Structure-Based Design and In-Silico Evaluation of Computationally Proposed Curcumin Derivatives as Potential Inhibitors of the Coronaviral PLpro Enzymes
Halil ˙ibrahim Ciftci, Belgin Sever, Hasan Demirci, Hakan Alici
Pharmaceuticals, doi:10.3390/ph18060798
Background/Objectives: Highly pathogenic coronaviruses (CoVs), including SARS-CoV, MERS-CoV, and SARS-CoV-2, continue to pose a significant threat to global public health. Therefore, this situation highlights the urgent need for effective broadspectrum antiviral agents. Curcumin, a naturally occurring polyphenol known for its antiviral and anti-inflammatory properties, faces limitations such as poor bioavailability and rapid metabolic degradation, restricting its practical therapeutic application. Methods: To address these limitations, this study introduces a novel design strategy aimed at 42 new curcumin derivatives with improved pharmacokinetic profiles, specifically targeting the conserved coronavirus enzyme papain-like protease (PLpro). A comprehensive in silico evaluation was performed, including ADMET (Absorption, Distribution, Metabolism, Elimination, and Toxicity) analysis, molecular docking, molecular dynamics (MD) simulations, and Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) calculations. Results: Extensive pharmacokinetic and toxicological assessments (ADMET analyses) identified 19 derivatives exhibiting optimal drug-like characteristics according to Lipinski's Rule of Five (Ro5). Molecular docking analyses demonstrated that these novel derivatives possess significantly enhanced binding affinities to PLpro enzymes from SARS-CoV, MERS-CoV, and SARS-CoV-2 compared to standard antiviral agents and natural curcumin. Further validation through MD simulations and MM/PBSA calculations confirmed the structural stability and robust interactions of the most promising derivatives within the SARS-CoV PLpro active site. Conclusions: The results of this study provide essential structural and functional insights, reinforcing the potential of these newly developed curcumin derivatives as potent, broad-spectrum antiviral agents effective against current and future coronavirus threats.
Supplementary Information (Figures S2-S7 ) for potential future experimental validation. Also, general structures of the final target compounds.
Institutional Review Board Statement: Not applicable. Informed Consent Statement: Not applicable.
Conflicts of Interest: The author declares no conflicts of interest.
References
Abraham, Murtola, Schulz, Páll, Smith et al., GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX,
doi:10.1016/j.softx.2015.06.001
Ajavon, Bonate, Taft, Renal excretion of clofarabine: Assessment of dose-linearity and role of renal transport systems on drug excretion, Eur. J. Pharm. Sci,
doi:10.1016/j.ejps.2010.03.014
Ali, Van Boheemen, Bestebroer Theo, Osterhaus Albert, Fouchier Ron, Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia, N. Engl. J. Med,
doi:10.1056/NEJMoa1211721
Alici, Tahtaci, Demir, Design and various in silico studies of the novel curcumin derivatives as potential candidates against COVID-19 -associated main enzymes, Comput. Biol. Chem,
doi:10.1016/j.compbiolchem.2022.107657
Armani, Geier, Forst, Merle, Alpers et al., Effect of changes in metabolic enzymes and transporters on drug metabolism in the context of liver disease: Impact on pharmacokinetics and drug-drug interactions, Br. J. Clin. Pharmacol,
doi:10.1111/bcp.15990
Azarkar, Abedi, Lavasani, Ammameh, Goharipanah et al., Curcumin as a natural potential drug candidate against important zoonotic viruses and prions: A narrative review, Phytother. Res,
doi:10.1002/ptr.8119
Bader, Calleja, Devine, Kuchel, Lu et al., A novel PLpro inhibitor improves outcomes in a pre-clinical model of long COVID, Nat. Commun,
doi:10.1038/s41467-025-57905-4
Baez-Santos, St John, Mesecar, The SARS-coronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds, Antivir. Res,
doi:10.1016/j.antiviral.2014.12.015
Barretto, Jukneliene, Ratia, Chen, Mesecar et al., The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity, J. Virol,
doi:10.1128/JVI.79.24.15189-15198.2005
Bastos, De Aguiar, Cruz, Ramos, Kimani et al., Rational Approach toward COVID-19 ′ s Main Protease Inhibitors: A Hierarchical Biochemoinformatics Analysis, Int. J. Mol. Sci,
doi:10.3390/ijms25126715
Bormann, Alt, Schipper, Van De Sand, Le-Trilling et al., Turmeric Root and Its Bioactive Ingredient Curcumin Effectively Neutralize SARS-CoV-2 In Vitro, Viruses,
doi:10.3390/v13101914
Bussi, Donadio, Parrinello, Canonical sampling through velocity rescaling, J. Chem. Phys,
doi:10.1063/1.2408420
Calkilic, Alici, Direkel, Tahtaci, Synthesis, Characterization, Theoretical Analyses, and Investigation of Their Biological Activities of Acetovanillone-Derived Novel Benzyl Ethers, Polycycl. Aromat. Comp,
doi:10.1080/10406638.2021.1950782
Chen, Lien, Chen, Hung, Lin et al., Synthesis and Evaluation of Novel Derivatives of Curcuminoids with Cytotoxicity, Int. J. Mol. Sci,
doi:10.3390/ijms222212171
Da Silva Lopes, Pereira, Lima, Curcumin and Neurodegenerative Diseases: From Traditional to Translational Medicines
Dai, Zhang, Zheng, Luo, Chen et al., Advances in β-Diketocyclisation of Curcumin Derivatives and their Antitumor Activity, Chem. Biodivers,
doi:10.1002/cbdv.202301556
Daina, Michielin, Zoete, SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep,
doi:10.1038/srep42717
Darden, York, Pedersen, Particle mesh Ewald: An N•log(N) method for Ewald sums in large systems, J. Chem. Phys,
doi:10.1063/1.464397
Dei Cas, Ghidoni, Dietary Curcumin: Correlation between Bioavailability and Health Potential, Nutrients,
doi:10.3390/nu11092147
Dourado, Freire, Pereira, Amaral-Machado, Alencar et al., Will curcumin nanosystems be the next promising antiviral alternatives in COVID-19 treatment trials?, Biomed. Pharmacother,
doi:10.1016/j.biopha.2021.111578
Eltayb, Abdalla, Rabie, Novel Investigational Anti-SARS-CoV-2 Agent Ensitrelvir "S-217622": A Very Promising Potential Universal Broad-Spectrum Antiviral at the Therapeutic Frontline of Coronavirus Species, ACS Omega,
doi:10.1021/acsomega.2c03881
Fakih, Ritmaleni; Zainul, Muchtaridi, Molecular docking-based virtual screening and computational investigations of biomolecules (curcumin analogs) as potential lead inhibitors for SARS-CoV-2 papain-like protease, Pharmacia,
doi:10.3897/pharmacia.71.e123948
Farooqui, Metabolism, Bioavailability, Biochemical Effects of Curcumin in Visceral Organs and the Brain
Ferreira, Villanueva, Al Adem, Fadl, Alzyoud et al., Identification of novel allosteric sites of SARS-CoV-2 papain-like protease (PLpro) for the development of COVID-19 antivirals, J. Biol. Chem,
doi:10.1016/j.jbc.2024.107821
Fibriani, Taharuddin, Stephanie, Yamahoki, Laurelia et al., Curcumin-derived carbon-dots as a potential COVID-19 antiviral drug, Heliyon,
doi:10.1016/j.heliyon.2023.e20089
Garrido, Lepailleur, Mignani, Dallemagne, Rochais, hERG toxicity assessment: Useful guidelines for drug design, European J. Med. Chem,
