Insights from a computational analysis of the SARS-CoV-2 Omicron variant: Host–pathogen interaction, pathogenicity, and possible drug therapeutics
et al., Immunity, Inflammation and Disease, doi:10.1002/iid3.639, Jan 2022 (preprint)
Ivermectin for COVID-19
4th treatment shown to reduce risk in
August 2020, now with p < 0.00000000001 from 106 studies, recognized in 24 countries.
No treatment is 100% effective. Protocols
combine treatments.
6,300+ studies for
210+ treatments. c19early.org
|
In silico analysis of the omicron variant and 10 treatments reported effective for previous variants, predicting that all will be effective for omicron, with ivermectin showing the best results.
74 preclinical studies support the efficacy of ivermectin for COVID-19:
Ivermectin, better known for antiparasitic activity, is a broad spectrum antiviral with activity against many viruses including H7N771, Dengue37,72,73 , HIV-173, Simian virus 4074, Zika37,75,76 , West Nile76, Yellow Fever77,78, Japanese encephalitis77, Chikungunya78, Semliki Forest virus78, Human papillomavirus57, Epstein-Barr57, BK Polyomavirus79, and Sindbis virus78.
Ivermectin inhibits importin-α/β-dependent nuclear import of viral proteins71,73,74,80 , shows spike-ACE2 disruption at 1nM with microfluidic diffusional sizing38, binds to glycan sites on the SARS-CoV-2 spike protein preventing interaction with blood and epithelial cells and inhibiting hemagglutination41,81, shows dose-dependent inhibition of wildtype and omicron variants36, exhibits dose-dependent inhibition of lung injury61,66, may inhibit SARS-CoV-2 via IMPase inhibition37, may inhibit SARS-CoV-2 induced formation of fibrin clots resistant to degradation9, inhibits SARS-CoV-2 3CLpro54, may inhibit SARS-CoV-2 RdRp activity28, may minimize viral myocarditis by inhibiting NF-κB/p65-mediated inflammation in macrophages60, may be beneficial for COVID-19 ARDS by blocking GSDMD and NET formation82, may interfere with SARS-CoV-2's immune evasion via ORF8 binding4, may inhibit SARS-CoV-2 by disrupting CD147 interaction83-86, shows protection against inflammation, cytokine storm, and mortality in an LPS mouse model sharing key pathological features of severe COVID-1959,87, may be beneficial in severe COVID-19 by binding IGF1 to inhibit the promotion of inflammation, fibrosis, and cell proliferation that leads to lung damage8, may minimize SARS-CoV-2 induced cardiac damage40,48, may counter immune evasion by inhibiting NSP15-TBK1/KPNA1 interaction and restoring IRF3 activation88, may disrupt SARS-CoV-2 N and ORF6 protein nuclear transport and their suppression of host interferon responses1, reduces TAZ/YAP nuclear import, relieving SARS-CoV-2-driven suppression of IRF3 and NF-κB antiviral pathways35, increases Bifidobacteria which play a key role in the immune system89, has immunomodulatory51 and anti-inflammatory70,90 properties, and has an extensive and very positive safety profile91.
1.
Gayozo et al., Binding affinities analysis of ivermectin, nucleocapsid and ORF6 proteins of SARS-CoV-2 to human importins α isoforms: A computational approach, Biotecnia, doi:10.18633/biotecnia.v27.2485.
2.
Lefebvre et al., Characterization and Fluctuations of an Ivermectin Binding Site at the Lipid Raft Interface of the N-Terminal Domain (NTD) of the Spike Protein of SARS-CoV-2 Variants, Viruses, doi:10.3390/v16121836.
3.
Haque et al., Exploring potential therapeutic candidates against COVID-19: a molecular docking study, Discover Molecules, doi:10.1007/s44345-024-00005-5.
4.
Bagheri-Far et al., Non-spike protein inhibition of SARS-CoV-2 by natural products through the key mediator protein ORF8, Molecular Biology Research Communications, doi:10.22099/mbrc.2024.50245.2001.
5.
de Oliveira Só et al., In Silico Comparative Analysis of Ivermectin and Nirmatrelvir Inhibitors Interacting with the SARS-CoV-2 Main Protease, Preprints, doi:10.20944/preprints202404.1825.v1.
6.
Agamah et al., Network-based multi-omics-disease-drug associations reveal drug repurposing candidates for COVID-19 disease phases, ScienceOpen, doi:10.58647/DRUGARXIV.PR000010.v1.
7.
Oranu et al., Validation of the binding affinities and stabilities of ivermectin and moxidectin against SARS-CoV-2 receptors using molecular docking and molecular dynamics simulation, GSC Biological and Pharmaceutical Sciences, doi:10.30574/gscbps.2024.26.1.0030.
8.
Zhao et al., Identification of the shared gene signatures between pulmonary fibrosis and pulmonary hypertension using bioinformatics analysis, Frontiers in Immunology, doi:10.3389/fimmu.2023.1197752.
9.
Vottero et al., Computational Prediction of the Interaction of Ivermectin with Fibrinogen, Molecular Sciences, doi:10.3390/ijms241411449.
10.
Chellasamy et al., Docking and molecular dynamics studies of human ezrin protein with a modelled SARS-CoV-2 endodomain and their interaction with potential invasion inhibitors, Journal of King Saud University - Science, doi:10.1016/j.jksus.2022.102277.
11.
Umar et al., Inhibitory potentials of ivermectin, nafamostat, and camostat on spike protein and some nonstructural proteins of SARS-CoV-2: Virtual screening approach, Jurnal Teknologi Laboratorium, doi:10.29238/teknolabjournal.v11i1.344.
12.
Alvarado et al., Interaction of the New Inhibitor Paxlovid (PF-07321332) and Ivermectin With the Monomer of the Main Protease SARS-CoV-2: A Volumetric Study Based on Molecular Dynamics, Elastic Networks, Classical Thermodynamics and SPT, Computational Biology and Chemistry, doi:10.1016/j.compbiolchem.2022.107692.
13.
Aminpour et al., In Silico Analysis of the Multi-Targeted Mode of Action of Ivermectin and Related Compounds, Computation, doi:10.3390/computation10040051.
