s11224-021-01776-0.
27.
Eweas et al., Molecular Docking Reveals Ivermectin and Remdesivir as Potential Repurposed Drugs Against SARS-CoV-2, Frontiers in Microbiology, doi:10.3389/fmicb.2020.592908.
28.
Parvez (B) et al., Prediction of potential inhibitors for RNA-dependent RNA polymerase of SARS-CoV-2 using comprehensive drug repurposing and molecular docking approach, International Journal of Biological Macromolecules, doi:10.1016/j.ijbiomac.2020.09.098.
29.
Francés-Monerris (B) et al., Has Ivermectin Virus-Directed Effects against SARS-CoV-2? Rationalizing the Action of a Potential Multitarget Antiviral Agent, ChemRxiv, doi:10.26434/chemrxiv.12782258.v1.
30.
Kalhor et al., Repurposing of the approved small molecule drugs in order to inhibit SARS-CoV-2 S protein and human ACE2 interaction through virtual screening approaches, Journal of Biomolecular Structure and Dynamics, doi:10.1080/07391102.2020.1824816.
31.
Swargiary, A., Ivermectin as a promising RNA-dependent RNA polymerase inhibitor and a therapeutic drug against SARS-CoV2: Evidence from in silico studies, Research Square, doi:10.21203/rs.3.rs-73308/v1.
32.
Maurya, D., A Combination of Ivermectin and Doxycycline Possibly Blocks the Viral Entry and Modulate the Innate Immune Response in COVID-19 Patients, American Chemical Society (ACS), doi:10.26434/chemrxiv.12630539.v1.
33.
Lehrer et al., Ivermectin Docks to the SARS-CoV-2 Spike Receptor-binding Domain Attached to ACE2, In Vivo, 34:5, 3023-3026, doi:10.21873/invivo.12134.
34.
Suravajhala et al., Comparative Docking Studies on Curcumin with COVID-19 Proteins, Preprints, doi:10.20944/preprints202005.0439.v3.
35.
Kofler et al., M-Motif, a potential non-conventional NLS in YAP/TAZ and other cellular and viral proteins that inhibits classic protein import, iScience, doi:10.1016/j.isci.2025.112105.
36.
Shahin et al., The selective effect of Ivermectin on different human coronaviruses; in-vitro study, Research Square, doi:10.21203/rs.3.rs-4180797/v1.
37.
Jitobaom et al., Identification of inositol monophosphatase as a broad‐spectrum antiviral target of ivermectin, Journal of Medical Virology, doi:10.1002/jmv.29552.
38.
Fauquet et al., Microfluidic Diffusion Sizing Applied to the Study of Natural Products and Extracts That Modulate the SARS-CoV-2 Spike RBD/ACE2 Interaction, Molecules, doi:10.3390/molecules28248072.
39.
García-Aguilar et al., In Vitro Analysis of SARS-CoV-2 Spike Protein and Ivermectin Interaction, International Journal of Molecular Sciences, doi:10.3390/ijms242216392.
40.
Liu et al., SARS-CoV-2 viral genes Nsp6, Nsp8, and M compromise cellular ATP levels to impair survival and function of human pluripotent stem cell-derived cardiomyocytes, Stem Cell Research & Therapy, doi:10.1186/s13287-023-03485-3.
41.
Boschi et al., SARS-CoV-2 Spike Protein Induces Hemagglutination: Implications for COVID-19 Morbidities and Therapeutics and for Vaccine Adverse Effects, bioRxiv, doi:10.1101/2022.11.24.517882.
42.
De Forni et al., Synergistic drug combinations designed to fully suppress SARS-CoV-2 in the lung of COVID-19 patients, PLoS ONE, doi:10.1371/journal.pone.0276751.
43.
Saha (B) et al., Manipulation of Spray-Drying Conditions to Develop an Inhalable Ivermectin Dry Powder, Pharmaceutics, doi:10.3390/pharmaceutics14071432.
44.
Jitobaom (B) et al., Synergistic anti-SARS-CoV-2 activity of repurposed anti-parasitic drug combinations, BMC Pharmacology and Toxicology, doi:10.1186/s40360-022-00580-8.
45.
Croci et al., Liposomal Systems as Nanocarriers for the Antiviral Agent Ivermectin, International Journal of Biomaterials, doi:10.1155/2016/8043983.
46.
Zheng et al., Red blood cell-hitchhiking mediated pulmonary delivery of ivermectin: Effects of nanoparticle properties, International Journal of Pharmaceutics, doi:10.1016/j.ijpharm.2022.121719.
47.
Delandre et al., Antiviral Activity of Repurposing Ivermectin against a Panel of 30 Clinical SARS-CoV-2 Strains Belonging to 14 Variants, Pharmaceuticals, doi:10.3390/ph15040445.
48.
Liu (B) et al., Genome-wide analyses reveal the detrimental impacts of SARS-CoV-2 viral gene Orf9c on human pluripotent stem cell-derived cardiomyocytes, Stem Cell Reports, doi:10.1016/j.stemcr.2022.01.014.
49.
Segatori et al., Effect of Ivermectin and Atorvastatin on Nuclear Localization of Importin Alpha and Drug Target Expression Profiling in Host Cells from Nasopharyngeal Swabs of SARS-CoV-2- Positive Patients, Viruses, doi:10.3390/v13102084.
50.
Jitobaom (C) et al., Favipiravir and Ivermectin Showed in Vitro Synergistic Antiviral Activity against SARS-CoV-2, Research Square, doi:10.21203/rs.3.rs-941811/v1.
51.
Munson et al., Niclosamide and ivermectin modulate caspase-1 activity and proinflammatory cytokine secretion in a monocytic cell line, British Society For Nanomedicine Early Career Researcher Summer Meeting, 2021, web.archive.org/web/20230401070026/https://michealmunson.github.io/COVID.pdf.
52.
Mountain Valley MD, Mountain Valley MD Receives Successful Results From BSL-4 COVID-19 Clearance Trial on Three Variants Tested With Ivectosol™, www.globenewswire.com/en/news-release/2021/05/18/2231755/0/en/Mountain-Valley-MD-Receives-Successful-Results-From-BSL-4-COVID-19-Clearance-Trial-on-Three-Variants-Tested-With-Ivectosol.html.
53.
Yesilbag et al., Ivermectin also inhibits the replication of bovine respiratory viruses (BRSV, BPIV-3, BoHV-1, BCoV and BVDV) in vitro, Virus Research, doi:10.1016/j.virusres.2021.198384.
54.
Mody et al., Identification of 3-chymotrypsin like protease (3CLPro) inhibitors as potential anti-SARS-CoV-2 agents, Communications Biology, doi:10.1038/s42003-020-01577-x.
55.
Jeffreys et al., Remdesivir-ivermectin combination displays synergistic interaction with improved in vitro activity against SARS-CoV-2, International Journal of Antimicrobial Agents, doi:10.1016/j.ijantimicag.2022.106542.
56.
Surnar et al., Clinically Approved Antiviral Drug in an Orally Administrable Nanoparticle for COVID-19, ACS Pharmacol. Transl. Sci., doi:10.1021/acsptsci.0c00179.
57.
Li et al., Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment, J. Cellular Physiology, doi:10.1002/jcp.30055.
58.
Caly et al., The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro, Antiviral Research, doi:10.1016/j.antiviral.2020.104787.
59.
Zhang et al., Ivermectin inhibits LPS-induced production of inflammatory cytokines and improves LPS-induced survival in mice, Inflammation Research, doi:10.1007/s00011-008-8007-8.
60.
Gao et al., Ivermectin ameliorates acute myocarditis via the inhibition of importin-mediated nuclear translocation of NF-κB/p65, International Immunopharmacology, doi:10.1016/j.intimp.2024.112073.
61.
Abd-Elmawla et al., Suppression of NLRP3 inflammasome by ivermectin ameliorates bleomycin-induced pulmonary fibrosis, Journal of Zhejiang University-SCIENCE B, doi:10.1631/jzus.B2200385.
62.
Uematsu et al., Prophylactic administration of ivermectin attenuates SARS-CoV-2 induced disease in a Syrian Hamster Model, The Journal of Antibiotics, doi:10.1038/s41429-023-00623-0.
63.
Albariqi et al., Pharmacokinetics and Safety of Inhaled Ivermectin in Mice as a Potential COVID-19 Treatment, International Journal of Pharmaceutics, doi:10.1016/j.ijpharm.2022.121688.
64.
Errecalde et al., Safety and Pharmacokinetic Assessments of a Novel Ivermectin Nasal Spray Formulation in a Pig Model, Journal of Pharmaceutical Sciences, doi:10.1016/j.xphs.2021.01.017.
65.
Madrid et al., Safety of oral administration of high doses of ivermectin by means of biocompatible polyelectrolytes formulation, Heliyon, doi:10.1016/j.heliyon.2020.e05820.
66.
Ma et al., Ivermectin contributes to attenuating the severity of acute lung injury in mice, Biomedicine & Pharmacotherapy, doi:10.1016/j.biopha.2022.113706.
67.
de Melo et al., Attenuation of clinical and immunological outcomes during SARS-CoV-2 infection by ivermectin, EMBO Mol. Med., doi:10.15252/emmm.202114122.
68.
Arévalo et al., Ivermectin reduces in vivo coronavirus infection in a mouse experimental model, Scientific Reports, doi:10.1038/s41598-021-86679-0.
69.
Chaccour et al., Nebulized ivermectin for COVID-19 and other respiratory diseases, a proof of concept, dose-ranging study in rats, Scientific Reports, doi:10.1038/s41598-020-74084-y.
70.
Yan et al., Anti-inflammatory effects of ivermectin in mouse model of allergic asthma, Inflammation Research, doi:10.1007/s00011-011-0307-8.
71.
Götz et al., Influenza A viruses escape from MxA restriction at the expense of efficient nuclear vRNP import, Scientific Reports, doi:10.1038/srep23138.
72.
Tay et al., Nuclear localization of dengue virus (DENV) 1–4 non-structural protein 5; protection against all 4 DENV serotypes by the inhibitor Ivermectin, Antiviral Research, doi:10.1016/j.antiviral.2013.06.002.
73.
Wagstaff et al., Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus, Biochemical Journal, doi:10.1042/BJ20120150.
74.
Wagstaff (B) et al., An AlphaScreen®-Based Assay for High-Throughput Screening for Specific Inhibitors of Nuclear Import, SLAS Discovery, doi:10.1177/1087057110390360.
75.
Barrows et al., A Screen of FDA-Approved Drugs for Inhibitors of Zika Virus Infection, Cell Host & Microbe, doi:10.1016/j.chom.2016.07.004.
76.
Yang et al., The broad spectrum antiviral ivermectin targets the host nuclear transport importin α/β1 heterodimer, Antiviral Research, doi:10.1016/j.antiviral.2020.104760.
77.
Mastrangelo et al., Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug, Journal of Antimicrobial Chemotherapy, doi:10.1093/jac/dks147.
78.
Varghese et al., Discovery of berberine, abamectin and ivermectin as antivirals against chikungunya and other alphaviruses, Antiviral Research, doi:10.1016/j.antiviral.2015.12.012.
79.
Bennett et al., Role of a nuclear localization signal on the minor capsid Proteins VP2 and VP3 in BKPyV nuclear entry, Virology, doi:10.1016/j.virol.2014.10.013.
80.
Kosyna et al., The importin α/β-specific inhibitor Ivermectin affects HIF-dependent hypoxia response pathways, Biological Chemistry, doi:10.1515/hsz-2015-0171.
81.
Scheim et al., Sialylated Glycan Bindings from SARS-CoV-2 Spike Protein to Blood and Endothelial Cells Govern the Severe Morbidities of COVID-19, International Journal of Molecular Sciences, doi:10.3390/ijms242317039.
82.
Liu (C) et al., Crosstalk between neutrophil extracellular traps and immune regulation: insights into pathobiology and therapeutic implications of transfusion-related acute lung injury, Frontiers in Immunology, doi:10.3389/fimmu.2023.1324021.
83.
Shouman et al., SARS-CoV-2-associated lymphopenia: possible mechanisms and the role of CD147, Cell Communication and Signaling, doi:10.1186/s12964-024-01718-3.
84.
Scheim (B), D., Ivermectin for COVID-19 Treatment: Clinical Response at Quasi-Threshold Doses Via Hypothesized Alleviation of CD147-Mediated Vascular Occlusion, SSRN, doi:10.2139/ssrn.3636557.
85.
Scheim (C), D., From Cold to Killer: How SARS-CoV-2 Evolved without Hemagglutinin Esterase to Agglutinate and Then Clot Blood Cells, Center for Open Science, doi:10.31219/osf.io/sgdj2.
86.
Behl et al., CD147-spike protein interaction in COVID-19: Get the ball rolling with a novel receptor and therapeutic target, Science of The Total Environment, doi:10.1016/j.scitotenv.2021.152072.