doi:10.1016/j.ejmech.2020.112290
Ghose, Viswanadhan, Wendoloski, A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases, J. Comb. Chem,
doi:10.1021/cc9800071
Ghosh, Brindisi, Shahabi, Chapman, Mesecar, Drug Development and Medicinal Chemistry Efforts toward SARS-Coronavirus and Covid-19 Therapeutics, ChemMedChem,
doi:10.1002/cmdc.202000223
Gold, Reis, Glaser, Glickman, Coronaviral PLpro proteases and the immunomodulatory roles of conjugated versus free Interferon Stimulated Gene product-15 (ISG15), Semin. Cell Dev. Biol,
doi:10.1016/j.semcdb.2022.06.005
Gu, Zhang, Zhang, Wang, Sun et al., Unveiling the mechanism of action of a novel natural dual inhibitor of SARS-CoV-2 Mpro and PLpro with molecular dynamics simulations, Nat. Prod. Bioprospect,
doi:10.1007/s13659-024-00486-4
Gupta, Prasad, Kim, Patchva, Webb et al., Multitargeting by curcumin as revealed by molecular interaction studies, Nat. Prod. Rep,
doi:10.1039/c1np00051a
Guy, Saccharin, Encyclopedia of Toxicology
Hanwell, Curtis, Lonie, Vandermeersch, Zurek et al., An advanced semantic chemical editor, visualization, and analysis platform, J. Cheminform,
doi:10.1186/1758-2946-4-17
Hilgers, Conradi, Burton, Caco-2 cell monolayers as a model for drug transport across the intestinal mucosa, Pharm. Res,
doi:10.1023/A:1015937605100
Huang, Rauscher, Nawrocki, Ran, Feig et al., CHARMM36m: An improved force field for folded and intrinsically disordered proteins, Nat. Methods,
doi:10.1038/nmeth.4067
Imane, Lamiae El, Oussama, Mohammed, Mhammed El et al., Integrated Exploration of Pyranocoumarin Derivatives as Synergistic Inhibitors of Dual-target for Mpro and PLpro Proteins of SARS-CoV-2 through Molecular Docking, ADMET Analysis, and Molecular Dynamics Simulation, Curr. Med. Chem
Jung, Goo, Hwang, Lee, Kim et al., Absorption Distribution Metabolism Excretion and Toxicity Property Prediction Utilizing a Pre-Trained Natural Language Processing Model and Its Applications in Early-Stage Drug Development, Pharmaceuticals,
doi:10.3390/ph17030382
Knights, Stresser, Miners, Crespi, In Vitro Drug Metabolism Using Liver Microsomes, Curr. Protoc. Pharmacol,
doi:10.1002/cpph.9
Kono, Kawahara, Shinozaki, Nomura, Marutani et al., Characterization of P-Glycoprotein Inhibitors for Evaluating the Effect of P-Glycoprotein on the Intestinal Absorption of Drugs, Pharmaceutics,
doi:10.3390/pharmaceutics13030388
Korzekwa, Nagar, Drug Distribution Part 2. Predicting Volume of Distribution from Plasma Protein Binding and Membrane Partitioning, Pharm. Res,
doi:10.1007/s11095-016-2086-y
Kumari, Kumar, Lynn, g_mmpbsa-A GROMACS Tool for High-Throughput MM-PBSA Calculations, J. Chem. Inf. Model
Lee, Lei, Santarsiero, Gatuz, Cao et al., Inhibitor Recognition Specificity of MERS-CoV Papain-like Protease May Differ from That of SARS-CoV, ACS Chem. Biol,
doi:10.1021/cb500917m
Li, Edward, Guy, Drug-Like Property Concepts in Pharmaceutical Design, Curr. Pharm. Des
Lipinski, Lombardo, Dominy, Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Deliv. Rev,
doi:10.1016/S0169-409X(96)00423-1
Metwaly, Elkaeed, Khalifa, Alsfouk, Amin et al., Discovery of potential FDAapproved SARS-CoV-2 Papain-like protease inhibitors: A multi-phase in silico approach, J. Chem. Res,
doi:10.1177/17475198241298547
Morris, Huey, Lindstrom, Sanner, Belew et al., AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, J. Comput. Chem,
doi:10.1002/jcc.21256
Nandi, Kumar, Saxena, Repurposing of Drugs and HTS to Combat SARS-CoV-2 Main Protease Utilizing Structure-Based Molecular Docking, Lett. Drug Des. Discov,
doi:10.2174/1570180818666211007111105
Nicoliche, Bartolomeo, Lemes, Pereira, Nunes et al., anti-inflammatory and antioxidant effects of curcumin and curcuminoids in SH-SY5Y cells infected by SARS-CoV-2, Sci. Rep,
doi:10.1038/s41598-024-61662-7
Nishizawa, Yoda, Morokado, Komori, Nakanishi et al., Changes of drug pharmacokinetics mediated by downregulation of kidney organic cation transporters Mate1 and Oct2 in a rat model of hyperuricemia, PLoS ONE,
doi:10.1371/journal.pone.0214862
O'boyle, Banck, James, Morley, Vandermeersch et al., Open Babel: An open chemical toolbox, J. Cheminform,
doi:10.1186/1758-2946-3-33
O'hagan, Kell, The apparent permeabilities of Caco-2 cells to marketed drugs: Magnitude, and independence from both biophysical properties and endogenite similarities, PeerJ,
doi:10.7717/peerj.1405
Ozcan, Akkoc, Alici, Capanlar, Sahin et al., Novel Thioether-Bridged 2,6-Disubstituted and 2,5,6-Trisubstituted Imidazothiadiazole Analogues: Synthesis, Antiproliferative Activity, ADME, and Molecular Docking Studies, Chem. Biodivers,
doi:10.1002/cbdv.202200884
Ozcan, Alici, Taslimi, Tahtaci, Novel 1,2,4-triazole-derived Schiff base derivatives: Design, synthesis, and multienzyme targeting potential for therapeutic applications, Bioorg. Chem,
doi:10.1016/j.bioorg.2025.108246
Parrinello, Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method, J. Appl. Phys,
doi:10.1063/1.328693
Peiris, Chu, Cheng, Chan, Hung et al., Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: A prospective study, Lancet,
doi:10.1016/S0140-6736(03)13412-5
Pelkonen, Boobis, Gundert-Remy, In vitro prediction of gastrointestinal absorption and bioavailability: An experts' meeting report, Eur. J. Clin. Pharmacol,
doi:10.1007/s002280100369
Pires, Blundell, Ascher, Pkcsm, Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures, J. Med. Chem,
doi:10.1021/acs.jmedchem.5b00104
Prasad, Tyagi, Aggarwal, Recent Developments in Delivery, Bioavailability, Absorption and Metabolism of Curcumin: The Golden Pigment from Golden Spice, Cancer Res. Treat,
doi:10.4143/crt.2014.46.1.2
Rabie, Abdalla, Evaluation of a series of nucleoside analogs as effective anticoronaviral-2 drugs against the Omicron-B.1.1.529/BA.2 subvariant: A repurposing research study, Med. Chem. Res,
doi:10.1007/s00044-022-02970-3
Rabie, Abdalla, Forodesine and Riboprine Exhibit Strong Anti-SARS-CoV-2 Repurposing Potential: In Silico and In Vitro Studies, ACS Bio Med. Chem. Au,
doi:10.1021/acsbiomedchemau.2c00039
Rabie, Efficacious Preclinical Repurposing of the Nucleoside Analogue Didanosine against COVID-19 Polymerase and Exonuclease, ACS Omega,
doi:10.1021/acsomega.1c07095
Rabie, Eltayb, Potent Dual Polymerase/Exonuclease Inhibitory Activities of Antioxidant Aminothiadiazoles Against the COVID-19 Omicron Virus: A Promising In Silico/In Vitro Repositioning Research Study, Mol. Biotechnol,
doi:10.1007/s12033-022-00551-8
Rabie, Improved synthesis of the anti-SARS-CoV-2 investigational agent (E)-N-(4-cyanobenzylidene)-6-fluoro-3hydroxypyrazine-2-carboxamide (cyanorona-20), Rev. Chim,
doi:10.37358/RC.22.4.8555
Rabie, Khedraoui, Chtita, Targeting Conserved Regions of the SARS-CoV-2 Polymerase (RdRp) with Kinase Inhibitors as an Effective New Tactic for Discovering Dual-Action "Antiviral-Antiinflammatory" Drugs against COVID-19, Comput. Biol. Chem,
doi:10.1016/j.compbiolchem.2025.108454
