Microfluidic Diffusion Sizing Applied to the Study of Natural Products and Extracts That Modulate the SARS-CoV-2 Spike RBD/ACE2 Interaction
et al., Molecules, doi:10.3390/molecules28248072, Dec 2023
Ivermectin for COVID-19
4th treatment shown to reduce risk in
August 2020, now with p < 0.00000000001 from 106 studies, recognized in 24 countries.
No treatment is 100% effective. Protocols
combine treatments.
6,300+ studies for
210+ treatments. c19early.org
|
In vitro study showing that ivermectin modulated SARS-CoV-2 spike RBD-ACE2 interaction, suggesting efficacy for COVID-19, at a concentration of 1nM, well below concentrations achieved in practice. Authors use microfluidic diffusional sizing to measure changes in hydrodynamic radius. Promising results were also seen for naringenin and extracts of Rhei radix and Chenopodium quinoa.
74 preclinical studies support the efficacy of ivermectin for COVID-19:
Ivermectin, better known for antiparasitic activity, is a broad spectrum antiviral with activity against many viruses including H7N771, Dengue37,72,73 , HIV-173, Simian virus 4074, Zika37,75,76 , West Nile76, Yellow Fever77,78, Japanese encephalitis77, Chikungunya78, Semliki Forest virus78, Human papillomavirus57, Epstein-Barr57, BK Polyomavirus79, and Sindbis virus78.
Ivermectin inhibits importin-α/β-dependent nuclear import of viral proteins71,73,74,80 , shows spike-ACE2 disruption at 1nM with microfluidic diffusional sizing38, binds to glycan sites on the SARS-CoV-2 spike protein preventing interaction with blood and epithelial cells and inhibiting hemagglutination41,81, shows dose-dependent inhibition of wildtype and omicron variants36, exhibits dose-dependent inhibition of lung injury61,66, may inhibit SARS-CoV-2 via IMPase inhibition37, may inhibit SARS-CoV-2 induced formation of fibrin clots resistant to degradation9, inhibits SARS-CoV-2 3CLpro54, may inhibit SARS-CoV-2 RdRp activity28, may minimize viral myocarditis by inhibiting NF-κB/p65-mediated inflammation in macrophages60, may be beneficial for COVID-19 ARDS by blocking GSDMD and NET formation82, may interfere with SARS-CoV-2's immune evasion via ORF8 binding4, may inhibit SARS-CoV-2 by disrupting CD147 interaction83-86, shows protection against inflammation, cytokine storm, and mortality in an LPS mouse model sharing key pathological features of severe COVID-1959,87, may be beneficial in severe COVID-19 by binding IGF1 to inhibit the promotion of inflammation, fibrosis, and cell proliferation that leads to lung damage8, may minimize SARS-CoV-2 induced cardiac damage40,48, may counter immune evasion by inhibiting NSP15-TBK1/KPNA1 interaction and restoring IRF3 activation88, may disrupt SARS-CoV-2 N and ORF6 protein nuclear transport and their suppression of host interferon responses1, reduces TAZ/YAP nuclear import, relieving SARS-CoV-2-driven suppression of IRF3 and NF-κB antiviral pathways35, increases Bifidobacteria which play a key role in the immune system89, has immunomodulatory51 and anti-inflammatory70,90 properties, and has an extensive and very positive safety profile91.
1.
Gayozo et al., Binding affinities analysis of ivermectin, nucleocapsid and ORF6 proteins of SARS-CoV-2 to human importins α isoforms: A computational approach, Biotecnia, doi:10.18633/biotecnia.v27.2485.
2.
Lefebvre et al., Characterization and Fluctuations of an Ivermectin Binding Site at the Lipid Raft Interface of the N-Terminal Domain (NTD) of the Spike Protein of SARS-CoV-2 Variants, Viruses, doi:10.3390/v16121836.
3.
Haque et al., Exploring potential therapeutic candidates against COVID-19: a molecular docking study, Discover Molecules, doi:10.1007/s44345-024-00005-5.
4.
Bagheri-Far et al., Non-spike protein inhibition of SARS-CoV-2 by natural products through the key mediator protein ORF8, Molecular Biology Research Communications, doi:10.22099/mbrc.2024.50245.2001.
5.
de Oliveira Só et al., In Silico Comparative Analysis of Ivermectin and Nirmatrelvir Inhibitors Interacting with the SARS-CoV-2 Main Protease, Preprints, doi:10.20944/preprints202404.1825.v1.
6.
Agamah et al., Network-based multi-omics-disease-drug associations reveal drug repurposing candidates for COVID-19 disease phases, ScienceOpen, doi:10.58647/DRUGARXIV.PR000010.v1.
7.
Oranu et al., Validation of the binding affinities and stabilities of ivermectin and moxidectin against SARS-CoV-2 receptors using molecular docking and molecular dynamics simulation, GSC Biological and Pharmaceutical Sciences, doi:10.30574/gscbps.2024.26.1.0030.
8.
Zhao et al., Identification of the shared gene signatures between pulmonary fibrosis and pulmonary hypertension using bioinformatics analysis, Frontiers in Immunology, doi:10.3389/fimmu.2023.1197752.
9.
Vottero et al., Computational Prediction of the Interaction of Ivermectin with Fibrinogen, Molecular Sciences, doi:10.3390/ijms241411449.
10.
Chellasamy et al., Docking and molecular dynamics studies of human ezrin protein with a modelled SARS-CoV-2 endodomain and their interaction with potential invasion inhibitors, Journal of King Saud University - Science, doi:10.1016/j.jksus.2022.102277.
11.
Umar et al., Inhibitory potentials of ivermectin, nafamostat, and camostat on spike protein and some nonstructural proteins of SARS-CoV-2: Virtual screening approach, Jurnal Teknologi Laboratorium, doi:10.29238/teknolabjournal.v11i1.344.
12.
Alvarado et al., Interaction of the New Inhibitor Paxlovid (PF-07321332) and Ivermectin With the Monomer of the Main Protease SARS-CoV-2: A Volumetric Study Based on Molecular Dynamics, Elastic Networks, Classical Thermodynamics and SPT, Computational Biology and Chemistry, doi:10.1016/j.compbiolchem.2022.107692.
13.
Aminpour et al., In Silico Analysis of the Multi-Targeted Mode of Action of Ivermectin and Related Compounds, Computation, doi:10.3390/computation10040051.
14.
Parvez et al., Insights from a computational analysis of the SARS-CoV-2 Omicron variant: Host–pathogen interaction, pathogenicity, and possible drug therapeutics, Immunity, Inflammation and Disease, doi:10.1002/iid3.639.
15.
Francés-Monerris et al., Microscopic interactions between ivermectin and key human and viral proteins involved in SARS-CoV-2 infection, Physical Chemistry Chemical Physics, doi:10.1039/D1CP02967C.
16.
González-Paz et al., Comparative study of the interaction of ivermectin with proteins of interest associated with SARS-CoV-2: A computational and biophysical approach, Biophysical Chemistry, doi:10.1016/j.bpc.2021.106677.
17.
González-Paz (B) et al., Structural Deformability Induced in Proteins of Potential Interest Associated with COVID-19 by binding of Homologues present in Ivermectin: Comparative Study Based in Elastic Networks Models, Journal of Molecular Liquids, doi:10.1016/j.molliq.2021.117284.
18.
Rana et al., A Computational Study of Ivermectin and Doxycycline Combination Drug Against SARS-CoV-2 Infection, Research Square, doi:10.21203/rs.3.rs-755838/v1.
19.
Muthusamy et al., Virtual Screening Reveals Potential Anti-Parasitic Drugs Inhibiting the Receptor Binding Domain of SARS-CoV-2 Spike protein, Journal of Virology & Antiviral Research, www.scitechnol.com/abstract/virtual-screening-reveals-potential-antiparasitic-drugs-inhibiting-the-receptor-binding-domain-of-sarscov2-spike-protein-16398.html.
20.
Qureshi et al., Mechanistic insights into the inhibitory activity of FDA approved ivermectin against SARS-CoV-2: old drug with new implications, Journal of Biomolecular Structure and Dynamics, doi:10.1080/07391102.2021.1906750.
21.
Schöning et al., Highly-transmissible Variants of SARS-CoV-2 May Be More Susceptible to Drug Therapy Than Wild Type Strains, Research Square, doi:10.21203/rs.3.rs-379291/v1.
22.
Bello et al., Elucidation of the inhibitory activity of ivermectin with host nuclear importin α and several SARS-CoV-2 targets, Journal of Biomolecular Structure and Dynamics, doi:10.1080/07391102.2021.1911857.
23.
Udofia et al., In silico studies of selected multi-drug targeting against 3CLpro and nsp12 RNA-dependent RNA-polymerase proteins of SARS-CoV-2 and SARS-CoV, Network Modeling Analysis in Health Informatics and Bioinformatics, doi:10.1007/s13721-021-00299-2.
24.
Choudhury et al., Exploring the binding efficacy of ivermectin against the key proteins of SARS-CoV-2 pathogenesis: an in silico approach, Future Medicine, doi:10.2217/fvl-2020-0342.
25.
Kern et al., Modeling of SARS-CoV-2 Treatment Effects for Informed Drug Repurposing, Frontiers in Pharmacology, doi:10.3389/fphar.2021.625678.
26.
Saha et al., The Binding mechanism of ivermectin and levosalbutamol with spike protein of SARS-CoV-2, Structural Chemistry, doi:10.1007/s11224-021-01776-0.
27.
Eweas et al., Molecular Docking Reveals Ivermectin and Remdesivir as Potential Repurposed Drugs Against SARS-CoV-2, Frontiers in Microbiology, doi:10.3389/fmicb.2020.592908.
28.
Parvez (B) et al., Prediction of potential inhibitors for RNA-dependent RNA polymerase of SARS-CoV-2 using comprehensive drug repurposing and molecular docking approach, International Journal of Biological Macromolecules, doi:10.1016/j.ijbiomac.2020.09.098.
29.
Francés-Monerris (B) et al., Has Ivermectin Virus-Directed Effects against SARS-CoV-2? Rationalizing the Action of a Potential Multitarget Antiviral Agent, ChemRxiv, doi:10.26434/chemrxiv.12782258.v1.
30.
Kalhor et al., Repurposing of the approved small molecule drugs in order to inhibit SARS-CoV-2 S protein and human ACE2 interaction through virtual screening approaches, Journal of Biomolecular Structure and Dynamics, doi:10.1080/07391102.2020.1824816.
31.
Swargiary, A., Ivermectin as a promising RNA-dependent RNA polymerase inhibitor and a therapeutic drug against SARS-CoV2: Evidence from in silico studies, Research Square, doi:10.21203/rs.3.rs-73308/v1.
32.
Maurya, D., A Combination of Ivermectin and Doxycycline Possibly Blocks the Viral Entry and Modulate the Innate Immune Response in COVID-19 Patients, American Chemical Society (ACS), doi:10.26434/chemrxiv.12630539.v1.
33.
Lehrer et al., Ivermectin Docks to the SARS-CoV-2 Spike Receptor-binding Domain Attached to ACE2, In Vivo, 34:5, 3023-3026, doi:10.21873/invivo.12134.
34.
Suravajhala et al., Comparative Docking Studies on Curcumin with COVID-19 Proteins, Preprints, doi:10.20944/preprints202005.0439.v3.
