Microscopic interactions between ivermectin and key human and viral proteins involved in SARS-CoV-2 infection
et al., Physical Chemistry Chemical Physics, doi:10.1039/D1CP02967C, Oct 2021
Ivermectin for COVID-19
4th treatment shown to reduce risk in
August 2020, now with p < 0.00000000001 from 106 studies, recognized in 24 countries.
No treatment is 100% effective. Protocols
combine treatments.
6,300+ studies for
210+ treatments. c19early.org
|
In silico molecular dynamics study showing that ACE2 and ACE2/RBD aggregates form persistent interactions with ivermectin.
74 preclinical studies support the efficacy of ivermectin for COVID-19:
Ivermectin, better known for antiparasitic activity, is a broad spectrum antiviral with activity against many viruses including H7N771, Dengue37,72,73 , HIV-173, Simian virus 4074, Zika37,75,76 , West Nile76, Yellow Fever77,78, Japanese encephalitis77, Chikungunya78, Semliki Forest virus78, Human papillomavirus57, Epstein-Barr57, BK Polyomavirus79, and Sindbis virus78.
Ivermectin inhibits importin-α/β-dependent nuclear import of viral proteins71,73,74,80 , shows spike-ACE2 disruption at 1nM with microfluidic diffusional sizing38, binds to glycan sites on the SARS-CoV-2 spike protein preventing interaction with blood and epithelial cells and inhibiting hemagglutination41,81, shows dose-dependent inhibition of wildtype and omicron variants36, exhibits dose-dependent inhibition of lung injury61,66, may inhibit SARS-CoV-2 via IMPase inhibition37, may inhibit SARS-CoV-2 induced formation of fibrin clots resistant to degradation9, inhibits SARS-CoV-2 3CLpro54, may inhibit SARS-CoV-2 RdRp activity28, may minimize viral myocarditis by inhibiting NF-κB/p65-mediated inflammation in macrophages60, may be beneficial for COVID-19 ARDS by blocking GSDMD and NET formation82, may interfere with SARS-CoV-2's immune evasion via ORF8 binding4, may inhibit SARS-CoV-2 by disrupting CD147 interaction83-86, shows protection against inflammation, cytokine storm, and mortality in an LPS mouse model sharing key pathological features of severe COVID-1959,87, may be beneficial in severe COVID-19 by binding IGF1 to inhibit the promotion of inflammation, fibrosis, and cell proliferation that leads to lung damage8, may minimize SARS-CoV-2 induced cardiac damage40,48, may counter immune evasion by inhibiting NSP15-TBK1/KPNA1 interaction and restoring IRF3 activation88, may disrupt SARS-CoV-2 N and ORF6 protein nuclear transport and their suppression of host interferon responses1, reduces TAZ/YAP nuclear import, relieving SARS-CoV-2-driven suppression of IRF3 and NF-κB antiviral pathways35, increases Bifidobacteria which play a key role in the immune system89, has immunomodulatory51 and anti-inflammatory70,90 properties, and has an extensive and very positive safety profile91.
1.
Gayozo et al., Binding affinities analysis of ivermectin, nucleocapsid and ORF6 proteins of SARS-CoV-2 to human importins α isoforms: A computational approach, Biotecnia, doi:10.18633/biotecnia.v27.2485.
2.
Lefebvre et al., Characterization and Fluctuations of an Ivermectin Binding Site at the Lipid Raft Interface of the N-Terminal Domain (NTD) of the Spike Protein of SARS-CoV-2 Variants, Viruses, doi:10.3390/v16121836.
3.
Haque et al., Exploring potential therapeutic candidates against COVID-19: a molecular docking study, Discover Molecules, doi:10.1007/s44345-024-00005-5.
4.
Bagheri-Far et al., Non-spike protein inhibition of SARS-CoV-2 by natural products through the key mediator protein ORF8, Molecular Biology Research Communications, doi:10.22099/mbrc.2024.50245.2001.
5.
de Oliveira Só et al., In Silico Comparative Analysis of Ivermectin and Nirmatrelvir Inhibitors Interacting with the SARS-CoV-2 Main Protease, Preprints, doi:10.20944/preprints202404.1825.v1.
6.
Agamah et al., Network-based multi-omics-disease-drug associations reveal drug repurposing candidates for COVID-19 disease phases, ScienceOpen, doi:10.58647/DRUGARXIV.PR000010.v1.
7.
Oranu et al., Validation of the binding affinities and stabilities of ivermectin and moxidectin against SARS-CoV-2 receptors using molecular docking and molecular dynamics simulation, GSC Biological and Pharmaceutical Sciences, doi:10.30574/gscbps.2024.26.1.0030.
8.
Zhao et al., Identification of the shared gene signatures between pulmonary fibrosis and pulmonary hypertension using bioinformatics analysis, Frontiers in Immunology, doi:10.3389/fimmu.2023.1197752.
9.
Vottero et al., Computational Prediction of the Interaction of Ivermectin with Fibrinogen, Molecular Sciences, doi:10.3390/ijms241411449.
10.
Chellasamy et al., Docking and molecular dynamics studies of human ezrin protein with a modelled SARS-CoV-2 endodomain and their interaction with potential invasion inhibitors, Journal of King Saud University - Science, doi:10.1016/j.jksus.2022.102277.
11.
Umar et al., Inhibitory potentials of ivermectin, nafamostat, and camostat on spike protein and some nonstructural proteins of SARS-CoV-2: Virtual screening approach, Jurnal Teknologi Laboratorium, doi:10.29238/teknolabjournal.v11i1.344.
12.
Alvarado et al., Interaction of the New Inhibitor Paxlovid (PF-07321332) and Ivermectin With the Monomer of the Main Protease SARS-CoV-2: A Volumetric Study Based on Molecular Dynamics, Elastic Networks, Classical Thermodynamics and SPT, Computational Biology and Chemistry, doi:10.1016/j.compbiolchem.2022.107692.
13.
Aminpour et al., In Silico Analysis of the Multi-Targeted Mode of Action of Ivermectin and Related Compounds, Computation, doi:10.3390/computation10040051.
14.
Parvez et al., Insights from a computational analysis of the SARS-CoV-2 Omicron variant: Host–pathogen interaction, pathogenicity, and possible drug therapeutics, Immunity, Inflammation and Disease, doi:10.1002/iid3.639.
15.
Francés-Monerris et al., Microscopic interactions between ivermectin and key human and viral proteins involved in SARS-CoV-2 infection, Physical Chemistry Chemical Physics, doi:10.1039/D1CP02967C.
16.
González-Paz et al., Comparative study of the interaction of ivermectin with proteins of interest associated with SARS-CoV-2: A computational and biophysical approach, Biophysical Chemistry, doi:10.1016/j.bpc.2021.106677.
17.
González-Paz (B) et al., Structural Deformability Induced in Proteins of Potential Interest Associated with COVID-19 by binding of Homologues present in Ivermectin: Comparative Study Based in Elastic Networks Models, Journal of Molecular Liquids, doi:10.1016/j.molliq.2021.117284.
18.
Rana et al., A Computational Study of Ivermectin and Doxycycline Combination Drug Against SARS-CoV-2 Infection, Research Square, doi:10.21203/rs.3.rs-755838/v1.
19.
Muthusamy et al., Virtual Screening Reveals Potential Anti-Parasitic Drugs Inhibiting the Receptor Binding Domain of SARS-CoV-2 Spike protein, Journal of Virology & Antiviral Research, www.scitechnol.com/abstract/virtual-screening-reveals-potential-antiparasitic-drugs-inhibiting-the-receptor-binding-domain-of-sarscov2-spike-protein-16398.html.
20.
Qureshi et al., Mechanistic insights into the inhibitory activity of FDA approved ivermectin against SARS-CoV-2: old drug with new implications, Journal of Biomolecular Structure and Dynamics, doi:10.1080/07391102.2021.1906750.
21.
Schöning et al., Highly-transmissible Variants of SARS-CoV-2 May Be More Susceptible to Drug Therapy Than Wild Type Strains, Research Square, doi:10.21203/rs.3.rs-379291/v1.
22.
Bello et al., Elucidation of the inhibitory activity of ivermectin with host nuclear importin α and several SARS-CoV-2 targets, Journal of Biomolecular Structure and Dynamics, doi:10.1080/07391102.2021.1911857.
23.
Udofia et al., In silico studies of selected multi-drug targeting against 3CLpro and nsp12 RNA-dependent RNA-polymerase proteins of SARS-CoV-2 and SARS-CoV, Network Modeling Analysis in Health Informatics and Bioinformatics, doi:10.1007/s13721-021-00299-2.
24.
Choudhury et al., Exploring the binding efficacy of ivermectin against the key proteins of SARS-CoV-2 pathogenesis: an in silico approach, Future Medicine, doi:10.2217/fvl-2020-0342.
25.
Kern et al., Modeling of SARS-CoV-2 Treatment Effects for Informed Drug Repurposing, Frontiers in Pharmacology, doi:10.3389/fphar.2021.625678.
26.
Saha et al., The Binding mechanism of ivermectin and levosalbutamol with spike protein of SARS-CoV-2, Structural Chemistry, doi:10.1007/s11224-021-01776-0.
27.
Eweas et al., Molecular Docking Reveals Ivermectin and Remdesivir as Potential Repurposed Drugs Against SARS-CoV-2, Frontiers in Microbiology, doi:10.3389/fmicb.2020.592908.
28.
Parvez (B) et al., Prediction of potential inhibitors for RNA-dependent RNA polymerase of SARS-CoV-2 using comprehensive drug repurposing and molecular docking approach, International Journal of Biological Macromolecules, doi:10.1016/j.ijbiomac.2020.09.098.
29.
Francés-Monerris (B) et al., Has Ivermectin Virus-Directed Effects against SARS-CoV-2? Rationalizing the Action of a Potential Multitarget Antiviral Agent, ChemRxiv, doi:10.26434/chemrxiv.12782258.v1.
30.
Kalhor et al., Repurposing of the approved small molecule drugs in order to inhibit SARS-CoV-2 S protein and human ACE2 interaction through virtual screening approaches, Journal of Biomolecular Structure and Dynamics, doi:10.1080/07391102.2020.1824816.