87.
DiNicolantonio et al., Ivermectin may be a clinically useful anti-inflammatory agent for late-stage COVID-19, Open Heart, doi:10.1136/openhrt-2020-001350.
88.
Mothae et al., SARS-CoV-2 host-pathogen interactome: insights into more players during pathogenesis, Virology, doi:10.1016/j.virol.2025.110607.
89.
Hazan et al., Treatment with Ivermectin Increases the Population of Bifidobacterium in the Gut, ACG 2023, acg2023posters.eventscribe.net/posterspeakers.asp.
Alvarado et al., 14 May 2022, peer-reviewed, 12 authors.
Contact: alvaradoysaias@gmail.com, lgonzalezpaz@gmail.com.
In silico studies are an important part of preclinical research, however results may be very different in vivo.
Interaction of the new inhibitor paxlovid (PF-07321332) and ivermectin with the monomer of the main protease SARS-CoV-2: A volumetric study based on molecular dynamics, elastic networks, classical thermodynamics and SPT
Computational Biology and Chemistry, doi:10.1016/j.compbiolchem.2022.107692
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Under this same study strategy, it was found that PF-07321332 can also covalently bind to another region of the monomer (a drug multi-site for M pro ), but both complexes have similar structural flexibility and volumetric properties. Finally, we consider that this type of study can help to understand the mechanism by which a ligand can block the homodimerization of this important monomer to form the dimeric protease dM pro and in turn help in studies of activity-structure relationships for the design of new drugs.
Declaration of competing interest. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Highlights
References
Adhikari, Park, Kwon, Hydrogen-bond dynamics and energetics of biological water, Chempluschem, doi:10.1002/cplu.202000744
Aggarwal, Biswas, Interaction volume is a measure of the aggregation propensity of amyloid-β, J. Phys. Chem. Lett, doi:10.1021/acs.jpclett.0c00922
Aghdam, Habibi, Taheri, Using informative features in machine learning based method for COVID-19 drug repurposing, J. Cheminform, doi:10.1186/s13321-021-00553-9
Agrawal, Singh, Srivastava, Singh, Kishore et al., Benchmarking of different molecular docking methods for protein-peptide docking, BMC bioinformatics, doi:10.1186/s12859-018-2449-y
Ahmad, Batool, Ain, Kim, Choi, Exploring the binding mechanism of PF-07321332 SARS-CoV-2 protease inhibitor through molecular dynamics and binding free energy simulations, Int. J. Mol. Sci, doi:10.33263/briac112.95669586
Alvarado, Ballestas-Barrientos, Restrepo, Vera-Villalobos, Ferrer-Amado et al., Volume-related properties of thiophene and furan-2-carboxaldehyde phenylhydrazone derivatives in DMSO: A discussion about non-intrinsic contribution, J. Chem. Thermodyn, doi:10.1016/j.jct.2015.01.016
Alvarado, Ferrebuz, Paz, Rodriguez-Lugo, Restrepo et al., Surface behavior of BSA/water/carbohydrate systems from molecular polarizability measurements, J. Phys. Chem. B, doi:10.1021/acs.jpcb.7b11998
Alvarado, Rodríguez-Lugo, Vera-Villalobos, Ferrer-Amado, Ferrebuz et al., Non-intrinsic contribution to the limiting partial molar volume of globular proteins in water: a study comparative between a new refractometric strategy and densitometric classical approach, Biointerface Res. Appl. Chem
Alvarado, Vera-Parra, Méndez, Romero, González-Paz et al., Conformational change of ovalbumin induced by Surface cavity binding of N-phthaloyl gamma-aminobutyric acid derivative: A study theoretical and experimental, Bioint. Res. Appl. Chem, doi:10.33263/briac112.95669586
Antonopoulou, Sapountzaki, Rova, Christakopoulos, Inhibition of the main protease of SARS-CoV-2 (Mpro) by repurposing/designing drug-like substances and J o u r n a l P r e -p r o o f utilizing nature's toolbox of bioactive compounds, Computational and Structural Biotechnology Journal, doi:10.1016/j.csbj.2022.03.009
Awoonor-Williams, Abu-Saleh, Covalent and non-covalent binding free energy calculations for peptidomimetic inhibitors of SARS-CoV-2 main protease, Physical Chemistry Chemical Physics, doi:10.1039/D1CP00266J
Azam, Eid, Almutairi, Targeting SARS-CoV-2 main protease by teicoplanin: A mechanistic insight by docking, MM/GBSA and molecular dynamics simulation, Journal of molecular structure, doi:10.1016/j.molstruc.2021.131124
Azam, Taban, Eid, Iqbal, Alam et al., An in-silico analysis of ivermectin interaction with potential SARS-CoV-2 targets and host nuclear importin α, J. Biomol. Struct. Dyn, doi:10.1080/07391102.2020.1841028
Ball, Water is an active matrix of life for cell and molecular biology, Proc. Natl. Acad. Sci, doi:10.1073/pnas.1703781114
Barletta, Fernández-Alberti, Protein fluctuations and cavity changes relationship, J. Chem. Theory Comput, doi:10.1021/acs.jctc.7b00744
Barletta, Franchini, Corsico, Fernández-Alberti, Fatty acid and retinolbinding protein: Unusual protein conformational and cavity changes dictated by ligand fluctuations, J. Chem. Inf. Model, doi:10.1021/acs.jcim.9b00364
Blake, Soliman, Identification of irreversible protein splicing inhibitors as potential anti-TB drugs: insight from hybrid non-covalent/covalent docking virtual screening and molecular dynamics simulations, Medicinal Chemistry Research, doi:10.1007/s00044-013-0822-y
Brovchenko, Andrews, Oleinikova, Volumetric properties of human islet amyloid polypeptide in liquid water, Phys. Chem. Chem. Phys, doi:10.1039/B918706E
Carvallo, Hirsch, Ivermectin, aspirin, dexametasone and enoxaparin as treatment for COVID 19, J Am Med Assoc
Chalikian, Breslauer, On volume changes accompanying conformational transitions of biopolymers, Biopolymers, doi:10.1002/(SICI)1097-0282(199611)39:5%3c619::AID-BIP1%3e3.0.CO;2-Z
Chalikian, Does the release of hydration water come with a Gibbs energy contribution?, J. Chem. Thermodyn, doi:10.1016/j.jct.2021.106409
Chalikian, Excluded volume contribution to cosolvent-mediated modulation of macromolecular folding and binding reactions, Biophys. Chem, doi:10.1016/j.bpc.2015.11.001
Chalikian, Filfil, How large are the volume changes accompanying protein transitions and binding?, Biophys. Chem, doi:10.1016/s0301-4622(03)00037-1
Chalikian, Macgregor, On empirical decomposition of volumetric data, Biophys. Chem, doi:10.1016/j.bpc.2018.12.005
Chalikian, Totrov, Abagyan, Breslauer, The hydration of globular proteins as derived from volume and compressibility measurements, cross correlating thermodynamic and structural data, J. Mol. Biol, doi:10.1006/jmbi.1996.0423
Chhetri, Chettri, Rai, Sinha, Brahman, Exploration of inhibitory action of Azo imidazole derivatives against COVID-19 main protease (M pro ): A computational study, J. Mol. Struct, doi:10.1016/j.molstruc.2020.129178
Choudhury, Das, Patra, Bhattacharya, Ghosh et al., Exploring the binding efficacy of ivermectin against the key proteins of SARS-CoV-2 pathogenesis: and in silico approach, Future Virol, doi:10.2217/fvl-2020-0342
Cooper, Protein fluctuations and the thermodynamic uncertainty principle, Prog. Biophys. Mol. Biol, doi:10.1016/0079-6107(84)90008-7
Dadarlat, Post, Insights into protein compressibility from molecular dynamics simulations, J. Phys. Chem. B, doi:10.1021/jp0024118
Delandre, Gendrot, Jardot, Bideau, Boxberger et al., Antiviral Activity of Repurposing Ivermectin against a Panel of 30 Clinical SARS-CoV-2 Strains Belonging to 14 Variants, Pharmaceuticals, doi:10.3390/ph15040445
Delre, Caporuscio, Saviano, Mangiatordi, Repurposing known drugs as covalent and non-covalent inhibitors of the SARS-CoV-2 papain-like protease, Frontiers in Chemistry, doi:10.3389/fchem.2020.594009
Durojaye, Mushiana, Uzoeto, Cosmas, Udowo et al., Potential therapeutic target identification in the novel 2019 coronavirus: insight from homology modeling and blind docking study, Egyptian Journal of Medical Human Genetics, doi:10.1186/s43042-020-00081-5
Emekli, Schneidman-Duhovny, Wolfson, Nussinov, Haliloglu, Hinge Prot: automated prediction of hinges in protein structures, Proteins Struct. Funct. Bioinf, doi:10.1002/prot.21613
Ferraz, Gomes, Novaes, Trossini, Ligand and structure-based virtual screening applied to the SARS-CoV-2 main protease: an in silico repurposing study, Future Medicinal Chemistry, doi:10.4155/fmc-2020-0165
Filfil, Ratavosi, Chalikian, Binding of bovine pancreatic trypsin inhibitor to trypsinogen: Spectroscopic and volumetric studies, Biochemistry, doi:10.1021/bi030188
Fleming, Fleming, HullRad: Fast calculations of folded and disordered protein and nucleic acid hydrodynamic properties, Biophys. J, doi:10.1016/j.bpj.2018.01.002
Fornés, Electrical fluctuations on the surfaces of proteins from hydrodynamic data, J. Colloid Interface Sci, doi:10.1016/j.jcis.2008.04.036
Gautam, Chong, Chin, Zain, Rahman et al., Loop dynamics behind the affinity of DARPins towards ERK2: Molecular dynamics simulations (MDs) and elastic network model (ENM), Journal of Molecular Liquids, doi:10.1016/j.molliq.2018.10.157
Gekko, Hasegawa, Compressibility-structure relationship of globular proteins, Biochemistry, doi:10.1021/bi00369a034
González-Paz, Alvarado, Hurtado-León, Lossada, Vera-Villalobos et al., Comparative study of SARS-CoV-2 infection in different cell types: Biophysical-computational approach to the role of potential receptors, Computers in Biology and Medicine, doi:10.1016/j.compbiomed.2022.105245
González-Paz, Hurtado-León, Lossada, Fernández-Materán, Vera-Villalobos et al., Comparative study of the interaction of ivermectin with proteins of interest associates with SARS-CoV-2: A computational and biophysical approach, Biophys. Chem, doi:10.1016/j.bpc.2021.106677
González-Paz, Hurtado-León, Lossada, Fernández-Materán, Vera-Villalobos et al., Structural deformability induced in proteins of potential interest associated with COVID-19 by binding of J o u r n a l P r e -p r o o f 55 homologues present in ivermectin: Comparative study based in elastic networks models, J. Mol. Liq, doi:10.1016/j.molliq.2021.117284
González-Paz, Lossada, Fernández-Materán, Paz, Vera-Villalobos et al., Can non-steroidal anti-inflammatory drugs affect the interaction between receptor binding domain of SARS-COV-2 spike and the human ACE2 receptor? A computational biophysical study, Front. Phys, doi:10.3389/fphy.2020.587606
González-Paz, Lossada, Moncayo, Romero, Paz et al., A bioinformatics study of structural perturbation of 3CL-protease and the J o u r n a l P r e -p r o o f HR2-domain of SARS-CoV-2 induced by synergistic interaction with ivermectins, Biointerface Research in Applied Chemistry, doi:10.33263/BRIAC112.98139826
Goyal, Goyal, Targeting the dimerization of the main protease of coronaviruses: A potential broad-spectrum therapeutic strategy, ACS Comb. Sci, doi:10.1021/acscombsci.0c00058
Grahl, Alcará, Perin, Moro, Pinto et al., Evaluation of drug repositioning by molecular docking of pharmaceutical resources available in the Brazilian healthcare system against SARS-CoV-2, Informatics in medicine unlocked, doi:10.1016/j.imu.2021.100539
Grau-Expósito, Perea, Suppi, Massana, Vergara et al., Evaluation of SARS-CoV-2 entry, inflammation and new therapeutics in human lung tissue cells, PLoS pathogens, doi:10.1371/journal.ppat.1010171