35.
Kofler et al., M-Motif, a potential non-conventional NLS in YAP/TAZ and other cellular and viral proteins that inhibits classic protein import, iScience, doi:10.1016/j.isci.2025.112105.
36.
Shahin et al., The selective effect of Ivermectin on different human coronaviruses; in-vitro study, Research Square, doi:10.21203/rs.3.rs-4180797/v1.
37.
Jitobaom et al., Identification of inositol monophosphatase as a broad‐spectrum antiviral target of ivermectin, Journal of Medical Virology, doi:10.1002/jmv.29552.
38.
Fauquet et al., Microfluidic Diffusion Sizing Applied to the Study of Natural Products and Extracts That Modulate the SARS-CoV-2 Spike RBD/ACE2 Interaction, Molecules, doi:10.3390/molecules28248072.
39.
García-Aguilar et al., In Vitro Analysis of SARS-CoV-2 Spike Protein and Ivermectin Interaction, International Journal of Molecular Sciences, doi:10.3390/ijms242216392.
40.
Liu et al., SARS-CoV-2 viral genes Nsp6, Nsp8, and M compromise cellular ATP levels to impair survival and function of human pluripotent stem cell-derived cardiomyocytes, Stem Cell Research & Therapy, doi:10.1186/s13287-023-03485-3.
41.
Boschi et al., SARS-CoV-2 Spike Protein Induces Hemagglutination: Implications for COVID-19 Morbidities and Therapeutics and for Vaccine Adverse Effects, bioRxiv, doi:10.1101/2022.11.24.517882.
42.
De Forni et al., Synergistic drug combinations designed to fully suppress SARS-CoV-2 in the lung of COVID-19 patients, PLoS ONE, doi:10.1371/journal.pone.0276751.
43.
Saha (B) et al., Manipulation of Spray-Drying Conditions to Develop an Inhalable Ivermectin Dry Powder, Pharmaceutics, doi:10.3390/pharmaceutics14071432.
44.
Jitobaom (B) et al., Synergistic anti-SARS-CoV-2 activity of repurposed anti-parasitic drug combinations, BMC Pharmacology and Toxicology, doi:10.1186/s40360-022-00580-8.
45.
Croci et al., Liposomal Systems as Nanocarriers for the Antiviral Agent Ivermectin, International Journal of Biomaterials, doi:10.1155/2016/8043983.
46.
Zheng et al., Red blood cell-hitchhiking mediated pulmonary delivery of ivermectin: Effects of nanoparticle properties, International Journal of Pharmaceutics, doi:10.1016/j.ijpharm.2022.121719.
47.
Delandre et al., Antiviral Activity of Repurposing Ivermectin against a Panel of 30 Clinical SARS-CoV-2 Strains Belonging to 14 Variants, Pharmaceuticals, doi:10.3390/ph15040445.
48.
Liu (B) et al., Genome-wide analyses reveal the detrimental impacts of SARS-CoV-2 viral gene Orf9c on human pluripotent stem cell-derived cardiomyocytes, Stem Cell Reports, doi:10.1016/j.stemcr.2022.01.014.
49.
Segatori et al., Effect of Ivermectin and Atorvastatin on Nuclear Localization of Importin Alpha and Drug Target Expression Profiling in Host Cells from Nasopharyngeal Swabs of SARS-CoV-2- Positive Patients, Viruses, doi:10.3390/v13102084.
50.
Jitobaom (C) et al., Favipiravir and Ivermectin Showed in Vitro Synergistic Antiviral Activity against SARS-CoV-2, Research Square, doi:10.21203/rs.3.rs-941811/v1.
51.
Munson et al., Niclosamide and ivermectin modulate caspase-1 activity and proinflammatory cytokine secretion in a monocytic cell line, British Society For Nanomedicine Early Career Researcher Summer Meeting, 2021, web.archive.org/web/20230401070026/https://michealmunson.github.io/COVID.pdf.
52.
Mountain Valley MD, Mountain Valley MD Receives Successful Results From BSL-4 COVID-19 Clearance Trial on Three Variants Tested With Ivectosol™, www.globenewswire.com/en/news-release/2021/05/18/2231755/0/en/Mountain-Valley-MD-Receives-Successful-Results-From-BSL-4-COVID-19-Clearance-Trial-on-Three-Variants-Tested-With-Ivectosol.html.
53.
Yesilbag et al., Ivermectin also inhibits the replication of bovine respiratory viruses (BRSV, BPIV-3, BoHV-1, BCoV and BVDV) in vitro, Virus Research, doi:10.1016/j.virusres.2021.198384.
54.
Mody et al., Identification of 3-chymotrypsin like protease (3CLPro) inhibitors as potential anti-SARS-CoV-2 agents, Communications Biology, doi:10.1038/s42003-020-01577-x.
55.
Jeffreys et al., Remdesivir-ivermectin combination displays synergistic interaction with improved in vitro activity against SARS-CoV-2, International Journal of Antimicrobial Agents, doi:10.1016/j.ijantimicag.2022.106542.
56.
Surnar et al., Clinically Approved Antiviral Drug in an Orally Administrable Nanoparticle for COVID-19, ACS Pharmacol. Transl. Sci., doi:10.1021/acsptsci.0c00179.
57.
Li et al., Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment, J. Cellular Physiology, doi:10.1002/jcp.30055.
58.
Caly et al., The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro, Antiviral Research, doi:10.1016/j.antiviral.2020.104787.
59.
Zhang et al., Ivermectin inhibits LPS-induced production of inflammatory cytokines and improves LPS-induced survival in mice, Inflammation Research, doi:10.1007/s00011-008-8007-8.
60.
Gao et al., Ivermectin ameliorates acute myocarditis via the inhibition of importin-mediated nuclear translocation of NF-κB/p65, International Immunopharmacology, doi:10.1016/j.intimp.2024.112073.
61.
Abd-Elmawla et al., Suppression of NLRP3 inflammasome by ivermectin ameliorates bleomycin-induced pulmonary fibrosis, Journal of Zhejiang University-SCIENCE B, doi:10.1631/jzus.B2200385.
62.
Uematsu et al., Prophylactic administration of ivermectin attenuates SARS-CoV-2 induced disease in a Syrian Hamster Model, The Journal of Antibiotics, doi:10.1038/s41429-023-00623-0.
63.
Albariqi et al., Pharmacokinetics and Safety of Inhaled Ivermectin in Mice as a Potential COVID-19 Treatment, International Journal of Pharmaceutics, doi:10.1016/j.ijpharm.2022.121688.
64.
Errecalde et al., Safety and Pharmacokinetic Assessments of a Novel Ivermectin Nasal Spray Formulation in a Pig Model, Journal of Pharmaceutical Sciences, doi:10.1016/j.xphs.2021.01.017.
65.
Madrid et al., Safety of oral administration of high doses of ivermectin by means of biocompatible polyelectrolytes formulation, Heliyon, doi:10.1016/j.heliyon.2020.e05820.
66.
Ma et al., Ivermectin contributes to attenuating the severity of acute lung injury in mice, Biomedicine & Pharmacotherapy, doi:10.1016/j.biopha.2022.113706.
67.
de Melo et al., Attenuation of clinical and immunological outcomes during SARS-CoV-2 infection by ivermectin, EMBO Mol. Med., doi:10.15252/emmm.202114122.
68.
Arévalo et al., Ivermectin reduces in vivo coronavirus infection in a mouse experimental model, Scientific Reports, doi:10.1038/s41598-021-86679-0.
69.
Chaccour et al., Nebulized ivermectin for COVID-19 and other respiratory diseases, a proof of concept, dose-ranging study in rats, Scientific Reports, doi:10.1038/s41598-020-74084-y.
70.
Yan et al., Anti-inflammatory effects of ivermectin in mouse model of allergic asthma, Inflammation Research, doi:10.1007/s00011-011-0307-8.
71.
Götz et al., Influenza A viruses escape from MxA restriction at the expense of efficient nuclear vRNP import, Scientific Reports, doi:10.1038/srep23138.
72.
Tay et al., Nuclear localization of dengue virus (DENV) 1–4 non-structural protein 5; protection against all 4 DENV serotypes by the inhibitor Ivermectin, Antiviral Research, doi:10.1016/j.antiviral.2013.06.002.
73.
Wagstaff et al., Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus, Biochemical Journal, doi:10.1042/BJ20120150.
74.
Wagstaff (B) et al., An AlphaScreen®-Based Assay for High-Throughput Screening for Specific Inhibitors of Nuclear Import, SLAS Discovery, doi:10.1177/1087057110390360.
75.
Barrows et al., A Screen of FDA-Approved Drugs for Inhibitors of Zika Virus Infection, Cell Host & Microbe, doi:10.1016/j.chom.2016.07.004.
76.
Yang et al., The broad spectrum antiviral ivermectin targets the host nuclear transport importin α/β1 heterodimer, Antiviral Research, doi:10.1016/j.antiviral.2020.104760.
77.
Mastrangelo et al., Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug, Journal of Antimicrobial Chemotherapy, doi:10.1093/jac/dks147.
78.
Varghese et al., Discovery of berberine, abamectin and ivermectin as antivirals against chikungunya and other alphaviruses, Antiviral Research, doi:10.1016/j.antiviral.2015.12.012.
79.
Bennett et al., Role of a nuclear localization signal on the minor capsid Proteins VP2 and VP3 in BKPyV nuclear entry, Virology, doi:10.1016/j.virol.2014.10.013.
80.
Kosyna et al., The importin α/β-specific inhibitor Ivermectin affects HIF-dependent hypoxia response pathways, Biological Chemistry, doi:10.1515/hsz-2015-0171.
81.
Scheim et al., Sialylated Glycan Bindings from SARS-CoV-2 Spike Protein to Blood and Endothelial Cells Govern the Severe Morbidities of COVID-19, International Journal of Molecular Sciences, doi:10.3390/ijms242317039.
82.
Liu (C) et al., Crosstalk between neutrophil extracellular traps and immune regulation: insights into pathobiology and therapeutic implications of transfusion-related acute lung injury, Frontiers in Immunology, doi:10.3389/fimmu.2023.1324021.
83.
Shouman et al., SARS-CoV-2-associated lymphopenia: possible mechanisms and the role of CD147, Cell Communication and Signaling, doi:10.1186/s12964-024-01718-3.
84.
Scheim (B), D., Ivermectin for COVID-19 Treatment: Clinical Response at Quasi-Threshold Doses Via Hypothesized Alleviation of CD147-Mediated Vascular Occlusion, SSRN, doi:10.2139/ssrn.3636557.
85.
Scheim (C), D., From Cold to Killer: How SARS-CoV-2 Evolved without Hemagglutinin Esterase to Agglutinate and Then Clot Blood Cells, Center for Open Science, doi:10.31219/osf.io/sgdj2.
86.
Behl et al., CD147-spike protein interaction in COVID-19: Get the ball rolling with a novel receptor and therapeutic target, Science of The Total Environment, doi:10.1016/j.scitotenv.2021.152072.
87.
DiNicolantonio et al., Ivermectin may be a clinically useful anti-inflammatory agent for late-stage COVID-19, Open Heart, doi:10.1136/openhrt-2020-001350.
88.