14.
Parvez et al., Insights from a computational analysis of the SARS-CoV-2 Omicron variant: Host–pathogen interaction, pathogenicity, and possible drug therapeutics, Immunity, Inflammation and Disease, doi:10.1002/iid3.639.
15.
Francés-Monerris et al., Microscopic interactions between ivermectin and key human and viral proteins involved in SARS-CoV-2 infection, Physical Chemistry Chemical Physics, doi:10.1039/D1CP02967C.
16.
González-Paz et al., Comparative study of the interaction of ivermectin with proteins of interest associated with SARS-CoV-2: A computational and biophysical approach, Biophysical Chemistry, doi:10.1016/j.bpc.2021.106677.
17.
González-Paz (B) et al., Structural Deformability Induced in Proteins of Potential Interest Associated with COVID-19 by binding of Homologues present in Ivermectin: Comparative Study Based in Elastic Networks Models, Journal of Molecular Liquids, doi:10.1016/j.molliq.2021.117284.
18.
Rana et al., A Computational Study of Ivermectin and Doxycycline Combination Drug Against SARS-CoV-2 Infection, Research Square, doi:10.21203/rs.3.rs-755838/v1.
19.
Muthusamy et al., Virtual Screening Reveals Potential Anti-Parasitic Drugs Inhibiting the Receptor Binding Domain of SARS-CoV-2 Spike protein, Journal of Virology & Antiviral Research, www.scitechnol.com/abstract/virtual-screening-reveals-potential-antiparasitic-drugs-inhibiting-the-receptor-binding-domain-of-sarscov2-spike-protein-16398.html.
20.
Qureshi et al., Mechanistic insights into the inhibitory activity of FDA approved ivermectin against SARS-CoV-2: old drug with new implications, Journal of Biomolecular Structure and Dynamics, doi:10.1080/07391102.2021.1906750.
21.
Schöning et al., Highly-transmissible Variants of SARS-CoV-2 May Be More Susceptible to Drug Therapy Than Wild Type Strains, Research Square, doi:10.21203/rs.3.rs-379291/v1.
22.
Bello et al., Elucidation of the inhibitory activity of ivermectin with host nuclear importin α and several SARS-CoV-2 targets, Journal of Biomolecular Structure and Dynamics, doi:10.1080/07391102.2021.1911857.
23.
Udofia et al., In silico studies of selected multi-drug targeting against 3CLpro and nsp12 RNA-dependent RNA-polymerase proteins of SARS-CoV-2 and SARS-CoV, Network Modeling Analysis in Health Informatics and Bioinformatics, doi:10.1007/s13721-021-00299-2.
24.
Choudhury et al., Exploring the binding efficacy of ivermectin against the key proteins of SARS-CoV-2 pathogenesis: an in silico approach, Future Medicine, doi:10.2217/fvl-2020-0342.
25.
Kern et al., Modeling of SARS-CoV-2 Treatment Effects for Informed Drug Repurposing, Frontiers in Pharmacology, doi:10.3389/fphar.2021.625678.
26.
Saha et al., The Binding mechanism of ivermectin and levosalbutamol with spike protein of SARS-CoV-2, Structural Chemistry, doi:10.1007/s11224-021-01776-0.
27.
Eweas et al., Molecular Docking Reveals Ivermectin and Remdesivir as Potential Repurposed Drugs Against SARS-CoV-2, Frontiers in Microbiology, doi:10.3389/fmicb.2020.592908.
28.
Parvez (B) et al., Prediction of potential inhibitors for RNA-dependent RNA polymerase of SARS-CoV-2 using comprehensive drug repurposing and molecular docking approach, International Journal of Biological Macromolecules, doi:10.1016/j.ijbiomac.2020.09.098.
29.
Francés-Monerris (B) et al., Has Ivermectin Virus-Directed Effects against SARS-CoV-2? Rationalizing the Action of a Potential Multitarget Antiviral Agent, ChemRxiv, doi:10.26434/chemrxiv.12782258.v1.
30.
Kalhor et al., Repurposing of the approved small molecule drugs in order to inhibit SARS-CoV-2 S protein and human ACE2 interaction through virtual screening approaches, Journal of Biomolecular Structure and Dynamics, doi:10.1080/07391102.2020.1824816.
31.
Swargiary, A., Ivermectin as a promising RNA-dependent RNA polymerase inhibitor and a therapeutic drug against SARS-CoV2: Evidence from in silico studies, Research Square, doi:10.21203/rs.3.rs-73308/v1.
32.
Maurya, D., A Combination of Ivermectin and Doxycycline Possibly Blocks the Viral Entry and Modulate the Innate Immune Response in COVID-19 Patients, American Chemical Society (ACS), doi:10.26434/chemrxiv.12630539.v1.
33.
Lehrer et al., Ivermectin Docks to the SARS-CoV-2 Spike Receptor-binding Domain Attached to ACE2, In Vivo, 34:5, 3023-3026, doi:10.21873/invivo.12134.
34.
Suravajhala et al., Comparative Docking Studies on Curcumin with COVID-19 Proteins, Preprints, doi:10.20944/preprints202005.0439.v3.
35.
Kofler et al., M-Motif, a potential non-conventional NLS in YAP/TAZ and other cellular and viral proteins that inhibits classic protein import, iScience, doi:10.1016/j.isci.2025.112105.
36.
Shahin et al., The selective effect of Ivermectin on different human coronaviruses; in-vitro study, Research Square, doi:10.21203/rs.3.rs-4180797/v1.
37.
Jitobaom et al., Identification of inositol monophosphatase as a broad‐spectrum antiviral target of ivermectin, Journal of Medical Virology, doi:10.1002/jmv.29552.
38.
Fauquet et al., Microfluidic Diffusion Sizing Applied to the Study of Natural Products and Extracts That Modulate the SARS-CoV-2 Spike RBD/ACE2 Interaction, Molecules, doi:10.3390/molecules28248072.
39.
García-Aguilar et al., In Vitro Analysis of SARS-CoV-2 Spike Protein and Ivermectin Interaction, International Journal of Molecular Sciences, doi:10.3390/ijms242216392.
40.