Graziano, Energetics of the contact minimum configuration of two hard spheres in water, Chem. Phys. Lett, doi:10.1016/j.cplett.2017.07.030
Graziano, Non-intrinsic contribution to the partial molar volume of cavities in water, Chem. Phys. Lett, doi:10.1016/j.cplett.2006.08.065
Graziano, On the magnitude of border thickness in the partial molar volume of cavities in water, Chem. Phys. Lett, doi:10.1016/j.cplett.2013.03.052
Graziano, Partial molar volumen of n-alcohols at infinite dilution in water calculated by means of scaled particle theory, J. Chem. Phys, doi:10.1063/1.2186319
Graziano, Temperature dependence of the pairwise association of hard spheres in water, J. Phys. Soc. Jpn, doi:10.7566/JPSJ.85.024801
Guedes, Costa, Santos, Karl, Rocha et al., Drug design and repurposing with DockThor-VS web server focusing on SARS-CoV-2 therapeutic targets and their non-synonym variants, Sci. Rep, doi:10.1038/s41598-021-84700-0
Gupta, Jadaun, Kumar, Raj, Varadwaj et al., Exploration of new druglike inhibitors for serine/threonine protein phosphatase 5 of Plasmodium falciparum: a docking and simulation study, Journal of Biomolecular Structure and Dynamics, doi:10.1080/07391102.2015.1051114
Hariyanto, Halim, Rosalind, Gunawan, Kurniawan, Ivermectin and outcomes from Covid-19 pneumonia: a systematic review and meta-analysis of randomized clinical trial studies, Reviews in Medical Virology, doi:10.1002/rmv.2265
Hub, Validating solution ensembles from molecular dynamics simulation by wide-angle X-ray scattering data, Biophysical journal, doi:10.1016/j.bpj.2014.06.006
J O U R N A L P R E, -p r o o f, doi:10.1002/jcc.21256
J O U R N A L P R E, -p r o o f, doi:10.1016/j.bpj.2014.06.006
J O U R N A L P R E, -p r o o f, doi:10.1016/j.molliq.2018.10.157
Jeffreys, Pennington, Duggan, Caygill, Lopeman et al., Remdesivir-ivermectin combination displays synergistic interaction with improved in vitro activity against SARS-CoV-2, International journal of antimicrobial agents, doi:10.1016/j.ijantimicag.2022.106542
Jiang, Kirmizialtin, Sanchez, Dynamic void distribution in myoglobin and five mutants, Sci. Rep, doi:10.1038/srep04011
Jofily, Pascutti, Torres, Improving blind docking in DOCK6 through an automated preliminary fragment probing strategy, Molecules, doi:10.3390/molecules26051224
Kamerzell, Middaugh, The complex inter-relationships between protein flexibility and stability, J. Pharm. Sci, doi:10.1002/jps.21269
Kapoor, Winter, Pressure perturbation: A prime tool to study conformational substates and volume fluctuations of biomolecular assemblies, doi:10.1007/978-4-431-55840-8_2
Kasahara, Terazawa, Itaya, Goto, Nakamura et al., myPresto/omegagene 2020: a molecular dynamics simulation engine for virtual-system coupled sampling, Biophys. Physicobiol, doi:10.2142/biophysico.BSJ-2020013
Kaur, Kaur, Banipal, Banipal, Investigations on the pH-dependent binding of sodium valproate with bovine serum albumin: A calorimetric, spectroscopic and volumetric approach, J. Chem. Thermodyn, doi:10.1016/j.jct.2020.106269
Kaur, Sharma, Banipal, Banipal, Probing the binding ability of vitamin B 1 with bovine serum albumin: Calorimetric, light scattering, spectroscopic and volumetric studies, J. Chem. Thermodyn, doi:10.1016/j.jct.2018.07.009
Kharakoz, Partial molar volumes of molecules of arbitrary shape and the effect of hydrogen bonding with water, J. Solution Chem, doi:10.1007/BF00649565
Kharakoz, Sarvazyan, Hydrational and intrinsic compressibilities of globular proteins, Biopolymers, doi:10.1002/bip.360330103
Khoury, Bashir, Tokajian, Nemer, Merhi et al., In silico evidence of beauvericin antiviral activity against SARS-CoV-2, Computers in biology and medicine, doi:10.1016/j.compbiomed.2021.105171
Khoury, Jing, Cuzzolin, Deplano, Loco et al., Computationally driven discovery of SARS-CoV-2 M pro inhibitors: from design to experimental validation, Chemical Science, doi:10.48550/arXiv.2110.05427
Kneller, Li, Phillips, Weiss, Zhang et al., Covalent narlaprevir-and boceprevir-derived hybrid inhibitors of SARS-CoV-2 main protease: room-temperature X-ray and neutron crystallography, binding thermodynamics, and antiviral activity, doi:10.21203/rs.3.rs-1318037/v1
Knight, Hub, WAXSiS: a web server for the calculation of SAXS/WAXS curves based on explicit-solvent molecular dynamics, Nucleic acids research, doi:10.1093/nar/gkv309
Koulgi, Jani, Uppuladinne, Sonavane, Nath et al., Drug repurposing studies targeting SARS-CoV-2: an ensemble docking approach on drug target 3C-like protease (3CL pro ), J. Biomol. Struct. Dyn, doi:10.1080/07391102.2020.1792344
Kumar, Ter Ellen, Bouma, Troost, Van De Pol et al., Moxidectin and ivermectin inhibit SARS-CoV-2 replication in Vero E6 cells but not in human primary airway epithelium cells, Antimicrobial Agents and Chemotherapy, doi:10.1128/AAC.01543-21
Laage, Elsaesser, Hynes, Water dynamics in the hydration shells of biomolecules, Chem. Rev, doi:10.1021/acs.chemrev.6b00765
Lee, Partial molar volumen from the hard-sphere mixture model, J. Phys. Chem, doi:10.1021/j100224a026
Liang, Karagiannis, Pitsillou, Darmawan, Ng et al., Site mapping and small molecule blind docking reveal a possible target site on the SARS-CoV-2 main protease dimer interface, Computational biology and chemistry, doi:10.1016/j.compbiolchem.2020.107372
Lim, Hor, Tay, Jelani, Tan et al., Efficacy of ivermectin treatment on disease progression among adults with mild to moderate COVID-19 and comorbidities: The I-TECH randomized clinical trial, JAMA Internal Medicine, doi:10.1001/jamainternmed.2022.0189
Lindow, Baum, Bondar, Hege, Exploring cavity dynamics in biomolecular systems, BMC Bioinformatics, doi:10.1186/1471-2105-14-S19-S5
Lockbaum, Reyes, Lee, Tilvawala, Nalivaika et al., Crystal structure of SARS-CoV-2 main protease in complex with the non-covalent inhibitor ML188, Viruses, doi:10.3390/v13020174
Low, Yip, Repositioning Ivermectin for Covid-19 treatment: Molecular mechanisms of action against SARS-CoV-2 replication, Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, doi:10.1016/j.bbadis.2021.166294
Luong, Kapoor, Winter, Pressure-A gateway to fundamental insights into protein solvation, dynamics, and function, Chemphyschem, doi:10.1002/cphc.201500669
Macchiagodena, Pagliai, Procacci, Characterization of the non-covalent interaction between the PF-07321332 inhibitor and the SARS-CoV-2 main protease, Journal of Molecular Graphics and Modelling, doi:10.1016/j.jmgm.2021.108042
Madhavi, Weerasinghe, Momot, Reorientational dynamics of molecules in liquid methane: A molecular dynamics simulation study, Journal of Molecular Liquids, doi:10.1016/j.molliq.2020.114727
Mahdian, Zarrabi, Panahi, Dabbagh, Repurposing FDA-approved drugs to fight COVID-19 using in silico methods: targeting SARS-CoV-2 RdRp enzyme and host cell receptors (ACE2, CD147) through virtual screening and molecular dynamic simulations, Informatics in medicine unlocked, doi:10.1016/j.imu.2021.100541
Marchi, Compressibility of cavities and biological water from Voronoi volumes in hydrated proteins, J. Phys. Chem. B, doi:10.1021/jp0342935
Mejía-Tamayo, Nigen, Apolinar-Valiente, Doco, Williams et al., Flexibility and hydration of amphiphilic hyperbranched arabinogalactan-protein from plant exudate: A volumetric perspective, Colloids Interfaces, doi:10.3390/colloids2010011
Monkos, A viscometric approach of pH effect on hydrodynamic properties of human serum albumin in the normal form, Gen. Physiol. Biophys, doi:10.4149/gpb_2013011
Monkos, On the hydrodynamics and temperature dependence of the solution conformation of human serum albumin from viscometry approach, Biochim. Biophys. Acta, doi:10.1016/j.bbapap.2004.03.006
Mori, Seki, Yamada, Matsumoto, Soda, Evaluation of intrinsic compressibility of proteins by molecular dynamics simulation, J. Chem. Phys, doi:10.1063/1.2219741
Morris, Huey, Lindstrom, Sanner, Belew et al., AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, Journal of computational chemistry, doi:10.1002/jcc.21256
O'boyle, Banck, James, Morley, Vandermeersch et al., Open Babel: An open chemical toolbox, J. Cheminform, doi:10.1186/1758-2946-3-33
Osipiuk, Azizi, Dvorkin, Endres, Jedrzejczak et al., Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors, Nature communications, doi:10.1038/s41467-021-21060-3
Panikar, Shoba, Arun, Sahayarayan, Nanthini et al., Essential oils as an effective alternative for the treatment of COVID-19: Molecular interaction analysis of protease (M pro ) with pharmacokinetics and toxicological properties, J. Infect. Publ. Health, doi:10.1016/j.jiph.2020.12.037
Patel, Dubins, Pomès, Chalikian, Size dependence of cavity volume: A molecular dynamics study, Biophys. Chem, doi:10.1016/j.bpc.2011.10.001
Patil, Verma, Masand, Prospective mode of action of Ivermectin: SARS-CoV-2, European Journal of Medicinal Chemistry Reports, doi:10.1016/j.ejmcr.2021.100018
Paul, Sapienza, Zhang, Zuo, Petit, Native state volume fluctuations in proteins as a mechanism for dynamic allostery, J. Am. Chem. Soc, doi:10.1021/jacs.6b12058
Pavan, Bolcato, Bassani, Sturlese, Moro, Supervised Molecular Dynamics (SuMD) Insights into the mechanism of action of SARS-CoV-2 main protease inhibitor PF-07321332, Journal of Enzyme Inhibition and Medicinal Chemistry, doi:10.1080/14756366.2021.1954919
Peralta-Garcia, Torrens-Fontanals, Stepniewski, Grau-Expósito, Perea et al., Entrectinib-A SARS-CoV-2 Inhibitor in Human Lung Tissue (HLT) Cells, International journal of molecular sciences, doi:10.3390/ijms222413592
Pereira, Jain, Garde, Quantifying the protein core flexibility through analysis of cavity formation, J. Chem. Phys, doi:10.1063/1.2149848
Persson, Halle, Compressibility of the protein-water interface, J. Chem. Phys, doi:10.1063/1.5026774
Petřek, Košinová, Koča, Otyepka, MOLE: A Voronoi diagram-based explorer of molecular channels, pores, and tunnels, Structure, doi:10.1016/j.str.2007.10.007
Pfeiffer, Heremans, Wevers, The influence of correlated protein-water volume fluctuations on the apparent compressibility of proteins determined by ultrasonic velocimetry, Biochimica et Biophysica Acta, doi:10.1016/j.bbapap.2008.08.002
Rabie, Two antioxidant 2, 5-disubstituted-1, 3, 4-oxadiazoles (CoViTris2020 and ChloViD2020): successful repurposing against COVID-19 as the first potent multitarget anti-SARS-CoV-2 drugs, New Journal of Chemistry, doi:10.1039/D0NJ03708G
Reardon, Flawed ivermectin preprint highlights challenges of COVID drug studies, Nature, doi:10.1038/d41586-021-02081-w
Reid, Yu, Leitner, Change in vibrational entropy with change in protein volume estimated with mode Grüneisen parameters, J. Chem. Pysh, doi:10.1063/5.0039175
Remsing, Xi, Patel, Protein hydration thermodynamics: The influence of flexibility and salt on hydrophobin II hydration, J. Phys. Chem. B, doi:10.1021/acs.jpcb.7b12060
Richards, Viscosity and the shapes of macromolecules: A physical chemistry experiment using molecular-level models in the interpretation of macroscopic data obtained from simple measurements, J. Chem. Educ, doi:10.1021/ed070p685
Rother, Preissner, Goede, Frömmel, Inhomogeneous molecular density: Reference packing densities and distribution of cavities within proteins, Bioinformatics, doi:10.1093/bioinformatics/btg292