Mothae et al., SARS-CoV-2 host-pathogen interactome: insights into more players during pathogenesis, Virology, doi:10.1016/j.virol.2025.110607.
89.
Hazan et al., Treatment with Ivermectin Increases the Population of Bifidobacterium in the Gut, ACG 2023, acg2023posters.eventscribe.net/posterspeakers.asp.
Fauquet et al., 13 Dec 2023, peer-reviewed, 5 authors.
Contact: julie.carette@umons.ac.be (corresponding author), jason.fauquet@umons.ac.be, pierre.duez@umons.ac.be, amandine.nachtergael@umons.ac.be, zjl_ljz@mail.hzau.edu.cn.
In vitro studies are an important part of preclinical research, however results may be very different in vivo.
Microfluidic Diffusion Sizing Applied to the Study of Natural Products and Extracts That Modulate the SARS-CoV-2 Spike RBD/ACE2 Interaction
Molecules, doi:10.3390/molecules28248072
The interaction between SARS-CoV-2 spike RBD and ACE2 proteins is a crucial step for host cell infection by the virus. Without it, the entire virion entrance mechanism is compromised. The aim of this study was to evaluate the capacity of various natural product classes, including flavonoids, anthraquinones, saponins, ivermectin, chloroquine, and erythromycin, to modulate this interaction. To accomplish this, we applied a recently developed a microfluidic diffusional sizing (MDS) technique that allows us to probe protein-protein interactions via measurements of the hydrodynamic radius (R h ) and dissociation constant (K D ); the evolution of R h is monitored in the presence of increasing concentrations of the partner protein (ACE2); and the K D is determined through a binding curve experimental design. In a second time, with the protein partners present in equimolar amounts, the R h of the protein complex was measured in the presence of different natural products. Five of the nine natural products/extracts tested were found to modulate the formation of the protein complex. A methanol extract of Chenopodium quinoa Willd bitter seed husks (50 µg/mL; bisdesmoside saponins) and the flavonoid naringenin (1 µM) were particularly effective. This rapid selection of effective modulators will allow us to better understand agents that may prevent SARS-CoV-2 infection.
Author Contributions: Conceptualization, P.D. and A.N.; methodology, J.F.; investigation, J.F. and J.C.; resources, Laboratory of Pharmacognosy and Therapeutic chemistry form UMONS; data curation, J.F.; Visualization, J.Z., writing-original draft preparation, J.C.; writing-review and editing, J.C., A.N., J.F. and P.D. All authors have read and agreed to the published version of the manuscript. Funding: This work was partly supported by Wallonie-Bruxelles International through the project Wallonie-Bruxelles/China (MOST) "Anti-inflammatory herbal medicines and their active components to fight the cytokine storm associated with COVID-19 diseases (TCM-Cyt)". This work was supported by the Fonds pour la Recherche Scientifique FNRS under grant N • CDR J.0058.21 "PlasmLip", which contributed to the acquisition of the fluidity instrument. Veronica Taco is warmly thanked for her analysis of the Chenopodium quinoa husk extract and for giving us access to this sample; Veronica Taco is a scholarship holder from the Académie de Recherche et d'Enseignement Supérieur (ARES, Belgium). This work was also supported by the National Key R&D Program of China, 2021YFE0194000. Institutional Review Board Statement: Not applicable. Informed Consent Statement: Not applicable.
Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the..
References
Abdelli, Hassani, Bekkel Brikci, Ghalem, In Silico study the inhibition of angiotensin converting enzyme 2 receptor of COVID-19 by Ammoides verticillata components harvested from Western Algeria, J. Biomol. Struct. Dyn, doi:10.1080/07391102.2020.1763199
Allen, Watanabe, Chawla, Newby, Crispin, Subtle Influence of ACE2 Glycan Processing on SARS-CoV-2 Recognition, J. Mol. Biol, doi:10.1016/j.jmb.2020.166762
Alqathama, Ahmad, Alsaedi, Alghamdi, Abkar et al., The vital role of animal, marine, and microbial natural products against COVID-19, Pharm. Biol, doi:10.1080/13880209.2022.2039215
Anwar, Altayb, Al-Abbasi, Kumar, Kamal, The computational intervention of macrolide antibiotics in the treatment of COVID-19, Curr. Pharm. Des, doi:10.2174/1381612827666210125121954
Arosio, Müller, Rajah, Yates, Aprile et al., Microfluidic diffusion analysis of the sizes and interactions of proteins under native solution conditions, ACS Nano, doi:10.1021/acsnano.5b04713
Badraoui, Saoudi, Hamadou, Elkahoui, Siddiqui et al., Antiviral effects of artemisinin and Its derivatives against SARS-CoV-2 main protease: Computational evidences and interactions with ACE2 allelic variants, Pharmaceuticals, doi:10.3390/ph15020129
Balkrishna, Pokhrel, Singh, Joshi, Mulay et al., Withanone from Withania somnifera attenuates SARS-CoV-2 RBD and host ACE2 interactions to rescue spike protein induced pathologies in humanized zebrafish model, Drug Des. Devel. Ther, doi:10.2147/DDDT.S292805
Barton, Macgowan, Kutuzov, Dushek, Barton et al., Effects of common mutations in the SARS-CoV-2 Spike RBD and its ligand, the human ACE2 receptor on binding affinity and kinetics, eLife, doi:10.7554/eLife.70658
Basu, Sarkar, Maulik, Molecular docking study of potential phytochemicals and their effects on the complex of SARS-CoV2 spike protein and human ACE2, Sci. Rep, doi:10.1038/s41598-020-74715-4
Bhakti, Insuffisance Respiratoire Hypoxémique Aigüe (Syndrome de Détresse Respiratoire Aiguë [SDRA, N. Engl. J. Med, doi:10.1056/NEJMoa062200
Biber, Harmelin, Lev, Ram, Shaham et al., The effect of ivermectin on the viral load and culture viability in early treatment of nonhospitalized patients with mild COVID-19-A double-blind, randomized placebo-controlled trial, Int. J. Infect. Dis, doi:10.1016/j.ijid.2022.07.003
Braz, Silveira, Marinho, De Moraes, Moraes Filho et al., In Silico study of azithromycin, chloroquine and hydroxychloroquine and their potential mechanisms of action against SARS-CoV-2 infection, Int. J. Antimicrob. Agents, doi:10.1016/j.ijantimicag.2020.106119
Cai, Zhang, Xiao, Peng, Sterling et al., Distinct conformational states of SARS-CoV-2 spike protein, Science, doi:10.1126/science.abd4251
Caly, Druce, Catton, Jans, Wagstaff, The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro, Antivir. Res, doi:10.1016/j.antiviral.2020.104787
Camargo, Vuille-Dit-Bille, Meier, Verrey, ACE2 and gut amino acid transport, Clin. Sci, doi:10.1042/CS20200477
Caohuy, Eidelman, Chen, Liu, Yang et al., Common cardiac medications potently inhibit ACE2 binding to the SARS-CoV-2 Spike, and block virus penetration and infectivity in human lung cells, Sci. Rep, doi:10.1038/s41598-021-01690-9
Charles, Nachtergael, Ouedraogo, Belayew, Duez, Effects of chemopreventive natural products on nonhomologous end-joining DNA double-strand break repair, Mutat. Res./Genet. Toxicol. Environ. Mutagen, doi:10.1016/j.mrgentox.2014.04.014
Chen, Chan, Jiang, Kao, Lu et al., In Vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds, J. Clin. Virol, doi:10.1016/j.jcv.2004.03.003
Chen, Du, Potential Natural Compounds for Preventing SARS-CoV-2 (2019-nCoV) Infection, doi:10.20944/preprints202001.0358.v3
Chen, Liu, Gao, Chen, Vong et al., Astragali Radix (Huangqi): A promising edible immunomodulatory herbal medicine, J. Ethnopharmacol, doi:10.1016/j.jep.2020.112895
Chen, Yang, Hamdoun, Chung, Lam et al., 1,2,3,4,6-Pentagalloyl Glucose, a RBD-ACE2 Binding Inhibitor to Prevent SARS-CoV-2 Infection, Front. Pharmacol, doi:10.3389/fphar.2021.634176
Cheng, Ng, Chiang, Lin, Antiviral effects of saikosaponins on human coronavirus 229E in vitro, Clin. Exp. Pharmacol. Physiol, doi:10.1111/j.1440-1681.2006.04415.x
Chitsike, Krstenansky, Duerksen-Hughes, ACE2: S1 RBD interaction-targeted peptides and small molecules as potential COVID-19 therapeutics, Adv. Pharmacol. Pharm. Sci, doi:10.1155/2021/1828792
Cinatl, Morgenstern, Bauer, Chandra, Rabenau et al., an active component of liquorice roots, and replication of SARS-associated coronavirus, Lancet, doi:10.1016/S0140-6736(03)13615-X
Clementi, Scagnolari, D'amore, Palombi, Criscuolo et al., Naringenin is a powerful inhibitor of SARS-CoV-2 infection in vitro, Pharmacol. Res, doi:10.1016/j.phrs.2020.105255
Du, Zhu, Chen, Zhou, Yang et al., Revealing the therapeutic targets and molecular mechanisms of emodin-treated coronavirus disease 2019 via a systematic study of network pharmacology, Aging, doi:10.18632/aging.203098
Ema, Assessment Report on Rheum palmatum L. and Rheum Officinale Baillon, Radix; HMPC-European Medicines Agency
Falade, Adelusi, Adedotun, Abdul-Hammed, Lawal et al., In Silico investigation of saponins and tannins as potential inhibitors of SARS-CoV-2 main protease (M pro ), Silico Pharmacol, doi:10.1007/s40203-020-00071-w
Fiedler, Piziorska, Denninger, Morgunov, Ilsley et al., Antibody Affinity Governs the Inhibition of SARS-CoV-2 Spike/ACE2 Binding in Patient Serum, ACS Infect. Dis, doi:10.1021/acsinfecdis.1c00047