Liu et al., SARS-CoV-2 viral genes Nsp6, Nsp8, and M compromise cellular ATP levels to impair survival and function of human pluripotent stem cell-derived cardiomyocytes, Stem Cell Research & Therapy, doi:10.1186/s13287-023-03485-3.
41.
Boschi et al., SARS-CoV-2 Spike Protein Induces Hemagglutination: Implications for COVID-19 Morbidities and Therapeutics and for Vaccine Adverse Effects, bioRxiv, doi:10.1101/2022.11.24.517882.
42.
De Forni et al., Synergistic drug combinations designed to fully suppress SARS-CoV-2 in the lung of COVID-19 patients, PLoS ONE, doi:10.1371/journal.pone.0276751.
43.
Saha (B) et al., Manipulation of Spray-Drying Conditions to Develop an Inhalable Ivermectin Dry Powder, Pharmaceutics, doi:10.3390/pharmaceutics14071432.
44.
Jitobaom (B) et al., Synergistic anti-SARS-CoV-2 activity of repurposed anti-parasitic drug combinations, BMC Pharmacology and Toxicology, doi:10.1186/s40360-022-00580-8.
45.
Croci et al., Liposomal Systems as Nanocarriers for the Antiviral Agent Ivermectin, International Journal of Biomaterials, doi:10.1155/2016/8043983.
46.
Zheng et al., Red blood cell-hitchhiking mediated pulmonary delivery of ivermectin: Effects of nanoparticle properties, International Journal of Pharmaceutics, doi:10.1016/j.ijpharm.2022.121719.
47.
Delandre et al., Antiviral Activity of Repurposing Ivermectin against a Panel of 30 Clinical SARS-CoV-2 Strains Belonging to 14 Variants, Pharmaceuticals, doi:10.3390/ph15040445.
48.
Liu (B) et al., Genome-wide analyses reveal the detrimental impacts of SARS-CoV-2 viral gene Orf9c on human pluripotent stem cell-derived cardiomyocytes, Stem Cell Reports, doi:10.1016/j.stemcr.2022.01.014.
49.
Segatori et al., Effect of Ivermectin and Atorvastatin on Nuclear Localization of Importin Alpha and Drug Target Expression Profiling in Host Cells from Nasopharyngeal Swabs of SARS-CoV-2- Positive Patients, Viruses, doi:10.3390/v13102084.
50.
Jitobaom (C) et al., Favipiravir and Ivermectin Showed in Vitro Synergistic Antiviral Activity against SARS-CoV-2, Research Square, doi:10.21203/rs.3.rs-941811/v1.
51.
Munson et al., Niclosamide and ivermectin modulate caspase-1 activity and proinflammatory cytokine secretion in a monocytic cell line, British Society For Nanomedicine Early Career Researcher Summer Meeting, 2021, web.archive.org/web/20230401070026/https://michealmunson.github.io/COVID.pdf.
52.
Mountain Valley MD, Mountain Valley MD Receives Successful Results From BSL-4 COVID-19 Clearance Trial on Three Variants Tested With Ivectosol™, www.globenewswire.com/en/news-release/2021/05/18/2231755/0/en/Mountain-Valley-MD-Receives-Successful-Results-From-BSL-4-COVID-19-Clearance-Trial-on-Three-Variants-Tested-With-Ivectosol.html.
53.
Yesilbag et al., Ivermectin also inhibits the replication of bovine respiratory viruses (BRSV, BPIV-3, BoHV-1, BCoV and BVDV) in vitro, Virus Research, doi:10.1016/j.virusres.2021.198384.
54.
Mody et al., Identification of 3-chymotrypsin like protease (3CLPro) inhibitors as potential anti-SARS-CoV-2 agents, Communications Biology, doi:10.1038/s42003-020-01577-x.
55.
Jeffreys et al., Remdesivir-ivermectin combination displays synergistic interaction with improved in vitro activity against SARS-CoV-2, International Journal of Antimicrobial Agents, doi:10.1016/j.ijantimicag.2022.106542.
56.
Surnar et al., Clinically Approved Antiviral Drug in an Orally Administrable Nanoparticle for COVID-19, ACS Pharmacol. Transl. Sci., doi:10.1021/acsptsci.0c00179.
57.
Li et al., Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment, J. Cellular Physiology, doi:10.1002/jcp.30055.
58.
Caly et al., The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro, Antiviral Research, doi:10.1016/j.antiviral.2020.104787.
59.
Zhang et al., Ivermectin inhibits LPS-induced production of inflammatory cytokines and improves LPS-induced survival in mice, Inflammation Research, doi:10.1007/s00011-008-8007-8.
60.
Gao et al., Ivermectin ameliorates acute myocarditis via the inhibition of importin-mediated nuclear translocation of NF-κB/p65, International Immunopharmacology, doi:10.1016/j.intimp.2024.112073.
61.
Abd-Elmawla et al., Suppression of NLRP3 inflammasome by ivermectin ameliorates bleomycin-induced pulmonary fibrosis, Journal of Zhejiang University-SCIENCE B, doi:10.1631/jzus.B2200385.
62.
Uematsu et al., Prophylactic administration of ivermectin attenuates SARS-CoV-2 induced disease in a Syrian Hamster Model, The Journal of Antibiotics, doi:10.1038/s41429-023-00623-0.
63.
Albariqi et al., Pharmacokinetics and Safety of Inhaled Ivermectin in Mice as a Potential COVID-19 Treatment, International Journal of Pharmaceutics, doi:10.1016/j.ijpharm.2022.121688.
64.
Errecalde et al., Safety and Pharmacokinetic Assessments of a Novel Ivermectin Nasal Spray Formulation in a Pig Model, Journal of Pharmaceutical Sciences, doi:10.1016/j.xphs.2021.01.017.
65.
Madrid et al., Safety of oral administration of high doses of ivermectin by means of biocompatible polyelectrolytes formulation, Heliyon, doi:10.1016/j.heliyon.2020.e05820.
66.
Ma et al., Ivermectin contributes to attenuating the severity of acute lung injury in mice, Biomedicine & Pharmacotherapy, doi:10.1016/j.biopha.2022.113706.