Saikia, Jha, Deka, Molecular dynamics study on graphene-mediated pyrazinamide drug delivery onto the pncA protein, Rsc Advances, doi:10.1039/C4RA01486C
Seyedi, Matyushov, Dipolar susceptibility of protein hydration shells, Chem. Phys. Lett, doi:10.1016/j.cplett.2018.10.045
Shek, Chalikian, Interactions of glycine betaine with proteins: Insights from volume and compressibility measurements, Biochemistry, doi:10.1021/bi301554h
Sirotkin, Komissarov, Khadiullina, Hydration of proteins: Excess partial volumes of water and proteins, J. Phys. Chem. B, doi:10.1021/jp300726p
Son, Chalikian, Volumetrically derived thermodynamic profile of interactions of urea with a native protein, Biochemistry, doi:10.1021/acs.biochem.6b00805
Son, Shek, Dubins, Chalikian, Volumetric characterization of tri-Nacetylglucosamine binding to lysozyme, Biochemistry, doi:10.1021/bi3006994
Son, Shek, Tikhomirova, Baltasar, Chalikian, Interactions of urea with native and unfolded proteins: A volumetric study, J. Phys. Chem B, doi:10.1021/jp509356k
Stank, Kokh, Fuller, Wade, Protein binding pocket dynamics, Acc. Chem. Res, doi:10.1021/acs.accounts.5b00516
Sulimov, Kutov, Taschilova, Ilin, Stolpovskaya et al., In search of non-covalent inhibitors of SARS-CoV-2 main protease: Computer aided drug design using docking and quantum chemistry, Supercomputing Frontiers and Innovations, doi:10.14529/jsfi200305
Surampudi, Ashbaugh, Direct evaluation of polypeptide partial molar volumes in water using molecular dynamics simulations, Journal of Chemical & Engineering Data, doi:10.1021/je5001999
Tang, Dill, Native protein fluctuations: The conformational-motion temperature and the inverse correlation of protein flexibility with protein stability, J. Biomol. Struct. Dyn, doi:10.1080/07391102.1998.10508256
Tang, Kaneko, Long-range correlation in protein dynamics: Confirmation by structural data and normal mode analysis, Comput. Biol, doi:10.1371/journal.pcbi.1007670
Tarus, Chevalier, Richard, Delmas, Di Primo et al., Molecular dynamics studies of the nucleoprotein of influenza A virus: role of the protein flexibility in RNA binding, PloS one, doi:10.1371/journal.pone.0030038
Tekpinar, Yildirim, Impact of dimerization and N3 binding on molecular dynamics of SARS-CoV and SARS-CoV-2 main proteases, Journal of Biomolecular Structure and Dynamics, doi:10.1080/07391102.2021.1880481
Timasheff, Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components, Proc. Natl. Acad. Sci, doi:10.1073/pnas.122225399
Toleikis, Sirotkin, Skvarnavičius, Smirnoviené, Roumestand et al., Volume of Hsp90 protein-ligand binding determined by fluorescent pressure shift assay, densitometry, and NMR, J. Phys. Chem. B, doi:10.1021/acs.jpcb.6b06863
Unoh, Uehara, Nakahara, Nobori, Yamatsu et al., Discovery of S-217622, a Noncovalent Oral SARS-CoV-2 3CL Protease Inhibitor Clinical Candidate for Treating COVID-19, Journal of Medicinal Chemistry, doi:10.1021/acs.jmedchem.2c00117
Uversky, Intrinsically Disordered Proteins: Targets for the Future?, doi:ttps://doi.org/10.1002/9781118681121.ch25
Vandyck, Deval, Considerations for the discovery and development of 3-chymotrypsin-like cysteine protease inhibitors targeting SARS-CoV-2 infection, Curr. Opin. Virol, doi:10.1016/j.coviro.2021.04.006
Voloshin, Medvedev, Smolin, Geiger, Winter, Disentangling volumetric and hydrational properties of proteins, J. Phys. Chem, doi:10.1021/jp510891b
Voloshin, Medvedev, Smolin, Geiger, Winter, Exploring volume, compressibility and hydration changes of folded proteins upon compression, Phys. Chem. Chem. Phys, doi:10.1039/C5CP00251F
Voss, Gerstein, 3V: Cavity, channel and cleft volume calculator and extractor, Nucleic Acids Res, doi:10.1093/nar/gkq395
Whitten, García-Moreno, Hilser, Local conformational fluctuations can modulate the coupling between proton binding and global structural transitions in proteins, Proc. Natl. Acad. Sci, doi:10.1073/pnas.0407499102
Xavier Senra, Fonseca, New tyrosinases with putative action against contaminants of emerging concern, Proteins: Structure, Function, and Bioinformatics, doi:10.1002/prot.26139
Yonezawa, Electrostatic properties of water models evaluated by a long-range potential based solely on the Wolf charge-neutral condition, Chemical Physics Letters, doi:10.1016/j.cplett.2012.12.028
Yuce, Cicek, Inan, Dag, Kurkcuoglu et al., Repurposing of FDA-approved drugs against active site and potential allosteric drug-binding sites of COVID-19 main protease, Proteins Struct. Funct. Bioinforma, doi:10.1002/prot.26164
Zhang, Desdier, Scanlon, Ergometric studies of proteins: New insights into protein functionality in food systems, Trends Food Sci. Technol, doi:10.1016/j.tifs.2015.06.006
Zhao, Fang, Zhang, Zhang, Zhao et al., Crystal structure of SARS-CoV-2 main protease in complex with protease inhibitor PF-07321332, Protein Cell, doi:10.1007/s13238-021-00883-2
DOI record:
{
"DOI": "10.1016/j.compbiolchem.2022.107692",
"ISSN": [
"1476-9271"
],
"URL": "http://dx.doi.org/10.1016/j.compbiolchem.2022.107692",
"alternative-id": [
"S147692712200072X"
],
"article-number": "107692",
"author": [
{
"affiliation": [],
"family": "Alvarado",
"given": "Ysaias José",
"sequence": "first"
},
{
"affiliation": [],
"family": "Olivarez",
"given": "Yosmari",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Lossada",
"given": "Carla",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Vera-Villalobos",
"given": "Joan",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Paz",
"given": "José Luis",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Vera",
"given": "Eddy",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Loroño",
"given": "Marcos",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Vivas",
"given": "Alejandro",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Torres",
"given": "Fernando Javier",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Jeffreys",
"given": "Laura N.",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Hurtado-León",
"given": "María Laura",
"sequence": "additional"
},
{
"affiliation": [],
"family": "González-Paz",
"given": "Lenin",
"sequence": "additional"
}
],
"container-title": "Computational Biology and Chemistry",
"container-title-short": "Computational Biology and Chemistry",
"content-domain": {
"crossmark-restriction": false,
"domain": []
},
"created": {
"date-parts": [
[
2022,
5,
14
]
],
"date-time": "2022-05-14T15:28:05Z",
"timestamp": 1652542085000
},
"deposited": {
"date-parts": [
[
2022,
5,
14
]
],
"date-time": "2022-05-14T15:29:25Z",
"timestamp": 1652542165000
},
"indexed": {
"date-parts": [
[
2022,
5,
14
]
],
"date-time": "2022-05-14T16:13:14Z",
"timestamp": 1652544794828
},
"is-referenced-by-count": 0,
"issued": {
"date-parts": [
[
2022,
5
]
]
},
"language": "en",
"license": [
{
"URL": "https://www.elsevier.com/tdm/userlicense/1.0/",
"content-version": "tdm",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2022,
5,
1
]
],
"date-time": "2022-05-01T00:00:00Z",
"timestamp": 1651363200000
}
}
],
"link": [
{
"URL": "https://api.elsevier.com/content/article/PII:S147692712200072X?httpAccept=text/xml",
"content-type": "text/xml",
"content-version": "vor",
"intended-application": "text-mining"
},
{
"URL": "https://api.elsevier.com/content/article/PII:S147692712200072X?httpAccept=text/plain",
"content-type": "text/plain",
"content-version": "vor",
"intended-application": "text-mining"
}
],
"member": "78",
"original-title": [],
"page": "107692",
"prefix": "10.1016",
"published": {
"date-parts": [
[
2022,
5
]
]
},
"published-print": {
"date-parts": [
[
2022,
5
]
]
},
"publisher": "Elsevier BV",
"reference": [
{
"DOI": "10.1002/cplu.202000744",
"article-title": "Hydrogen-bond dynamics and energetics of biological water",
"author": "Adhikari",
"doi-asserted-by": "crossref",
"first-page": "2657",
"issue": "12",
"journal-title": "Chempluschem",
"key": "10.1016/j.compbiolchem.2022.107692_bib1",
"volume": "85",
"year": "2020"
},
{
"DOI": "10.1021/acs.jpclett.0c00922",
"article-title": "Interaction volume is a measure of the aggregation propensity of amyloid-β",
"author": "Aggarwal",
"doi-asserted-by": "crossref",
"first-page": "3993",
"issue": "10",
"journal-title": "J. Phys. Chem. Lett.",
"key": "10.1016/j.compbiolchem.2022.107692_bib2",
"volume": "11",
"year": "2020"
},
{
"DOI": "10.1186/s13321-021-00553-9",
"article-title": "Using informative features in machine learning based method for COVID-19 drug repurposing",
"author": "Aghdam",
"doi-asserted-by": "crossref",
"journal-title": "J. Cheminform.",
"key": "10.1016/j.compbiolchem.2022.107692_bib3",
"volume": "13",
"year": "2021"
},
{
"article-title": "Benchmarking of different molecular docking methods for protein-peptide docking",
"author": "Agrawal",
"first-page": "105",
"issue": "13",
"journal-title": "BMC bioinformatics",
"key": "10.1016/j.compbiolchem.2022.107692_bib4",
"volume": "19",
"year": "2019"
},
{
"DOI": "10.3390/ijms22179124",
"article-title": "Exploring the binding mechanism of PF-07321332 SARS-CoV-2 protease inhibitor through molecular dynamics and binding free energy simulations",
"author": "Ahmad",
"doi-asserted-by": "crossref",
"first-page": "9124",
"journal-title": "Int. J. Mol. Sci",
"key": "10.1016/j.compbiolchem.2022.107692_bib5",
"volume": "22",
"year": "2021"
},
{
"DOI": "10.1016/j.compbiomed.2021.105171",
"article-title": "In silico evidence of beauvericin antiviral activity against SARS-CoV-2",
"author": "Al Khoury",
"doi-asserted-by": "crossref",
"journal-title": "Computers in biology and medicine",
"key": "10.1016/j.compbiolchem.2022.107692_bib6",
"volume": "141",
"year": "2022"
},
{
"DOI": "10.1016/j.jct.2015.01.016",
"article-title": "Volume-related properties of thiophene and furan-2-carboxaldehyde phenylhydrazone derivatives in DMSO: A discussion about non-intrinsic contribution",
"author": "Alvarado",
"doi-asserted-by": "crossref",
"first-page": "210",
"journal-title": "J. Chem. Thermodyn",
"key": "10.1016/j.compbiolchem.2022.107692_bib7",
"volume": "85",
"year": "2015"
},
{
"DOI": "10.1021/acs.jpcb.7b11998",
"article-title": "Surface behavior of BSA/water/carbohydrate systems from molecular polarizability measurements",
"author": "Alvarado",
"doi-asserted-by": "crossref",
"first-page": "4231",
"issue": "15",
"journal-title": "J. Phys. Chem. B",
"key": "10.1016/j.compbiolchem.2022.107692_bib8",
"volume": "122",
"year": "2018"
},
{
"article-title": "Non-intrinsic contribution to the limiting partial molar volume of globular proteins in water: a study comparative between a new refractometric strategy and densitometric classical approach",
"author": "Alvarado",
"first-page": "916",
"issue": "1",
"journal-title": "Biointerface Res. Appl. Chem.",
"key": "10.1016/j.compbiolchem.2022.107692_bib9",
"volume": "5",
"year": "2015"
},
{
"article-title": "Conformational change of ovalbumin induced by Surface cavity binding of N-phthaloyl gamma-aminobutyric acid derivative: A study theoretical and experimental",
"author": "Alvarado",
"first-page": "9566",
"issue": "2",
"journal-title": "Bioint. Res. Appl. Chem.",
"key": "10.1016/j.compbiolchem.2022.107692_bib10",
"volume": "11",
"year": "2021"
},
{
"DOI": "10.1016/j.csbj.2022.03.009",