Frediansyah, Sofyantoro, Alhumaid, Al Mutair, Albayat et al., Microbial natural products with antiviral activities, including anti-SARS-CoV-2: A review, Molecules, doi:10.3390/molecules27134305
Gangadevi, Badavath, Thakur, Yin, De Jonghe et al., Kobophenol A Inhibits Binding of Host ACE2 Receptor with Spike RBD Domain of SARS-CoV-2, a Lead Compound for Blocking COVID-19, J. Phys. Chem. Lett, doi:10.1021/acs.jpclett.0c03119
Goel, Jain, Kumari, The role of ACE2 receptor and its age related immunity in COVID-19, Int. J. Pharm. Sci. Rev. Res
González Canga, Sahagún Prieto, Diez Liébana, Fernández Martínez, Sierra et al., The pharmacokinetics and interactions of ivermectin in humans-A mini-review, AAPS J, doi:10.1208/s12248-007-9000-9
Goswami, Bagchi, Molecular Docking study of Receptor Binding Domain of SARS-CoV-2 Spike Glycoprotein with Saikosaponin, a Triterpenoid Natural Product, ChemRxiv. Camb. Camb. Open Engag, doi:10.26434/chemrxiv.12033774.v1
Große, Ruetalo, Layer, Hu, Businger et al., Quinine Inhibits Infection of Human Cell Lines with SARS-CoV-2, Viruses, doi:10.3390/v13040647
Han, Li, Liu, Wang, Zhang et al., Receptor binding and complex structures of human ACE2 to spike RBD from omicron and delta SARS-CoV-2, Cell, doi:10.1016/j.cell.2022.01.001
Ho, Wu, Chen, Li, Hsiang, Emodin blocks the SARS coronavirus spike protein and angiotensinconverting enzyme 2 interaction, Antivir. Res, doi:10.1016/j.antiviral.2006.04.014
Hoever, Baltina, Michaelis, Kondratenko, Baltina et al., Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus, J. Med. Chem, doi:10.1021/jm0493008
Jackson, Farzan, Chen, Choe, Mechanisms of SARS-CoV-2 entry into cells, Nat. Rev. Mol. Cell Biol, doi:10.1038/s41580-021-00418-x
Kalhor, Sadeghi, Abolhasani, Kalhor, Rahimi, Repurposing of the approved small molecule drugs in order to inhibit SARS-CoV-2 S protein and human ACE2 interaction through virtual screening approaches, J. Biomol. Struct. Dyn, doi:10.1080/07391102.2020.1824816
Ke, Oton, Qu, Cortese, Zila et al., Structures and distributions of SARS-CoV-2 spike proteins on intact virions, Nature, doi:10.1038/s41586-020-2665-2
Kim, Jeon, Jang, Gotina, Won et al., a natural component of Platycodon grandiflorum, prevents both lysosome-and TMPRSS2-driven SARS-CoV-2 infection by hindering membrane fusion, Exp. Mol. Med, doi:10.1038/s12276-021-00624-9
Kumar, Gokila, Vani, Wang, Chen et al., Geranium and lemon essential oils and their active compounds downregulate angiotensin-converting enzyme 2 (ACE2), a SARS-CoV-2 spike receptor-binding domain, in epithelial cells, Plants, doi:10.3390/plants9060770
Kuznetsov, Arukuusk, Härk, Juronen, Langel et al., ACE2 peptide fragment interacts with several sites on the SARS-CoV-2 spike protein S1, bioRxiv, doi:10.1101/2020.12.29.424682
Laffeber, De Koning, Kanaar, Lebbink, Experimental Evidence for Enhanced Receptor Binding by Rapidly Spreading SARS-CoV-2 Variants, J. Mol. Biol, doi:10.1016/j.jmb.2021.167058
Lan, Ge, Yu, Shan, Zhou et al., Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor, Nature, doi:10.1038/s41586-020-2180-5
Lee, Kim, Kim, Pharmacokinetic analysis of rhein in Rheum undulatum L, J. Ethnopharmacol, doi:10.1016/S0378-8741(02)00222-2
Lehrer, Rheinstein, Ivermectin docks to the SARS-CoV-2 spike receptor-binding domain attached to ACE2, Vivo, doi:10.21873/invivo.12134
Lin, Wu, Huang, Phenols from the roots of Rheum palmatum attenuate chemotaxis in rat hepatic stellate cells, Planta Med, doi:10.1055/s-2008-1074581
Lingwan, Shagun, Pant, Nanda, Masakapalli, Antiviral phytochemicals identified in Rhododendron arboreum petals exhibited strong binding to SARS-CoV-2 MPro and Human ACE2 receptor, Preprints, doi:10.20944/preprints202008.0530.v1
Liu, Raghuvanshi, Ceylan, Bolling, Quercetin and Its Metabolites Inhibit Recombinant Human Angiotensin-Converting Enzyme 2 (ACE2) Activity, J. Agric. Food Chem, doi:10.1021/acs.jafc.0c05064
Liu, Zhang, Wei, Chen, Aviszus et al., The basis of a more contagious 501Y.V1 variant of SARS-CoV-2, Cell Res, doi:10.1038/s41422-021-00496-8
Liu, Zheng, Cheng, Li, Huang et al., Citrus fruits are rich in flavonoids for immunoregulation and potential targeting ACE2, Nat. Prod. Bioprospecting, doi:10.1007/s13659-022-00325-4
Low, Lani, Tiong, Poh, Abubakar et al., COVID-19 therapeutic potential of natural products, Int. J. Mol. Sci, doi:10.3390/ijms24119589
Mieres-Castro, Mora-Poblete, Saponins: Research Progress and Their Potential Role in the Post-COVID-19 Pandemic Era, Pharmaceutics, doi:10.3390/pharmaceutics15020348
Ogunyemi, Gyebi, Ibrahim, Olaiya, Ocheje et al., Dietary stigmastane-type saponins as promising dual-target directed inhibitors of SARS-CoV-2 proteases: A structure-based screening, RSC Adv, doi:10.1039/D1RA05976A
Overduin, Esmaili, Memtein, Fluidic Analytics. User Manual for Fluidity One-W and Fluidity One-W Serum IFU-0007v8; Fluidic Analytics, doi:10.1016/j.chemphyslip.2018.11.008
Pan, Fang, Zhang, Pan, Liu et al., Chinese herbal compounds against SARS-CoV-2: Puerarin and quercetin impair the binding of viral S-protein to ACE2 receptor, Comput. Struct. Biotechnol. J, doi:10.1016/j.csbj.2020.11.010
Patel, Vunnam, Patel, Krill, Korbitz et al., Transmission of SARS-CoV-2: An update of current literature, Eur. J. Clin. Microbiol. Infect. Dis, doi:10.1007/s10096-020-03961-1
Perrella, Coppola, Petrone, Platella, Montesarchio et al., Interference of Polydatin/Resveratrol in the ACE2:Spike Recognition during COVID-19 Infection. A Focus on Their Potential Mechanism of Action through Computational and Biochemical Assays, Biomolecules, doi:10.3390/biom11071048
Prashantha, Gouthami, Lavanya, Bhavanam, Jakhar et al., Molecular screening of antimalarial, antiviral, anti-inflammatory and HIV protease inhibitors against spike glycoprotein of coronavirus, J. Mol. Graph. Model, doi:10.1016/j.jmgm.2020.107769
Priyandoko, Molecular Docking Study of the Potential Relevance of the Natural Compounds Isoflavone and Myricetin to COVID-19, Int. J. Bioautomation, doi:10.7546/ijba.2021.25.3.000796
Prévost, Richard, Gasser, Ding, Fage et al., Impact of temperature on the affinity of SARS-CoV-2 Spike for ACE2, bioRxiv, doi:10.1101/2021.07.09.451812
Rajah, Bernier, Buchrieser, Schwartz, The Mechanism and Consequences of SARS-CoV-2 Spike-Mediated Fusion and Syncytia Formation, J. Mol. Biol, doi:10.1016/j.jmb.2021.167280
Rebello, Beyl, Lertora, Greenway, Ravussin et al., Safety and pharmacokinetics of naringenin: A randomized, controlled, single-ascending-dose clinical trial, Diabetes Obes. Metab, doi:10.1111/dom.13868
Rehan, Shafiullah, Medicinal plant-based saponins targeting COVID-19 M pro in silico, Tradit Med. Res, doi:10.53388/TMR20201130210
Rolta, Salaria, Sharma, Sharma, Kumar et al., Phytocompounds of Rheum emodi, Thymus serpyllum, and Artemisia annua Inhibit spike protein of SARS-CoV-2 binding to ACE2 receptor: In silico approach, Curr. Pharmacol. Rep, doi:10.1007/s40495-021-00259-4
Ru, Li, Wang, Zhou, Li et al., TCMSP: A database of systems pharmacology for drug discovery from herbal medicines, J. Cheminform, doi:10.1186/1758-2946-6-13
Sha, Liu, Hao, Current state-of-the-art and potential future therapeutic drugs against COVID-19, Front. Cell Dev. Biol, doi:10.3389/fcell.2023.1238027
Shakhsi-Niaei, Soureshjani, Babaheydari, In Silico Comparison of Separate or Combinatorial Effects of Potential Inhibitors of the SARS-CoV-2 Binding Site of ACE2, Iran J. Public Health, doi:10.18502/ijph.v50i5.6120
Shang, Ye, Shi, Wan, Luo et al., Structural basis of receptor recognition by SARS-CoV-2, Nature, doi:10.1038/s41586-020-2179-y
Sinha, Shakya, Prasad, Singh, Gurav et al., An in-silico evaluation of different saikosaponins for their potency against SARS-CoV-2 using NSP15 and fusion spike glycoprotein as targets, J. Biomol. Struct. Dyn, doi:10.1080/07391102.2020.1762741
Smith, Smith, Repurposing Therapeutics for COVID-19: Supercomputer-Based Docking to the SARS-CoV-2 Viral Spike Protein and Viral Spike Protein-Human ACE2 Interface
Supasa, Zhou, Dejnirattisai, Liu, Mentzer et al., Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera, Cell, doi:10.1016/j.cell.2021.02.033
Taco, Savarino, Benali, Villacrés, Raquez et al., Deep eutectic solvents for the extraction and stabilization of Ecuadorian quinoa (Chenopodium quinoa Willd.) saponins, J. Clean. Prod, doi:10.1016/j.jclepro.2022.132609
Tutunchi, Naeini, Ostadrahimi, Hosseinzadeh-Attar, Naringenin, a flavanone with antiviral and anti-inflammatory effects: A promising treatment strategy against COVID-19, Phytother. Res, doi:10.1002/ptr.6781
Van Beek, Montoro, Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals, J. Chromatogr. A, doi:10.1016/j.chroma.2009.01.013
Van Breemen, Muchiri, Bates, Weinstein, Leier et al., Cannabinoids block cellular entry of SARS-CoV-2 and the emerging variants, J. Nat. Prod, doi:10.1021/acs.jnatprod.1c00946
Walls, Park, Tortorici, Wall, Mcguire et al., Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein, Cell, doi:10.1016/j.cell.2020.02.058