Rabie, New Potential Inhibitors of Coronaviral Main Protease (CoV-Mpro): Strychnine Bush, Pineapple, and Ginger could be Natural Enemies of COVID-19, Int. J. New Chem
Rabie, Teriflunomide: A possible effective drug for the comprehensive treatment of COVID-19, Curr. Res. Pharmacol. Drug Discov,
doi:10.1016/j.crphar.2021.100055
Rabie, The informative nature of the disappeared SARS-CoV-2 genomic sequences: A mini-review with perspectives, Adv. Chemicobiol. Res,
doi:10.37256/acbr.1220221403
Rabie, Two antioxidant 2,5-disubstituted-1,3,4-oxadiazoles (CoViTris2020 and ChloViD2020): Successful repurposing against COVID-19 as the first potent multitarget anti-SARS-CoV-2 drugs, New J. Chem,
doi:10.1039/D0NJ03708G
Rabie, Yamari, Chtita, The isoquinoline derivative "CYNOVID" as a prospective anti-SARS-CoV-2 agent: An expanded investigative computational study, Eur. J. Med. Chem. Rep,
doi:10.1016/j.ejmcr.2024.100214
Rai, Feitosa, Springer Nature Singapore
Ratia, Saikatendu, Santarsiero, Barretto, Baker et al., Severe acute respiratory syndrome coronavirus papain-like protease: Structure of a viral deubiquitinating enzyme, Proc. Natl. Acad. Sci,
doi:10.1073/pnas.0510851103
Rut, Lv, Zmudzinski, Patchett, Nayak et al., Activity profiling and structures of inhibitor-bound SARS-CoV-2-PLpro protease provides a framework for anti-COVID-19 drug design, Sci. Adv,
doi:10.1126/sciadv.abd4596
Severance, Sandoval, Wright, Correlation between Apparent Substrate Affinity and OCT2 Transport Turnover, J. Pharmacol. Exp. Ther,
doi:10.1124/jpet.117.242552
Shin, Mukherjee, Grewe, Bojkova, Baek et al., Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity, Nature,
doi:10.1038/s41586-020-2601-5
Silvestre, Santos, Silva, Ombredane, Pinheiro et al., Pharmacokinetics of Curcumin Delivered by Nanoparticles and the Relationship with Antitumor Efficacy: A Systematic Review, Pharmaceuticals,
doi:10.3390/ph16070943
Stillhart, Vučićević, Augustijns, Basit, Batchelor et al., Impact of gastrointestinal physiology on drug absorption in special populations-An UNGAP review, Eur. J. Pharm. Sci,
doi:10.1016/j.ejps.2020.105280
Suresh, Nangia, Curcumin: Pharmaceutical solids as a platform to improve solubility and bioavailability, CrystEngComm,
doi:10.1039/C8CE00469B
Suzuki, Taniyama, Aoyama, Watanabe, Evaluation of the Role of P-glycoprotein (P-gp)-Mediated Efflux in the Intestinal Absorption of Common Substrates with Elacridar, a P-gp Inhibitor, in Rats, Eur. J. Drug Metab. Pharmacokinet,
doi:10.1007/s13318-019-00602-7
Szakács, Váradi, Özvegy-Laczka, Sarkadi, The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME-Tox), Drug Discov. Today,
doi:10.1016/j.drudis.2007.12.010
Teixeira, Medeiros, Da Silva Oliveira, Acha, Pereira-Freire, Effect of Curcumin on the Process of Neuroinflammation Caused by COVID-19
Teshima, Takeshi, Zhengmao, Ken, Takao et al., Antiviral activity of curcumin and its analogs selected by an artificial intelligence-supported activity prediction system in SARS-CoV-2-infected VeroE6 cells, Nat. Prod. Res,
doi:10.1080/14786419.2023.2194647
Trott, Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem,
doi:10.1002/jcc.21334
Valdés-Albuernes, Díaz-Pico, Alfaro, Caballero, Modeling of noncovalent inhibitors of the papain-like protease (PLpro) from SARS-CoV-2 considering the protein flexibility by using molecular dynamics and cross-docking, Front. Mol. Biosci,
doi:10.3389/fmolb.2024.1374364
Van Vliet, Huynh, Palà, Patel, Singer et al., Ubiquitin variants potently inhibit SARS-CoV-2 PLpro and viral replication via a novel site distal to the protease active site, PLoS Pathog,
doi:10.1371/journal.ppat.1011065
Vanommeslaeghe, Hatcher, Acharya, Kundu, Zhong et al., CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields, J. Comput. Chem,
doi:10.1002/jcc.21367
Vanommeslaeghe, Mackerell, Jr, Automation of the CHARMM General Force Field (CGenFF) I: Bond Perception and Atom Typing, J. Chem. Inf. Model,
doi:10.1021/ci300363c
Varghese, Liu, Liu, Guo, Dong et al., Analysis of Structures of SARS-CoV-2 Papain-like Protease Bound with Ligands Unveils Structural Features for Inhibiting the Enzyme, Molecules,
doi:10.3390/molecules30030491
Veber, Johnson, Cheng, Smith, Ward et al., Molecular Properties That Influence the Oral Bioavailability of Drug Candidates, J. Med. Chem,
doi:10.1021/jm020017n
Waters, Lombardo, Use of the Øie-Tozer Model in Understanding Mechanisms and Determinants of Drug Distribution, Drug Metab. Dispos,
doi:10.1124/dmd.110.032458
Wei, Senanayake, Bohling, Vinogradov, Targeted Nanogel Conjugate for Improved Stability and Cellular Permeability of Curcumin: Synthesis, Pharmacokinetics, and Tumor Growth Inhibition, Mol. Pharm,
doi:10.1021/mp500290f
Xiong, Wu, Yi, Fu, Yang et al., 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties, Nucleic Acids Res,
doi:10.1002/minf.201500040
Yang, Lou, Sun, Li, Cai et al., admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties, Bioinformatics,
doi:10.1093/bioinformatics/bty707
Zhou, Yang, Wang, Hu, Zhang et al., A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature,
doi:10.1038/s41586-020-2012-7
Zumla, Chan, Azhar, Hui, Yuen, Coronaviruses-Drug discovery and therapeutic options, Nat. Rev. Drug Discov,
doi:10.1038/nrd.2015.37
Çevik, Işik, Karakaya, ADMET and Physicochemical Assessments in Drug Design
DOI record:
{
"DOI": "10.3390/ph18060798",
"ISSN": [
"1424-8247"
],
"URL": "http://dx.doi.org/10.3390/ph18060798",
"abstract": "<jats:p>Background/Objectives: Highly pathogenic coronaviruses (CoVs), including SARS-CoV, MERS-CoV, and SARS-CoV-2, continue to pose a significant threat to global public health. Therefore, this situation highlights the urgent need for effective broad-spectrum antiviral agents. Curcumin, a naturally occurring polyphenol known for its antiviral and anti-inflammatory properties, faces limitations such as poor bioavailability and rapid metabolic degradation, restricting its practical therapeutic application. Methods: To address these limitations, this study introduces a novel design strategy aimed at 42 new curcumin derivatives with improved pharmacokinetic profiles, specifically targeting the conserved coronavirus enzyme papain-like protease (PLpro). A comprehensive in silico evaluation was performed, including ADMET (Absorption, Distribution, Metabolism, Elimination, and Toxicity) analysis, molecular docking, molecular dynamics (MD) simulations, and Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) calculations. Results: Extensive pharmacokinetic and toxicological assessments (ADMET analyses) identified 19 derivatives exhibiting optimal drug-like characteristics according to Lipinski’s Rule of Five (Ro5). Molecular docking analyses demonstrated that these novel derivatives possess significantly enhanced binding affinities to PLpro enzymes from SARS-CoV, MERS-CoV, and SARS-CoV-2 compared to standard antiviral agents and natural curcumin. Further validation through MD simulations and MM/PBSA calculations confirmed the structural stability and robust interactions of the most promising derivatives within the SARS-CoV PLpro active site. Conclusions: The results of this study provide essential structural and functional insights, reinforcing the potential of these newly developed curcumin derivatives as potent, broad-spectrum antiviral agents effective against current and future coronavirus threats.</jats:p>",