67.
de Melo et al., Attenuation of clinical and immunological outcomes during SARS-CoV-2 infection by ivermectin, EMBO Mol. Med., doi:10.15252/emmm.202114122.
68.
Arévalo et al., Ivermectin reduces in vivo coronavirus infection in a mouse experimental model, Scientific Reports, doi:10.1038/s41598-021-86679-0.
69.
Chaccour et al., Nebulized ivermectin for COVID-19 and other respiratory diseases, a proof of concept, dose-ranging study in rats, Scientific Reports, doi:10.1038/s41598-020-74084-y.
70.
Yan et al., Anti-inflammatory effects of ivermectin in mouse model of allergic asthma, Inflammation Research, doi:10.1007/s00011-011-0307-8.
71.
Götz et al., Influenza A viruses escape from MxA restriction at the expense of efficient nuclear vRNP import, Scientific Reports, doi:10.1038/srep23138.
72.
Tay et al., Nuclear localization of dengue virus (DENV) 1–4 non-structural protein 5; protection against all 4 DENV serotypes by the inhibitor Ivermectin, Antiviral Research, doi:10.1016/j.antiviral.2013.06.002.
73.
Wagstaff et al., Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus, Biochemical Journal, doi:10.1042/BJ20120150.
74.
Wagstaff (B) et al., An AlphaScreen®-Based Assay for High-Throughput Screening for Specific Inhibitors of Nuclear Import, SLAS Discovery, doi:10.1177/1087057110390360.
75.
Barrows et al., A Screen of FDA-Approved Drugs for Inhibitors of Zika Virus Infection, Cell Host & Microbe, doi:10.1016/j.chom.2016.07.004.
76.
Yang et al., The broad spectrum antiviral ivermectin targets the host nuclear transport importin α/β1 heterodimer, Antiviral Research, doi:10.1016/j.antiviral.2020.104760.
77.
Mastrangelo et al., Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug, Journal of Antimicrobial Chemotherapy, doi:10.1093/jac/dks147.
78.
Varghese et al., Discovery of berberine, abamectin and ivermectin as antivirals against chikungunya and other alphaviruses, Antiviral Research, doi:10.1016/j.antiviral.2015.12.012.
79.
Bennett et al., Role of a nuclear localization signal on the minor capsid Proteins VP2 and VP3 in BKPyV nuclear entry, Virology, doi:10.1016/j.virol.2014.10.013.
80.
Kosyna et al., The importin α/β-specific inhibitor Ivermectin affects HIF-dependent hypoxia response pathways, Biological Chemistry, doi:10.1515/hsz-2015-0171.
81.
Scheim et al., Sialylated Glycan Bindings from SARS-CoV-2 Spike Protein to Blood and Endothelial Cells Govern the Severe Morbidities of COVID-19, International Journal of Molecular Sciences, doi:10.3390/ijms242317039.
82.
Liu (C) et al., Crosstalk between neutrophil extracellular traps and immune regulation: insights into pathobiology and therapeutic implications of transfusion-related acute lung injury, Frontiers in Immunology, doi:10.3389/fimmu.2023.1324021.
83.
Shouman et al., SARS-CoV-2-associated lymphopenia: possible mechanisms and the role of CD147, Cell Communication and Signaling, doi:10.1186/s12964-024-01718-3.
84.
Scheim (B), D., Ivermectin for COVID-19 Treatment: Clinical Response at Quasi-Threshold Doses Via Hypothesized Alleviation of CD147-Mediated Vascular Occlusion, SSRN, doi:10.2139/ssrn.3636557.
85.
Scheim (C), D., From Cold to Killer: How SARS-CoV-2 Evolved without Hemagglutinin Esterase to Agglutinate and Then Clot Blood Cells, Center for Open Science, doi:10.31219/osf.io/sgdj2.
86.
Behl et al., CD147-spike protein interaction in COVID-19: Get the ball rolling with a novel receptor and therapeutic target, Science of The Total Environment, doi:10.1016/j.scitotenv.2021.152072.
87.
DiNicolantonio et al., Ivermectin may be a clinically useful anti-inflammatory agent for late-stage COVID-19, Open Heart, doi:10.1136/openhrt-2020-001350.
88.
Mothae et al., SARS-CoV-2 host-pathogen interactome: insights into more players during pathogenesis, Virology, doi:10.1016/j.virol.2025.110607.
89.
Hazan et al., Treatment with Ivermectin Increases the Population of Bifidobacterium in the Gut, ACG 2023, acg2023posters.eventscribe.net/posterspeakers.asp.
Parvez et al., 20 Jan 2022, preprint, 7 authors.
Contact: ohtsuki.gen.7w@kyoto-u.ac.jp, jakir-gen@sust.edu.
In silico studies are an important part of preclinical research, however results may be very different in vivo.
Insights from a computational analysis of the SARS‐CoV‐2 Omicron variant: Host–pathogen interaction, pathogenicity, and possible drug therapeutics
Immunity, Inflammation and Disease, doi:10.1002/iid3.639
Introduction: Prominently accountable for the upsurge of COVID-19 cases as the world attempts to recover from the previous two waves, Omicron has further threatened the conventional therapeutic approaches. The lack of extensive research regarding Omicron has raised the need to establish correlations to understand this variant by structural comparisons. Here, we evaluate, correlate, and compare its genomic sequences through an immunoinformatic approach to understand its epidemiological characteristics and responses to existing drugs.
Methods: We reconstructed the phylogenetic tree and compared the mutational spectrum. We analyzed the mutations that occurred in the Omicron variant and correlated how these mutations affect infectivity and pathogenicity. Then, we studied how mutations in the receptor-binding domain affect its interaction with host factors through molecular docking. Finally, we evaluated the drug efficacy against the main protease of the Omicron through molecular docking and validated the docking results with molecular dynamics simulation. Results: Phylogenetic and mutational analysis revealed the Omicron variant is similar to the highly infectious B.1.620 variant, while mutations within the prominent proteins are hypothesized to alter its pathogenicity. Moreover, docking evaluations revealed significant differences in binding affinity with human receptors, angiotensin-converting enzyme 2 and NRP1. Surprisingly, most of the tested drugs were proven to be effective. Nirmatrelvir, 13b, and Lopinavir displayed increased effectiveness against Omicron. Conclusion: Omicron variant may be originated from the highly infectious B.1.620 variant, while it was less pathogenic due to the mutations in the prominent proteins. Nirmatrelvir, 13b, and Lopinavir would be the most effective, compared to other promising drugs that were proven effective.