Wang, Han, Liu, Meng, He et al., Chloroquine and hydroxychloroquine as ACE2 blockers to inhibit viropexis of 2019-nCoV Spike pseudotyped virus, Phytomedicine, doi:10.1016/j.phymed.2020.153333
Wang, Huang, Chen, Lee, Yang, Inducible nitric oxide synthase inhibitors of chinese herbs III. Rheum palmatum, Planta Med, doi:10.1055/s-2002-34918
Watanabe, Allen, Wrapp, Mclellan, Crispin, Site-specific glycan analysis of the SARS-CoV-2 spike, Science, doi:10.1126/science.abb9983
Who, None
Wiese, Zemlin, Pillay, Molecules in pathogenesis: Angiotensin converting enzyme 2 (ACE2), J. Clin. Pathol, doi:10.1136/jclinpath-2020-206954
Wrapp, Wang, Corbett, Goldsmith, Hsieh et al., Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation, Science, doi:10.1126/science.abb2507
Wu, Jan, Ma, Kuo, Juan et al., Small molecules targeting severe acute respiratory syndrome human coronavirus, Proc. Natl. Acad. Sci, doi:10.1073/pnas.0403596101
Wu, Shi, Wang, Zhang, Wang, Targeting SARS-CoV-2 entry processes: The promising potential and future of host-targeted small-molecule inhibitors, Eur. J. Med. Chem, doi:10.1016/j.ejmech.2023.115923
Xu, Liu, Xiao, Zhou, Ge et al., Computational and experimental studies reveal that thymoquinone blocks the entry of coronaviruses into in vitro cells, Infect. Dis. Ther, doi:10.1007/s40121-021-00400-2
Yan, Shen, Cao, Zhang, Wang et al., Discovery of Anti-2019-nCoV Agents from Chinese Patent Drugs via Docking Screening, Preprints, doi:10.20944/preprints202002.0254.v1
Yan, Zhang, Li, Ye, Guo et al., Structural basis for the different states of the spike protein of SARS-CoV-2 in complex with ACE2, Cell Res, doi:10.1038/s41422-021-00490-0
Yang, Chen, Hamdoun, Coghi, Ng et al., Corilagin prevents SARS-CoV-2 infection by targeting RBD-ACE2 binding, Phytomedicine, doi:10.1016/j.phymed.2021.153591
Yu, Chen, Li, Absorption, disposition, and pharmacokinetics of saponins from chinese medicinal herbs: What do we know and what do we need to know more?, Curr. Drug Metab, doi:10.2174/1389200211209050577
Zeng, Yu, Wang, Liu, Xu, A potential antiviral activity of esculentoside A against binding interactions of SARS-COV-2 spike protein and angiotensin converting enzyme 2 (ACE2), Int. J. Biol. Macromol, doi:10.1016/j.ijbiomac.2021.06.017
Zhan, Ta, Tang, Hua, Wang et al., Potential antiviral activity of isorhamnetin against SARS-CoV-2 spike pseudotyped virus in vitro, Drug Dev. Res, doi:10.1002/ddr.21815
Zhang, Cai, Xiao, Lu, Peng et al., Structural impact on SARS-CoV-2 spike protein by D614G substitution, Science, doi:10.1126/science.abf2303
Zhang, Penninger, Li, Zhong, Slutsky, Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target, Intensive Care Med, doi:10.1007/s00134-020-05985-9
Zhu, Wang, Zhang, Li, Wang, Pharmacokinetic of rhein in healthy male volunteers following oral and retention enema administration of rhubarb extract: A single dose study, Am. J. Chin. Med, doi:10.1142/S0192415X05003508
DOI record:
{
"DOI": "10.3390/molecules28248072",
"ISSN": [
"1420-3049"
],
"URL": "http://dx.doi.org/10.3390/molecules28248072",
"abstract": "<jats:p>The interaction between SARS-CoV-2 spike RBD and ACE2 proteins is a crucial step for host cell infection by the virus. Without it, the entire virion entrance mechanism is compromised. The aim of this study was to evaluate the capacity of various natural product classes, including flavonoids, anthraquinones, saponins, ivermectin, chloroquine, and erythromycin, to modulate this interaction. To accomplish this, we applied a recently developed a microfluidic diffusional sizing (MDS) technique that allows us to probe protein-protein interactions via measurements of the hydrodynamic radius (Rh) and dissociation constant (KD); the evolution of Rh is monitored in the presence of increasing concentrations of the partner protein (ACE2); and the KD is determined through a binding curve experimental design. In a second time, with the protein partners present in equimolar amounts, the Rh of the protein complex was measured in the presence of different natural products. Five of the nine natural products/extracts tested were found to modulate the formation of the protein complex. A methanol extract of Chenopodium quinoa Willd bitter seed husks (50 µg/mL; bisdesmoside saponins) and the flavonoid naringenin (1 µM) were particularly effective. This rapid selection of effective modulators will allow us to better understand agents that may prevent SARS-CoV-2 infection.</jats:p>",
"alternative-id": [
"molecules28248072"
],
"author": [
{
"ORCID": "http://orcid.org/0000-0002-7997-7054",
"affiliation": [
{
"name": "Unit of Therapeutic Chemistry and Pharmacognosy, University of Mons (UMONS), 7000 Mons, Belgium"
}
],
"authenticated-orcid": false,
"family": "Fauquet",
"given": "Jason",
"sequence": "first"
},
{
"ORCID": "http://orcid.org/0009-0009-2264-4193",
"affiliation": [
{
"name": "Unit of Therapeutic Chemistry and Pharmacognosy, University of Mons (UMONS), 7000 Mons, Belgium"
}
],
"authenticated-orcid": false,
"family": "Carette",
"given": "Julie",
"sequence": "additional"
},
{
"ORCID": "http://orcid.org/0000-0002-0484-1478",
"affiliation": [
{
"name": "Unit of Therapeutic Chemistry and Pharmacognosy, University of Mons (UMONS), 7000 Mons, Belgium"
}
],
"authenticated-orcid": false,
"family": "Duez",
"given": "Pierre",
"sequence": "additional"
},
{
"ORCID": "http://orcid.org/0000-0002-1745-846X",
"affiliation": [
{
"name": "College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China"
}
],
"authenticated-orcid": false,
"family": "Zhang",
"given": "Jiuliang",
"sequence": "additional"
},
{
"ORCID": "http://orcid.org/0000-0002-8697-2809",
"affiliation": [
{
"name": "Unit of Therapeutic Chemistry and Pharmacognosy, University of Mons (UMONS), 7000 Mons, Belgium"
}
],
"authenticated-orcid": false,
"family": "Nachtergael",
"given": "Amandine",
"sequence": "additional"
}
],
"container-title": "Molecules",
"container-title-short": "Molecules",
"content-domain": {
"crossmark-restriction": false,
"domain": []
},
"created": {
"date-parts": [
[
2023,
12,
13
]
],
"date-time": "2023-12-13T17:00:37Z",
"timestamp": 1702486837000
},
"deposited": {
"date-parts": [
[
2023,
12,
13
]
],
"date-time": "2023-12-13T17:09:20Z",
"timestamp": 1702487360000
},
"funder": [
{
"name": "project Wallonie-Bruxelles/China"
},
{
"award": [
"N° CDR J.0058.21"
],
"name": "Fonds pour la Recherche Scientifique FNRS"
},
{
"award": [
"2021YFE0194000"
],
"name": "National Key R&D Program of China"
}
],
"indexed": {
"date-parts": [
[
2023,
12,
14
]
],
"date-time": "2023-12-14T00:54:10Z",
"timestamp": 1702515250966
},
"is-referenced-by-count": 0,
"issue": "24",
"issued": {
"date-parts": [
[
2023,
12,
13
]
]
},
"journal-issue": {
"issue": "24",
"published-online": {
"date-parts": [
[
2023,
12
]
]
}
},
"language": "en",
"license": [
{
"URL": "https://creativecommons.org/licenses/by/4.0/",
"content-version": "vor",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2023,
12,
13
]
],
"date-time": "2023-12-13T00:00:00Z",
"timestamp": 1702425600000
}
}
],
"link": [
{
"URL": "https://www.mdpi.com/1420-3049/28/24/8072/pdf",
"content-type": "unspecified",
"content-version": "vor",
"intended-application": "similarity-checking"
}
],
"member": "1968",
"original-title": [],
"page": "8072",
"prefix": "10.3390",
"published": {
"date-parts": [
[
2023,
12,
13
]
]
},
"published-online": {
"date-parts": [
[
2023,
12,
13
]
]
},
"publisher": "MDPI AG",
"reference": [
{
"key": "ref_1",
"unstructured": "WHO (2023, October 21). World Health Orgarnization. Available online: https://covid19.who.int/table."
},
{
"article-title": "Insuffisance Respiratoire Hypoxémique Aigüe (Syndrome de Détresse Respiratoire Aiguë [SDRA], Ou [ARDS], Acute Respiratory Distress Syndrome)",
"author": "Bhakti",
"first-page": "2564",
"journal-title": "N. Engl. J. Med.",
"key": "ref_2",
"volume": "354",
"year": "2006"
},
{
"DOI": "10.1007/s10096-020-03961-1",
"article-title": "Transmission of SARS-CoV-2: An update of current literature",
"author": "Patel",
"doi-asserted-by": "crossref",
"first-page": "2005",
"journal-title": "Eur. J. Clin. Microbiol. Infect. Dis.",
"key": "ref_3",
"volume": "39",
"year": "2020"
},
{
"article-title": "The role of ACE2 receptor and its age related immunity in COVID-19",
"author": "Goel",
"first-page": "190",
"journal-title": "Int. J. Pharm. Sci. Rev. Res.",
"key": "ref_4",
"volume": "63",
"year": "2020"
},
{
"DOI": "10.1016/j.jmgm.2020.107769",
"article-title": "Molecular screening of antimalarial, antiviral, anti-inflammatory and HIV protease inhibitors against spike glycoprotein of coronavirus",
"author": "Prashantha",
"doi-asserted-by": "crossref",
"first-page": "107769",
"journal-title": "J. Mol. Graph. Model.",
"key": "ref_5",
"volume": "102",
"year": "2021"
},
{
"DOI": "10.1016/j.jmb.2021.167280",
"doi-asserted-by": "crossref",
"key": "ref_6",
"unstructured": "Rajah, M.M., Bernier, A., Buchrieser, J., and Schwartz, O. (2022). The Mechanism and Consequences of SARS-CoV-2 Spike-Mediated Fusion and Syncytia Formation. J. Mol. Biol., 434."