31.
Swargiary, A., Ivermectin as a promising RNA-dependent RNA polymerase inhibitor and a therapeutic drug against SARS-CoV2: Evidence from in silico studies, Research Square, doi:10.21203/rs.3.rs-73308/v1.
32.
Maurya, D., A Combination of Ivermectin and Doxycycline Possibly Blocks the Viral Entry and Modulate the Innate Immune Response in COVID-19 Patients, American Chemical Society (ACS), doi:10.26434/chemrxiv.12630539.v1.
33.
Lehrer et al., Ivermectin Docks to the SARS-CoV-2 Spike Receptor-binding Domain Attached to ACE2, In Vivo, 34:5, 3023-3026, doi:10.21873/invivo.12134.
34.
Suravajhala et al., Comparative Docking Studies on Curcumin with COVID-19 Proteins, Preprints, doi:10.20944/preprints202005.0439.v3.
35.
Kofler et al., M-Motif, a potential non-conventional NLS in YAP/TAZ and other cellular and viral proteins that inhibits classic protein import, iScience, doi:10.1016/j.isci.2025.112105.
36.
Shahin et al., The selective effect of Ivermectin on different human coronaviruses; in-vitro study, Research Square, doi:10.21203/rs.3.rs-4180797/v1.
37.
Jitobaom et al., Identification of inositol monophosphatase as a broad‐spectrum antiviral target of ivermectin, Journal of Medical Virology, doi:10.1002/jmv.29552.
38.
Fauquet et al., Microfluidic Diffusion Sizing Applied to the Study of Natural Products and Extracts That Modulate the SARS-CoV-2 Spike RBD/ACE2 Interaction, Molecules, doi:10.3390/molecules28248072.
39.
García-Aguilar et al., In Vitro Analysis of SARS-CoV-2 Spike Protein and Ivermectin Interaction, International Journal of Molecular Sciences, doi:10.3390/ijms242216392.
40.
Liu et al., SARS-CoV-2 viral genes Nsp6, Nsp8, and M compromise cellular ATP levels to impair survival and function of human pluripotent stem cell-derived cardiomyocytes, Stem Cell Research & Therapy, doi:10.1186/s13287-023-03485-3.
41.
Boschi et al., SARS-CoV-2 Spike Protein Induces Hemagglutination: Implications for COVID-19 Morbidities and Therapeutics and for Vaccine Adverse Effects, bioRxiv, doi:10.1101/2022.11.24.517882.
42.
De Forni et al., Synergistic drug combinations designed to fully suppress SARS-CoV-2 in the lung of COVID-19 patients, PLoS ONE, doi:10.1371/journal.pone.0276751.
43.
Saha (B) et al., Manipulation of Spray-Drying Conditions to Develop an Inhalable Ivermectin Dry Powder, Pharmaceutics, doi:10.3390/pharmaceutics14071432.
44.
Jitobaom (B) et al., Synergistic anti-SARS-CoV-2 activity of repurposed anti-parasitic drug combinations, BMC Pharmacology and Toxicology, doi:10.1186/s40360-022-00580-8.
45.
Croci et al., Liposomal Systems as Nanocarriers for the Antiviral Agent Ivermectin, International Journal of Biomaterials, doi:10.1155/2016/8043983.
46.
Zheng et al., Red blood cell-hitchhiking mediated pulmonary delivery of ivermectin: Effects of nanoparticle properties, International Journal of Pharmaceutics, doi:10.1016/j.ijpharm.2022.121719.
47.
Delandre et al., Antiviral Activity of Repurposing Ivermectin against a Panel of 30 Clinical SARS-CoV-2 Strains Belonging to 14 Variants, Pharmaceuticals, doi:10.3390/ph15040445.
48.
Liu (B) et al., Genome-wide analyses reveal the detrimental impacts of SARS-CoV-2 viral gene Orf9c on human pluripotent stem cell-derived cardiomyocytes, Stem Cell Reports, doi:10.1016/j.stemcr.2022.01.014.
49.
Segatori et al., Effect of Ivermectin and Atorvastatin on Nuclear Localization of Importin Alpha and Drug Target Expression Profiling in Host Cells from Nasopharyngeal Swabs of SARS-CoV-2- Positive Patients, Viruses, doi:10.3390/v13102084.
50.
Jitobaom (C) et al., Favipiravir and Ivermectin Showed in Vitro Synergistic Antiviral Activity against SARS-CoV-2, Research Square, doi:10.21203/rs.3.rs-941811/v1.
51.
Munson et al., Niclosamide and ivermectin modulate caspase-1 activity and proinflammatory cytokine secretion in a monocytic cell line, British Society For Nanomedicine Early Career Researcher Summer Meeting, 2021, web.archive.org/web/20230401070026/https://michealmunson.github.io/COVID.pdf.
52.
Mountain Valley MD, Mountain Valley MD Receives Successful Results From BSL-4 COVID-19 Clearance Trial on Three Variants Tested With Ivectosol™, www.globenewswire.com/en/news-release/2021/05/18/2231755/0/en/Mountain-Valley-MD-Receives-Successful-Results-From-BSL-4-COVID-19-Clearance-Trial-on-Three-Variants-Tested-With-Ivectosol.html.
53.
Yesilbag et al., Ivermectin also inhibits the replication of bovine respiratory viruses (BRSV, BPIV-3, BoHV-1, BCoV and BVDV) in vitro, Virus Research, doi:10.1016/j.virusres.2021.198384.
54.
Mody et al., Identification of 3-chymotrypsin like protease (3CLPro) inhibitors as potential anti-SARS-CoV-2 agents, Communications Biology, doi:10.1038/s42003-020-01577-x.
55.
Jeffreys et al., Remdesivir-ivermectin combination displays synergistic interaction with improved in vitro activity against SARS-CoV-2, International Journal of Antimicrobial Agents, doi:10.1016/j.ijantimicag.2022.106542.
56.
Surnar et al., Clinically Approved Antiviral Drug in an Orally Administrable Nanoparticle for COVID-19, ACS Pharmacol. Transl. Sci., doi:10.1021/acsptsci.0c00179.
57.
Li et al., Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment, J. Cellular Physiology, doi:10.1002/jcp.30055.
58.
Caly et al., The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro, Antiviral Research, doi:10.1016/j.antiviral.2020.104787.
59.
Zhang et al., Ivermectin inhibits LPS-induced production of inflammatory cytokines and improves LPS-induced survival in mice, Inflammation Research, doi:10.1007/s00011-008-8007-8.
60.
Gao et al., Ivermectin ameliorates acute myocarditis via the inhibition of importin-mediated nuclear translocation of NF-κB/p65, International Immunopharmacology, doi:10.1016/j.intimp.2024.112073.
61.
Abd-Elmawla et al., Suppression of NLRP3 inflammasome by ivermectin ameliorates bleomycin-induced pulmonary fibrosis, Journal of Zhejiang University-SCIENCE B, doi:10.1631/jzus.B2200385.
62.
Uematsu et al., Prophylactic administration of ivermectin attenuates SARS-CoV-2 induced disease in a Syrian Hamster Model, The Journal of Antibiotics, doi:10.1038/s41429-023-00623-0.
63.
Albariqi et al., Pharmacokinetics and Safety of Inhaled Ivermectin in Mice as a Potential COVID-19 Treatment, International Journal of Pharmaceutics, doi:10.1016/j.ijpharm.2022.121688.
64.
Errecalde et al., Safety and Pharmacokinetic Assessments of a Novel Ivermectin Nasal Spray Formulation in a Pig Model, Journal of Pharmaceutical Sciences, doi:10.1016/j.xphs.2021.01.017.
65.
Madrid et al., Safety of oral administration of high doses of ivermectin by means of biocompatible polyelectrolytes formulation, Heliyon, doi:10.1016/j.heliyon.2020.e05820.
66.
Ma et al., Ivermectin contributes to attenuating the severity of acute lung injury in mice, Biomedicine & Pharmacotherapy, doi:10.1016/j.biopha.2022.113706.
67.
de Melo et al., Attenuation of clinical and immunological outcomes during SARS-CoV-2 infection by ivermectin, EMBO Mol. Med., doi:10.15252/emmm.202114122.
68.
Arévalo et al., Ivermectin reduces in vivo coronavirus infection in a mouse experimental model, Scientific Reports, doi:10.1038/s41598-021-86679-0.
69.
Chaccour et al., Nebulized ivermectin for COVID-19 and other respiratory diseases, a proof of concept, dose-ranging study in rats, Scientific Reports, doi:10.1038/s41598-020-74084-y.
70.
Yan et al., Anti-inflammatory effects of ivermectin in mouse model of allergic asthma, Inflammation Research, doi:10.1007/s00011-011-0307-8.
71.
Götz et al., Influenza A viruses escape from MxA restriction at the expense of efficient nuclear vRNP import, Scientific Reports, doi:10.1038/srep23138.
72.
Tay et al., Nuclear localization of dengue virus (DENV) 1–4 non-structural protein 5; protection against all 4 DENV serotypes by the inhibitor Ivermectin, Antiviral Research, doi:10.1016/j.antiviral.2013.06.002.
73.
Wagstaff et al., Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus, Biochemical Journal, doi:10.1042/BJ20120150.
74.
Wagstaff (B) et al., An AlphaScreen®-Based Assay for High-Throughput Screening for Specific Inhibitors of Nuclear Import, SLAS Discovery, doi:10.1177/1087057110390360.
75.
Barrows et al., A Screen of FDA-Approved Drugs for Inhibitors of Zika Virus Infection, Cell Host & Microbe, doi:10.1016/j.chom.2016.07.004.
76.
Yang et al., The broad spectrum antiviral ivermectin targets the host nuclear transport importin α/β1 heterodimer, Antiviral Research, doi:10.1016/j.antiviral.2020.104760.
77.
Mastrangelo et al., Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug, Journal of Antimicrobial Chemotherapy, doi:10.1093/jac/dks147.
78.
Varghese et al., Discovery of berberine, abamectin and ivermectin as antivirals against chikungunya and other alphaviruses, Antiviral Research, doi:10.1016/j.antiviral.2015.12.012.