AUTHOR CONTRIBUTIONS Md Sorwer Alam Parvez: Conceptualization; methodology; formal analysis; data interpretation; validation; visualization; original draft preparation. Manash Kumar Saha: Methodology; software; visualization. Md Ibrahim: Formal analysis. Yusha Araf: Formal analysis; original draft preparation and editing. Md Taufiqul Islam: Validation. Gen Ohtsuki: Supervision, writing-review & editing. Mohammad Jakir Hosen: Supervision, writing-review & editing.
ACKNOWLEDGMENT This study was supported by grants from the Mitsubishi Foundation, the Takeda Science Foundation (to G. O.).
CONFLICTS OF INTEREST The authors declare no conflicts of interest.
ETHICS STATEMENT This study did not deal with human subjects and biological materials. All open-source data were analyzed, in which all personal information was anonymized, and no data allowing individual identification was retained. Therefore, no ethics approval and no informed consent were required.
References
Abascal, Vega, A general purpose model for the condensed phases of water: TIP4P/2005, J Chem Phys
Abraham, Murtola, Schulz, GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX
Angelini, Akhlaghpour, Neuman, Buchmeier, Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles, mBio, doi:10.1128/mBio.00524-13
Anwar, Nasrullah, Hosen, COVID-19 and Bangladesh: challenges and how to address them, Front Public Health, doi:10.3389/fpubh.2020.00154
Barton, Macgowan, Kutuzov, Dushek, Barton et al., Effects of common mutations in the SARS-CoV-2 Spike RBD and its ligand, the human ACE2 receptor on binding affinity and kinetics, eLife
Behzadi, Gajdács, Writing a strong scientific paper in medicine and the biomedical sciences: a checklist and recommendations for early career researchers, Biol Futur, doi:10.1007/s42977-021-00095-z
Benvenuto, Angeletti, Giovanetti, Evolutionary analysis of SARS-CoV-2: how mutation of non-structural protein 6 (NSP6) could affect viral autophagy, J Infect, doi:10.1016/j.jinf.2020.03.058
Berman, Westbrook, Feng, The protein data bank, Nucleic Acids Res, doi:10.1093/nar/28.1.235
Biovia, Systèmes, BIOVIA Discovery studio
Brown, Leroy, Sander, MView: a web-compatible database search or multiple alignment viewer, Bioinformatics, doi:10.1093/bioinformatics/14.4.380
Collie, Champion, Moultrie, Bekker, Gray, Effectiveness of BNT162b2 vaccine against omicron variant in South Africa, N Engl J Med, doi:10.1056/NEJMc2119270
Colovos, Yeates, Verification of protein structures: patterns of nonbonded atomic interactions, Prot Sci, doi:10.1002/pro.5560020916
Cong, Ulasli, Schepers, Nucleocapsid protein recruitment to replication-transcription complexes plays a crucial role in coronaviral life cycle, J Virol, doi:10.1128/jvi.01925-19
Daly, Simonetti, Klein, Neuropilin-1 is a host factor for SARS-CoV-2 infection, Science, doi:10.1126/science.abd3072
Delano, The PyMOL molecular graphics system
Dolinsky, Nielsen, Mccammon, Baker, PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations, Nucleic Acids Res, doi:10.1093/nar/gkh381
Dudas, Hong, Potter, Emergence and spread of SARS-CoV-2 lineage B. 1.620 with variant of concern-like mutations and deletions, Nat Commun, doi:10.1038/s41467-021-26055-8
Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res, doi:10.1093/nar/gkh340
Essahib, Verheyen, Tournaye, Van De Velde, SARS-CoV-2 host receptors ACE2 and CD147 (BSG) are present on human oocytes and blastocysts, J Assist Reprod Genet, doi:10.1007/s10815-020-01952-x
Fleming, Shubin, Sussman, Casteel, Stohlman, Monoclonal antibodies to the matrix (El) glycoprotein of mouse hepatitis virus protect mice from encephalitis, Virology, doi:10.1016/0042-6822(89)90415-7
Gorkhali, Koirala, Rijal, Mainali, Baral et al., Structure and function of major SARS-CoV-2 and SARS-CoV proteins, Bioinform Biol Insights, doi:10.1177/11779322211025876
Gu, Krishnan, Ng, Probable transmission of SARS-CoV-2 Omicron variant in quarantine hotel, Hong Kong, China, November 2021, Emerging Infect Dis
Harvey, Carabelli, Jackson, SARS-CoV-2 variants, spike mutations and immune escape, Nat Rev Microbiol, doi:10.1038/s41579-021-00573-0
Hiscott, Alexandridi, Muscolini, The global impact of the coronavirus pandemic, Cytokine Growth Factor Rev, doi:10.1016/j.cytogfr.2020.05.010
Hoang, Chernomor, Haeseler, Minh, Vinh, UFBoot2: improving the ultrafast bootstrap approximation, Mol Biol Evol, doi:10.1093/molbev/msx281
Hoffmann, Krüger, Schulz, The Omicron variant is highly resistant against antibody-mediated neutralization: implications for control of the COVID-19 pandemic, Cell, doi:10.1016/j.cell.2021.12.032
Hogue, Machamer, Coronavirus structural proteins and virus assembly, Nidoviruses, doi:10.1128/9781555815790
Jassat, Karim, Mudara, Clinical severity of covid-19 patients admitted to hospitals in Gauteng, South Africa during the Omicron-dominant fourth wave, Preprints with the Lancet, doi:10.2139/ssrn.3996320
Jin, Du, Xu, Structure of M pro from SARS-CoV-2 and discovery of its inhibitors, Nature, doi:10.1038/s41586-020-2223-y
Jumper, Evans, Pritzel, Highly accurate protein structure prediction with AlphaFold, Nature, doi:10.1038/s41586-021-03819-2
Kalyaanamoorthy, Minh, Wong, Haeseler, Jermiin, ModelFinder: fast model selection for accurate phylogenetic estimates, Nat Methods, doi:10.1038/nmeth.4285
Kannan, Spratt, Cohen, Evolutionary analysis of the Delta and Delta Plus variants of the SARS-CoV-2 viruses, J Autoimmun, doi:10.1016/j.jaut.2021.102715
Kannan, Spratt, Sharma, Chand, Byrareddy et al., Omicron SARS-CoV-2 variant: unique features and their impact on pre-existing antibodies, J Autoimmun, doi:10.1016/j.jaut.2021.102779