},
{
"DOI": "10.1126/science.abd4251",
"article-title": "Distinct conformational states of SARS-CoV-2 spike protein",
"author": "Cai",
"doi-asserted-by": "crossref",
"first-page": "1586",
"journal-title": "Science",
"key": "ref_7",
"volume": "369",
"year": "2020"
},
{
"DOI": "10.1038/s41580-021-00418-x",
"article-title": "Mechanisms of SARS-CoV-2 entry into cells",
"author": "Jackson",
"doi-asserted-by": "crossref",
"first-page": "3",
"journal-title": "Nat. Rev. Mol. Cell Biol.",
"key": "ref_8",
"volume": "23",
"year": "2022"
},
{
"DOI": "10.1038/s41586-020-2665-2",
"article-title": "Structures and distributions of SARS-CoV-2 spike proteins on intact virions",
"author": "Ke",
"doi-asserted-by": "crossref",
"first-page": "498",
"journal-title": "Nature",
"key": "ref_9",
"volume": "588",
"year": "2020"
},
{
"DOI": "10.1126/science.abb9983",
"article-title": "Site-specific glycan analysis of the SARS-CoV-2 spike",
"author": "Watanabe",
"doi-asserted-by": "crossref",
"first-page": "330",
"journal-title": "Science",
"key": "ref_10",
"volume": "369",
"year": "2020"
},
{
"DOI": "10.1038/s41422-021-00490-0",
"article-title": "Structural basis for the different states of the spike protein of SARS-CoV-2 in complex with ACE2",
"author": "Yan",
"doi-asserted-by": "crossref",
"first-page": "717",
"journal-title": "Cell Res.",
"key": "ref_11",
"volume": "31",
"year": "2021"
},
{
"DOI": "10.1042/CS20200477",
"article-title": "ACE2 and gut amino acid transport",
"author": "Camargo",
"doi-asserted-by": "crossref",
"first-page": "2823",
"journal-title": "Clin. Sci.",
"key": "ref_12",
"volume": "134",
"year": "2020"
},
{
"DOI": "10.1136/jclinpath-2020-206954",
"article-title": "Molecules in pathogenesis: Angiotensin converting enzyme 2 (ACE2)",
"author": "Wiese",
"doi-asserted-by": "crossref",
"first-page": "285",
"journal-title": "J. Clin. Pathol.",
"key": "ref_13",
"volume": "74",
"year": "2021"
},
{
"DOI": "10.1007/s00134-020-05985-9",
"article-title": "Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target",
"author": "Zhang",
"doi-asserted-by": "crossref",
"first-page": "586",
"journal-title": "Intensive Care Med.",
"key": "ref_14",
"volume": "46",
"year": "2020"
},
{
"DOI": "10.1016/j.cell.2022.01.001",
"article-title": "Receptor binding and complex structures of human ACE2 to spike RBD from omicron and delta SARS-CoV-2",
"author": "Han",
"doi-asserted-by": "crossref",
"first-page": "630",
"journal-title": "Cell",
"key": "ref_15",
"volume": "185",
"year": "2022"
},
{
"DOI": "10.1021/acsinfecdis.1c00047",
"article-title": "Antibody Affinity Governs the Inhibition of SARS-CoV-2 Spike/ACE2 Binding in Patient Serum",
"author": "Fiedler",
"doi-asserted-by": "crossref",
"first-page": "2362",
"journal-title": "ACS Infect. Dis.",
"key": "ref_16",
"volume": "7",
"year": "2021"
},
{
"DOI": "10.1021/acsnano.5b04713",
"article-title": "Microfluidic diffusion analysis of the sizes and interactions of proteins under native solution conditions",
"author": "Arosio",
"doi-asserted-by": "crossref",
"first-page": "333",
"journal-title": "ACS Nano",
"key": "ref_17",
"volume": "10",
"year": "2016"
},
{
"DOI": "10.1080/13880209.2022.2039215",
"article-title": "The vital role of animal, marine, and microbial natural products against COVID-19",
"author": "Alqathama",
"doi-asserted-by": "crossref",
"first-page": "509",
"journal-title": "Pharm. Biol.",
"key": "ref_18",
"volume": "60",
"year": "2022"
},
{
"DOI": "10.3390/molecules27134305",
"doi-asserted-by": "crossref",
"key": "ref_19",
"unstructured": "Frediansyah, A., Sofyantoro, F., Alhumaid, S., Al Mutair, A., Albayat, H., Altaweil, H.I., Al-Afghani, H.M., AlRamadhan, A.A., AlGhazal, M.R., and Turkistani, S.A. (2022). Microbial natural products with antiviral activities, including anti-SARS-CoV-2: A review. Molecules, 27."
},
{
"DOI": "10.20944/preprints202305.0492.v1",
"doi-asserted-by": "crossref",
"key": "ref_20",
"unstructured": "Low, Z., Lani, R., Tiong, V., Poh, C., AbuBakar, S., and Hassandarvish, P. (2023). COVID-19 therapeutic potential of natural products. Int. J. Mol. Sci., 24."
},
{
"DOI": "10.20944/preprints202008.0530.v1",
"doi-asserted-by": "crossref",
"key": "ref_21",
"unstructured": "Lingwan, M., Shagun, S., Pant, Y., Nanda, R., and Masakapalli, S. (2020). Antiviral phytochemicals identified in Rhododendron arboreum petals exhibited strong binding to SARS-CoV-2 MPro and Human ACE2 receptor. Preprints, 2020080530."
},
{
"DOI": "10.1007/s13659-022-00325-4",
"doi-asserted-by": "crossref",
"key": "ref_22",
"unstructured": "Liu, W., Zheng, W., Cheng, L., Li, M., Huang, J., Bao, S., Xu, Q., and Ma, Z. (2022). Citrus fruits are rich in flavonoids for immunoregulation and potential targeting ACE2. Nat. Prod. Bioprospecting, 12."
},
{
"DOI": "10.1021/acs.jafc.0c05064",
"article-title": "Quercetin and Its Metabolites Inhibit Recombinant Human Angiotensin-Converting Enzyme 2 (ACE2) Activity",
"author": "Liu",
"doi-asserted-by": "crossref",
"first-page": "13982",
"journal-title": "J. Agric. Food Chem.",
"key": "ref_23",
"volume": "68",
"year": "2020"
},
{
"DOI": "10.1016/j.csbj.2020.11.010",
"article-title": "Chinese herbal compounds against SARS-CoV-2: Puerarin and quercetin impair the binding of viral S-protein to ACE2 receptor",
"author": "Pan",
"doi-asserted-by": "crossref",
"first-page": "3518",
"journal-title": "Comput. Struct. Biotechnol. J.",
"key": "ref_24",
"volume": "18",
"year": "2020"
},
{
"DOI": "10.7546/ijba.2021.25.3.000796",
"article-title": "Molecular Docking Study of the Potential Relevance of the Natural Compounds Isoflavone and Myricetin to COVID-19",
"author": "Priyandoko",
"doi-asserted-by": "crossref",
"first-page": "271",
"journal-title": "Int. J. Bioautomation",
"key": "ref_25",
"volume": "25",
"year": "2021"
},
{
"article-title": "In Silico Comparison of Separate or Combinatorial Effects of Potential Inhibitors of the SARS-CoV-2 Binding Site of ACE2",
"author": "Soureshjani",
"first-page": "1028",
"journal-title": "Iran J. Public Health",
"key": "ref_26",
"volume": "50",
"year": "2021"
},
{
"DOI": "10.1002/ptr.6781",
"article-title": "Naringenin, a flavanone with antiviral and anti-inflammatory effects: A promising treatment strategy against COVID-19",
"author": "Tutunchi",
"doi-asserted-by": "crossref",
"first-page": "3137",
"journal-title": "Phytother. Res.",
"key": "ref_27",
"volume": "30",
"year": "2020"
},
{
"article-title": "In Silico study the inhibition of angiotensin converting enzyme 2 receptor of COVID-19 by Ammoides verticillata components harvested from Western Algeria",
"author": "Abdelli",
"first-page": "3263",
"journal-title": "J. Biomol. Struct. Dyn.",
"key": "ref_28",
"volume": "39",
"year": "2020"
},
{
"DOI": "10.3390/ph15020129",
"doi-asserted-by": "crossref",
"key": "ref_29",
"unstructured": "Badraoui, R., Saoudi, M., Hamadou, W.S., Elkahoui, S., Siddiqui, A.J., Alam, J.M., Jamal, A., Adnan, M., Suliemen, A.M.E., and Alreshidi, M.M. (2022). Antiviral effects of artemisinin and Its derivatives against SARS-CoV-2 main protease: Computational evidences and interactions with ACE2 allelic variants. Pharmaceuticals, 15."
},
{
"DOI": "10.1016/j.jep.2020.112895",
"article-title": "Astragali Radix (Huangqi): A promising edible immunomodulatory herbal medicine",
"author": "Chen",
"doi-asserted-by": "crossref",
"first-page": "112895",
"journal-title": "J. Ethnopharmacol.",
"key": "ref_30",
"volume": "258",
"year": "2020"
},
{
"DOI": "10.26434/chemrxiv.12033774",
"doi-asserted-by": "crossref",
"key": "ref_31",
"unstructured": "Goswami, T., and Bagchi, B. (2020). Molecular Docking study of Receptor Binding Domain of SARS-CoV-2 Spike Glycoprotein with Saikosaponin, a Triterpenoid Natural Product. ChemRxiv. Camb. Camb. Open Engag."
},
{
"DOI": "10.1007/s40495-021-00259-4",
"article-title": "Phytocompounds of Rheum emodi, Thymus serpyllum, and Artemisia annua Inhibit spike protein of SARS-CoV-2 binding to ACE2 receptor: In silico approach",
"author": "Rolta",
"doi-asserted-by": "crossref",
"first-page": "135",
"journal-title": "Curr. Pharmacol. Rep.",
"key": "ref_32",
"volume": "7",
"year": "2021"
},
{
"article-title": "An in-silico evaluation of different saikosaponins for their potency against SARS-CoV-2 using NSP15 and fusion spike glycoprotein as targets",
"author": "Sinha",
"first-page": "3244",
"journal-title": "J. Biomol. Struct. Dyn.",
"key": "ref_33",
"volume": "39",
"year": "2021"
},
{
"DOI": "10.1016/j.ijbiomac.2021.06.017",
"article-title": "A potential antiviral activity of esculentoside A against binding interactions of SARS-COV-2 spike protein and angiotensin converting enzyme 2 (ACE2)",
"author": "Zeng",
"doi-asserted-by": "crossref",
"first-page": "2248",
"journal-title": "Int. J. Biol. Macromol.",
"key": "ref_34",
"volume": "183",
"year": "2021"
},
{
"DOI": "10.2174/1381612827666210125121954",
"article-title": "The computational intervention of macrolide antibiotics in the treatment of COVID-19",
"author": "Anwar",
"doi-asserted-by": "crossref",
"first-page": "1202",
"journal-title": "Curr. Pharm. Des.",
"key": "ref_35",
"volume": "27",
"year": "2021"
},
{
"DOI": "10.1016/j.ijantimicag.2020.106119",
"article-title": "In Silico study of azithromycin, chloroquine and hydroxychloroquine and their potential mechanisms of action against SARS-CoV-2 infection",
"author": "Braz",
"doi-asserted-by": "crossref",
"first-page": "106119",
"journal-title": "Int. J. Antimicrob. Agents",
"key": "ref_36",
"volume": "56",
"year": "2020"
},
{
"DOI": "10.1080/07391102.2020.1824816",
"article-title": "Repurposing of the approved small molecule drugs in order to inhibit SARS-CoV-2 S protein and human ACE2 interaction through virtual screening approaches",
"author": "Kalhor",
"doi-asserted-by": "crossref",
"first-page": "1299",
"journal-title": "J. Biomol. Struct. Dyn.",
"key": "ref_37",
"volume": "40",
"year": "2022"
},
{
"DOI": "10.21873/invivo.12134",
"article-title": "Ivermectin docks to the SARS-CoV-2 spike receptor-binding domain attached to ACE2",
"author": "Lehrer",
"doi-asserted-by": "crossref",
"first-page": "3023",
"journal-title": "In Vivo",
"key": "ref_38",
"volume": "34",
"year": "2020"
},
{
"DOI": "10.1038/s41598-020-74715-4",
"article-title": "Molecular docking study of potential phytochemicals and their effects on the complex of SARS-CoV2 spike protein and human ACE2",
"author": "Basu",
"doi-asserted-by": "crossref",
"first-page": "17699",
"journal-title": "Sci. Rep.",
"key": "ref_39",
"volume": "10",
"year": "2020"
},
{
"DOI": "10.18632/aging.203098",
"article-title": "Revealing the therapeutic targets and molecular mechanisms of emodin-treated coronavirus disease 2019 via a systematic study of network pharmacology",
"author": "Du",
"doi-asserted-by": "crossref",
"first-page": "14571",
"journal-title": "Aging",
"key": "ref_40",
"volume": "13",
"year": "2021"
},
{
"DOI": "10.1002/ddr.21815",
"article-title": "Potential antiviral activity of isorhamnetin against SARS-CoV-2 spike pseudotyped virus in vitro",
"author": "Zhan",
"doi-asserted-by": "crossref",
"first-page": "1124",
"journal-title": "Drug Dev. Res.",
"key": "ref_41",
"volume": "82",
"year": "2021"
},
{
"DOI": "10.1021/acs.jpclett.0c03119",
"article-title": "Kobophenol A Inhibits Binding of Host ACE2 Receptor with Spike RBD Domain of SARS-CoV-2, a Lead Compound for Blocking COVID-19",
"author": "Gangadevi",
"doi-asserted-by": "crossref",
"first-page": "1793",
"journal-title": "J. Phys. Chem. Lett.",
"key": "ref_42",
"volume": "12",
"year": "2021"
},
{
"DOI": "10.3390/biom11071048",
"doi-asserted-by": "crossref",
"key": "ref_43",
"unstructured": "Perrella, F., Coppola, F., Petrone, A., Platella, C., Montesarchio, D., Stringaro, A., Ravagnan, G., Fuggetta, M.P., Rega, N., and Musumeci, D. (2021). Interference of Polydatin/Resveratrol in the ACE2:Spike Recognition during COVID-19 Infection. A Focus on Their Potential Mechanism of Action through Computational and Biochemical Assays. Biomolecules, 11."