"alternative-id": [
"ph18060798"
],
"author": [
{
"ORCID": "https://orcid.org/0000-0001-5105-8331",
"affiliation": [
{
"name": "Department of Physics, Faculty of Science, Zonguldak Bülent Ecevit University, 67100 Zonguldak, Türkiye"
}
],
"authenticated-orcid": false,
"family": "Alici",
"given": "Hakan",
"sequence": "first"
}
],
"container-title": "Pharmaceuticals",
"container-title-short": "Pharmaceuticals",
"content-domain": {
"crossmark-restriction": false,
"domain": []
},
"created": {
"date-parts": [
[
2025,
5,
29
]
],
"date-time": "2025-05-29T08:46:38Z",
"timestamp": 1748508398000
},
"deposited": {
"date-parts": [
[
2025,
5,
29
]
],
"date-time": "2025-05-29T08:56:04Z",
"timestamp": 1748508964000
},
"indexed": {
"date-parts": [
[
2025,
5,
30
]
],
"date-time": "2025-05-30T04:05:02Z",
"timestamp": 1748577902436,
"version": "3.41.0"
},
"is-referenced-by-count": 0,
"issue": "6",
"issued": {
"date-parts": [
[
2025,
5,
26
]
]
},
"journal-issue": {
"issue": "6",
"published-online": {
"date-parts": [
[
2025,
6
]
]
}
},
"language": "en",
"license": [
{
"URL": "https://creativecommons.org/licenses/by/4.0/",
"content-version": "vor",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2025,
5,
26
]
],
"date-time": "2025-05-26T00:00:00Z",
"timestamp": 1748217600000
}
}
],
"link": [
{
"URL": "https://www.mdpi.com/1424-8247/18/6/798/pdf",
"content-type": "unspecified",
"content-version": "vor",
"intended-application": "similarity-checking"
}
],
"member": "1968",
"original-title": [],
"page": "798",
"prefix": "10.3390",
"published": {
"date-parts": [
[
2025,
5,
26
]
]
},
"published-online": {
"date-parts": [
[
2025,
5,
26
]
]
},
"publisher": "MDPI AG",
"reference": [
{
"DOI": "10.1038/s41579-018-0118-9",
"article-title": "Origin and evolution of pathogenic coronaviruses",
"author": "Cui",
"doi-asserted-by": "crossref",
"first-page": "181",
"journal-title": "Nat. Rev. Microbiol.",
"key": "ref_1",
"volume": "17",
"year": "2019"
},
{
"DOI": "10.1038/s41586-020-2012-7",
"article-title": "A pneumonia outbreak associated with a new coronavirus of probable bat origin",
"author": "Zhou",
"doi-asserted-by": "crossref",
"first-page": "270",
"journal-title": "Nature",
"key": "ref_2",
"volume": "579",
"year": "2020"
},
{
"DOI": "10.1016/S0140-6736(03)13412-5",
"article-title": "Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: A prospective study",
"author": "Peiris",
"doi-asserted-by": "crossref",
"first-page": "1767",
"journal-title": "Lancet",
"key": "ref_3",
"volume": "361",
"year": "2003"
},
{
"DOI": "10.1038/s41586-020-2008-3",
"article-title": "A new coronavirus associated with human respiratory disease in China",
"author": "Wu",
"doi-asserted-by": "crossref",
"first-page": "265",
"journal-title": "Nature",
"key": "ref_4",
"volume": "579",
"year": "2020"
},
{
"DOI": "10.1056/NEJMoa1211721",
"article-title": "Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia",
"doi-asserted-by": "crossref",
"first-page": "1814",
"journal-title": "N. Engl. J. Med.",
"key": "ref_5",
"volume": "367",
"year": "2012"
},
{
"DOI": "10.1038/nrd.2015.37",
"article-title": "Coronaviruses—Drug discovery and therapeutic options",
"author": "Zumla",
"doi-asserted-by": "crossref",
"first-page": "327",
"journal-title": "Nat. Rev. Drug Discov.",
"key": "ref_6",
"volume": "15",
"year": "2016"
},
{
"DOI": "10.1038/d41573-020-00016-0",
"article-title": "Therapeutic options for the 2019 novel coronavirus (2019-nCoV)",
"author": "Li",
"doi-asserted-by": "crossref",
"first-page": "149",
"journal-title": "Nat. Rev. Drug Discov.",
"key": "ref_7",
"volume": "19",
"year": "2020"
},
{
"DOI": "10.1124/jpet.120.000123",
"article-title": "Drug Discovery Strategies for SARS-CoV-2",
"author": "Shyr",
"doi-asserted-by": "crossref",
"first-page": "127",
"journal-title": "J. Pharmacol. Exp. Ther.",
"key": "ref_8",
"volume": "375",
"year": "2020"
},
{
"article-title": "The informative nature of the disappeared SARS-CoV-2 genomic sequences: A mini-review with perspectives",
"author": "Rabie",
"first-page": "58",
"journal-title": "Adv. Chemicobiol. Res.",
"key": "ref_9",
"volume": "1",
"year": "2022"
},
{
"DOI": "10.1002/cmdc.202000223",
"article-title": "Drug Development and Medicinal Chemistry Efforts toward SARS-Coronavirus and Covid-19 Therapeutics",
"author": "Ghosh",
"doi-asserted-by": "crossref",
"first-page": "907",
"journal-title": "ChemMedChem",
"key": "ref_10",
"volume": "15",
"year": "2020"
},
{
"DOI": "10.1038/s41591-020-0820-9",
"article-title": "The proximal origin of SARS-CoV-2",
"author": "Andersen",
"doi-asserted-by": "crossref",
"first-page": "450",
"journal-title": "Nat. Med.",
"key": "ref_11",
"volume": "26",
"year": "2020"
},
{
"DOI": "10.1016/j.antiviral.2014.12.015",
"article-title": "The SARS-coronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds",
"author": "Mesecar",
"doi-asserted-by": "crossref",
"first-page": "21",
"journal-title": "Antivir. Res.",
"key": "ref_12",
"volume": "115",
"year": "2015"
},
{
"DOI": "10.1126/sciadv.abd4596",
"article-title": "Activity profiling and structures of inhibitor-bound SARS-CoV-2-PLpro protease provides a framework for anti-COVID-19 drug design",
"author": "Rut",
"doi-asserted-by": "crossref",
"first-page": "eabd4596",
"journal-title": "Sci. Adv.",
"key": "ref_13",
"volume": "6",
"year": "2020"
},
{
"DOI": "10.1038/s41586-020-2601-5",
"article-title": "Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity",
"author": "Shin",
"doi-asserted-by": "crossref",
"first-page": "657",
"journal-title": "Nature",
"key": "ref_14",
"volume": "587",
"year": "2020"
},
{
"DOI": "10.1128/JVI.79.24.15189-15198.2005",
"article-title": "The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity",
"author": "Barretto",
"doi-asserted-by": "crossref",
"first-page": "15189",
"journal-title": "J. Virol.",
"key": "ref_15",
"volume": "79",
"year": "2005"
},
{
"DOI": "10.1073/pnas.0510851103",
"article-title": "Severe acute respiratory syndrome coronavirus papain-like protease: Structure of a viral deubiquitinating enzyme",
"author": "Ratia",
"doi-asserted-by": "crossref",
"first-page": "5717",
"journal-title": "Proc. Natl. Acad. Sci. USA",
"key": "ref_16",
"volume": "103",
"year": "2006"
},
{
"DOI": "10.1371/journal.ppat.1011065",
"doi-asserted-by": "crossref",
"key": "ref_17",
"unstructured": "van Vliet, V.J.E., Huynh, N., Palà, J., Patel, A., Singer, A., Slater, C., Chung, J., van Huizen, M., Teyra, J., and Miersch, S. (2022). Ubiquitin variants potently inhibit SARS-CoV-2 PLpro and viral replication via a novel site distal to the protease active site. PLoS Pathog., 18."