79.
Bennett et al., Role of a nuclear localization signal on the minor capsid Proteins VP2 and VP3 in BKPyV nuclear entry, Virology, doi:10.1016/j.virol.2014.10.013.
80.
Kosyna et al., The importin α/β-specific inhibitor Ivermectin affects HIF-dependent hypoxia response pathways, Biological Chemistry, doi:10.1515/hsz-2015-0171.
81.
Scheim et al., Sialylated Glycan Bindings from SARS-CoV-2 Spike Protein to Blood and Endothelial Cells Govern the Severe Morbidities of COVID-19, International Journal of Molecular Sciences, doi:10.3390/ijms242317039.
82.
Liu (C) et al., Crosstalk between neutrophil extracellular traps and immune regulation: insights into pathobiology and therapeutic implications of transfusion-related acute lung injury, Frontiers in Immunology, doi:10.3389/fimmu.2023.1324021.
83.
Shouman et al., SARS-CoV-2-associated lymphopenia: possible mechanisms and the role of CD147, Cell Communication and Signaling, doi:10.1186/s12964-024-01718-3.
84.
Scheim (B), D., Ivermectin for COVID-19 Treatment: Clinical Response at Quasi-Threshold Doses Via Hypothesized Alleviation of CD147-Mediated Vascular Occlusion, SSRN, doi:10.2139/ssrn.3636557.
85.
Scheim (C), D., From Cold to Killer: How SARS-CoV-2 Evolved without Hemagglutinin Esterase to Agglutinate and Then Clot Blood Cells, Center for Open Science, doi:10.31219/osf.io/sgdj2.
86.
Behl et al., CD147-spike protein interaction in COVID-19: Get the ball rolling with a novel receptor and therapeutic target, Science of The Total Environment, doi:10.1016/j.scitotenv.2021.152072.
87.
DiNicolantonio et al., Ivermectin may be a clinically useful anti-inflammatory agent for late-stage COVID-19, Open Heart, doi:10.1136/openhrt-2020-001350.
88.
Mothae et al., SARS-CoV-2 host-pathogen interactome: insights into more players during pathogenesis, Virology, doi:10.1016/j.virol.2025.110607.
89.
Hazan et al., Treatment with Ivermectin Increases the Population of Bifidobacterium in the Gut, ACG 2023, acg2023posters.eventscribe.net/posterspeakers.asp.
Francés-Monerris et al., 5 Oct 2021, peer-reviewed, 8 authors.
In silico studies are an important part of preclinical research, however results may be very different in vivo.
Microscopic interactions between ivermectin and key human and viral proteins involved in SARS-CoV-2 infection
Physical Chemistry Chemical Physics, doi:10.1039/d1cp02967c
The identification of chemical compounds able to bind specific sites of the human/viral proteins involved in the SARS-CoV-2 infection cycle is a prerequisite to design effective antiviral drugs. Here we conduct a molecular dynamics study with the aim to assess the interactions of ivermectin, an antiparasitic drug with broad-spectrum antiviral activity, with the human Angiotensin-Converting Enzyme 2 (ACE2), the viral 3CL pro and PL pro proteases, and the viral SARS Unique Domain (SUD). The drug/target interactions have been characterized in silico by describing the nature of the non-covalent interactions found and by measuring the extent of their time duration along the MD simulation. Results reveal that the ACE2 protein and the ACE2/RBD aggregates form the most persistent interactions with ivermectin, while the binding with the remaining viral proteins is more limited and unspecific.
Conflicts of interest There are no conflicts to declare.
References
Ahmed, Karim, Ross, Hossain, Clemens et al., A five-day course of ivermectin for the treatment of COVID-19 may reduce the duration of illness, Int. J. Infect. Dis
Arafet, Serrano-Aparicio, Lodola, Mulholland, Gonza ´lez et al., Mechanism of inhibition of SARS-CoV-2 M pro by N3 peptidyl Michael acceptor explained by QM/MM simulations and design of new derivatives with tunable chemical reactivity, Chem. Sci
Are ´valo, Pagotto, Po ´rfido, Daghero, Segovia et al., Ivermectin reduces in vivo coronavirus infection in a mouse experimental model, Sci. Rep
Azam, Taban, Eid, Iqbal, Alam et al., An in-silico analysis of ivermectin interaction with potential SARS-CoV-2 targets and host nuclear importin a, J. Biomol. Struct. Dyn
Ba ´ez-Santos, Mielech, Deng, Baker, Mesecar, Catalytic function and substrate specificity of the papain-like protease domain of nsp3 from the Middle East respiratory syndrome coronavirus, J. Virol
Ba ´ez-Santos, St, John, Mesecar, The SARS-coronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds, Antiviral Res
Barros, Casalino, Gaieb, Dommer, Wang et al., The flexibility of ACE2 in the context of SARS-CoV-2 infection, Biophys. J
Be ´ke ´s, Ekkebus, Ovaa, Huang, Lima, Recognition of Lys48-linked di-ubiquitin and deubiquitinating activities of the SARS coronavirus papainlike protease, Mol. Cell
Becke, A new mixing of Hartree-Fock and local densityfunctional theories, J. Chem. Phys
Bedford, Enria, Giesecke, Heymann, Ihekweazu et al., COVID-19: towards controlling of a pandemic, Lancet
Behera, Patro, Singh, Chandanshive, Ravikumar et al., Role of ivermectin in the prevention of SARS-CoV-2 infection among healthcare workers in India: A matched case-control study, PLoS One
Bello, Elucidation of the inhibitory activity of ivermectin with host nuclear importin a and several SARS-CoV-2 targets, J. Biomol. Struct. Dyn
Bhardwaj, Singh, Das, Purohit, Evaluation of acridinedione analogs as potential SARS-CoV-2 main protease inhibitors and their comparison with repurposed anti-viral drugs, Comput. Biol. Med
Bhardwaj, Singh, Sharma, Rajendran, Purohit et al., Bioactive Molecules of Tea as Potential Inhibitors for RNA-Dependent RNA Polymerase of SARS-CoV-2, Front. Med
Bhardwaj, Singh, Sharma, Rajendran, Purohit et al., Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors, J. Biomol. Struct. Dyn
Caly, Druce, Catton, Jans, Wagstaff, The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro, Antiviral Res
Case, Betz, Cerutti, Cheatham, Darden et al., None, Amber
Chaccour, Casellas, Blanco-Di Matteo, Pineda, Fernandez-Montero et al., The effect of early treatment with ivermectin on viral load, symptoms and humoral response in patients with non-severe COVID-19: A pilot, double-blind, placebo-controlled, randomized clinical trial, EClinicalMedicine
Chaccour, Hammann, Ramo ´n-Garcı ´a, Rabinovich, Ivermectin and COVID-19: keeping rigor in times of urgency, Am. J. Trop. Med. Hyg
Chang, Yan, Xie, Gao, Song et al., Different roles for two ubiquitin-like domains of ISG15 in protein modification, J. Biol. Chem
Choudhury, Das, Patra, Bhattacharya, Ghosh et al., Exploring the binding efficacy of ivermectin against the key proteins of SARS-CoV-2 pathogenesis: an in silico approach, Future Virol
Dasgupta, Sen, Bakshi, Dasgupta, Manna et al., Nsp7 and Spike Glycoprotein of SARS-CoV-2 are envisaged as Potential Targets of Vitamin D and Ivermectin, Preprints, doi:10.20944/preprints202005.0084.v1
Elmezayen, Al-Obaidi, S -Ahin, Yelekçi, Drug repurposing for coronavirus (COVID-19): in silico screening of known drugs against coronavirus 3CL hydrolase and protease enzymes, J. Biomol. Struct. Dyn
Eweas, Alhossary, Abdel-Moneim, Molecular Docking Reveals Ivermectin and Remdesivir as Potential Repurposed Drugs Against SARS-CoV-2, Front. Microbiol
Feller, Zhang, Pastor, Brooks, Constant pressure molecular dynamics simulation: The Langevin piston method, J. Chem. Phys
France ´s-Monerris, Hognon, Miclot, Garcı ´a-Iriepa, Iriepa et al., Molecular Basis of SARS-CoV-2 Infection and Rational Design of Potential Antiviral Agents: Modeling and Simulation Approaches, J. Proteome Res
Galindo-Murillo, Robertson, Zgarbova, ˇponer, None
Gao, Yan, Huang, Liu, Zhao et al., Structure of the RNA-dependent RNA polymerase from COVID-19 virus, Science
Garcı ´a-Iriepa, Hognon, France ´s-Monerris, Iriepa, Miclot et al., Thermodynamics of the Interaction between the Spike Protein of Severe Acute Respiratory Syndrome Coronavirus-2 and the Receptor of Human Angiotensin-Converting Enzyme 2. Effects of Possible Ligands, J. Phys. Chem. Lett
Gordon, Jang, Bouhaddou, Xu, Obernier et al., A SARS-CoV-2 protein interaction map reveals targets for drug repurposing, Nature
Gray, High-resolution protein-protein docking, Curr. Opin. Struct. Biol
Health, Clinical Trials database
Hegazy, Alghamdi, Shouman, Hegazy, Mass Chemoprophylaxis with Ivermectin against COVID-19 Pandemic: Review and Authors' Perspective, Acta Sci. Med. Sci