},
{
"DOI": "10.3389/fphar.2021.634176",
"article-title": "1,2,3,4,6-Pentagalloyl Glucose, a RBD-ACE2 Binding Inhibitor to Prevent SARS-CoV-2 Infection",
"author": "Chen",
"doi-asserted-by": "crossref",
"first-page": "634176",
"journal-title": "Front. Pharmacol.",
"key": "ref_44",
"volume": "12",
"year": "2021"
},
{
"DOI": "10.1016/j.phymed.2021.153591",
"article-title": "Corilagin prevents SARS-CoV-2 infection by targeting RBD-ACE2 binding",
"author": "Yang",
"doi-asserted-by": "crossref",
"first-page": "153591",
"journal-title": "Phytomedicine",
"key": "ref_45",
"volume": "87",
"year": "2021"
},
{
"DOI": "10.2147/DDDT.S292805",
"article-title": "Withanone from Withania somnifera attenuates SARS-CoV-2 RBD and host ACE2 interactions to rescue spike protein induced pathologies in humanized zebrafish model",
"author": "Balkrishna",
"doi-asserted-by": "crossref",
"first-page": "1111",
"journal-title": "Drug Des. Devel. Ther.",
"key": "ref_46",
"volume": "15",
"year": "2021"
},
{
"DOI": "10.1038/s41598-021-01690-9",
"article-title": "Common cardiac medications potently inhibit ACE2 binding to the SARS-CoV-2 Spike, and block virus penetration and infectivity in human lung cells",
"author": "Caohuy",
"doi-asserted-by": "crossref",
"first-page": "22195",
"journal-title": "Sci. Rep.",
"key": "ref_47",
"volume": "11",
"year": "2021"
},
{
"article-title": "ACE2: S1 RBD interaction-targeted peptides and small molecules as potential COVID-19 therapeutics",
"author": "Chitsike",
"first-page": "e1828792",
"journal-title": "Adv. Pharmacol. Pharm. Sci.",
"key": "ref_48",
"volume": "2021",
"year": "2021"
},
{
"DOI": "10.1016/j.phrs.2020.105255",
"article-title": "Naringenin is a powerful inhibitor of SARS-CoV-2 infection in vitro",
"author": "Clementi",
"doi-asserted-by": "crossref",
"first-page": "105255",
"journal-title": "Pharmacol. Res.",
"key": "ref_49",
"volume": "163",
"year": "2021"
},
{
"DOI": "10.1021/acs.jnatprod.1c00946",
"article-title": "Cannabinoids block cellular entry of SARS-CoV-2 and the emerging variants",
"author": "Muchiri",
"doi-asserted-by": "crossref",
"first-page": "176",
"journal-title": "J. Nat. Prod.",
"key": "ref_50",
"volume": "85",
"year": "2022"
},
{
"DOI": "10.1038/s12276-021-00624-9",
"article-title": "Platycodin D, a natural component of Platycodon grandiflorum, prevents both lysosome- and TMPRSS2-driven SARS-CoV-2 infection by hindering membrane fusion",
"author": "Kim",
"doi-asserted-by": "crossref",
"first-page": "956",
"journal-title": "Exp. Mol. Med.",
"key": "ref_51",
"volume": "53",
"year": "2021"
},
{
"DOI": "10.3390/plants9060770",
"doi-asserted-by": "crossref",
"key": "ref_52",
"unstructured": "Senthil Kumar, K.J., Gokila Vani, M., Wang, C.-S., Chen, C.-C., Chen, Y.-C., Lu, L.-P., Huang, C.-H., Lai, C.-S., and Wang, S.-Y. (2020). Geranium and lemon essential oils and their active compounds downregulate angiotensin-converting enzyme 2 (ACE2), a SARS-CoV-2 spike receptor-binding domain, in epithelial cells. Plants, 9."
},
{
"DOI": "10.1007/s40121-021-00400-2",
"article-title": "Computational and experimental studies reveal that thymoquinone blocks the entry of coronaviruses into in vitro cells",
"author": "Xu",
"doi-asserted-by": "crossref",
"first-page": "483",
"journal-title": "Infect. Dis. Ther.",
"key": "ref_53",
"volume": "10",
"year": "2021"
},
{
"DOI": "10.1016/j.antiviral.2020.104787",
"article-title": "The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro",
"author": "Caly",
"doi-asserted-by": "crossref",
"first-page": "104787",
"journal-title": "Antivir. Res.",
"key": "ref_54",
"volume": "178",
"year": "2020"
},
{
"DOI": "10.3390/v13040647",
"doi-asserted-by": "crossref",
"key": "ref_55",
"unstructured": "Große, M., Ruetalo, N., Layer, M., Hu, D., Businger, R., Rheber, S., Setz, C., Rauch, P., Auth, J., and Fröba, M. (2021). Quinine Inhibits Infection of Human Cell Lines with SARS-CoV-2. Viruses, 13."
},
{
"DOI": "10.1016/j.phymed.2020.153333",
"article-title": "Chloroquine and hydroxychloroquine as ACE2 blockers to inhibit viropexis of 2019-nCoV Spike pseudotyped virus",
"author": "Wang",
"doi-asserted-by": "crossref",
"first-page": "153333",
"journal-title": "Phytomedicine",
"key": "ref_56",
"volume": "79",
"year": "2020"
},
{
"DOI": "10.1016/j.antiviral.2006.04.014",
"article-title": "Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction",
"author": "Ho",
"doi-asserted-by": "crossref",
"first-page": "92",
"journal-title": "Antivir. Res.",
"key": "ref_57",
"volume": "74",
"year": "2007"
},
{
"DOI": "10.1038/s41586-020-2180-5",
"article-title": "Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor",
"author": "Lan",
"doi-asserted-by": "crossref",
"first-page": "215",
"journal-title": "Nature",
"key": "ref_58",
"volume": "581",
"year": "2020"
},
{
"DOI": "10.7554/eLife.70658",
"article-title": "Effects of common mutations in the SARS-CoV-2 Spike RBD and its ligand, the human ACE2 receptor on binding affinity and kinetics",
"author": "Barton",
"doi-asserted-by": "crossref",
"first-page": "e70658",
"journal-title": "eLife",
"key": "ref_59",
"volume": "10",
"year": "2021"
},
{
"DOI": "10.1101/2021.02.22.432357",
"doi-asserted-by": "crossref",
"key": "ref_60",
"unstructured": "Laffeber, C., de Koning, K., Kanaar, R., and Lebbink, J.H.G. (2021). Experimental Evidence for Enhanced Receptor Binding by Rapidly Spreading SARS-CoV-2 Variants. J. Mol. Biol., 433."
},
{
"DOI": "10.1038/s41422-021-00496-8",
"article-title": "The basis of a more contagious 501Y.V1 variant of SARS-CoV-2",
"author": "Liu",
"doi-asserted-by": "crossref",
"first-page": "720",
"journal-title": "Cell Res.",
"key": "ref_61",
"volume": "31",
"year": "2021"
},
{
"DOI": "10.1038/s41586-020-2179-y",
"article-title": "Structural basis of receptor recognition by SARS-CoV-2",
"author": "Shang",
"doi-asserted-by": "crossref",
"first-page": "221",
"journal-title": "Nature",
"key": "ref_62",
"volume": "581",
"year": "2020"
},
{
"DOI": "10.1016/j.cell.2021.02.033",
"article-title": "Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera",
"author": "Supasa",
"doi-asserted-by": "crossref",
"first-page": "2201",
"journal-title": "Cell",
"key": "ref_63",
"volume": "184",
"year": "2021"
},
{
"DOI": "10.1101/2021.07.09.451812",
"doi-asserted-by": "crossref",
"key": "ref_64",
"unstructured": "Prévost, J., Richard, J., Gasser, R., Ding, S., Fage, C., Anand, S.P., Adam, D., Vergara, N.G., Tauzin, A., and Benlarbi, M. (2021). Impact of temperature on the affinity of SARS-CoV-2 Spike for ACE2. bioRxiv."
},
{
"DOI": "10.1126/science.abb2507",
"article-title": "Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation",
"author": "Wrapp",
"doi-asserted-by": "crossref",
"first-page": "1260",
"journal-title": "Science",
"key": "ref_65",
"volume": "367",
"year": "2020"
},
{
"key": "ref_66",
"unstructured": "(2023, October 25). ReactionBiology. Reaction Biology. Available online: https://www.reactionbiology.com/sites/default/files/Images/Content/Biophysical_Assay/SPR_S%20protein%20ACE2_ReactionBiology_V2.pdf."
},
{
"DOI": "10.1016/j.jmb.2020.166762",
"doi-asserted-by": "crossref",
"key": "ref_67",
"unstructured": "Allen, J.D., Watanabe, Y., Chawla, H., Newby, M.L., and Crispin, M. (2021). Subtle Influence of ACE2 Glycan Processing on SARS-CoV-2 Recognition. J. Mol. Biol., 433."
},
{
"DOI": "10.1101/2020.12.29.424682",
"doi-asserted-by": "crossref",
"key": "ref_68",
"unstructured": "Kuznetsov, A., Arukuusk, P., Härk, H., Juronen, E., Langel, Ü., Ustav, M., and Järv, J. (2020). ACE2 peptide fragment interacts with several sites on the SARS-CoV-2 spike protein S1. bioRxiv."
},
{
"DOI": "10.1016/j.cell.2020.02.058",
"article-title": "Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein",
"author": "Walls",
"doi-asserted-by": "crossref",
"first-page": "281",
"journal-title": "Cell",
"key": "ref_69",
"volume": "181",
"year": "2020"
},
{
"DOI": "10.1126/science.abf2303",
"article-title": "Structural impact on SARS-CoV-2 spike protein by D614G substitution",
"author": "Zhang",
"doi-asserted-by": "crossref",
"first-page": "525",
"journal-title": "Science",
"key": "ref_70",
"volume": "372",
"year": "2021"
},
{
"DOI": "10.1186/1758-2946-6-13",
"article-title": "TCMSP: A database of systems pharmacology for drug discovery from herbal medicines",
"author": "Ru",
"doi-asserted-by": "crossref",
"first-page": "13",
"journal-title": "J. Cheminform.",
"key": "ref_71",
"volume": "6",
"year": "2014"
},
{
"DOI": "10.26434/chemrxiv.11871402",
"doi-asserted-by": "crossref",
"key": "ref_72",
"unstructured": "Smith, M.D., and Smith, J.C. (ChemRxiv, 2020). Repurposing Therapeutics for COVID-19: Supercomputer-Based Docking to the SARS-CoV-2 Viral Spike Protein and Viral Spike Protein-Human ACE2 Interface, ChemRxiv, preprint."