Karim, De Oliveira, Loots, Appropriate names for COVID-19 variants, Science, doi:10.1126/science.abh0836
Karim, Karim, Omicron SARS-CoV-2 variant: a new chapter in the COVID-19 pandemic, Lancet, doi:10.1016/s0140-6736(21)02758-6
Kiefer, Arnold, Künzli, Bordoli, Schwede, The SWISS-MODEL Repository and associated resources, Nucleic Acids Res, doi:10.1093/nar/gkn750
Kim, Thiessen, Bolton, PubChem substance and compound databases, Nucleic Acids Res, doi:10.1093/nar/gkv951
Kumar, Stecher, Li, Knyaz, Tamura, MEGA X: molecular evolutionary genetics analysis across computing platforms, Mol Biol Evol, doi:10.1093/molbev/msy096
Kumari, Kumar, Open Source Drug Discovery Consortium, Lynn A. g_mmpbsa: a GROMACS tool for highthroughput MM-PBSA calculations, J Chem Inf Model
Lai, Cavanagh, The molecular biology of coronaviruses, Adv Virus Res, doi:10.1016/S0065-3527(08)60286-9
Laskowski, Macarthur, Moss, Thornton, PROCHECK: a program to check the stereochemical quality of protein structures, J Appl Crystal, doi:10.1107/S0021889892009944
Letunic, Bork, Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation, Bioinformatics, doi:10.1093/nar/gkab301
Li, Wang, Lavrijsen, SARS-CoV-2 Omicron variant is highly sensitive to molnupiravir, nirmatrelvir, and the combination, Cell Res, doi:10.1038/s41422-022-00618-w
Luo, Liu, Wang, Gong, From SARS to the Omicron variant of COVID-19: China's policy adjustments and changes to prevent and control infectious diseases, Biosci Trends, doi:10.5582/bst.2021.01535
Minh, Schmidt, Chernomor, IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era, Mol Biol Evol, doi:10.1093/molbev/msaa015
Nelson, Stohlman, Tahara, High affinity interaction between nucleocapsid protein and leader/intergenic sequence of mouse hepatitis virus RNA, Microbiology, doi:10.1099/0022-1317-81-1-181
Poudel, Ishak, Perez-Fernandez, Highly mutated SARS-CoV-2 Omicron variant sparks significant concern among global experts-what is known so far?, Travel Med Infect Dis, doi:10.1016/j.tmaid.2021.102234
Ramírez-Aportela, Blanco, Chacón, FRODOCK 2.0: fast protein-protein docking server, Bioinformatics, doi:10.1093/bioinformatics/btw141
Scialo, Amato, ACE2: the major cell entry receptor for SARS-CoV-2, Lung, doi:10.1007/s00408-020-00408-4
Sievers, Higgins, Clustal omega, Curr Protoc Bioinformatics, doi:10.1002/0471250953.bi0313s48
Stohlman, Baric, Nelson, Soe, Welter et al., Specific interaction between coronavirus leader RNA and nucleocapsid protein, J Virol, doi:10.1128/jvi.62.11.4288-4295.1988
Torjesen, Covid-19: Omicron may be more transmissible than other variants and partly resistant to existing vaccines, scientists fear, BMJ, doi:10.1136/bmj.n2943
Tortorici, Veesler, Structural insights into coronavirus entry, Adv Virus Res, doi:10.1016/bs.aivir.2019.08.002
Trott, Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J Comput Chem, doi:10.1002/jcc.21334
Van Gunsteren, Billeter, Eising, Biomolecular simulation: the GROMOS96 manual and user guide. Vdf Hochschulverlag AG an der ETH Zürich
Vandyck, Deval, Considerations for the discovery and development of 3-chymotrypsin-like cysteine protease inhibitors targeting SARS-CoV-2 infection, Curr Opin Virol, doi:10.1016/j.coviro.2021.04.006
Vangeel, Chiu, Jonghe, Insights from a computational analysis of the SARS-CoV-2 Omicron variant: Host-pathogen interaction, pathogenicity, and possible drug therapeutics, Immun Inflamm Dis
Vanommeslaeghe, Hatcher, Acharya, CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields, J Comput Chem, doi:10.1002/jcc.21367
Vita, Chini, Bifulco, Lauro, Insights into the ligand binding to bromodomain-containing protein 9 (BRD9): a guide to the selection of potential binders by computational methods, Molecules
Wishart, Feunang, Guo, DrugBank 5.0: a major update to the DrugBank database for 2018, Nucleic Acids Res, doi:10.1093/nar/gkx1037
Yang, Cai, Zhang, DPP-4 inhibitors may improve the mortality of coronavirus disease 2019: a meta-analysis, PLoS One, doi:10.1371/journal.pone.0251916
Yurkovetskiy, Wang, Pascal, Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant, Cell, doi:10.1016/j.cell.2020.09.032
Zhang, Lin, Sun, Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors, Science, doi:10.1126/science.abb3405
Zhu, Lee, Van De Leemput, Lee, Han, Functional analysis of SARS-CoV-2 proteins in Drosophila identifies Orf6-induced pathogenic effects with Selinexor as an effective treatment, Cell Biosci, doi:10.1186/s13578-021-00567-8
DOI record:
{
"DOI": "10.1002/iid3.639",
"ISSN": [
"2050-4527",
"2050-4527"
],
"URL": "http://dx.doi.org/10.1002/iid3.639",
"alternative-id": [
"10.1002/iid3.639"
],
"assertion": [
{
"group": {
"label": "Publication History",
"name": "publication_history"
},
"label": "Received",
"name": "received",
"order": 0,
"value": "2022-02-08"
},
{
"group": {
"label": "Publication History",
"name": "publication_history"
},
"label": "Accepted",
"name": "accepted",
"order": 1,
"value": "2022-04-20"
},
{
"group": {
"label": "Publication History",
"name": "publication_history"
},
"label": "Published",
"name": "published",
"order": 2,
"value": "2022-06-21"
}
],
"author": [
{
"ORCID": "http://orcid.org/0000-0002-9726-1009",
"affiliation": [
{
"name": "Department of Drug Discovery Medicine Kyoto University Graduate School of Medicine Kyoto Japan"
},
{
"name": "Department of Genetic Engineering & Biotechnology Shahjalal University of Science & Technology Sylhet Bangladesh"
}
],
"authenticated-orcid": false,
"family": "Parvez",
"given": "Md Sorwer Alam",
"sequence": "first"
},
{
"affiliation": [
{
"name": "Department of Genetic Engineering & Biotechnology Shahjalal University of Science & Technology Sylhet Bangladesh"