Heidary, Gharebaghi, Ivermectin: a systematic review from antiviral effects to COVID-19 complementary regimen, J. Antibiot
Hete, Van Der, Spoel, Efficient docking of peptides to proteins without prior knowledge of the binding site, Protein Sci
Hillen, Kokic, Farnung, Dienemann, Tegunov et al., Structure of replicating SARS-CoV-2 polymerase, Nature
Hognon, Miclot, Iriepa, France ´s-Monerris, Grandemange et al., Role of RNA Guanine Quadruplexes in Favoring the Dimerization of SARS Unique Domain in Coronaviruses, J. Phys. Chem. Lett
Hopkins, Le Grand, Walker, Roitberg, Long-time-step molecular dynamics through hydrogen mass repartitioning, J. Chem. Theory Comput
Hornak, Abel, Okur, Strockbine, Roitberg et al., Comparison of multiple Amber force fields and development of improved protein backbone parameters, Proteins: Struct., Funct., Bioinf
Hosseini, Chen, Xiao, Wang, Computational molecular docking and virtual screening revealed promising SARS-CoV-2 drugs, Precis, Clin. Med
Hou, Chiba, Halfmann, Ehre, Kuroda et al., SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo, Science
Hsu, Kuo, Chang, Chang, Chou et al., Mechanism of the maturation process of SARS-CoV 3CL protease, J. Biol. Chem
Huang, Chen, Shaffer, Crystal structures of human GlyRa3 bound to ivermectin, Structure
Humphrey, Dalke, Schulten, VMD: Visual molecular dynamics, J. Mol. Graphics
Huynh, Wang, Luan, Silico Exploration of Molecular Mechanism of Clinically Oriented Drugs for Possibly Inhibiting SARS-CoV-2's Main Protease, J. Phys. Chem. Lett
Islam, Parves, Paul, Uddin, Rahman et al., A Molecular Modeling Approach to Identify Effective Antiviral Phytochemicals against the Main Protease of SARS-CoV-2, J. Biomol. Struct. Dyn
Ivani, Dans, Noy, Pe ´rez, Faustino et al., PARMBSC1: A refined force-field for DNA simulations, Nat. Methods
Jin, Du, Xu, Deng, Liu et al., Structure of Mpro from COVID-19 virus and discovery of its inhibitors, Nature
Jin, Feng, Rong, Pan, Inaba et al., The antiparasitic drug ivermectin is a novel FXR ligand that regulates metabolism, Nat. Commun
Jo, Kim, Shin, Kim, Inhibition of SARS-CoV 3CL protease by flavonoids, J. Enzyme Inhib. Med. Chem
Jorgensen, Chandrasekhar, Madura, Impey, Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys
Khan, Ali, Wang, Irfan, Khan et al., Marine natural compounds as potents inhibitors against the main protease of SARS-CoV-2. A molecular dynamic study, J. Biomol. Struct. Dyn
Khan, Khan, Debnath, Nath, Al Mahtab et al., Ivermectin Treatment May Improve the Prognosis of Patients With COVID-19, Arch. Bronconeumol
Krolewiecki, Lifschitz, Moragas, Travacio, Valentini et al., Antiviral effect of high-dose ivermectin in adults with COVID-19: A proof-of-concept randomized trial, EClinicalMedicine
Kusov, Tan, Alvarez, Enjuanes, Hilgenfeld, A G-quadruplex-binding macrodomain within the ''SARSunique domain'' is essential for the activity of the SARS-coronavirus replication-transcription complex, Virology
Lai, Hanchapola, Steer, Smith, Angiotensin-converting enzyme 2 ectodomain shedding cleavage-site identification: Determinants and constraints, Biochemistry
Lan, Ge, Yu, Shan, Zhou et al., Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor, Nature
Lehrer, Rheinstein, Ivermectin Docks to the SARS-CoV-2 Spike Receptor-binding Domain Attached to ACE2, Vivo
Lei, Kusov, Hilgenfeld, Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein, Antiviral Res
Lesk, Chothia, How different amino acid sequences determine similar protein structures: The structure and evolutionary dynamics of the globins, J. Mol. Biol
Li, Miao, Li, Zhang, Kainov et al., Ivermectin effectively inhibits hepatitis E virus replication, requiring the host nuclear transport protein importin a1, Arch. Virol
Macchiagodena, Pagliai, Andreini, Rosato, Procacci, Upgrading and Validation of the AMBER Force Field for Histidine and Cysteine Zinc(II)-Binding Residues in Sites with Four Protein Ligands, J. Chem. Inf. Model
Macchiagodena, Pagliai, Procacci, Identification of potential binders of the main protease 3CLpro of the COVID-19 via structure-based ligand design and molecular modeling, Chem. Phys. Lett
Mahanta, Chowdhury, Gogoi, Goswami, Borah et al., Potential anti-viral activity of approved repurposed drug against main protease of SARS-CoV-2: an in silico based approach, J. Biomol. Struct. Dyn
Mahmud, Rahman, Alam, Ahmed, Kabir et al., Ivermectin in combination with doxycycline for treating COVID-19 symptoms: a randomized trial, J. Int. Med. Res
Maier, Martinez, Kasavajhala, Wickstrom, Hauser et al., ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB, J. Chem. Theory Comput
Martyna, Tobias, Klein, Constant pressure molecular dynamics algorithms, J. Chem. Phys
Maurya, A Combination of Ivermectin and Doxycycline Possibly Blocks the Viral Entry and Modulate the Innate Immune Response in COVID-19 Patients, doi:10.26434/chemrxiv.12630539.v1
Mercurio, Tragni, Busto, De Grassi, Pierri, Protein structure analysis of the interactions between SARS-CoV-2 spike protein and the human ACE2 receptor: from conformational changes to novel neutralizing antibodies, Cell. Mol. Life Sci
Mody, Ho, Wills, Mawri, Lawson et al., Identification of 3-chymotrypsin like protease (3CLPro) inhibitors as potential anti-SARS-CoV-2 agents, Commun. Biol
Moeller, Shi, Demir, Banerjee, Yin et al., Structure and dynamics of SARS-CoV-2 proofreading exoribonuclease ExoN
Moliner, Revealing the molecular mechanisms of proteolysis of SARS-CoV-2 Mpro by QM/ MM computational methods, Chem. Sci
Morris, Huey, Lindstrom, Sanner, Belew et al., AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, J. Comput. Chem
Mudatsir, Yufika, Nainu, Frediansyah, Megawati et al., Antiviral Activity of Ivermectin Against SARS-CoV-2: An Old-Fashioned Dog with a New Trick-A Literature Review, Sci. Pharm
Muramatsu, Takemoto, Kim, Wang, Nishii et al., SARS-CoV 3CL protease cleaves its C-terminal autoprocessing site by novel subsite cooperativity, Proc. Natl. Acad. Sci. U. S. A
Olliaro, What does 95% COVID-19 vaccine efficacy really mean?, Lancet Infect. Dis
Otyepka, Jurec, Cheatham, Assessing the Current State of Amber Force Field Modifications for DNA, J. Chem. Theory Comput
Pen ˜a-Silva, Duffull, Steer, Jaramillo-Rincon, Gwee et al., Pharmacokinetic considerations on the repurposing of ivermectin for treatment of COVID-19, Br, J. Clin. Pharmacol
Phillips, Braun, Wang, Gumbart, Tajkhorshid et al., Scalable molecular dynamics with NAMD, J. Comput. Chem
Prabakaran, Xiao, Dimitrov, A model of the ACE2 structure and function as a SARS-CoV receptor, Biochem. Biophys. Res. Commun
Ramajayam, Tan, Liang, Recent development of 3C and 3CL protease inhibitors for anticoronavirus and anti-picornavirus drug discovery, Biochem. Soc. Trans
Ramos-Guzma ´n, Ruiz-Pernı ´a, Tun ˜o ´n, A microscopic description of SARS-CoV-2 main protease inhibition with Michael acceptors. Strategies for improving inhibitor design, Chem. Sci
Ramos-Guzma ´n, Ruiz-Pernı ´a, Tun ˜o ´n, Multiscale simulations of SARS-CoV-2 3CL protease inhibition with aldehyde derivatives. Role of protein and inhibitor conformational changes in the reaction mechanism, ACS Catal
Ramos-Guzma ´n, Ruiz-Pernı ´a, Tun ˜o ´n, Ruiz-Pernı ´a, Tun ˜o ´n, Unraveling the SARS-CoV-2 Main Protease Mechanism Using Multiscale DFT/MM Methods, ACS Catal
Ratia, Kilianski, Baez-Santos, Baker, Mesecar, Structural basis for the ubiquitin-linkage specificity and deISGylating activity of SARS-CoV papain-like protease, PLoS Pathog
Ratia, Pegan, Takayama, Sleeman, Coughlin et al., A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication, Proc. Natl. Acad. Sci. U. S. A
Roe, Cheatham, PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data, J. Chem. Theory Comput
Saha, Raihan, The binding mechanism of ivermectin and levosalbutamol with spike protein of SARS-CoV-2, Struct. Chem
Shang, Wan, Luo, Ye, Geng et al., Cell entry mechanisms of SARS-CoV-2, Proc. Natl. Acad. Sci. U. S. A
Shang, Ye, Shi, Wan, Luo et al., Structural basis of receptor recognition by SARS-CoV-2, Nature