},
{
"DOI": "10.1016/j.mrgentox.2014.04.014",
"article-title": "Effects of chemopreventive natural products on non-homologous end-joining DNA double-strand break repair",
"author": "Charles",
"doi-asserted-by": "crossref",
"first-page": "33",
"journal-title": "Mutat. Res./Genet. Toxicol. Environ. Mutagen.",
"key": "ref_73",
"volume": "768",
"year": "2014"
},
{
"DOI": "10.1111/dom.13868",
"article-title": "Safety and pharmacokinetics of naringenin: A randomized, controlled, single-ascending-dose clinical trial",
"author": "Rebello",
"doi-asserted-by": "crossref",
"first-page": "91",
"journal-title": "Diabetes Obes. Metab.",
"key": "ref_74",
"volume": "22",
"year": "2020"
},
{
"DOI": "10.1016/j.ijid.2022.07.003",
"article-title": "The effect of ivermectin on the viral load and culture viability in early treatment of nonhospitalized patients with mild COVID-19—A double-blind, randomized placebo-controlled trial",
"author": "Biber",
"doi-asserted-by": "crossref",
"first-page": "733",
"journal-title": "Int. J. Infect. Dis.",
"key": "ref_75",
"volume": "122",
"year": "2022"
},
{
"DOI": "10.1208/s12248-007-9000-9",
"article-title": "The pharmacokinetics and interactions of ivermectin in humans—A mini-review",
"doi-asserted-by": "crossref",
"first-page": "42",
"journal-title": "AAPS J.",
"key": "ref_76",
"volume": "10",
"year": "2008"
},
{
"DOI": "10.1016/S0378-8741(02)00222-2",
"article-title": "Pharmacokinetic analysis of rhein in Rheum undulatum L.",
"author": "Lee",
"doi-asserted-by": "crossref",
"first-page": "5",
"journal-title": "J. Ethnopharmacol.",
"key": "ref_77",
"volume": "84",
"year": "2003"
},
{
"DOI": "10.1142/S0192415X05003508",
"article-title": "Pharmacokinetic of rhein in healthy male volunteers following oral and retention enema administration of rhubarb extract: A single dose study",
"author": "Zhu",
"doi-asserted-by": "crossref",
"first-page": "839",
"journal-title": "Am. J. Chin. Med.",
"key": "ref_78",
"volume": "33",
"year": "2005"
},
{
"DOI": "10.3390/pharmaceutics15020348",
"doi-asserted-by": "crossref",
"key": "ref_79",
"unstructured": "Mieres-Castro, D., and Mora-Poblete, F. (2023). Saponins: Research Progress and Their Potential Role in the Post-COVID-19 Pandemic Era. Pharmaceutics, 15."
},
{
"DOI": "10.1039/D1RA05976A",
"article-title": "Dietary stigmastane-type saponins as promising dual-target directed inhibitors of SARS-CoV-2 proteases: A structure-based screening",
"author": "Ogunyemi",
"doi-asserted-by": "crossref",
"first-page": "33380",
"journal-title": "RSC Adv.",
"key": "ref_80",
"volume": "11",
"year": "2021"
},
{
"DOI": "10.53388/TMR20201130210",
"article-title": "Medicinal plant-based saponins targeting COVID-19 Mpro in silico",
"author": "Rehan",
"doi-asserted-by": "crossref",
"first-page": "21",
"journal-title": "Tradit Med. Res.",
"key": "ref_81",
"volume": "6",
"year": "2021"
},
{
"DOI": "10.1007/s40203-020-00071-w",
"article-title": "In Silico investigation of saponins and tannins as potential inhibitors of SARS-CoV-2 main protease (Mpro)",
"author": "Falade",
"doi-asserted-by": "crossref",
"first-page": "9",
"journal-title": "Silico Pharmacol.",
"key": "ref_82",
"volume": "9",
"year": "2021"
},
{
"DOI": "10.20944/preprints202001.0358.v3",
"doi-asserted-by": "crossref",
"key": "ref_83",
"unstructured": "Chen, H., and Du, Q. (2020). Potential Natural Compounds for Preventing SARS-CoV-2 (2019-nCoV) Infection. Preprints."
},
{
"DOI": "10.20944/preprints202002.0254.v1",
"doi-asserted-by": "crossref",
"key": "ref_84",
"unstructured": "Yan, Y., Shen, X., Cao, Y., Zhang, J., Wang, Y., and Cheng, Y. (2020). Discovery of Anti-2019-nCoV Agents from Chinese Patent Drugs via Docking Screening. Preprints, 2020020254."
},
{
"DOI": "10.1111/j.1440-1681.2006.04415.x",
"article-title": "Antiviral effects of saikosaponins on human coronavirus 229E in vitro",
"author": "Cheng",
"doi-asserted-by": "crossref",
"first-page": "612",
"journal-title": "Clin. Exp. Pharmacol. Physiol.",
"key": "ref_85",
"volume": "33",
"year": "2006"
},
{
"DOI": "10.1016/S0140-6736(03)13615-X",
"article-title": "Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus",
"author": "Cinatl",
"doi-asserted-by": "crossref",
"first-page": "2045",
"journal-title": "Lancet",
"key": "ref_86",
"volume": "361",
"year": "2003"
},
{
"DOI": "10.1016/j.jcv.2004.03.003",
"article-title": "In Vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds",
"author": "Chen",
"doi-asserted-by": "crossref",
"first-page": "69",
"journal-title": "J. Clin. Virol.",
"key": "ref_87",
"volume": "31",
"year": "2004"
},
{
"DOI": "10.1021/jm0493008",
"article-title": "Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus",
"author": "Hoever",
"doi-asserted-by": "crossref",
"first-page": "1256",
"journal-title": "J. Med. Chem.",
"key": "ref_88",
"volume": "48",
"year": "2005"
},
{
"DOI": "10.1073/pnas.0403596101",
"article-title": "Small molecules targeting severe acute respiratory syndrome human coronavirus",
"author": "Wu",
"doi-asserted-by": "crossref",
"first-page": "10012",
"journal-title": "Proc. Natl. Acad. Sci. USA",
"key": "ref_89",
"volume": "101",
"year": "2004"
},
{
"DOI": "10.2174/1389200211209050577",
"article-title": "Absorption, disposition, and pharmacokinetics of saponins from chinese medicinal herbs: What do we know and what do we need to know more?",
"author": "Yu",
"doi-asserted-by": "crossref",
"first-page": "577",
"journal-title": "Curr. Drug Metab.",
"key": "ref_90",
"volume": "13",
"year": "2012"
},
{
"DOI": "10.1016/j.jclepro.2022.132609",
"article-title": "Deep eutectic solvents for the extraction and stabilization of Ecuadorian quinoa (Chenopodium quinoa Willd.) saponins",
"author": "Taco",
"doi-asserted-by": "crossref",
"first-page": "132609",
"journal-title": "J. Clean. Prod.",
"key": "ref_91",
"volume": "363",
"year": "2022"
},
{
"DOI": "10.3389/fcell.2023.1238027",
"doi-asserted-by": "crossref",
"key": "ref_92",
"unstructured": "Sha, A., Liu, Y., and Hao, H. (2023). Current state-of-the-art and potential future therapeutic drugs against COVID-19. Front. Cell Dev. Biol., 11."
},
{
"DOI": "10.1016/j.ejmech.2023.115923",
"article-title": "Targeting SARS-CoV-2 entry processes: The promising potential and future of host-targeted small-molecule inhibitors",
"author": "Wu",
"doi-asserted-by": "crossref",
"first-page": "115923",
"journal-title": "Eur. J. Med. Chem.",
"key": "ref_93",
"volume": "263",
"year": "2024"
},
{
"DOI": "10.1055/s-2008-1074581",
"article-title": "Phenols from the roots of Rheum palmatum attenuate chemotaxis in rat hepatic stellate cells",
"author": "Lin",
"doi-asserted-by": "crossref",
"first-page": "1246",
"journal-title": "Planta Med.",
"key": "ref_94",
"volume": "74",
"year": "2008"
},
{
"key": "ref_95",
"unstructured": "(2023, November 18). Sigma-Aldrich. Available online: https://www.sigmaaldrich.com/certificates/Graphics/COfAInfo/fluka/pdf/rtc/PHR1380_LRAC6468.pdf."
},
{
"DOI": "10.1016/j.chroma.2009.01.013",
"article-title": "Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals",
"author": "Montoro",
"doi-asserted-by": "crossref",
"first-page": "2002",
"journal-title": "J. Chromatogr. A",
"key": "ref_96",
"volume": "1216",
"year": "2009"
},
{
"DOI": "10.1055/s-2002-34918",
"article-title": "Inducible nitric oxide synthase inhibitors of chinese herbs III. Rheum palmatum",
"author": "Wang",
"doi-asserted-by": "crossref",
"first-page": "869",
"journal-title": "Planta Med.",
"key": "ref_97",
"volume": "68",
"year": "2002"
},
{
"key": "ref_98",
"unstructured": "EMA (2020). Assessment Report on Rheum palmatum L. and Rheum Officinale Baillon, Radix."
},
{
"key": "ref_99",
"unstructured": "(2023, October 21). Fluidic Analytics. Available online: https://www.fluidic.com/."
},
{
"key": "ref_100",
"unstructured": "Fluidic Analytics (2022). User Guide for Fluidity™ One-M IFU-0011 v4, Fluidic Analytics."
},
{
"key": "ref_101",
"unstructured": "Fluidic Analytics (2021). User Manual for Fluidity One-W and Fluidity One-W Serum IFU-0007v8, Fluidic Analytics."
},
{
"DOI": "10.1016/j.chemphyslip.2018.11.008",
"article-title": "Memtein: The fundamental unit of membrane-protein structure and function",
"author": "Overduin",
"doi-asserted-by": "crossref",
"first-page": "73",
"journal-title": "Chem. Phys. Lipids",
"key": "ref_102",
"volume": "218",
"year": "2019"
},
{
"key": "ref_103",
"unstructured": "(2022, April 09). Fluidic Analytics. Available online: https://www.fluidic.com/resources/hydrodynamicradius-and-protein-weight/."
},
{
"key": "ref_104",
"unstructured": "(2023, October 23). Fluidic Analytics. Available online: https://www.fluidic.com/calculators-page/."
}
],
"reference-count": 104,
"references-count": 104,
"relation": {},
"resource": {
"primary": {
"URL": "https://www.mdpi.com/1420-3049/28/24/8072"
}
},
"score": 1,
"short-title": [],
"source": "Crossref",
"subject": [
"Chemistry (miscellaneous)",
"Analytical Chemistry",
"Organic Chemistry",
"Physical and Theoretical Chemistry",
"Molecular Medicine",
"Drug Discovery",
"Pharmaceutical Science"
],
"subtitle": [],
"title": "Microfluidic Diffusion Sizing Applied to the Study of Natural Products and Extracts That Modulate the SARS-CoV-2 Spike RBD/ACE2 Interaction",
"type": "journal-article",
"volume": "28"
}