}
],
"family": "Saha",
"given": "Manash Kumar",
"sequence": "additional"
},
{
"affiliation": [
{
"name": "Department of Genetic Engineering & Biotechnology Shahjalal University of Science & Technology Sylhet Bangladesh"
}
],
"family": "Ibrahim",
"given": "Md.",
"sequence": "additional"
},
{
"affiliation": [
{
"name": "Department of Genetic Engineering & Biotechnology Shahjalal University of Science & Technology Sylhet Bangladesh"
}
],
"family": "Araf",
"given": "Yusha",
"sequence": "additional"
},
{
"affiliation": [
{
"name": "Department of Genetic Engineering & Biotechnology Shahjalal University of Science & Technology Sylhet Bangladesh"
}
],
"family": "Islam",
"given": "Md. Taufiqul",
"sequence": "additional"
},
{
"ORCID": "http://orcid.org/0000-0003-3004-5886",
"affiliation": [
{
"name": "Department of Drug Discovery Medicine Kyoto University Graduate School of Medicine Kyoto Japan"
}
],
"authenticated-orcid": false,
"family": "Ohtsuki",
"given": "Gen",
"sequence": "additional"
},
{
"affiliation": [
{
"name": "Department of Genetic Engineering & Biotechnology Shahjalal University of Science & Technology Sylhet Bangladesh"
}
],
"family": "Hosen",
"given": "Mohammad Jakir",
"sequence": "additional"
}
],
"container-title": "Immunity, Inflammation and Disease",
"container-title-short": "Immunity Inflam &amp; Disease",
"content-domain": {
"crossmark-restriction": true,
"domain": [
"onlinelibrary.wiley.com"
]
},
"created": {
"date-parts": [
[
2022,
6,
21
]
],
"date-time": "2022-06-21T12:05:24Z",
"timestamp": 1655813124000
},
"deposited": {
"date-parts": [
[
2022,
6,
30
]
],
"date-time": "2022-06-30T11:56:00Z",
"timestamp": 1656590160000
},
"funder": [
{
"DOI": "10.13039/100007449",
"doi-asserted-by": "publisher",
"name": "Takeda Science Foundation"
},
{
"DOI": "10.13039/501100004398",
"doi-asserted-by": "publisher",
"name": "Mitsubishi Foundation"
}
],
"indexed": {
"date-parts": [
[
2022,
7,
1
]
],
"date-time": "2022-07-01T14:40:01Z",
"timestamp": 1656686401824
},
"is-referenced-by-count": 0,
"issue": "7",
"issued": {
"date-parts": [
[
2022,
6,
21
]
]
},
"journal-issue": {
"issue": "7",
"published-print": {
"date-parts": [
[
2022,
7
]
]
}
},
"language": "en",
"license": [
{
"URL": "http://creativecommons.org/licenses/by/4.0/",
"content-version": "vor",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2022,
6,
21
]
],
"date-time": "2022-06-21T00:00:00Z",
"timestamp": 1655769600000
}
},
{
"URL": "http://doi.wiley.com/10.1002/tdm_license_1.1",
"content-version": "tdm",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2022,
6,
21
]
],
"date-time": "2022-06-21T00:00:00Z",
"timestamp": 1655769600000
}
}
],
"link": [
{
"URL": "https://onlinelibrary.wiley.com/doi/pdf/10.1002/iid3.639",
"content-type": "application/pdf",
"content-version": "vor",
"intended-application": "text-mining"
},
{
"URL": "https://onlinelibrary.wiley.com/doi/full-xml/10.1002/iid3.639",
"content-type": "application/xml",
"content-version": "vor",
"intended-application": "text-mining"
},
{
"URL": "https://onlinelibrary.wiley.com/doi/pdf/10.1002/iid3.639",
"content-type": "unspecified",
"content-version": "vor",
"intended-application": "similarity-checking"
}
],
"member": "311",
"original-title": [],
"prefix": "10.1002",
"published": {
"date-parts": [
[
2022,
6,
21
]
]
},
"published-online": {
"date-parts": [
[
2022,
6,
21
]
]
},
"published-print": {
"date-parts": [
[
2022,
7
]
]
},
"publisher": "Wiley",
"reference": [
{
"key": "e_1_2_10_2_1",
"unstructured": "World Health Organization (WHO). Impact of COVID‐19 on people's livelihoods their health and our food systems. 2020. Accessed December 19 2021.https://www.who.int/news/item/13-10-2020-impact-of-covid-19-on-people%27s-livelihoods-their-health-and-our-food-systems"
},
{
"DOI": "10.1016/j.cytogfr.2020.05.010",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_3_1"
},
{
"DOI": "10.3389/fpubh.2020.00154",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_4_1"
},
{
"DOI": "10.1126/science.abh0836",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_5_1"
},
{
"key": "e_1_2_10_6_1",
"unstructured": "World Health Organization (WHO). Tracking SARS‐CoV‐2 variants.2021. Accessed December 19 2021.https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/"
},
{
"DOI": "10.1056/NEJMc2119270",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_7_1"
},
{
"article-title": "Clinical severity of covid‐19 patients admitted to hospitals in Gauteng, South Africa during the Omicron‐dominant fourth wave",
"author": "Jassat W",
"first-page": "",
"journal-title": "Preprints with the Lancet",
"key": "e_1_2_10_8_1",
"year": "2021"
},
{
"DOI": "10.1136/bmj.n2943",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_9_1"
},
{
"DOI": "10.3201/eid2802.212422",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_10_1"
},
{
"DOI": "10.1016/S0140-6736(21)02758-6",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_11_1"
},
{
"DOI": "10.1038/s41579-021-00573-0",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_12_1"
},
{
"DOI": "10.1007/s42977-021-00095-z",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_13_1"
},
{
"DOI": "10.1093/nar/gkh340",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_14_1"
},
{
"DOI": "10.1093/molbev/msaa015",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_15_1"
},
{
"DOI": "10.1038/nmeth.4285",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_16_1"
},
{
"DOI": "10.1093/molbev/msx281",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_17_1"
},
{
"DOI": "10.1093/bioinformatics/btl529",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_18_1"
},
{
"DOI": "10.1093/molbev/msy096",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_19_1"