"article-title": "Inhibition of the main protease of SARS-CoV-2 (Mpro) by repurposing/designing drug-like substances and utilizing nature’s toolbox of bioactive compounds",
"author": "Antonopoulou",
"doi-asserted-by": "crossref",
"journal-title": "Computational and Structural Biotechnology Journal",
"key": "10.1016/j.compbiolchem.2022.107692_bib11",
"year": "2022"
},
{
"DOI": "10.1039/D1CP00266J",
"article-title": "Covalent and non-covalent binding free energy calculations for peptidomimetic inhibitors of SARS-CoV-2 main protease",
"author": "Awoonor-Williams",
"doi-asserted-by": "crossref",
"first-page": "6746",
"issue": "11",
"journal-title": "Physical Chemistry Chemical Physics",
"key": "10.1016/j.compbiolchem.2022.107692_bib12",
"volume": "23",
"year": "2021"
},
{
"DOI": "10.1016/j.molstruc.2021.131124",
"article-title": "Targeting SARS-CoV-2 main protease by teicoplanin: A mechanistic insight by docking, MM/GBSA and molecular dynamics simulation",
"author": "Azam",
"doi-asserted-by": "crossref",
"journal-title": "Journal of molecular structure",
"key": "10.1016/j.compbiolchem.2022.107692_bib13",
"volume": "1246",
"year": "2021"
},
{
"article-title": "An in-silico analysis of ivermectin interaction with potential SARS-CoV-2 targets and host nuclear importin α",
"author": "Azam",
"first-page": "1",
"journal-title": "J. Biomol. Struct. Dyn",
"key": "10.1016/j.compbiolchem.2022.107692_bib14",
"year": "2020"
},
{
"DOI": "10.1073/pnas.1703781114",
"article-title": "Water is an active matrix of life for cell and molecular biology",
"author": "Ball",
"doi-asserted-by": "crossref",
"first-page": "13327",
"issue": "51",
"journal-title": "Proc. Natl. Acad. Sci.",
"key": "10.1016/j.compbiolchem.2022.107692_bib15",
"volume": "114",
"year": "2017"
},
{
"DOI": "10.1021/acs.jctc.7b00744",
"article-title": "Protein fluctuations and cavity changes relationship",
"author": "Barletta",
"doi-asserted-by": "crossref",
"first-page": "998",
"issue": "2",
"journal-title": "J. Chem. Theory Comput.",
"key": "10.1016/j.compbiolchem.2022.107692_bib16",
"volume": "14",
"year": "2018"
},
{
"DOI": "10.1021/acs.jcim.9b00364",
"article-title": "Fatty acid and retinol-binding protein: Unusual protein conformational and cavity changes dictated by ligand fluctuations",
"author": "Barletta",
"doi-asserted-by": "crossref",
"first-page": "3545",
"issue": "8",
"journal-title": "J. Chem. Inf. Model.",
"key": "10.1016/j.compbiolchem.2022.107692_bib17",
"volume": "59",
"year": "2019"
},
{
"DOI": "10.1007/s00044-013-0822-y",
"article-title": "Identification of irreversible protein splicing inhibitors as potential anti-TB drugs: insight from hybrid non-covalent/covalent docking virtual screening and molecular dynamics simulations",
"author": "Blake",
"doi-asserted-by": "crossref",
"first-page": "2312",
"issue": "5",
"journal-title": "Medicinal Chemistry Research",
"key": "10.1016/j.compbiolchem.2022.107692_bib18",
"volume": "23",
"year": "2014"
},
{
"DOI": "10.1039/b918706e",
"article-title": "Volumetric properties of human islet amyloid polypeptide in liquid water",
"author": "Brovchenko",
"doi-asserted-by": "crossref",
"first-page": "4233",
"journal-title": "Phys. Chem. Chem. Phys.",
"key": "10.1016/j.compbiolchem.2022.107692_bib19",
"volume": "12",
"year": "2010"
},
{
"article-title": "Ivermectin, aspirin, dexametasone and enoxaparin as treatment for COVID 19",
"author": "Carvallo",
"first-page": "200",
"journal-title": "J Am Med Assoc",
"key": "10.1016/j.compbiolchem.2022.107692_bib20",
"year": "2020"
},
{
"DOI": "10.1016/j.bpc.2015.11.001",
"article-title": "Excluded volume contribution to cosolvent-mediated modulation of macromolecular folding and binding reactions",
"author": "Chalikian",
"doi-asserted-by": "crossref",
"first-page": "1",
"journal-title": "Biophys. Chem.",
"key": "10.1016/j.compbiolchem.2022.107692_bib21",
"volume": "209",
"year": "2016"
},
{
"DOI": "10.1016/j.jct.2021.106409",
"article-title": "Does the release of hydration water come with a Gibbs energy contribution?",
"author": "Chalikian",
"doi-asserted-by": "crossref",
"journal-title": "J. Chem. Thermodyn.",
"key": "10.1016/j.compbiolchem.2022.107692_bib22",
"volume": "158",
"year": "2021"
},
{
"DOI": "10.1002/(SICI)1097-0282(199611)39:5<619::AID-BIP1>3.0.CO;2-Z",
"article-title": "On volume changes accompanying conformational transitions of biopolymers",
"author": "Chalikian",
"doi-asserted-by": "crossref",
"first-page": "619",
"issue": "5",
"journal-title": "Biopolymers",
"key": "10.1016/j.compbiolchem.2022.107692_bib23",
"volume": "39",
"year": "1996"
},
{
"DOI": "10.1016/S0301-4622(03)00037-1",
"article-title": "How large are the volume changes accompanying protein transitions and binding?",
"author": "Chalikian",
"doi-asserted-by": "crossref",
"first-page": "489",
"journal-title": "Biophys. Chem.",
"key": "10.1016/j.compbiolchem.2022.107692_bib24",
"volume": "104",
"year": "2003"
},
{
"DOI": "10.1016/j.bpc.2018.12.005",
"article-title": "On empirical decomposition of volumetric data",
"author": "Chalikian",
"doi-asserted-by": "crossref",
"first-page": "8",
"journal-title": "Biophys. Chem.",
"key": "10.1016/j.compbiolchem.2022.107692_bib25",
"volume": "246",
"year": "2019"
},
{
"DOI": "10.1006/jmbi.1996.0423",
"article-title": "The hydration of globular proteins as derived from volume and compressibility measurements, cross correlating thermodynamic and structural data",
"author": "Chalikian",
"doi-asserted-by": "crossref",
"first-page": "588",
"journal-title": "J. Mol. Biol.",
"key": "10.1016/j.compbiolchem.2022.107692_bib26",
"volume": "260",
"year": "1996"
},
{
"DOI": "10.1016/j.bpj.2014.06.006",
"article-title": "Validating solution ensembles from molecular dynamics simulation by wide-angle X-ray scattering data",
"author": "Chen",
"doi-asserted-by": "crossref",
"first-page": "435",
"issue": "2",
"journal-title": "Biophysical journal",
"key": "10.1016/j.compbiolchem.2022.107692_bib27",
"volume": "107",
"year": "2014"
},
{
"DOI": "10.1016/j.molstruc.2020.129178",
"article-title": "Exploration of inhibitory action of Azo imidazole derivatives against COVID-19 main protease (Mpro): A computational study",
"author": "Chhetri",
"doi-asserted-by": "crossref",
"journal-title": "J. Mol. Struct.",
"key": "10.1016/j.compbiolchem.2022.107692_bib28",
"volume": "1224",
"year": "2021"
},
{
"DOI": "10.2217/fvl-2020-0342",
"article-title": "Exploring the binding efficacy of ivermectin against the key proteins of SARS-CoV-2 pathogenesis: and in silico approach",
"author": "Choudhury",
"doi-asserted-by": "crossref",
"first-page": "277",
"issue": "4",
"journal-title": "Future Virol",
"key": "10.1016/j.compbiolchem.2022.107692_bib29",
"volume": "16",
"year": "2021"
},
{
"DOI": "10.1016/0079-6107(84)90008-7",
"article-title": "Protein fluctuations and the thermodynamic uncertainty principle",
"author": "Cooper",
"doi-asserted-by": "crossref",
"first-page": "181",
"issue": "3",
"journal-title": "Prog. Biophys. Mol. Biol.",
"key": "10.1016/j.compbiolchem.2022.107692_bib30",
"volume": "44",
"year": "1984"
},
{
"DOI": "10.1021/jp0024118",
"article-title": "Insights into protein compressibility from molecular dynamics simulations",
"author": "Dadarlat",
"doi-asserted-by": "crossref",
"first-page": "715",
"journal-title": "J. Phys. Chem. B",
"key": "10.1016/j.compbiolchem.2022.107692_bib31",
"volume": "105",
"year": "2001"
},
{
"DOI": "10.3390/ph15040445",
"article-title": "Antiviral Activity of Repurposing Ivermectin against a Panel of 30 Clinical SARS-CoV-2 Strains Belonging to 14 Variants",
"author": "Delandre",
"doi-asserted-by": "crossref",
"first-page": "445",
"issue": "4",
"journal-title": "Pharmaceuticals",
"key": "10.1016/j.compbiolchem.2022.107692_bib32",
"volume": "15",
"year": "2022"
},
{
"DOI": "10.3389/fchem.2020.594009",
"article-title": "Repurposing known drugs as covalent and non-covalent inhibitors of the SARS-CoV-2 papain-like protease",
"author": "Delre",
"doi-asserted-by": "crossref",
"first-page": "1032",
"journal-title": "Frontiers in Chemistry",
"key": "10.1016/j.compbiolchem.2022.107692_bib33",
"volume": "8",
"year": "2020"
},
{
"article-title": "Moxidectin and ivermectin inhibit SARS-CoV-2 replication in Vero E6 cells but not in human primary airway epithelium cells",
"author": "Dinesh Kumar",
"journal-title": "Antimicrobial Agents and Chemotherapy, AAC-01543",
"key": "10.1016/j.compbiolchem.2022.107692_bib34",
"year": "2021"
},
{
"DOI": "10.1186/s43042-020-00081-5",
"article-title": "Potential therapeutic target identification in the novel 2019 coronavirus: insight from homology modeling and blind docking study",
"author": "Durojaye",
"doi-asserted-by": "crossref",
"first-page": "1",
"issue": "1",
"journal-title": "Egyptian Journal of Medical Human Genetics",
"key": "10.1016/j.compbiolchem.2022.107692_bib35",
"volume": "21",
"year": "2020"
},
{
"DOI": "10.1002/prot.21613",
"article-title": "Hinge Prot: automated prediction of hinges in protein structures",
"author": "Emekli",
"doi-asserted-by": "crossref",
"first-page": "1219",
"issue": "4",
"journal-title": "Proteins Struct. Funct. Bioinf",
"key": "10.1016/j.compbiolchem.2022.107692_bib36",
"volume": "70",
"year": "2008"
},
{
"DOI": "10.4155/fmc-2020-0165",
"article-title": "Ligand and structure-based virtual screening applied to the SARS-CoV-2 main protease: an in silico repurposing study",
"author": "Ferraz",
"doi-asserted-by": "crossref",
"first-page": "1815",
"issue": "20",
"journal-title": "Future Medicinal Chemistry",
"key": "10.1016/j.compbiolchem.2022.107692_bib37",
"volume": "12",
"year": "2020"
},
{
"DOI": "10.1021/bi030188+",
"article-title": "Binding of bovine pancreatic trypsin inhibitor to trypsinogen: Spectroscopic and volumetric studies",
"author": "Filfil",
"doi-asserted-by": "crossref",
"first-page": "1315",
"journal-title": "Biochemistry",
"key": "10.1016/j.compbiolchem.2022.107692_bib38",
"volume": "43",
"year": "2004"
},
{
"DOI": "10.1016/j.bpj.2018.01.002",
"article-title": "HullRad: Fast calculations of folded and disordered protein and nucleic acid hydrodynamic properties",
"author": "Fleming",
"doi-asserted-by": "crossref",
"first-page": "856",
"journal-title": "Biophys. J.",
"key": "10.1016/j.compbiolchem.2022.107692_bib39",
"volume": "114",
"year": "2018"
},
{
"DOI": "10.1016/j.jcis.2008.04.036",
"article-title": "Electrical fluctuations on the surfaces of proteins from hydrodynamic data",
"author": "Fornés",
"doi-asserted-by": "crossref",
"first-page": "255",
"journal-title": "J. Colloid Interface Sci.",
"key": "10.1016/j.compbiolchem.2022.107692_bib40",
"volume": "323",
"year": "2008"
},
{
"DOI": "10.1016/j.molliq.2018.10.157",
"article-title": "Loop dynamics behind the affinity of DARPins towards ERK2: Molecular dynamics simulations (MDs) and elastic network model (ENM)",
"author": "Gautam",
"doi-asserted-by": "crossref",
"first-page": "612",
"journal-title": "Journal of Molecular Liquids",
"key": "10.1016/j.compbiolchem.2022.107692_bib41",
"volume": "274",
"year": "2019"
},
{
"DOI": "10.1021/bi00369a034",
"article-title": "Compressibility-structure relationship of globular proteins",
"author": "Gekko",
"doi-asserted-by": "crossref",
"first-page": "6563",
"issue": "21",
"journal-title": "Biochemistry",
"key": "10.1016/j.compbiolchem.2022.107692_bib42",
"volume": "25",