},
{
"DOI": "10.1016/j.semcdb.2022.06.005",
"article-title": "Coronaviral PLpro proteases and the immunomodulatory roles of conjugated versus free Interferon Stimulated Gene product-15 (ISG15)",
"author": "Gold",
"doi-asserted-by": "crossref",
"first-page": "16",
"journal-title": "Semin. Cell Dev. Biol.",
"key": "ref_18",
"volume": "132",
"year": "2022"
},
{
"DOI": "10.3390/molecules30030491",
"doi-asserted-by": "crossref",
"key": "ref_19",
"unstructured": "Varghese, A., Liu, J., Liu, B., Guo, W., Dong, F., Patterson, T.A., and Hong, H. (2025). Analysis of Structures of SARS-CoV-2 Papain-like Protease Bound with Ligands Unveils Structural Features for Inhibiting the Enzyme. Molecules, 30."
},
{
"DOI": "10.1016/j.compbiolchem.2022.107657",
"doi-asserted-by": "crossref",
"key": "ref_20",
"unstructured": "Alici, H., Tahtaci, H., and Demir, K. (2022). Design and various in silico studies of the novel curcumin derivatives as potential candidates against COVID-19 -associated main enzymes. Comput. Biol. Chem., 98."
},
{
"DOI": "10.1007/978-981-99-7731-4",
"doi-asserted-by": "crossref",
"key": "ref_21",
"unstructured": "Rai, M., and Feitosa, C.M. (2023). Effect of Curcumin on the Process of Neuroinflammation Caused by COVID-19. Curcumin and Neurodegenerative Diseases: From Traditional to Translational Medicines, Springer Nature Singapore."
},
{
"DOI": "10.1007/978-3-319-15889-1_3",
"doi-asserted-by": "crossref",
"key": "ref_22",
"unstructured": "Farooqui, A.A. (2016). Metabolism, Bioavailability, Biochemical Effects of Curcumin in Visceral Organs and the Brain. Therapeutic Potentials of Curcumin for Alzheimer Disease, Springer International Publishing."
},
{
"DOI": "10.4143/crt.2014.46.1.2",
"article-title": "Recent Developments in Delivery, Bioavailability, Absorption and Metabolism of Curcumin: The Golden Pigment from Golden Spice",
"author": "Prasad",
"doi-asserted-by": "crossref",
"first-page": "2",
"journal-title": "Cancer Res. Treat.",
"key": "ref_23",
"volume": "46",
"year": "2014"
},
{
"DOI": "10.1016/j.hermed.2015.03.001",
"article-title": "Curcumin, a golden spice with a low bioavailability",
"author": "Siviero",
"doi-asserted-by": "crossref",
"first-page": "57",
"journal-title": "J. Herb. Med.",
"key": "ref_24",
"volume": "5",
"year": "2015"
},
{
"DOI": "10.1039/C8CE00469B",
"article-title": "Curcumin: Pharmaceutical solids as a platform to improve solubility and bioavailability",
"author": "Suresh",
"doi-asserted-by": "crossref",
"first-page": "3277",
"journal-title": "CrystEngComm",
"key": "ref_25",
"volume": "20",
"year": "2018"
},
{
"DOI": "10.1080/14786419.2023.2194647",
"article-title": "Antiviral activity of curcumin and its analogs selected by an artificial intelligence-supported activity prediction system in SARS-CoV-2-infected VeroE6 cells",
"author": "Teshima",
"doi-asserted-by": "crossref",
"first-page": "867",
"journal-title": "Nat. Prod. Res.",
"key": "ref_26",
"volume": "38",
"year": "2024"
},
{
"DOI": "10.1016/j.heliyon.2023.e20089",
"article-title": "Curcumin-derived carbon-dots as a potential COVID-19 antiviral drug",
"author": "Fibriani",
"doi-asserted-by": "crossref",
"first-page": "e20089",
"journal-title": "Heliyon",
"key": "ref_27",
"volume": "9",
"year": "2023"
},
{
"DOI": "10.1016/j.biopha.2021.111578",
"doi-asserted-by": "crossref",
"key": "ref_28",
"unstructured": "Dourado, D., Freire, D.T., Pereira, D.T., Amaral-Machado, L., Alencar, É.N., de Barros, A.L.B., and Egito, E.S.T. (2021). Will curcumin nanosystems be the next promising antiviral alternatives in COVID-19 treatment trials?. Biomed. Pharmacother., 139."
},
{
"DOI": "10.3390/v13101914",
"doi-asserted-by": "crossref",
"key": "ref_29",
"unstructured": "Bormann, M., Alt, M., Schipper, L., van de Sand, L., Le-Trilling, V.T., Rink, L., Heinen, N., Madel, R.J., Otte, M., and Wuensch, K. (2021). Turmeric Root and Its Bioactive Ingredient Curcumin Effectively Neutralize SARS-CoV-2 In Vitro. Viruses, 13."
},
{
"DOI": "10.1038/s41598-024-61662-7",
"doi-asserted-by": "crossref",
"key": "ref_30",
"unstructured": "Nicoliche, T., Bartolomeo, C.S., Lemes, R.M.R., Pereira, G.C., Nunes, T.A., Oliveira, R.B., Nicastro, A.L.M., Soares, É.N., da Cunha Lima, B.F., and Rodrigues, B.M. (2024). Antiviral, anti-inflammatory and antioxidant effects of curcumin and curcuminoids in SH-SY5Y cells infected by SARS-CoV-2. Sci. Rep., 14."
},
{
"DOI": "10.1002/ptr.8119",
"article-title": "Curcumin as a natural potential drug candidate against important zoonotic viruses and prions: A narrative review",
"author": "Azarkar",
"doi-asserted-by": "crossref",
"first-page": "3080",
"journal-title": "Phytother. Res.",
"key": "ref_31",
"volume": "38",
"year": "2024"
},
{
"article-title": "Molecular docking-based virtual screening and computational investigations of biomolecules (curcumin analogs) as potential lead inhibitors for SARS-CoV-2 papain-like protease",
"author": "Fakih",
"first-page": "1",
"journal-title": "Pharmacia",
"key": "ref_32",
"volume": "71",
"year": "2024"
},
{
"DOI": "10.1101/2023.05.16.540953",
"doi-asserted-by": "crossref",
"key": "ref_33",
"unstructured": "Ferreira, J.C., Villanueva, A.J., Al Adem, K., Fadl, S., Alzyoud, L., Ghattas, M.A., and Rabeh, W.M. (2024). Identification of novel allosteric sites of SARS-CoV-2 papain-like protease (PLpro) for the development of COVID-19 antivirals. J. Biol. Chem., 300."