Sharma, Bhardwaj, Singh, Rajendran, Purohit et al., An in-silico evaluation of different bioactive molecules of tea for their inhibition potency against non structural protein-15 of SARS-CoV-2, Food Chem
Sharun, Dhama, Patel, Pathak, Tiwari et al., Ivermectin, a new candidate therapeutic against SARS-CoV-2/COVID-19, Ann. Clin. Microbiol. Antimicrob
Shin, Mukherjee, Grewe, Bojkova, Baek et al., Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity, Nature
Shoemark, Colenso, Toelzer, Gupta, Sessions et al., Molecular Simulations suggest Vitamins, Retinoids and Steroids as Ligands of the Free Fatty Acid Pocket of the SARS-CoV-2 Spike Protein, Angew. Chem., Int. Ed
Singh, Bhardwaj, Das, Purohit, A computational approach for rational discovery of inhibitors for non-structural protein 1 of SARS-CoV-2, Comput. Biol. Med
Singh, Bhardwaj, Sharma, Purohit, Kumar, In-silico evaluation of bioactive compounds from tea as potential SARS-CoV-2 nonstructural protein 16 inhibitors, J. Tradit. Complement. Med, doi:10.1016/j.jtcme.2021.05.005
Sk, Roy, Jonniya, Poddar, Kar, Elucidating biophysical basis of binding of inhibitors to SARS-CoV-2 main protease by using molecular dynamics simulations and free energy calculations, J. Biomol. Struct. Dyn
Sztain, Amaro, Mccammon, Elucidation of Cryptic and Allosteric Pockets within the SARS-CoV-2 Main Protease, J. Chem. Inf. Model
Tan, Vonrhein, Smart, Bricogne, Bollati et al., The SARS-Unique Domain (SUD) of SARS coronavirus contains two macrodomains that bind G-quadruplexes, PLoS Pathog
Trisolini, Gambacorta, Gorgoglione, Montaruli, Laera et al., FAD/NADH Dependent Oxidoreductases: From Different Amino Acid Sequences to Similar Protein Shapes for Playing an Ancient Function, J. Clin. Med
Trott, Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem
Tu, Chien, Yarmishyn, Lin, Luo et al., A Review of SARS-CoV-2 and the Ongoing Clinical Trials, Int. J. Mol. Sci
Turon ˇova, Sikora, Schu ¨rmann, Hagen, Welsch et al., In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges, Science
Wang, Cieplak, Kollman, How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?, J. Comput. Chem
Wang, Wolf, Caldwell, Kollman, Case, Development and testing of a general amber force field, J. Comput. Chem
Wang, Zhang, Wu, Niu, Song et al., Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2, Cell
Watkins, Preventing a covid-19 pandemic, BMJ
Xie, Liu, Liu, Zhang, Zou et al., Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera, Nat. Med
Yan, Xu, Zou, Fully blind docking at the atomic level for protein-peptide complex structure prediction, Structure
Yan, Zhang, Li, Xia, Guo et al., Structural basis for the recognition of SARS-CoV-2 by fulllength human ACE2, Science
Yang, Atkinson, Wang, Lee, Bogoyevitch et al., The broad spectrum antiviral ivermectin targets the host nuclear transport importin a/b1 heterodimer, Antiviral Res
Yang, Yang, Ding, Liu, Lou et al., The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor, Proc. Natl. Acad. Sci. U. S. A
Yuriev, Holien, Ramsland, Improvements, trends, and new ideas in molecular docking: 2012-2013 in review, J. Mol. Recognit
Zgarbova, ˇponer, Otyepka, Cheatham, Galindo-Murillo et al., Refinement of the Sugar-Phosphate Backbone Torsion Beta for AMBER Force Fields Improves the Description of Z-and B-DNA, J. Chem. Theory Comput
Zhang, Lin, Sun, Curth, Drosten et al., Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved a-ketoamide inhibitors, Science
Zhou, Hou, Shen, Huang, Martin et al., Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2, Cell Discovery
Zhou, Yang, Wang, Hu, Zhang et al., A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature
DOI record:
{
"DOI": "10.1039/d1cp02967c",
"ISSN": [
"1463-9076",
"1463-9084"
],
"URL": "http://dx.doi.org/10.1039/D1CP02967C",
"abstract": "<jats:p>This study characterizes the interactions between the antiparasitic drug ivermectin and protein targets relevant in the replication cycle of SARS-CoV-2. The most persistent interactions are found for the human ACE2 and viral RBD proteins.</jats:p>",
"author": [
{
"ORCID": "http://orcid.org/0000-0001-8232-4989",
"affiliation": [
{
"name": "Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France"
},
{
"name": "Departament de Química Física, Universitat de València, 46100 Burjassot, Spain"
}
],
"authenticated-orcid": false,
"family": "Francés-Monerris",
"given": "Antonio",
"sequence": "first"
},
{
"ORCID": "http://orcid.org/0000-0002-7577-8242",
"affiliation": [
{
"name": "Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km 33,600, 28871 Alcalá de Henares (Madrid), Spain"
},
{
"name": "Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28871 Alcalá de Henares (Madrid), Spain"
}
],
"authenticated-orcid": false,
"family": "García-Iriepa",
"given": "Cristina",
"sequence": "additional"
},
{
"ORCID": "http://orcid.org/0000-0003-3475-9624",
"affiliation": [
{
"name": "Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km 33,600, 28871 Alcalá de Henares (Madrid), Spain"
},
{
"name": "Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km 33,600, 28871 Alcalá de Henares (Madrid), Spain"
}
],
"authenticated-orcid": false,
"family": "Iriepa",
"given": "Isabel",
"sequence": "additional"
},
{
"ORCID": "http://orcid.org/0000-0002-0200-5054",
"affiliation": [
{
"name": "Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France"
}
],
"authenticated-orcid": false,
"family": "Hognon",
"given": "Cécilia",
"sequence": "additional"
},
{
"affiliation": [
{
"name": "Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France"
},
{
"name": "Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceuticche, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy"
}
],
"family": "Miclot",
"given": "Tom",
"sequence": "additional"
},
{
"ORCID": "http://orcid.org/0000-0001-8773-2359",
"affiliation": [
{
"name": "Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceuticche, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy"
}
],
"authenticated-orcid": false,
"family": "Barone",
"given": "Giampaolo",
"sequence": "additional"
},
{
"ORCID": "http://orcid.org/0000-0001-9464-1463",
"affiliation": [
{
"name": "Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France"
},
{
"name": "Université de Paris and CNRS, ITODYS, F-75006, Paris, France"
}
],
"authenticated-orcid": false,
"family": "Monari",
"given": "Antonio",
"sequence": "additional"
},
{
"ORCID": "http://orcid.org/0000-0001-7158-7994",
"affiliation": [
{
"name": "Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km 33,600, 28871 Alcalá de Henares (Madrid), Spain"
},
{
"name": "Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28871 Alcalá de Henares (Madrid), Spain"
}
],
"authenticated-orcid": false,
"family": "Marazzi",
"given": "Marco",
"sequence": "additional"
}
],
"container-title": "Physical Chemistry Chemical Physics",
"container-title-short": "Phys. Chem. Chem. Phys.",
"content-domain": {
"crossmark-restriction": true,
"domain": [
"rsc.org"
]
},
"created": {
"date-parts": [
[
2021,
10,
5
]
],
"date-time": "2021-10-05T11:57:10Z",
"timestamp": 1633435030000
},
"deposited": {
"date-parts": [
[
2024,
4,
17
]
],
"date-time": "2024-04-17T18:57:07Z",
"timestamp": 1713380227000
},
"funder": [
{
"DOI": "10.13039/501100006302",
"award": [
"COVID-19 project 2020/00256/001"
],
"doi-asserted-by": "publisher",
"name": "Universidad de Alcalá"
},
{
"DOI": "10.13039/501100003359",
"award": [
"APOSTD/2019/149",
"GV/2020/226"
],
"doi-asserted-by": "publisher",
"name": "Generalitat Valenciana"
},
{
"DOI": "10.13039/501100004895",
"award": [
"APOSTD/2019/149"
],
"doi-asserted-by": "publisher",
"name": "European Social Fund"
},
{
"DOI": "10.13039/501100004837",
"award": [
"CTQ2017-87054-C2-2-P",
"IJC2019-039297-I"
],
"doi-asserted-by": "publisher",
"name": "Ministerio de Ciencia e Innovación"
},
{
"DOI": "10.13039/100008990",
"doi-asserted-by": "publisher",
"name": "Université de Lorraine"
},
{
"DOI": "10.13039/501100004794",
"doi-asserted-by": "publisher",
"name": "Centre National de la Recherche Scientifique"
}
],
"indexed": {
"date-parts": [
[
2024,
5,
3
]
],
"date-time": "2024-05-03T08:22:24Z",
"timestamp": 1714724544852
},
"is-referenced-by-count": 12,
"issue": "40",
"issued": {
"date-parts": [
[
2021
]
]
},
"journal-issue": {
"issue": "40",
"published-print": {
"date-parts": [
[