"year": "1986"
},
{
"DOI": "10.1016/j.compbiomed.2022.105245",
"article-title": "Comparative study of SARS-CoV-2 infection in different cell types: Biophysical-computational approach to the role of potential receptors",
"author": "González-Paz",
"doi-asserted-by": "crossref",
"journal-title": "Computers in Biology and Medicine",
"key": "10.1016/j.compbiolchem.2022.107692_bib43",
"year": "2022"
},
{
"DOI": "10.1016/j.bpc.2021.106677",
"article-title": "Comparative study of the interaction of ivermectin with proteins of interest associates with SARS-CoV-2: A computational and biophysical approach",
"author": "González-Paz",
"doi-asserted-by": "crossref",
"journal-title": "Biophys. Chem.",
"key": "10.1016/j.compbiolchem.2022.107692_bib44",
"volume": "278",
"year": "2021"
},
{
"DOI": "10.1016/j.molliq.2021.117284",
"article-title": "Structural deformability induced in proteins of potential interest associated with COVID-19 by binding of homologues present in ivermectin: Comparative study based in elastic networks models",
"author": "González-Paz",
"doi-asserted-by": "crossref",
"journal-title": "J. Mol. Liq.",
"key": "10.1016/j.compbiolchem.2022.107692_bib45",
"volume": "340",
"year": "2021"
},
{
"DOI": "10.3389/fphy.2020.587606",
"article-title": "Can non-steroidal anti-inflammatory drugs affect the interaction between receptor binding domain of SARS-COV-2 spike and the human ACE2 receptor? A computational biophysical study",
"author": "González-Paz",
"doi-asserted-by": "crossref",
"first-page": "526",
"journal-title": "Front. Phys.",
"key": "10.1016/j.compbiolchem.2022.107692_bib46",
"volume": "8",
"year": "2020"
},
{
"article-title": "A bioinformatics study of structural perturbation of 3CL-protease and the HR2-domain of SARS-CoV-2 induced by synergistic interaction with ivermectins",
"author": "González-Paz",
"first-page": "9813",
"issue": "2",
"journal-title": "Biointerface Research in Applied Chemistry",
"key": "10.1016/j.compbiolchem.2022.107692_bib47",
"volume": "11",
"year": "2021"
},
{
"DOI": "10.1021/acscombsci.0c00058",
"article-title": "Targeting the dimerization of the main protease of coronaviruses: A potential broad-spectrum therapeutic strategy",
"author": "Goyal",
"doi-asserted-by": "crossref",
"first-page": "297",
"issue": "6",
"journal-title": "ACS Comb. Sci.",
"key": "10.1016/j.compbiolchem.2022.107692_bib48",
"volume": "22",
"year": "2020"
},
{
"DOI": "10.1016/j.imu.2021.100539",
"article-title": "Evaluation of drug repositioning by molecular docking of pharmaceutical resources available in the Brazilian healthcare system against SARS-CoV-2",
"author": "Grahl",
"doi-asserted-by": "crossref",
"journal-title": "Informatics in medicine unlocked",
"key": "10.1016/j.compbiolchem.2022.107692_bib49",
"volume": "23",
"year": "2021"
},
{
"DOI": "10.1371/journal.ppat.1010171",
"article-title": "Evaluation of SARS-CoV-2 entry, inflammation and new therapeutics in human lung tissue cells",
"author": "Grau-Expósito",
"doi-asserted-by": "crossref",
"issue": "1",
"journal-title": "PLoS pathogens",
"key": "10.1016/j.compbiolchem.2022.107692_bib50",
"volume": "18",
"year": "2022"
},
{
"DOI": "10.1016/j.cplett.2006.08.065",
"article-title": "Non-intrinsic contribution to the partial molar volume of cavities in water",
"author": "Graziano",
"doi-asserted-by": "crossref",
"first-page": "420",
"journal-title": "Chem. Phys. Lett.",
"key": "10.1016/j.compbiolchem.2022.107692_bib51",
"volume": "429",
"year": "2006"
},
{
"DOI": "10.1063/1.2186319",
"article-title": "Partial molar volumen of n-alcohols at infinite dilution in water calculated by means of scaled particle theory",
"author": "Graziano",
"doi-asserted-by": "crossref",
"journal-title": "J. Chem. Phys",
"key": "10.1016/j.compbiolchem.2022.107692_bib52",
"volume": "124",
"year": "2006"
},
{
"DOI": "10.7566/JPSJ.85.024801",
"article-title": "Temperature dependence of the pairwise association of hard spheres in water",
"author": "Graziano",
"doi-asserted-by": "crossref",
"journal-title": "J. Phys. Soc. Jpn.",
"key": "10.1016/j.compbiolchem.2022.107692_bib53",
"volume": "85",
"year": "2016"
},
{
"DOI": "10.1016/j.cplett.2017.07.030",
"article-title": "Energetics of the contact minimum configuration of two hard spheres in water",
"author": "Graziano",
"doi-asserted-by": "crossref",
"first-page": "54",
"journal-title": "Chem. Phys. Lett.",
"key": "10.1016/j.compbiolchem.2022.107692_bib54",
"volume": "685",
"year": "2017"
},
{
"DOI": "10.1016/j.cplett.2013.03.052",
"article-title": "On the magnitude of border thickness in the partial molar volume of cavities in water",
"author": "Graziano",
"doi-asserted-by": "crossref",
"first-page": "46",
"journal-title": "Chem. Phys. Lett.",
"key": "10.1016/j.compbiolchem.2022.107692_bib55",
"volume": "570",
"year": "2013"
},
{
"DOI": "10.1038/s41598-021-84700-0",
"article-title": "Drug design and repurposing with DockThor-VS web server focusing on SARS-CoV-2 therapeutic targets and their non-synonym variants",
"author": "Guedes",
"doi-asserted-by": "crossref",
"first-page": "5543",
"issue": "1",
"journal-title": "Sci. Rep.",
"key": "10.1016/j.compbiolchem.2022.107692_bib56",
"volume": "11",
"year": "2021"
},
{
"DOI": "10.1080/07391102.2015.1051114",
"article-title": "Exploration of new drug-like inhibitors for serine/threonine protein phosphatase 5 of Plasmodium falciparum: a docking and simulation study",
"author": "Gupta",
"doi-asserted-by": "crossref",
"first-page": "2421",
"issue": "11",
"journal-title": "Journal of Biomolecular Structure and Dynamics",
"key": "10.1016/j.compbiolchem.2022.107692_bib57",
"volume": "33",
"year": "2015"
},
{
"article-title": "Ivermectin and outcomes from Covid‐19 pneumonia: a systematic review and meta‐analysis of randomized clinical trial studies",
"author": "Hariyanto",
"issue": "2",
"journal-title": "Reviews in Medical Virology",
"key": "10.1016/j.compbiolchem.2022.107692_bib58",
"volume": "32",
"year": "2022"
},
{
"DOI": "10.1016/j.ijantimicag.2022.106542",
"article-title": "Remdesivir–ivermectin combination displays synergistic interaction with improved in vitro activity against SARS-CoV-2",
"author": "Jeffreys",
"doi-asserted-by": "crossref",
"journal-title": "International journal of antimicrobial agents",
"key": "10.1016/j.compbiolchem.2022.107692_bib59",
"year": "2022"
},
{
"DOI": "10.1038/srep04011",
"article-title": "Dynamic void distribution in myoglobin and five mutants",
"author": "Jiang",
"doi-asserted-by": "crossref",
"first-page": "4011",
"journal-title": "Sci. Rep.",
"key": "10.1016/j.compbiolchem.2022.107692_bib60",
"volume": "4",
"year": "2014"
},
{
"DOI": "10.3390/molecules26051224",
"article-title": "Improving blind docking in DOCK6 through an automated preliminary fragment probing strategy",
"author": "Jofily",
"doi-asserted-by": "crossref",
"first-page": "1224",
"issue": "5",
"journal-title": "Molecules",
"key": "10.1016/j.compbiolchem.2022.107692_bib61",
"volume": "26",
"year": "2021"
},
{
"DOI": "10.1002/jps.21269",
"article-title": "The complex inter-relationships between protein flexibility and stability",
"author": "Kamerzell",
"doi-asserted-by": "crossref",
"first-page": "3494",
"issue": "9",
"journal-title": "J. Pharm. Sci.",
"key": "10.1016/j.compbiolchem.2022.107692_bib62",
"volume": "97",
"year": "2008"
},
{
"article-title": "Pressure perturbation: A prime tool to study conformational substates and volume fluctuations of biomolecular assemblies",
"author": "Kapoor",
"first-page": "29",
"key": "10.1016/j.compbiolchem.2022.107692_bib63",
"series-title": "Molecular science of fluctuations toward biological functions",
"year": "2016"
},
{
"DOI": "10.2142/biophysico.BSJ-2020013",
"article-title": "myPresto/omegagene 2020: a molecular dynamics simulation engine for virtual-system coupled sampling",
"author": "Kasahara",
"doi-asserted-by": "crossref",
"first-page": "140",
"journal-title": "Biophys. Physicobiol.",
"key": "10.1016/j.compbiolchem.2022.107692_bib64",
"volume": "17",
"year": "2020"
},
{
"DOI": "10.1016/j.jct.2020.106269",
"article-title": "Investigations on the pH-dependent binding of sodium valproate with bovine serum albumin: A calorimetric, spectroscopic and volumetric approach",
"author": "Kaur",
"doi-asserted-by": "crossref",
"journal-title": "J. Chem. Thermodyn.",
"key": "10.1016/j.compbiolchem.2022.107692_bib65",
"volume": "152",
"year": "2021"
},
{
"DOI": "10.1016/j.jct.2018.07.009",
"article-title": "Probing the binding ability of vitamin B1 with bovine serum albumin: Calorimetric, light scattering, spectroscopic and volumetric studies",
"author": "Kaur",
"doi-asserted-by": "crossref",
"first-page": "59",
"journal-title": "J. Chem. Thermodyn.",
"key": "10.1016/j.compbiolchem.2022.107692_bib66",
"volume": "127",
"year": "2018"
},
{
"DOI": "10.1007/BF00649565",
"article-title": "Partial molar volumes of molecules of arbitrary shape and the effect of hydrogen bonding with water",
"author": "Kharakoz",
"doi-asserted-by": "crossref",
"first-page": "569",
"issue": "6",
"journal-title": "J. Solution Chem.",
"key": "10.1016/j.compbiolchem.2022.107692_bib67",
"volume": "21",
"year": "1992"
},
{
"DOI": "10.1002/bip.360330103",
"article-title": "Hydrational and intrinsic compressibilities of globular proteins",
"author": "Kharakoz",
"doi-asserted-by": "crossref",
"first-page": "11",
"journal-title": "Biopolymers",
"key": "10.1016/j.compbiolchem.2022.107692_bib68",
"volume": "33",
"year": "1993"
},
{
"article-title": "Computationally driven discovery of SARS-CoV-2 M pro inhibitors: from design to experimental validation",
"author": "Khoury",
"journal-title": "Chemical Science",
"key": "10.1016/j.compbiolchem.2022.107692_bib69",
"year": "2022"
},
{
"article-title": "Covalent narlaprevir-and boceprevir-derived hybrid inhibitors of SARS-CoV-2 main protease: room-temperature X-ray and neutron crystallography, binding thermodynamics, and antiviral activity",
"author": "Kneller",
"journal-title": "Research Square",
"key": "10.1016/j.compbiolchem.2022.107692_bib70",
"year": "2022"
},
{
"DOI": "10.1093/nar/gkv309",
"article-title": "WAXSiS: a web server for the calculation of SAXS/WAXS curves based on explicit-solvent molecular dynamics",
"author": "Knight",
"doi-asserted-by": "crossref",
"first-page": "W225",
"issue": "W1",
"journal-title": "Nucleic acids research",
"key": "10.1016/j.compbiolchem.2022.107692_bib71",
"volume": "43",
"year": "2015"
},
{
"DOI": "10.1080/07391102.2020.1792344",
"article-title": "Drug repurposing studies targeting SARS-CoV-2: an ensemble docking approach on drug target 3C-like protease (3CLpro)",
"author": "Koulgi",
"doi-asserted-by": "crossref",
"first-page": "5735",
"journal-title": "J. Biomol. Struct. Dyn.",
"key": "10.1016/j.compbiolchem.2022.107692_bib72",
"volume": "39",
"year": "2021"
},
{
"DOI": "10.1021/acs.chemrev.6b00765",
"article-title": "Water dynamics in the hydration shells of biomolecules",
"author": "Laage",
"doi-asserted-by": "crossref",
"first-page": "10694",
"issue": "16",
"journal-title": "Chem. Rev.",
"key": "10.1016/j.compbiolchem.2022.107692_bib73",
"volume": "117",
"year": "2017"
},
{
"DOI": "10.1021/j100224a026",
"article-title": "Partial molar volumen from the hard-sphere mixture model",
"author": "Lee",