},
{
"DOI": "10.1111/cbdd.14404",
"doi-asserted-by": "crossref",
"key": "ref_34",
"unstructured": "Rabie, A.M. (2024). RNA: The most attractive target in recent viral diseases. Chem. Biol. Drug Des., 103."
},
{
"DOI": "10.1016/j.compbiolchem.2025.108454",
"doi-asserted-by": "crossref",
"key": "ref_35",
"unstructured": "Rabie, A.M., Khedraoui, M., and Chtita, S. (2025). Targeting Conserved Regions of the SARS-CoV-2 Polymerase (RdRp) with Kinase Inhibitors as an Effective New Tactic for Discovering Dual-Action “Antiviral─Antiinflammatory” Drugs against COVID-19. Comput. Biol. Chem., in press."
},
{
"DOI": "10.32604/biocell.2023.030057",
"article-title": "Future of the current anticoronaviral agents: A viewpoint on the validation for the next COVIDs and pandemics",
"author": "Rabie",
"doi-asserted-by": "crossref",
"first-page": "2133",
"journal-title": "Biocell",
"key": "ref_36",
"volume": "47",
"year": "2023"
},
{
"article-title": "The isoquinoline derivative “CYNOVID” as a prospective anti-SARS-CoV-2 agent: An expanded investigative computational study",
"author": "Rabie",
"first-page": "100214",
"journal-title": "Eur. J. Med. Chem. Rep.",
"key": "ref_37",
"volume": "12",
"year": "2024"
},
{
"DOI": "10.1021/acsomega.1c05998",
"article-title": "Potent Inhibitory Activities of the Adenosine Analogue Cordycepin on SARS-CoV-2 Replication",
"author": "Rabie",
"doi-asserted-by": "crossref",
"first-page": "2960",
"journal-title": "ACS Omega",
"key": "ref_38",
"volume": "7",
"year": "2022"
},
{
"DOI": "10.1021/acsbiomedchemau.2c00039",
"article-title": "Forodesine and Riboprine Exhibit Strong Anti-SARS-CoV-2 Repurposing Potential: In Silico and In Vitro Studies",
"author": "Rabie",
"doi-asserted-by": "crossref",
"first-page": "565",
"journal-title": "ACS Bio Med. Chem. Au",
"key": "ref_39",
"volume": "2",
"year": "2022"
},
{
"DOI": "10.1016/j.crphar.2021.100055",
"article-title": "Teriflunomide: A possible effective drug for the comprehensive treatment of COVID-19",
"author": "Rabie",
"doi-asserted-by": "crossref",
"first-page": "100055",
"journal-title": "Curr. Res. Pharmacol. Drug Discov.",
"key": "ref_40",
"volume": "2",
"year": "2021"
},
{
"DOI": "10.1021/acsomega.2c03881",
"article-title": "Novel Investigational Anti-SARS-CoV-2 Agent Ensitrelvir “S-217622”: A Very Promising Potential Universal Broad-Spectrum Antiviral at the Therapeutic Frontline of Coronavirus Species",
"author": "Eltayb",
"doi-asserted-by": "crossref",
"first-page": "5234",
"journal-title": "ACS Omega",
"key": "ref_41",
"volume": "8",
"year": "2023"
},
{
"DOI": "10.1007/s00044-022-02970-3",
"article-title": "Evaluation of a series of nucleoside analogs as effective anticoronaviral-2 drugs against the Omicron-B.1.1.529/BA.2 subvariant: A repurposing research study",
"author": "Rabie",
"doi-asserted-by": "crossref",
"first-page": "326",
"journal-title": "Med. Chem. Res.",
"key": "ref_42",
"volume": "32",
"year": "2023"
},
{
"DOI": "10.1007/s12033-022-00551-8",
"article-title": "Potent Dual Polymerase/Exonuclease Inhibitory Activities of Antioxidant Aminothiadiazoles Against the COVID-19 Omicron Virus: A Promising In Silico/In Vitro Repositioning Research Study",
"author": "Rabie",
"doi-asserted-by": "crossref",
"first-page": "592",
"journal-title": "Mol. Biotechnol.",
"key": "ref_43",
"volume": "66",
"year": "2024"
},
{
"DOI": "10.1021/acsomega.1c07095",
"article-title": "Efficacious Preclinical Repurposing of the Nucleoside Analogue Didanosine against COVID-19 Polymerase and Exonuclease",
"author": "Rabie",
"doi-asserted-by": "crossref",
"first-page": "21385",
"journal-title": "ACS Omega",
"key": "ref_44",
"volume": "7",
"year": "2022"
},
{
"DOI": "10.1016/j.cbi.2021.109480",
"doi-asserted-by": "crossref",
"key": "ref_45",
"unstructured": "Rabie, A.M. (2021). Potent toxic effects of Taroxaz-104 on the replication of SARS-CoV-2 particles. Chem.-Biol. Interact., 343."
},
{
"DOI": "10.2174/1570180818666211007111105",
"article-title": "Repurposing of Drugs and HTS to Combat SARS-CoV-2 Main Protease Utilizing Structure-Based Molecular Docking",
"author": "Nandi",
"doi-asserted-by": "crossref",
"first-page": "413",
"journal-title": "Lett. Drug Des. Discov.",
"key": "ref_46",
"volume": "19",
"year": "2022"
},
{
"DOI": "10.2174/1570180820666221214151614",
"article-title": "QSAR of SARS-CoV-2 Main Protease Inhibitors Utilizing Theoretical Molecular Descriptors",
"author": "Nandi",
"doi-asserted-by": "crossref",
"first-page": "116",
"journal-title": "Lett. Drug Des. Discov.",
"key": "ref_47",
"volume": "21",
"year": "2024"
},
{
"DOI": "10.37358/RC.22.4.8555",
"article-title": "Improved synthesis of the anti-SARS-CoV-2 investigational agent (E)-N-(4-cyanobenzylidene)-6-fluoro-3-hydroxypyrazine-2-carboxamide (cyanorona-20)",
"author": "Rabie",
"doi-asserted-by": "crossref",
"first-page": "69",
"journal-title": "Rev. Chim.",
"key": "ref_48",
"volume": "73",
"year": "2022"
},
{
"DOI": "10.1039/D0NJ03708G",
"article-title": "Two antioxidant 2,5-disubstituted-1,3,4-oxadiazoles (CoViTris2020 and ChloViD2020): Successful repurposing against COVID-19 as the first potent multitarget anti-SARS-CoV-2 drugs",
"author": "Rabie",
"doi-asserted-by": "crossref",
"first-page": "761",
"journal-title": "New J. Chem.",
"key": "ref_49",
"volume": "45",
"year": "2021"
},
{
"article-title": "New Potential Inhibitors of Coronaviral Main Protease (CoV-Mpro): Strychnine Bush, Pineapple, and Ginger could be Natural Enemies of COVID-19",
"author": "Rabie",
"first-page": "225",
"journal-title": "Int. J. New Chem.",
"key": "ref_50",
"volume": "9",
"year": "2022"
},
{
"DOI": "10.1002/(SICI)1098-1128(199605)16:3<243::AID-MED2>3.0.CO;2-Z",
"article-title": "Design of Drugs Involving the Concepts and Theories of Drug Metabolism and Pharmacokinetics",
"author": "Smith",
"doi-asserted-by": "crossref",
"first-page": "243",
"journal-title": "Med. Res. Rev.",
"key": "ref_51",
"volume": "16",
"year": "1996"
},
{
"DOI": "10.1002/9781394249190.ch6",
"doi-asserted-by": "crossref",
"key": "ref_52",
"unstructured": "Çevik, U.A., Işik, A., and Karakaya, A. (2025). ADMET and Physicochemical Assessments in Drug Design. Computational Methods for Rational Drug Design, Wiley."