2021,
10,
20
]
]
}
},
"language": "en",
"license": [
{
"URL": "http://rsc.li/journals-terms-of-use",
"content-version": "am",
"delay-in-days": 642,
"start": {
"date-parts": [
[
2022,
10,
5
]
],
"date-time": "2022-10-05T00:00:00Z",
"timestamp": 1664928000000
}
}
],
"link": [
{
"URL": "http://pubs.rsc.org/en/content/articlepdf/2021/CP/D1CP02967C",
"content-type": "unspecified",
"content-version": "vor",
"intended-application": "similarity-checking"
}
],
"member": "292",
"original-title": [],
"page": "22957-22971",
"prefix": "10.1039",
"published": {
"date-parts": [
[
2021
]
]
},
"published-online": {
"date-parts": [
[
2021
]
]
},
"publisher": "Royal Society of Chemistry (RSC)",
"reference": [
{
"DOI": "10.1021/acs.jproteome.0c00779",
"author": "Francés-Monerris",
"doi-asserted-by": "crossref",
"first-page": "4291",
"journal-title": "J. Proteome Res.",
"key": "D1CP02967C/cit1",
"volume": "19",
"year": "2020"
},
{
"DOI": "10.3390/ijms21072657",
"author": "Tu",
"doi-asserted-by": "crossref",
"first-page": "2657",
"journal-title": "Int. J. Mol. Sci.",
"key": "D1CP02967C/cit2",
"volume": "21",
"year": "2020"
},
{
"DOI": "10.1136/bmj.m810",
"author": "Watkins",
"doi-asserted-by": "crossref",
"first-page": "m810",
"journal-title": "BMJ",
"key": "D1CP02967C/cit3",
"volume": "368",
"year": "2020"
},
{
"DOI": "10.1016/S0140-6736(20)30673-5",
"author": "Bedford",
"doi-asserted-by": "crossref",
"first-page": "1015",
"journal-title": "Lancet",
"key": "D1CP02967C/cit4",
"volume": "395",
"year": "2020"
},
{
"DOI": "10.1126/science.abe8499",
"author": "Hou",
"doi-asserted-by": "crossref",
"first-page": "1464",
"journal-title": "Science",
"key": "D1CP02967C/cit5",
"volume": "370",
"year": "2020"
},
{
"DOI": "10.1038/s41591-021-01270-4",
"author": "Xie",
"doi-asserted-by": "crossref",
"first-page": "620",
"journal-title": "Nat. Med.",
"key": "D1CP02967C/cit6",
"volume": "27",
"year": "2021"
},
{
"DOI": "10.1126/science.abb2762",
"author": "Yan",
"doi-asserted-by": "crossref",
"first-page": "1444",
"journal-title": "Science",
"key": "D1CP02967C/cit7",
"volume": "367",
"year": "2020"
},
{
"DOI": "10.1038/s41586-020-2179-y",
"author": "Shang",
"doi-asserted-by": "crossref",
"first-page": "221",
"journal-title": "Nature",
"key": "D1CP02967C/cit8",
"volume": "581",
"year": "2020"
},
{
"DOI": "10.1016/j.cell.2020.03.045",
"author": "Wang",
"doi-asserted-by": "crossref",
"first-page": "894",
"journal-title": "Cell",
"key": "D1CP02967C/cit9",
"volume": "181",
"year": "2020"
},
{
"DOI": "10.1073/pnas.2003138117",
"author": "Shang",
"doi-asserted-by": "crossref",
"first-page": "11727",
"journal-title": "Proc. Natl. Acad. Sci. U. S. A.",
"key": "D1CP02967C/cit10",
"volume": "117",
"year": "2020"
},
{
"DOI": "10.1038/s41586-020-2223-y",
"author": "Jin",
"doi-asserted-by": "crossref",
"first-page": "289",
"journal-title": "Nature",
"key": "D1CP02967C/cit11",
"volume": "582",
"year": "2020"
},
{
"DOI": "10.1038/s41586-020-2368-8",
"author": "Hillen",
"doi-asserted-by": "crossref",
"first-page": "154",
"journal-title": "Nature",
"key": "D1CP02967C/cit12",
"volume": "584",
"year": "2020"
},
{
"DOI": "10.1126/science.abb7498",
"author": "Gao",
"doi-asserted-by": "crossref",
"first-page": "779",
"journal-title": "Science",
"key": "D1CP02967C/cit13",
"volume": "368",
"year": "2020"
},
{
"DOI": "10.1038/s41586-020-2012-7",
"author": "Zhou",
"doi-asserted-by": "crossref",
"first-page": "270",
"journal-title": "Nature",
"key": "D1CP02967C/cit14",
"volume": "579",
"year": "2020"
},
{
"DOI": "10.1038/s41586-020-2286-9",
"author": "Gordon",
"doi-asserted-by": "crossref",
"first-page": "459",
"journal-title": "Nature",
"key": "D1CP02967C/cit15",
"volume": "583",
"year": "2020"
},
{
"DOI": "10.1021/acs.jcim.1c00140",
"author": "Sztain",
"doi-asserted-by": "crossref",
"first-page": "3495",
"journal-title": "J. Chem. Inf. Model.",
"key": "D1CP02967C/cit16",
"volume": "61",
"year": "2021"
},
{
"DOI": "10.1002/anie.202015639",
"author": "Shoemark",
"doi-asserted-by": "crossref",
"first-page": "7098",
"journal-title": "Angew. Chem., Int. Ed.",
"key": "D1CP02967C/cit17",
"volume": "60",
"year": "2021"
},
{
"DOI": "10.1039/D0SC06195F",
"author": "Arafet",
"doi-asserted-by": "crossref",
"first-page": "1433",
"journal-title": "Chem. Sci.",
"key": "D1CP02967C/cit18",
"volume": "12",
"year": "2021"
},
{
"DOI": "10.1021/acscatal.0c05522",
"author": "Ramos-Guzmán",
"doi-asserted-by": "crossref",
"first-page": "4157",
"journal-title": "ACS Catal.",
"key": "D1CP02967C/cit19",
"volume": "11",
"year": "2021"
},
{
"DOI": "10.1039/D0SC04978F",
"author": "Ramos-Guzmán",
"doi-asserted-by": "crossref",
"first-page": "3489",
"journal-title": "Chem. Sci.",
"key": "D1CP02967C/cit20",
"volume": "12",
"year": "2021"
},
{
"author": "Moeller",
"first-page": "438274",
"journal-title": "bioRxiv",
"key": "D1CP02967C/cit21",
"year": "2021"
},
{
"DOI": "10.1038/s41586-020-2180-5",
"author": "Lan",
"doi-asserted-by": "crossref",
"first-page": "215",
"journal-title": "Nature",
"key": "D1CP02967C/cit22",
"volume": "581",
"year": "2020"
},
{
"DOI": "10.1021/acs.jpclett.0c02203",
"author": "García-Iriepa",
"doi-asserted-by": "crossref",
"first-page": "9272",
"journal-title": "J. Phys. Chem. Lett.",
"key": "D1CP02967C/cit23",
"volume": "11",
"year": "2020"
},
{
"DOI": "10.1016/j.bpj.2020.10.036",
"author": "Barros",
"doi-asserted-by": "crossref",
"first-page": "1072",
"journal-title": "Biophys. J.",
"key": "D1CP02967C/cit24",
"volume": "120",
"year": "2021"
},
{
"DOI": "10.1007/s00018-020-03580-1",
"author": "Mercurio",
"doi-asserted-by": "crossref",
"first-page": "1501",
"journal-title": "Cell. Mol. Life Sci.",
"key": "D1CP02967C/cit25",
"volume": "78",
"year": "2021"
},
{
"DOI": "10.1126/science.abd5223",
"author": "Turoňová",
"doi-asserted-by": "crossref",
"first-page": "203",
"journal-title": "Science",
"key": "D1CP02967C/cit26",
"volume": "370",
"year": "2020"
},
{
"DOI": "10.1016/j.antiviral.2017.11.001",
"author": "Lei",
"doi-asserted-by": "crossref",
"first-page": "58",
"journal-title": "Antiviral Res.",
"key": "D1CP02967C/cit27",
"volume": "149",
"year": "2018"
},
{
"DOI": "10.1016/j.virol.2015.06.016",
"author": "Kusov",
"doi-asserted-by": "crossref",
"first-page": "313",
"journal-title": "Virology",
"key": "D1CP02967C/cit28",
"volume": "484",
"year": "2015"
},
{
"DOI": "10.1371/journal.ppat.1000428",
"author": "Tan",
"doi-asserted-by": "crossref",
"first-page": "e1000428",
"journal-title": "PLoS Pathog.",
"key": "D1CP02967C/cit29",
"volume": "5",
"year": "2009"
},
{
"DOI": "10.1021/acs.jpclett.0c01097",
"author": "Hognon",
"doi-asserted-by": "crossref",
"first-page": "5661",
"journal-title": "J. Phys. Chem. Lett.",
"key": "D1CP02967C/cit30",
"volume": "11",
"year": "2020"
},
{
"DOI": "10.1126/science.abb3405",
"author": "Zhang",
"doi-asserted-by": "crossref",
"first-page": "409",
"journal-title": "Science",
"key": "D1CP02967C/cit31",
"volume": "368",
"year": "2020"
},
{
"DOI": "10.1021/acscatal.0c03420",
"author": "Ramos-Guzmán",
"doi-asserted-by": "crossref",
"first-page": "12544",
"journal-title": "ACS Catal.",
"key": "D1CP02967C/cit32",
"volume": "10",
"year": "2020"
},
{
"DOI": "10.1039/D0SC02823A",
"author": "Świderek",
"doi-asserted-by": "crossref",
"first-page": "10626",
"journal-title": "Chem. Sci.",
"key": "D1CP02967C/cit33",
"volume": "11",
"year": "2020"
},
{
"DOI": "10.1073/pnas.0805240105",
"author": "Ratia",
"doi-asserted-by": "crossref",
"first-page": "16119",
"journal-title": "Proc. Natl. Acad. Sci. U. S. A.",
"key": "D1CP02967C/cit34",
"volume": "105",
"year": "2008"
},
{
"DOI": "10.1016/S1473-3099(21)00075-X",
"author": "Olliaro",
"doi-asserted-by": "crossref",
"first-page": "769",
"journal-title": "Lancet Infect. Dis.",
"key": "D1CP02967C/cit35",
"volume": "21",
"year": "2021"
},
{
"DOI": "10.3390/scipharm88030036",
"author": "Mudatsir",
"doi-asserted-by": "crossref",
"first-page": "36",
"journal-title": "Sci. Pharm.",
"key": "D1CP02967C/cit36",
"volume": "88",
"year": "2020"
},
{
"DOI": "10.1016/j.arbres.2020.08.007",
"author": "Khan",
"doi-asserted-by": "crossref",
"first-page": "828",
"journal-title": "Arch. Bronconeumol.",
"key": "D1CP02967C/cit37",
"volume": "56",
"year": "2020"
},
{
"DOI": "10.1186/s12941-020-00368-w",