"doi-asserted-by": "crossref",
"first-page": "112",
"journal-title": "J. Phys. Chem.",
"key": "10.1016/j.compbiolchem.2022.107692_bib74",
"volume": "87",
"year": "1983"
},
{
"DOI": "10.1073/pnas.80.2.622",
"article-title": "Calculations of fluctuations for globular models",
"author": "Lee",
"doi-asserted-by": "crossref",
"first-page": "622",
"journal-title": "Proc. Natl. Acad. Sci. U.S.A.",
"key": "10.1016/j.compbiolchem.2022.107692_bib75",
"volume": "80",
"year": "1983"
},
{
"DOI": "10.1016/j.compbiolchem.2020.107372",
"article-title": "Site mapping and small molecule blind docking reveal a possible target site on the SARS-CoV-2 main protease dimer interface",
"author": "Liang",
"doi-asserted-by": "crossref",
"journal-title": "Computational biology and chemistry",
"key": "10.1016/j.compbiolchem.2022.107692_bib76",
"volume": "89",
"year": "2020"
},
{
"DOI": "10.1001/jamainternmed.2022.0189",
"article-title": "Efficacy of ivermectin treatment on disease progression among adults with mild to moderate COVID-19 and comorbidities: The I-TECH randomized clinical trial",
"author": "Lim",
"doi-asserted-by": "crossref",
"journal-title": "JAMA Internal Medicine",
"key": "10.1016/j.compbiolchem.2022.107692_bib77",
"year": "2022"
},
{
"DOI": "10.1186/1471-2105-14-S19-S5",
"article-title": "Exploring cavity dynamics in biomolecular systems",
"author": "Lindow",
"doi-asserted-by": "crossref",
"journal-title": "BMC Bioinformatics",
"key": "10.1016/j.compbiolchem.2022.107692_bib78",
"volume": "14",
"year": "2013"
},
{
"DOI": "10.3390/v13020174",
"article-title": "Crystal structure of SARS-CoV-2 main protease in complex with the non-covalent inhibitor ML188",
"author": "Lockbaum",
"doi-asserted-by": "crossref",
"first-page": "174",
"issue": "2",
"journal-title": "Viruses",
"key": "10.1016/j.compbiolchem.2022.107692_bib79",
"volume": "13",
"year": "2021"
},
{
"article-title": "Repositioning Ivermectin for Covid-19 treatment: Molecular mechanisms of action against SARS-CoV-2 replication",
"author": "Low",
"issue": "2",
"journal-title": "Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease",
"key": "10.1016/j.compbiolchem.2022.107692_bib80",
"volume": "1868",
"year": "2022"
},
{
"DOI": "10.1002/cphc.201500669",
"article-title": "Pressure—A gateway to fundamental insights into protein solvation, dynamics, and function",
"author": "Luong",
"doi-asserted-by": "crossref",
"first-page": "3555",
"journal-title": "Chemphyschem",
"key": "10.1016/j.compbiolchem.2022.107692_bib81",
"volume": "16",
"year": "2015"
},
{
"DOI": "10.1016/j.jmgm.2021.108042",
"article-title": "Characterization of the non-covalent interaction between the PF-07321332 inhibitor and the SARS-CoV-2 main protease",
"author": "Macchiagodena",
"doi-asserted-by": "crossref",
"journal-title": "Journal of Molecular Graphics and Modelling",
"key": "10.1016/j.compbiolchem.2022.107692_bib82",
"volume": "110",
"year": "2022"
},
{
"DOI": "10.1016/j.molliq.2020.114727",
"article-title": "Reorientational dynamics of molecules in liquid methane: A molecular dynamics simulation study",
"author": "Madhavi",
"doi-asserted-by": "crossref",
"journal-title": "Journal of Molecular Liquids",
"key": "10.1016/j.compbiolchem.2022.107692_bib83",
"volume": "324",
"year": "2021"
},
{
"DOI": "10.1016/j.imu.2021.100541",
"article-title": "Repurposing FDA-approved drugs to fight COVID-19 using in silico methods: targeting SARS-CoV-2 RdRp enzyme and host cell receptors (ACE2, CD147) through virtual screening and molecular dynamic simulations",
"author": "Mahdian",
"doi-asserted-by": "crossref",
"journal-title": "Informatics in medicine unlocked",
"key": "10.1016/j.compbiolchem.2022.107692_bib84",
"volume": "23",
"year": "2021"
},
{
"DOI": "10.1021/jp0342935",
"article-title": "Compressibility of cavities and biological water from Voronoi volumes in hydrated proteins",
"author": "Marchi",
"doi-asserted-by": "crossref",
"first-page": "6598",
"journal-title": "J. Phys. Chem. B",
"key": "10.1016/j.compbiolchem.2022.107692_bib85",
"volume": "107",
"year": "2003"
},
{
"DOI": "10.3390/colloids2010011",
"article-title": "Flexibility and hydration of amphiphilic hyperbranched arabinogalactan-protein from plant exudate: A volumetric perspective",
"author": "Mejía-Tamayo",
"doi-asserted-by": "crossref",
"issue": "1",
"journal-title": "Colloids Interfaces",
"key": "10.1016/j.compbiolchem.2022.107692_bib86",
"volume": "2",
"year": "2018"
},
{
"DOI": "10.4149/gpb_2013011",
"article-title": "A viscometric approach of pH effect on hydrodynamic properties of human serum albumin in the normal form",
"author": "Monkos",
"doi-asserted-by": "crossref",
"first-page": "67",
"journal-title": "Gen. Physiol. Biophys",
"key": "10.1016/j.compbiolchem.2022.107692_bib87",
"volume": "32",
"year": "2013"
},
{
"DOI": "10.1016/j.bbapap.2004.03.006",
"article-title": "On the hydrodynamics and temperature dependence of the solution conformation of human serum albumin from viscometry approach",
"author": "Monkos",
"doi-asserted-by": "crossref",
"first-page": "27",
"journal-title": "Biochim. Biophys. Acta",
"key": "10.1016/j.compbiolchem.2022.107692_bib88",
"volume": "1700",
"year": "2004"
},
{
"DOI": "10.1063/1.2219741",
"article-title": "Evaluation of intrinsic compressibility of proteins by molecular dynamics simulation",
"author": "Mori",
"doi-asserted-by": "crossref",
"journal-title": "J. Chem. Phys.",
"key": "10.1016/j.compbiolchem.2022.107692_bib89",
"volume": "125",
"year": "2006"
},
{
"DOI": "10.1002/jcc.21256",
"article-title": "AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility",
"author": "Morris",
"doi-asserted-by": "crossref",
"first-page": "2785",
"issue": "16",
"journal-title": "Journal of computational chemistry",
"key": "10.1016/j.compbiolchem.2022.107692_bib90",
"volume": "30",
"year": "2009"
},
{
"DOI": "10.1038/s41467-021-21060-3",
"article-title": "Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors",
"author": "Osipiuk",
"doi-asserted-by": "crossref",
"first-page": "1",
"issue": "1",
"journal-title": "Nature communications",
"key": "10.1016/j.compbiolchem.2022.107692_bib91",
"volume": "12",
"year": "2021"
},
{
"article-title": "Open Babel: An open chemical toolbox",
"author": "O’Boyle",
"journal-title": "J. Cheminform.",
"key": "10.1016/j.compbiolchem.2022.107692_bib92",
"volume": "3",
"year": "2011"
},
{
"DOI": "10.1016/j.jiph.2020.12.037",
"article-title": "Essential oils as an effective alternative for the treatment of COVID-19: Molecular interaction analysis of protease (Mpro) with pharmacokinetics and toxicological properties",
"author": "Panikar",
"doi-asserted-by": "crossref",
"first-page": "601",
"issue": "5",
"journal-title": "J. Infect. Publ. Health.",
"key": "10.1016/j.compbiolchem.2022.107692_bib93",
"volume": "14",
"year": "2021"
},
{
"DOI": "10.1016/j.bpc.2011.10.001",
"article-title": "Size dependence of cavity volume: A molecular dynamics study",
"author": "Patel",
"doi-asserted-by": "crossref",
"first-page": "46",
"journal-title": "Biophys. Chem.",
"key": "10.1016/j.compbiolchem.2022.107692_bib94",
"volume": "161",
"year": "2012"
},
{
"DOI": "10.1016/j.ejmcr.2021.100018",
"article-title": "Prospective mode of action of Ivermectin: SARS-CoV-2",
"author": "Patil",
"doi-asserted-by": "crossref",
"journal-title": "European Journal of Medicinal Chemistry Reports",
"key": "10.1016/j.compbiolchem.2022.107692_bib95",
"volume": "4",
"year": "2022"
},
{
"DOI": "10.1021/jacs.6b12058",
"article-title": "Native state volume fluctuations in proteins as a mechanism for dynamic allostery",
"author": "Paul",
"doi-asserted-by": "crossref",
"first-page": "3599",
"issue": "10",
"journal-title": "J. Am. Chem. Soc.",
"key": "10.1016/j.compbiolchem.2022.107692_bib96",
"volume": "139",
"year": "2017"
},
{
"DOI": "10.1080/14756366.2021.1954919",
"article-title": "Supervised Molecular Dynamics (SuMD) Insights into the mechanism of action of SARS-CoV-2 main protease inhibitor PF-07321332",
"author": "Pavan",
"doi-asserted-by": "crossref",
"first-page": "1646",
"issue": "1",
"journal-title": "Journal of Enzyme Inhibition and Medicinal Chemistry",
"key": "10.1016/j.compbiolchem.2022.107692_bib97",
"volume": "36",
"year": "2021"
},
{
"DOI": "10.3390/ijms222413592",
"article-title": "Entrectinib—A SARS-CoV-2 Inhibitor in Human Lung Tissue (HLT) Cells",
"author": "Peralta-Garcia",
"doi-asserted-by": "crossref",
"first-page": "13592",
"issue": "24",
"journal-title": "International journal of molecular sciences",
"key": "10.1016/j.compbiolchem.2022.107692_bib98",
"volume": "22",
"year": "2021"
},
{
"DOI": "10.1063/1.2149848",
"article-title": "Quantifying the protein core flexibility through analysis of cavity formation",
"author": "Pereira",
"doi-asserted-by": "crossref",
"journal-title": "J. Chem. Phys.",
"key": "10.1016/j.compbiolchem.2022.107692_bib99",
"volume": "124",
"year": "2006"
},
{
"DOI": "10.1063/1.5026774",
"article-title": "Compressibility of the protein-water interface",
"author": "Persson",
"doi-asserted-by": "crossref",
"issue": "21",
"journal-title": "J. Chem. Phys.",
"key": "10.1016/j.compbiolchem.2022.107692_bib100",
"volume": "148",
"year": "2018"
},
{
"DOI": "10.1016/j.str.2007.10.007",
"article-title": "MOLE: A Voronoi diagram-based explorer of molecular channels, pores, and tunnels",
"author": "Petřek",
"doi-asserted-by": "crossref",
"first-page": "1357",
"issue": "11",
"journal-title": "Structure",
"key": "10.1016/j.compbiolchem.2022.107692_bib101",
"volume": "15",
"year": "2007"
},
{
"DOI": "10.1016/j.bbapap.2008.08.002",
"article-title": "The influence of correlated protein-water volume fluctuations on the apparent compressibility of proteins determined by ultrasonic velocimetry",
"author": "Pfeiffer",
"doi-asserted-by": "crossref",
"first-page": "1546",
"journal-title": "Biochimica et Biophysica Acta",
"key": "10.1016/j.compbiolchem.2022.107692_bib102",
"volume": "1784",
"year": "2008"
},
{
"DOI": "10.1039/D0NJ03708G",
"article-title": "Two antioxidant 2, 5-disubstituted-1, 3, 4-oxadiazoles (CoViTris2020 and ChloViD2020): successful repurposing against COVID-19 as the first potent multitarget anti-SARS-CoV-2 drugs",
"author": "Rabie",
"doi-asserted-by": "crossref",
"first-page": "761",
"issue": "2",
"journal-title": "New Journal of Chemistry",
"key": "10.1016/j.compbiolchem.2022.107692_bib103",
"volume": "45",
"year": "2021"
},
{
"DOI": "10.1038/d41586-021-02081-w",
"article-title": "Flawed ivermectin preprint highlights challenges of COVID drug studies",
"author": "Reardon",
"doi-asserted-by": "crossref",
"first-page": "173",
"issue": "7871",
"journal-title": "Nature",
"key": "10.1016/j.compbiolchem.2022.107692_bib104",
"volume": "596",
"year": "2021"
},
{
"article-title": "Change in vibrational entropy with change in protein volume estimated with mode Grüneisen parameters",
"author": "Reid",
"journal-title": "J. Chem. Pysh.",
"key": "10.1016/j.compbiolchem.2022.107692_bib105",
"volume": "154",
"year": "2021"
},
{
"DOI": "10.1021/acs.jpcb.7b12060",
"article-title": "Protein hydration thermodynamics: The influence of flexibility and salt on hydrophobin II hydration",
"author": "Remsing",
"doi-asserted-by": "crossref",
"first-page": "3635",
"issue": "13",
"journal-title": "J. Phys. Chem. B",