},
{
"DOI": "10.1016/S1367-5931(00)00226-X",
"article-title": "Drug delivery: An odyssey of 100 years",
"author": "Pillai",
"doi-asserted-by": "crossref",
"first-page": "439",
"journal-title": "Curr. Opin. Chem. Biol.",
"key": "ref_53",
"volume": "5",
"year": "2001"
},
{
"DOI": "10.1080/10406638.2021.1950782",
"article-title": "Synthesis, Characterization, Theoretical Analyses, and Investigation of Their Biological Activities of Acetovanillone-Derived Novel Benzyl Ethers",
"author": "Calkilic",
"doi-asserted-by": "crossref",
"first-page": "5671",
"journal-title": "Polycycl. Aromat. Comp.",
"key": "ref_54",
"volume": "42",
"year": "2022"
},
{
"DOI": "10.1002/cbdv.202200884",
"doi-asserted-by": "crossref",
"key": "ref_55",
"unstructured": "Ozcan, I., Akkoc, S., Alici, H., Capanlar, S., Sahin, O., and Tahtaci, H. (2023). Novel Thioether-Bridged 2,6-Disubstituted and 2,5,6-Trisubstituted Imidazothiadiazole Analogues: Synthesis, Antiproliferative Activity, ADME, and Molecular Docking Studies. Chem. Biodivers., 20."
},
{
"DOI": "10.1016/j.bioorg.2025.108246",
"doi-asserted-by": "crossref",
"key": "ref_56",
"unstructured": "Ozcan, I., Alici, H., Taslimi, P., and Tahtaci, H. (2025). Novel 1,2,4-triazole-derived Schiff base derivatives: Design, synthesis, and multi-enzyme targeting potential for therapeutic applications. Bioorg. Chem., 157."
},
{
"DOI": "10.3390/ph17030382",
"doi-asserted-by": "crossref",
"key": "ref_57",
"unstructured": "Jung, W., Goo, S., Hwang, T., Lee, H., Kim, Y.-K., Chae, J.-w., Yun, H.-y., and Jung, S. (2024). Absorption Distribution Metabolism Excretion and Toxicity Property Prediction Utilizing a Pre-Trained Natural Language Processing Model and Its Applications in Early-Stage Drug Development. Pharmaceuticals, 17."
},
{
"DOI": "10.1016/S0169-409X(96)00423-1",
"article-title": "Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings",
"author": "Lipinski",
"doi-asserted-by": "crossref",
"first-page": "3",
"journal-title": "Adv. Drug Deliv. Rev.",
"key": "ref_58",
"volume": "23",
"year": "1997"
},
{
"DOI": "10.1016/j.ddtec.2004.11.007",
"article-title": "Lead- and drug-like compounds: The rule-of-five revolution",
"author": "Lipinski",
"doi-asserted-by": "crossref",
"first-page": "337",
"journal-title": "Drug Discov. Today Technol.",
"key": "ref_59",
"volume": "1",
"year": "2004"
},
{
"DOI": "10.1007/978-981-99-7731-4",
"doi-asserted-by": "crossref",
"key": "ref_60",
"unstructured": "Rai, M., and Feitosa, C.M. (2023). Pharmacokinetics and Pharmacodynamics of Curcumin. Curcumin and Neurodegenerative Diseases: From Traditional to Translational Medicines, Springer Nature Singapore."
},
{
"DOI": "10.3390/nu11092147",
"doi-asserted-by": "crossref",
"key": "ref_61",
"unstructured": "Dei Cas, M., and Ghidoni, R. (2019). Dietary Curcumin: Correlation between Bioavailability and Health Potential. Nutrients, 11."
},
{
"DOI": "10.1021/mp500290f",
"article-title": "Targeted Nanogel Conjugate for Improved Stability and Cellular Permeability of Curcumin: Synthesis, Pharmacokinetics, and Tumor Growth Inhibition",
"author": "Wei",
"doi-asserted-by": "crossref",
"first-page": "3112",
"journal-title": "Mol. Pharm.",
"key": "ref_62",
"volume": "11",
"year": "2014"
},
{
"DOI": "10.3390/ph16070943",
"doi-asserted-by": "crossref",
"key": "ref_63",
"unstructured": "Silvestre, F., Santos, C., Silva, V., Ombredane, A., Pinheiro, W., Andrade, L., Garcia, M., Pacheco, T., Joanitti, G., and Luz, G. (2023). Pharmacokinetics of Curcumin Delivered by Nanoparticles and the Relationship with Antitumor Efficacy: A Systematic Review. Pharmaceuticals, 16."
},
{
"DOI": "10.3390/ijms222212171",
"doi-asserted-by": "crossref",
"key": "ref_64",
"unstructured": "Chen, C.-Y., Lien, J.-C., Chen, C.-Y., Hung, C.-C., and Lin, H.-C. (2021). Design, Synthesis and Evaluation of Novel Derivatives of Curcuminoids with Cytotoxicity. Int. J. Mol. Sci., 22."
},
{
"DOI": "10.1039/c1np00051a",
"article-title": "Multitargeting by curcumin as revealed by molecular interaction studies",
"author": "Gupta",
"doi-asserted-by": "crossref",
"first-page": "1937",
"journal-title": "Nat. Prod. Rep.",
"key": "ref_65",
"volume": "28",
"year": "2011"
},
{
"DOI": "10.1002/cbdv.202301556",
"doi-asserted-by": "crossref",
"key": "ref_66",
"unstructured": "Dai, H., Zhang, S., Zheng, X., Luo, Z., Chen, H., and Yao, X. (2024). Advances in β-Diketocyclisation of Curcumin Derivatives and their Antitumor Activity. Chem. Biodivers., 21."