},
{
"DOI": "10.1002/0471250953.bi0313s48",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_20_1"
},
{
"DOI": "10.1093/bioinformatics/14.4.380",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_21_1"
},
{
"DOI": "10.1093/nar/28.1.235",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_22_1"
},
{
"key": "e_1_2_10_23_1",
"unstructured": "DeLanoWL. The PyMOL molecular graphics system. 2002.http://www.pymol.org"
},
{
"DOI": "10.1093/nar/gkn750",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_24_1"
},
{
"DOI": "10.1002/pro.5560020916",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_25_1"
},
{
"DOI": "10.1107/S0021889892009944",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_26_1"
},
{
"DOI": "10.1093/bioinformatics/btw141",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_27_1"
},
{
"DOI": "10.1038/s41586-021-03819-2",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_28_1"
},
{
"DOI": "10.1093/nar/gkh381",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_29_1"
},
{
"DOI": "10.1002/jcc.21367",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_30_1"
},
{
"DOI": "10.1038/s41586-020-2223-y",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_31_1"
},
{
"DOI": "10.1126/science.abb3405",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_32_1"
},
{
"DOI": "10.1016/j.coviro.2021.04.006",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_33_1"
},
{
"DOI": "10.1093/nar/gkx1037",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_34_1"
},
{
"DOI": "10.1093/nar/gkv951",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_35_1"
},
{
"DOI": "10.1002/jcc.21334",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_36_1"
},
{
"key": "e_1_2_10_37_1",
"unstructured": "Biovia Dassault Systèmes. BIOVIA Discovery studio Release 2020 San Diego: Dassault Systèmes. 2020."
},
{
"DOI": "10.1016/j.softx.2015.06.001",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_38_1"
},
{
"article-title": "Biomolecular simulation: the GROMOS96 manual and user guide",
"author": "Gunsteren WF",
"first-page": "1",
"journal-title": "Vdf Hochschulverlag AG an der ETH Zürich",
"key": "e_1_2_10_39_1",
"volume": "86",
"year": "1996"
},
{
"DOI": "10.1063/1.2121687",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_40_1"
},
{
"DOI": "10.1021/ci500020m",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_41_1"
},
{
"DOI": "10.1007/s00408-020-00408-4",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_42_1"
},
{
"DOI": "10.1126/science.abd3072",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_43_1"
},
{
"DOI": "10.1371/journal.pone.0251916",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_44_1"
},
{
"DOI": "10.1007/s10815-020-01952-x",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_45_1"
},
{
"DOI": "10.1016/j.jaut.2021.102715",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_46_1"
},
{
"DOI": "10.1016/j.tmaid.2021.102234",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_47_1"
},
{
"DOI": "10.1016/j.jaut.2021.102779",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_48_1"
},
{
"DOI": "10.1016/j.cell.2021.12.032",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_49_1"
},
{
"DOI": "10.1038/s41467-021-26055-8",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_50_1"
},
{
"DOI": "10.1016/j.cell.2020.09.032",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_51_1"
},
{
"DOI": "10.1186/s13578-021-00567-8",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_52_1"
},
{
"DOI": "10.1016/j.jinf.2020.03.058",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_53_1"
},
{
"DOI": "10.1177/11779322211025876",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_54_1"
},
{
"DOI": "10.1128/mBio.00524-13",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_55_1"
},
{
"DOI": "10.1016/bs.aivir.2019.08.002",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_56_1"
},
{
"article-title": "Coronavirus structural proteins and virus assembly",
"author": "Hogue BG",
"first-page": "179",
"journal-title": "Nidoviruses",
"key": "e_1_2_10_57_1",
"year": "2007"
},
{
"DOI": "10.1016/S0065-3527(08)60286-9",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_58_1"
},
{
"DOI": "10.1016/0042-6822(89)90415-7",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_59_1"
},
{
"DOI": "10.1128/JVI.01925-19",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_60_1"
},
{
"DOI": "10.1099/0022-1317-81-1-181",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_61_1"
},
{
"DOI": "10.1128/jvi.62.11.4288-4295.1988",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_62_1"
},
{
"DOI": "10.7554/eLife.70658",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_63_1"
},
{
"DOI": "10.5582/bst.2021.01535",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_64_1"
},
{
"DOI": "10.3390/molecules26237192",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_65_1"
},
{
"DOI": "10.1038/s41422-022-00618-w",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_66_1"
},
{
"DOI": "10.1016/j.antiviral.2022.105252",
"doi-asserted-by": "publisher",
"key": "e_1_2_10_67_1"
}
],
"reference-count": 66,
"references-count": 66,
"relation": {},
"resource": {
"primary": {
"URL": "https://onlinelibrary.wiley.com/doi/10.1002/iid3.639"
}
},
"score": 1,
"short-title": [],
"source": "Crossref",
"subject": [
"Immunology",
"Immunology and Allergy"
],
"subtitle": [],
"title": "Insights from a computational analysis of the SARS‐CoV‐2 Omicron variant: Host–pathogen interaction, pathogenicity, and possible drug therapeutics",
"type": "journal-article",
"update-policy": "http://dx.doi.org/10.1002/crossmark_policy",
"volume": "10"
}