"key": "10.1016/j.compbiolchem.2022.107692_bib106",
"volume": "122",
"year": "2018"
},
{
"DOI": "10.1021/ed070p685",
"article-title": "Viscosity and the shapes of macromolecules: A physical chemistry experiment using molecular-level models in the interpretation of macroscopic data obtained from simple measurements",
"author": "Richards",
"doi-asserted-by": "crossref",
"first-page": "685",
"issue": "8",
"journal-title": "J. Chem. Educ.",
"key": "10.1016/j.compbiolchem.2022.107692_bib107",
"volume": "70",
"year": "1993"
},
{
"DOI": "10.1093/bioinformatics/btg292",
"article-title": "Inhomogeneous molecular density: Reference packing densities and distribution of cavities within proteins",
"author": "Rother",
"doi-asserted-by": "crossref",
"first-page": "2112",
"issue": "16",
"journal-title": "Bioinformatics",
"key": "10.1016/j.compbiolchem.2022.107692_bib108",
"volume": "19",
"year": "2003"
},
{
"DOI": "10.1039/C4RA01486C",
"article-title": "Molecular dynamics study on graphene-mediated pyrazinamide drug delivery onto the pncA protein",
"author": "Saikia",
"doi-asserted-by": "crossref",
"first-page": "24944",
"issue": "47",
"journal-title": "Rsc Advances",
"key": "10.1016/j.compbiolchem.2022.107692_bib109",
"volume": "4",
"year": "2014"
},
{
"DOI": "10.1016/j.cplett.2018.10.045",
"article-title": "Dipolar susceptibility of protein hydration shells",
"author": "Seyedi",
"doi-asserted-by": "crossref",
"first-page": "210",
"journal-title": "Chem. Phys. Lett.",
"key": "10.1016/j.compbiolchem.2022.107692_bib110",
"volume": "713",
"year": "2018"
},
{
"DOI": "10.1021/bi301554h",
"article-title": "Interactions of glycine betaine with proteins: Insights from volume and compressibility measurements",
"author": "Shek",
"doi-asserted-by": "crossref",
"first-page": "672",
"issue": "4",
"journal-title": "Biochemistry",
"key": "10.1016/j.compbiolchem.2022.107692_bib111",
"volume": "52",
"year": "2013"
},
{
"DOI": "10.1021/jp300726p",
"article-title": "Hydration of proteins: Excess partial volumes of water and proteins",
"author": "Sirotkin",
"doi-asserted-by": "crossref",
"first-page": "4098",
"issue": "13",
"journal-title": "J. Phys. Chem. B",
"key": "10.1016/j.compbiolchem.2022.107692_bib112",
"volume": "116",
"year": "2012"
},
{
"DOI": "10.1021/acs.biochem.6b00805",
"article-title": "Volumetrically derived thermodynamic profile of interactions of urea with a native protein",
"author": "Son",
"doi-asserted-by": "crossref",
"first-page": "6475",
"issue": "47",
"journal-title": "Biochemistry",
"key": "10.1016/j.compbiolchem.2022.107692_bib113",
"volume": "55",
"year": "2016"
},
{
"DOI": "10.1021/bi3006994",
"article-title": "Volumetric characterization of tri-N-acetylglucosamine binding to lysozyme",
"author": "Son",
"doi-asserted-by": "crossref",
"first-page": "5784",
"issue": "29",
"journal-title": "Biochemistry",
"key": "10.1016/j.compbiolchem.2022.107692_bib114",
"volume": "51",
"year": "2012"
},
{
"DOI": "10.1021/jp509356k",
"article-title": "Interactions of urea with native and unfolded proteins: A volumetric study",
"author": "Son",
"doi-asserted-by": "crossref",
"first-page": "13554",
"issue": "47",
"journal-title": "J. Phys. Chem B",
"key": "10.1016/j.compbiolchem.2022.107692_bib115",
"volume": "118",
"year": "2014"
},
{
"DOI": "10.1021/acs.accounts.5b00516",
"article-title": "Protein binding pocket dynamics",
"author": "Stank",
"doi-asserted-by": "crossref",
"first-page": "809",
"issue": "5",
"journal-title": "Acc. Chem. Res.",
"key": "10.1016/j.compbiolchem.2022.107692_bib116",
"volume": "49",
"year": "2016"
},
{
"article-title": "In search of non-covalent inhibitors of SARS-CoV-2 main protease: Computer aided drug design using docking and quantum chemistry",
"author": "Sulimov",
"issue": "3",
"journal-title": "Supercomputing Frontiers and Innovations",
"key": "10.1016/j.compbiolchem.2022.107692_bib117",
"volume": "7",
"year": "2020"
},
{
"DOI": "10.1021/je5001999",
"article-title": "Direct evaluation of polypeptide partial molar volumes in water using molecular dynamics simulations",
"author": "Surampudi",
"doi-asserted-by": "crossref",
"first-page": "3130",
"issue": "10",
"journal-title": "Journal of Chemical & Engineering Data",
"key": "10.1016/j.compbiolchem.2022.107692_bib118",
"volume": "59",
"year": "2014"
},
{
"DOI": "10.1080/07391102.1998.10508256",
"article-title": "Native protein fluctuations: The conformational-motion temperature and the inverse correlation of protein flexibility with protein stability",
"author": "Tang",
"doi-asserted-by": "crossref",
"first-page": "397",
"issue": "2",
"journal-title": "J. Biomol. Struct. Dyn.",
"key": "10.1016/j.compbiolchem.2022.107692_bib119",
"volume": "16",
"year": "1998"
},
{
"article-title": "Long-range correlation in protein dynamics: Confirmation by structural data and normal mode analysis",
"author": "Tang",
"issue": "2",
"journal-title": "Comput. Biol.",
"key": "10.1016/j.compbiolchem.2022.107692_bib120",
"volume": "16",
"year": "2020"
},
{
"DOI": "10.1371/journal.pone.0030038",
"article-title": "Molecular dynamics studies of the nucleoprotein of influenza A virus: role of the protein flexibility in RNA binding",
"author": "Tarus",
"doi-asserted-by": "crossref",
"issue": "1",
"journal-title": "PloS one",
"key": "10.1016/j.compbiolchem.2022.107692_bib121",
"volume": "7",
"year": "2012"
},
{
"DOI": "10.1080/07391102.2021.1880481",
"article-title": "Impact of dimerization and N3 binding on molecular dynamics of SARS-CoV and SARS-CoV-2 main proteases",
"author": "Tekpinar",
"doi-asserted-by": "crossref",
"first-page": "1",
"journal-title": "Journal of Biomolecular Structure and Dynamics",
"key": "10.1016/j.compbiolchem.2022.107692_bib122",
"year": "2021"
},
{
"DOI": "10.1073/pnas.122225399",
"article-title": "Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components",
"author": "Timasheff",
"doi-asserted-by": "crossref",
"first-page": "9721",
"issue": "15",
"journal-title": "Proc. Natl. Acad. Sci.",
"key": "10.1016/j.compbiolchem.2022.107692_bib123",
"volume": "99",
"year": "2002"
},
{
"DOI": "10.1021/acs.jpcb.6b06863",
"article-title": "Volume of Hsp90 protein-ligand binding determined by fluorescent pressure shift assay, densitometry, and NMR",
"author": "Toleikis",
"doi-asserted-by": "crossref",
"first-page": "9903",
"journal-title": "J. Phys. Chem. B",
"key": "10.1016/j.compbiolchem.2022.107692_bib124",
"volume": "120",
"year": "2016"
},
{
"DOI": "10.1021/acs.jmedchem.2c00117",
"article-title": "Discovery of S-217622, a Noncovalent Oral SARS-CoV-2 3CL Protease Inhibitor Clinical Candidate for Treating COVID-19",
"author": "Unoh",
"doi-asserted-by": "crossref",
"journal-title": "Journal of Medicinal Chemistry",
"key": "10.1016/j.compbiolchem.2022.107692_bib125",
"year": "2022"
},
{
"DOI": "10.1002/9781118681121.ch25",
"article-title": "Intrinsically Disordered Proteins: Targets for the Future?",
"author": "Uversky",
"doi-asserted-by": "crossref",
"first-page": "587",
"journal-title": "Structural Biology in Drug Discovery: Methods, Techniques, and Practices",
"key": "10.1016/j.compbiolchem.2022.107692_bib126",
"year": "2020"
},
{
"DOI": "10.1016/j.coviro.2021.04.006",
"article-title": "Considerations for the discovery and development of 3-chymotrypsin-like cysteine protease inhibitors targeting SARS-CoV-2 infection",
"author": "Vandyck",
"doi-asserted-by": "crossref",
"first-page": "36",
"journal-title": "Curr. Opin. Virol.",
"key": "10.1016/j.compbiolchem.2022.107692_bib127",
"volume": "49",
"year": "2021"
},
{
"DOI": "10.1039/C5CP00251F",
"article-title": "Exploring volume, compressibility and hydration changes of folded proteins upon compression",
"author": "Voloshin",
"doi-asserted-by": "crossref",
"first-page": "8499",
"journal-title": "Phys. Chem. Chem. Phys.",
"key": "10.1016/j.compbiolchem.2022.107692_bib128",
"volume": "17",
"year": "2015"
},
{
"DOI": "10.1021/jp510891b",
"article-title": "Disentangling volumetric and hydrational properties of proteins",
"author": "Voloshin",
"doi-asserted-by": "crossref",
"first-page": "1881",
"journal-title": "J. Phys. Chem.",
"key": "10.1016/j.compbiolchem.2022.107692_bib129",
"volume": "119",
"year": "2015"
},
{
"DOI": "10.1093/nar/gkq395",
"article-title": "3V: Cavity, channel and cleft volume calculator and extractor",
"author": "Voss",
"doi-asserted-by": "crossref",
"first-page": "555",
"journal-title": "Nucleic Acids Res",
"key": "10.1016/j.compbiolchem.2022.107692_bib130",
"volume": "38",
"year": "2010"
},
{
"DOI": "10.1073/pnas.0407499102",
"article-title": "Local conformational fluctuations can modulate the coupling between proton binding and global structural transitions in proteins",
"author": "Whitten",
"doi-asserted-by": "crossref",
"first-page": "4282",
"issue": "12",
"journal-title": "Proc. Natl. Acad. Sci.",
"key": "10.1016/j.compbiolchem.2022.107692_bib131",
"volume": "102",
"year": "2005"
},
{
"DOI": "10.1002/prot.26139",
"article-title": "New tyrosinases with putative action against contaminants of emerging concern",
"author": "Xavier Senra",
"doi-asserted-by": "crossref",
"first-page": "1180",
"issue": "9",
"journal-title": "Proteins: Structure, Function, and Bioinformatics",
"key": "10.1016/j.compbiolchem.2022.107692_bib132",
"volume": "89",
"year": "2021"
},
{
"DOI": "10.1016/j.cplett.2012.12.028",
"article-title": "Electrostatic properties of water models evaluated by a long-range potential based solely on the Wolf charge-neutral condition",
"author": "Yonezawa",
"doi-asserted-by": "crossref",
"first-page": "308",
"journal-title": "Chemical Physics Letters",
"key": "10.1016/j.compbiolchem.2022.107692_bib133",
"volume": "556",
"year": "2013"
},
{
"article-title": "Repurposing of FDA-approved drugs against active site and potential allosteric drug-binding sites of COVID-19 main protease",
"author": "Yuce",
"first-page": "1",
"journal-title": "Proteins Struct. Funct. Bioinforma",
"key": "10.1016/j.compbiolchem.2022.107692_bib134",
"year": "2021"
},
{
"DOI": "10.1016/j.tifs.2015.06.006",
"article-title": "Ergometric studies of proteins: New insights into protein functionality in food systems",
"author": "Zhang",
"doi-asserted-by": "crossref",
"first-page": "251",
"issue": "2",
"journal-title": "Trends Food Sci. Technol",
"key": "10.1016/j.compbiolchem.2022.107692_bib135",
"volume": "45",
"year": "2015"
},
{
"DOI": "10.1007/s13238-021-00883-2",
"article-title": "Crystal structure of SARS-CoV-2 main protease in complex with protease inhibitor PF-07321332",
"author": "Zhao",
"doi-asserted-by": "crossref",
"journal-title": "Protein Cell",
"key": "10.1016/j.compbiolchem.2022.107692_bib136",
"year": "2021"
}
],
"reference-count": 136,
"references-count": 136,
"relation": {},
"resource": {
"primary": {
"URL": "https://linkinghub.elsevier.com/retrieve/pii/S147692712200072X"
}
},
"score": 1,
"short-title": [],
"source": "Crossref",
"subject": [
"Computational Mathematics",
"Organic Chemistry",
"Biochemistry",
"Structural Biology"
],
"subtitle": [],
"title": "Interaction of the New Inhibitor Paxlovid (PF-07321332) and Ivermectin With the Monomer of the Main Protease SARS-CoV-2: A Volumetric Study Based on Molecular Dynamics, Elastic Networks, Classical Thermodynamics and SPT",
"type": "journal-article"
}