"author": "Sharun",
"doi-asserted-by": "crossref",
"first-page": "23",
"journal-title": "Ann. Clin. Microbiol. Antimicrob.",
"key": "D1CP02967C/cit38",
"volume": "19",
"year": "2020"
},
{
"DOI": "10.1038/s41429-020-0336-z",
"author": "Heidary",
"doi-asserted-by": "crossref",
"first-page": "593",
"journal-title": "J. Antibiot.",
"key": "D1CP02967C/cit39",
"volume": "73",
"year": "2020"
},
{
"DOI": "10.1016/j.antiviral.2020.104787",
"author": "Caly",
"doi-asserted-by": "crossref",
"first-page": "104787",
"journal-title": "Antiviral Res.",
"key": "D1CP02967C/cit40",
"volume": "178",
"year": "2020"
},
{
"DOI": "10.1038/s41598-021-86679-0",
"author": "Arévalo",
"doi-asserted-by": "crossref",
"first-page": "7132",
"journal-title": "Sci. Rep.",
"key": "D1CP02967C/cit41",
"volume": "11",
"year": "2021"
},
{
"author": "Bhardwaj",
"first-page": "645",
"journal-title": "Front. Med.",
"key": "D1CP02967C/cit42",
"volume": "8",
"year": "2021"
},
{
"DOI": "10.1080/07391102.2020.1766572",
"author": "Bhardwaj",
"doi-asserted-by": "crossref",
"first-page": "3449",
"journal-title": "J. Biomol. Struct. Dyn.",
"key": "D1CP02967C/cit43",
"volume": "39",
"year": "2021"
},
{
"DOI": "10.1016/j.foodchem.2020.128933",
"author": "Sharma",
"doi-asserted-by": "crossref",
"first-page": "128933",
"journal-title": "Food Chem.",
"key": "D1CP02967C/cit44",
"volume": "346",
"year": "2021"
},
{
"DOI": "10.1016/j.jtcme.2021.05.005",
"author": "Singh",
"doi-asserted-by": "publisher",
"journal-title": "J. Tradit. Complement. Med.",
"key": "D1CP02967C/cit45",
"year": "2021"
},
{
"DOI": "10.1016/j.compbiomed.2021.104555",
"author": "Singh",
"doi-asserted-by": "crossref",
"first-page": "104555",
"journal-title": "Comput. Biol. Med.",
"key": "D1CP02967C/cit46",
"volume": "135",
"year": "2021"
},
{
"DOI": "10.1016/j.compbiomed.2020.104117",
"author": "Bhardwaj",
"doi-asserted-by": "crossref",
"first-page": "104117",
"journal-title": "Comput. Biol. Med.",
"key": "D1CP02967C/cit47",
"volume": "128",
"year": "2021"
},
{
"DOI": "10.21873/invivo.12134",
"author": "Lehrer",
"doi-asserted-by": "crossref",
"first-page": "3023",
"journal-title": "In Vivo",
"key": "D1CP02967C/cit48",
"volume": "34",
"year": "2020"
},
{
"DOI": "10.26434/chemrxiv.12630539.v1",
"author": "Maurya",
"doi-asserted-by": "publisher",
"journal-title": "ChemRxiv",
"key": "D1CP02967C/cit49",
"year": "2020"
},
{
"DOI": "10.20944/preprints202005.0084.v1",
"author": "Dasgupta",
"doi-asserted-by": "publisher",
"journal-title": "Preprints",
"key": "D1CP02967C/cit50",
"year": "2020"
},
{
"DOI": "10.3389/fmicb.2020.592908",
"author": "Eweas",
"doi-asserted-by": "crossref",
"first-page": "592908",
"journal-title": "Front. Microbiol.",
"key": "D1CP02967C/cit51",
"volume": "11",
"year": "2021"
},
{
"DOI": "10.1080/07391102.2020.1841028",
"author": "Azam",
"doi-asserted-by": "crossref",
"first-page": "1",
"journal-title": "J. Biomol. Struct. Dyn.",
"key": "D1CP02967C/cit52",
"year": "2020"
},
{
"DOI": "10.1016/j.antiviral.2020.104760",
"author": "Yang",
"doi-asserted-by": "crossref",
"first-page": "104760",
"journal-title": "Antiviral Res.",
"key": "D1CP02967C/cit53",
"volume": "177",
"year": "2020"
},
{
"DOI": "10.1007/s00705-021-05096-w",
"author": "Li",
"doi-asserted-by": "crossref",
"first-page": "2005",
"journal-title": "Arch. Virol.",
"key": "D1CP02967C/cit54",
"volume": "166",
"year": "2021"
},
{
"key": "D1CP02967C/cit55",
"unstructured": "N. I. of Health, Clinical Trials database, https://clinicaltrials.gov/ (accessed September 8th, 2021)"
},
{
"DOI": "10.1016/j.eclinm.2020.100720",
"author": "Chaccour",
"doi-asserted-by": "crossref",
"first-page": "100720",
"journal-title": "EClinicalMedicine",
"key": "D1CP02967C/cit56",
"volume": "32",
"year": "2021"
},
{
"DOI": "10.1016/j.eclinm.2021.100959",
"author": "Krolewiecki",
"doi-asserted-by": "crossref",
"first-page": "100959",
"journal-title": "EClinicalMedicine",
"key": "D1CP02967C/cit57",
"volume": "37",
"year": "2021"
},
{
"DOI": "10.1016/j.ijid.2020.11.191",
"author": "Ahmed",
"doi-asserted-by": "crossref",
"first-page": "214",
"journal-title": "Int. J. Infect. Dis.",
"key": "D1CP02967C/cit58",
"volume": "103",
"year": "2021"
},
{
"DOI": "10.1371/journal.pone.0247163",
"author": "Behera",
"doi-asserted-by": "crossref",
"first-page": "e0247163",
"journal-title": "PLoS One",
"key": "D1CP02967C/cit59",
"volume": "16",
"year": "2021"
},
{
"DOI": "10.1177/03000605211013550",
"author": "Mahmud",
"doi-asserted-by": "crossref",
"first-page": "1",
"journal-title": "J. Int. Med. Res.",
"key": "D1CP02967C/cit60",
"volume": "49",
"year": "2021"
},
{
"author": "Hegazy",
"first-page": "47",
"journal-title": "Acta Sci. Med. Sci.",
"key": "D1CP02967C/cit61",
"volume": "5",
"year": "2021"
},
{
"key": "D1CP02967C/cit62",
"unstructured": "Discovery Studio 2.1, Accelrys [2.1]"
},
{
"DOI": "10.1021/acs.jcim.9b00407",
"author": "Macchiagodena",
"doi-asserted-by": "crossref",
"first-page": "3803",
"journal-title": "J. Chem. Inf. Model.",
"key": "D1CP02967C/cit63",
"volume": "59",
"year": "2019"
},
{
"author": "Zhou",
"first-page": "1",
"journal-title": "Cell Discovery",
"key": "D1CP02967C/cit64",
"volume": "6",
"year": "2020"
},
{
"DOI": "10.1002/jcc.21256",
"author": "Morris",
"doi-asserted-by": "crossref",
"first-page": "2785",
"journal-title": "J. Comput. Chem.",
"key": "D1CP02967C/cit65",
"volume": "30",
"year": "2009"
},
{
"DOI": "10.1002/jcc.21334",
"author": "Trott",
"doi-asserted-by": "crossref",
"first-page": "455",
"journal-title": "J. Comput. Chem.",
"key": "D1CP02967C/cit66",
"volume": "31",
"year": "2010"
},
{
"DOI": "10.1016/j.sbi.2006.03.003",
"author": "Gray",
"doi-asserted-by": "crossref",
"first-page": "183",
"journal-title": "Curr. Opin. Struct. Biol.",
"key": "D1CP02967C/cit67",
"volume": "16",
"year": "2006"
},
{
"DOI": "10.1002/jmr.2471",
"author": "Yuriev",
"doi-asserted-by": "crossref",
"first-page": "581",
"journal-title": "J. Mol. Recognit.",
"key": "D1CP02967C/cit68",
"volume": "28",
"year": "2015"
},
{
"DOI": "10.1110/ps.0202302",
"author": "Hetényi",
"doi-asserted-by": "crossref",
"first-page": "1729",
"journal-title": "Protein Sci.",
"key": "D1CP02967C/cit69",
"volume": "11",
"year": "2002"
},
{
"DOI": "10.1016/j.str.2016.07.021",
"author": "Yan",
"doi-asserted-by": "crossref",
"first-page": "1842",
"journal-title": "Structure",
"key": "D1CP02967C/cit70",
"volume": "24",
"year": "2016"
},
{
"DOI": "10.3390/jcm8122117",
"author": "Trisolini",
"doi-asserted-by": "crossref",
"first-page": "2117",
"journal-title": "J. Clin. Med.",
"key": "D1CP02967C/cit71",
"volume": "8",
"year": "2019"
},
{
"DOI": "10.1016/0022-2836(80)90373-3",
"author": "Lesk",
"doi-asserted-by": "crossref",
"first-page": "225",
"journal-title": "J. Mol. Biol.",
"key": "D1CP02967C/cit72",
"volume": "136",
"year": "1980"
},
{
"DOI": "10.1074/jbc.M502577200",
"author": "Hsu",
"doi-asserted-by": "crossref",
"first-page": "31257",
"journal-title": "J. Biol. Chem.",
"key": "D1CP02967C/cit73",
"volume": "280",
"year": "2005"
},
{
"DOI": "10.1042/BST0391371",
"author": "Ramajayam",
"doi-asserted-by": "crossref",
"first-page": "1371",
"journal-title": "Biochem. Soc. Trans.",
"key": "D1CP02967C/cit74",
"volume": "39",
"year": "2011"
},
{
"DOI": "10.1073/pnas.1601327113",
"author": "Muramatsu",
"doi-asserted-by": "crossref",
"first-page": "12997",
"journal-title": "Proc. Natl. Acad. Sci. U. S. A.",
"key": "D1CP02967C/cit75",
"volume": "113",
"year": "2016"
},
{
"DOI": "10.1080/14756366.2019.1690480",
"author": "Jo",
"doi-asserted-by": "crossref",
"first-page": "145",
"journal-title": "J. Enzyme Inhib. Med. Chem.",
"key": "D1CP02967C/cit76",
"volume": "35",
"year": "2020"
},
{
"DOI": "10.1371/journal.ppat.1004113",
"author": "Ratia",
"doi-asserted-by": "crossref",
"first-page": "e1004113",
"journal-title": "PLoS Pathog.",
"key": "D1CP02967C/cit77",
"volume": "10",
"year": "2014"
},
{
"DOI": "10.1016/j.antiviral.2014.12.015",
"author": "Báez-Santos",
"doi-asserted-by": "crossref",
"first-page": "21",
"journal-title": "Antiviral Res.",
"key": "D1CP02967C/cit78",
"volume": "115",
"year": "2015"
},
{
"DOI": "10.1002/jcc.20289",
"author": "Phillips",
"doi-asserted-by": "crossref",
"first-page": "1781",
"journal-title": "J. Comput. Chem.",
"key": "D1CP02967C/cit79",
"volume": "26",
"year": "2005"
},
{
"DOI": "10.1021/acs.jctc.5b00255",
"author": "Maier",
"doi-asserted-by": "crossref",
"first-page": "3696",
"journal-title": "J. Chem. Theory Comput.",
"key": "D1CP02967C/cit80",
"volume": "11",
"year": "2015"
},
{
"DOI": "10.1021/acs.jctc.6b00186",
"author": "Galindo-Murillo",
"doi-asserted-by": "crossref",
"first-page": "4114",
"journal-title": "J. Chem. Theory Comput.",
"key": "D1CP02967C/cit81",
"volume": "12",
"year": "2016"
},
{
"DOI": "10.1021/acs.jctc.5b00716",
"author": "Zgarbová",
"doi-asserted-by": "crossref",
"first-page": "5723",
"journal-title": "J. Chem. Theory Comput.",
"key": "D1CP02967C/cit82",
"volume": "11",
"year": "2015"
},
{
"DOI": "10.1038/nmeth.3658",
"author": "Ivani",
"doi-asserted-by": "crossref",
"first-page": "55",
"journal-title": "Nat. Methods",
"key": "D1CP02967C/cit83",
"volume": "13",
"year": "2016"
},
{
"DOI": "10.1063/1.445869",
"author": "Jorgensen",
"doi-asserted-by": "crossref",
"first-page": "926",
"journal-title": "J. Chem. Phys.",
"key": "D1CP02967C/cit84",
"volume": "79",
"year": "1983"
},
{
"DOI": "10.1002/jcc.20035",
"author": "Wang",
"doi-asserted-by": "crossref",
"first-page": "1157",
"journal-title": "J. Comput. Chem.",
"key": "D1CP02967C/cit86",
"volume": "25",
"year": "2004"
},
{
"DOI": "10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F",
"author": "Wang",
"doi-asserted-by": "crossref",
"first-page": "1049",
"journal-title": "J. Comput. Chem.",
"key": "D1CP02967C/cit87",
"volume": "21",
"year": "2000"
},
{
"DOI": "10.1063/1.464304",
"author": "Becke",
"doi-asserted-by": "crossref",
"first-page": "1372",
"journal-title": "J. Chem. Phys.",
"key": "D1CP02967C/cit88",
"volume": "98",
"year": "1993"
},
{
"DOI": "10.1002/prot.21123",
"author": "Hornak",
"doi-asserted-by": "crossref",
"first-page": "712",
"journal-title": "Proteins: Struct., Funct., Bioinf.",
"key": "D1CP02967C/cit89",
"volume": "65",
"year": "2006"
},
{
"DOI": "10.1021/ct5010406",
"author": "Hopkins",
"doi-asserted-by": "crossref",
"first-page": "1864",
"journal-title": "J. Chem. Theory Comput.",
"key": "D1CP02967C/cit90",
"volume": "11",
"year": "2015"
},
{
"DOI": "10.1063/1.467468",
"author": "Martyna",
"doi-asserted-by": "crossref",
"first-page": "4177",
"journal-title": "J. Chem. Phys.",
"key": "D1CP02967C/cit91",
"volume": "101",
"year": "1994"
},
{
"DOI": "10.1063/1.470648",
"author": "Feller",
"doi-asserted-by": "crossref",
"first-page": "4613",
"journal-title": "J. Chem. Phys.",
"key": "D1CP02967C/cit92",
"volume": "103",
"year": "1995"
},
{
"DOI": "10.1021/ct400341p",
"author": "Roe",
"doi-asserted-by": "crossref",
"first-page": "3084",
"journal-title": "J. Chem. Theory Comput.",
"key": "D1CP02967C/cit93",
"volume": "9",
"year": "2013"
},
{
"DOI": "10.1016/0263-7855(96)00018-5",
"author": "Humphrey",
"doi-asserted-by": "crossref",
"first-page": "33",
"journal-title": "J. Mol. Graphics",
"key": "D1CP02967C/cit94",
"volume": "14",
"year": "1996"
},
{
"DOI": "10.1016/j.bbrc.2003.12.081",
"author": "Prabakaran",
"doi-asserted-by": "crossref",
"first-page": "235",
"journal-title": "Biochem. Biophys. Res. Commun.",
"key": "D1CP02967C/cit95",
"volume": "314",
"year": "2004"
},
{
"DOI": "10.1021/bi200525y",
"author": "Lai",
"doi-asserted-by": "crossref",
"first-page": "5182",
"journal-title": "Biochemistry",
"key": "D1CP02967C/cit96",
"volume": "50",
"year": "2011"
},
{
"DOI": "10.1007/s11224-021-01776-0",
"author": "Saha",
"doi-asserted-by": "crossref",
"first-page": "1985",
"journal-title": "Struct. Chem.",
"key": "D1CP02967C/cit97",
"volume": "32",
"year": "2021"
},
{
"DOI": "10.1111/bcp.14476",
"author": "Peña-Silva",
"doi-asserted-by": "crossref",
"first-page": "1589",
"journal-title": "J. Clin. Pharmacol.",
"key": "D1CP02967C/cit98",
"volume": "87",
"year": "2021"
},
{
"DOI": "10.4269/ajtmh.20-0271",
"author": "Chaccour",
"doi-asserted-by": "crossref",
"first-page": "1156",
"journal-title": "Am. J. Trop. Med. Hyg.",
"key": "D1CP02967C/cit99",
"volume": "102",
"year": "2020"
},
{
"DOI": "10.1073/pnas.1835675100",
"author": "Yang",
"doi-asserted-by": "crossref",
"first-page": "13190",
"journal-title": "Proc. Natl. Acad. Sci. U. S. A.",
"key": "D1CP02967C/cit100",
"volume": "100",
"year": "2003"
},
{
"DOI": "10.2217/fvl-2020-0342",
"author": "Choudhury",
"doi-asserted-by": "crossref",
"first-page": "277",
"journal-title": "Future Virol.",
"key": "D1CP02967C/cit101",
"volume": "16",
"year": "2021"
},
{
"author": "Bello",
"first-page": "1",
"journal-title": "J. Biomol. Struct. Dyn.",
"key": "D1CP02967C/cit102",
"year": "2021"
},
{
"DOI": "10.1038/s42003-020-01577-x",
"author": "Mody",
"doi-asserted-by": "crossref",
"first-page": "1",
"journal-title": "Commun. Biol.",
"key": "D1CP02967C/cit103",
"volume": "4",
"year": "2021"
},
{
"DOI": "10.1080/07391102.2020.1768902",
"author": "Mahanta",
"doi-asserted-by": "crossref",
"first-page": "3802",
"journal-title": "J. Biomol. Struct. Dyn.",
"key": "D1CP02967C/cit104",
"volume": "39",
"year": "2021"
},
{
"DOI": "10.1016/j.cplett.2020.137489",
"author": "Macchiagodena",
"doi-asserted-by": "crossref",
"first-page": "137489",
"journal-title": "Chem. Phys. Lett.",
"key": "D1CP02967C/cit105",
"volume": "750",
"year": "2020"
},
{
"DOI": "10.1080/07391102.2020.1734091",
"author": "Islam",
"doi-asserted-by": "crossref",
"first-page": "3213",
"journal-title": "J. Biomol. Struct. Dyn.",
"key": "D1CP02967C/cit106",
"volume": "39",
"year": "2021"
},
{
"DOI": "10.1021/acs.jpclett.0c00994",
"author": "Huynh",
"doi-asserted-by": "crossref",
"first-page": "4413",
"journal-title": "J. Phys. Chem. Lett.",
"key": "D1CP02967C/cit107",
"volume": "11",
"year": "2020"
},
{
"DOI": "10.1080/07391102.2020.1758791",
"author": "Elmezayen",
"doi-asserted-by": "crossref",
"first-page": "2980",
"journal-title": "J. Biomol. Struct. Dyn.",
"key": "D1CP02967C/cit108",
"volume": "39",
"year": "2021"
},
{
"DOI": "10.1080/07391102.2020.1768149",
"author": "Sk",
"doi-asserted-by": "crossref",
"first-page": "3649",
"journal-title": "J. Biomol. Struct. Dyn.",
"key": "D1CP02967C/cit109",
"volume": "39",
"year": "2021"
},
{
"DOI": "10.1080/07391102.2020.1769733",
"author": "Khan",
"doi-asserted-by": "crossref",
"first-page": "3627",
"journal-title": "J. Biomol. Struct. Dyn.",
"key": "D1CP02967C/cit110",
"volume": "39",
"year": "2021"
},
{
"DOI": "10.1128/JVI.01294-14",
"author": "Báez-Santos",
"doi-asserted-by": "crossref",
"first-page": "12511",
"journal-title": "J. Virol.",
"key": "D1CP02967C/cit111",
"volume": "88",
"year": "2014"
},
{
"DOI": "10.1093/pcmedi/pbab001",
"author": "Hosseini",
"doi-asserted-by": "crossref",
"first-page": "1",
"journal-title": "Precis. Clin. Med.",
"key": "D1CP02967C/cit112",
"volume": "4",
"year": "2021"
},
{
"DOI": "10.1016/j.molcel.2016.04.016",
"author": "Békés",
"doi-asserted-by": "crossref",
"first-page": "572",
"journal-title": "Mol. Cell",
"key": "D1CP02967C/cit113",
"volume": "62",
"year": "2016"
},
{
"DOI": "10.1074/jbc.M800162200",
"author": "Chang",
"doi-asserted-by": "crossref",
"first-page": "13370",
"journal-title": "J. Biol. Chem.",
"key": "D1CP02967C/cit114",
"volume": "283",
"year": "2008"
},
{
"DOI": "10.1038/s41586-020-2601-5",
"author": "Shin",
"doi-asserted-by": "crossref",
"first-page": "657",
"journal-title": "Nature",
"key": "D1CP02967C/cit115",
"volume": "587",
"year": "2020"
},
{
"DOI": "10.1016/j.str.2017.04.007",
"author": "Huang",
"doi-asserted-by": "crossref",
"first-page": "945",
"journal-title": "Structure",
"key": "D1CP02967C/cit116",
"volume": "25",
"year": "2017"
},
{
"DOI": "10.1038/ncomms2924",
"author": "Jin",
"doi-asserted-by": "crossref",
"first-page": "1937",
"journal-title": "Nat. Commun.",
"key": "D1CP02967C/cit117",
"volume": "4",
"year": "2013"
}
],
"reference-count": 116,
"references-count": 116,
"relation": {},
"resource": {
"primary": {
"URL": "https://xlink.rsc.org/?DOI=D1CP02967C"
}
},
"score": 1,
"short-title": [],
"source": "Crossref",
"subject": [],
"subtitle": [],
"title": "Microscopic interactions between ivermectin and key human and viral proteins involved in SARS-CoV-2 infection",
"type": "journal-article",
"update-policy": "http://dx.doi.org/10.1039/rsc_crossmark_policy",
"volume": "23"
}