},
{
"DOI": "10.2174/0113895575316229240611113946",
"article-title": "Revolutionizing Playing with Skeleton Atoms: Molecular Editing Surgery in Medicinal Chemistry",
"author": "Rabie",
"doi-asserted-by": "crossref",
"first-page": "190",
"journal-title": "Mini Rev. Med. Chem.",
"key": "ref_67",
"volume": "25",
"year": "2025"
},
{
"DOI": "10.1021/cc9800071",
"article-title": "A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases",
"author": "Ghose",
"doi-asserted-by": "crossref",
"first-page": "55",
"journal-title": "J. Comb. Chem.",
"key": "ref_68",
"volume": "1",
"year": "1999"
},
{
"DOI": "10.1021/jm020017n",
"article-title": "Molecular Properties That Influence the Oral Bioavailability of Drug Candidates",
"author": "Veber",
"doi-asserted-by": "crossref",
"first-page": "2615",
"journal-title": "J. Med. Chem.",
"key": "ref_69",
"volume": "45",
"year": "2002"
},
{
"DOI": "10.1016/j.drudis.2007.12.010",
"article-title": "The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME–Tox)",
"author": "Sarkadi",
"doi-asserted-by": "crossref",
"first-page": "379",
"journal-title": "Drug Discov. Today",
"key": "ref_70",
"volume": "13",
"year": "2008"
},
{
"DOI": "10.1093/bioinformatics/bty707",
"article-title": "admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties",
"author": "Yang",
"doi-asserted-by": "crossref",
"first-page": "1067",
"journal-title": "Bioinformatics",
"key": "ref_71",
"volume": "35",
"year": "2019"
},
{
"DOI": "10.2174/138161209788682479",
"article-title": "Drug-Like Property Concepts in Pharmaceutical Design",
"author": "Li",
"doi-asserted-by": "crossref",
"first-page": "2184",
"journal-title": "Curr. Pharm. Des.",
"key": "ref_72",
"volume": "15",
"year": "2009"
},
{
"DOI": "10.1517/17460441003605098",
"article-title": "Lipophilicity in drug discovery",
"author": "Waring",
"doi-asserted-by": "crossref",
"first-page": "235",
"journal-title": "Expert. Opin. Drug Discov.",
"key": "ref_73",
"volume": "5",
"year": "2010"
},
{
"DOI": "10.1007/s002280100369",
"article-title": "In vitro prediction of gastrointestinal absorption and bioavailability: An experts’ meeting report",
"author": "Pelkonen",
"doi-asserted-by": "crossref",
"first-page": "621",
"journal-title": "Eur. J. Clin. Pharmacol.",
"key": "ref_74",
"volume": "57",
"year": "2001"
},
{
"DOI": "10.1016/j.ejps.2020.105280",
"article-title": "Impact of gastrointestinal physiology on drug absorption in special populations—An UNGAP review",
"author": "Stillhart",
"doi-asserted-by": "crossref",
"first-page": "105280",
"journal-title": "Eur. J. Pharm. Sci.",
"key": "ref_75",
"volume": "147",
"year": "2020"
},
{
"DOI": "10.7717/peerj.1405",
"article-title": "The apparent permeabilities of Caco-2 cells to marketed drugs: Magnitude, and independence from both biophysical properties and endogenite similarities",
"author": "Kell",
"doi-asserted-by": "crossref",
"first-page": "e1405",
"journal-title": "PeerJ",
"key": "ref_76",
"volume": "3",
"year": "2015"
},
{
"DOI": "10.1023/A:1015937605100",
"article-title": "Caco-2 cell monolayers as a model for drug transport across the intestinal mucosa",
"author": "Hilgers",
"doi-asserted-by": "crossref",
"first-page": "902",
"journal-title": "Pharm. Res.",
"key": "ref_77",
"volume": "7",
"year": "1990"
},
{
"DOI": "10.1007/s13318-019-00602-7",
"article-title": "Evaluation of the Role of P-glycoprotein (P-gp)-Mediated Efflux in the Intestinal Absorption of Common Substrates with Elacridar, a P-gp Inhibitor, in Rats",
"author": "Suzuki",
"doi-asserted-by": "crossref",
"first-page": "385",
"journal-title": "Eur. J. Drug Metab. Pharmacokinet.",
"key": "ref_78",
"volume": "45",
"year": "2020"
},
{
"DOI": "10.3390/pharmaceutics13030388",
"doi-asserted-by": "crossref",
"key": "ref_79",
"unstructured": "Kono, Y., Kawahara, I., Shinozaki, K., Nomura, I., Marutani, H., Yamamoto, A., and Fujita, T. (2021). Characterization of P-Glycoprotein Inhibitors for Evaluating the Effect of P-Glycoprotein on the Intestinal Absorption of Drugs. Pharmaceutics, 13."
},
{
"DOI": "10.1124/dmd.110.032458",
"article-title": "Use of the Øie-Tozer Model in Understanding Mechanisms and Determinants of Drug Distribution",
"author": "Waters",
"doi-asserted-by": "crossref",
"first-page": "1159",
"journal-title": "Drug Metab. Dispos.",
"key": "ref_80",
"volume": "38",
"year": "2010"
},
{
"DOI": "10.1016/j.ejps.2010.10.011",
"article-title": "Use of unbound volumes of drug distribution in pharmacokinetic calculations",
"author": "Stepensky",
"doi-asserted-by": "crossref",
"first-page": "91",
"journal-title": "Eur. J. Pharm. Sci.",
"key": "ref_81",
"volume": "42",
"year": "2011"
},
{
"DOI": "10.1007/s11095-016-2086-y",
"article-title": "Drug Distribution Part 2. Predicting Volume of Distribution from Plasma Protein Binding and Membrane Partitioning",
"author": "Korzekwa",
"doi-asserted-by": "crossref",
"first-page": "544",
"journal-title": "Pharm. Res.",
"key": "ref_82",
"volume": "34",
"year": "2017"
},
{
"DOI": "10.1002/cpph.9",
"article-title": "In Vitro Drug Metabolism Using Liver Microsomes",
"author": "Knights",
"doi-asserted-by": "crossref",
"first-page": "7.8.1",
"journal-title": "Curr. Protoc. Pharmacol.",
"key": "ref_83",
"volume": "74",
"year": "2016"
},
{
"DOI": "10.1111/bcp.15990",
"article-title": "Effect of changes in metabolic enzymes and transporters on drug metabolism in the context of liver disease: Impact on pharmacokinetics and drug–drug interactions",
"author": "Armani",
"doi-asserted-by": "crossref",
"first-page": "942",
"journal-title": "Br. J. Clin. Pharmacol.",
"key": "ref_84",
"volume": "90",
"year": "2024"
},
{
"DOI": "10.1016/j.ejps.2010.03.014",
"article-title": "Renal excretion of clofarabine: Assessment of dose-linearity and role of renal transport systems on drug excretion",
"author": "Ajavon",
"doi-asserted-by": "crossref",
"first-page": "209",
"journal-title": "Eur. J. Pharm. Sci.",
"key": "ref_85",
"volume": "40",
"year": "2010"
},
{
"DOI": "10.1124/jpet.117.242552",
"article-title": "Correlation between Apparent Substrate Affinity and OCT2 Transport Turnover",
"author": "Severance",
"doi-asserted-by": "crossref",
"first-page": "405",
"journal-title": "J. Pharmacol. Exp. Ther.",
"key": "ref_86",
"volume": "362",
"year": "2017"
},
{
"DOI": "10.1371/journal.pone.0214862",
"doi-asserted-by": "crossref",
"key": "ref_87",
"unstructured": "Nishizawa, K., Yoda, N., Morokado, F., Komori, H., Nakanishi, T., and Tamai, I. (2019). Changes of drug pharmacokinetics mediated by downregulation of kidney organic cation transporters Mate1 and Oct2 in a rat model of hyperuricemia. PLoS ONE, 14."
},
{
"DOI": "10.1016/j.ejmech.2020.112290",
"article-title": "hERG toxicity assessment: Useful guidelines for drug design",
"author": "Garrido",
"doi-asserted-by": "crossref",
"first-page": "112290",
"journal-title": "European J. Med. Chem.",
"key": "ref_88",
"volume": "195",
"year": "2020"
},
{
"key": "ref_89",
"unstructured": "Wexler, P. (2024). Saccharin. Encyclopedia of Toxicology, Academic Press. [4th ed.]."
},
{
"DOI": "10.1016/S0027-5107(00)00064-6",
"article-title": "The Ames Salmonella/microsome mutagenicity assay",
"author": "Mortelmans",
"doi-asserted-by": "crossref",
"first-page": "29",
"journal-title": "Mutat. Res.-Fundam. Mol. Mech. Mutagen.",
"key": "ref_90",
"volume": "455",
"year": "2000"
},
{
"DOI": "10.1007/s13659-024-00486-4",
"doi-asserted-by": "crossref",
"key": "ref_91",
"unstructured": "Gu, X., Zhang, X., Zhang, X., Wang, X., Sun, W., Zhang, Y., and Hu, Z. (2025). Unveiling the mechanism of action of a novel natural dual inhibitor of SARS-CoV-2 Mpro and PLpro with molecular dynamics simulations. Nat. Prod. Bioprospect., 15."
},
{
"article-title": "Integrated Exploration of Pyranocoumarin Derivatives as Synergistic Inhibitors of Dual-target for Mpro and PLpro Proteins of SARS-CoV-2 through Molecular Docking, ADMET Analysis, and Molecular Dynamics Simulation",
"author": "Imane",
"first-page": "1",
"journal-title": "Curr. Med. Chem.",
"key": "ref_92",
"volume": "31",
"year": "2024"
},
{
"DOI": "10.3389/fmolb.2024.1374364",
"doi-asserted-by": "crossref",
"key": "ref_93",
"unstructured": "Valdés-Albuernes, J.L., Díaz-Pico, E., Alfaro, S., and Caballero, J. (2024). Modeling of noncovalent inhibitors of the papain-like protease (PLpro) from SARS-CoV-2 considering the protein flexibility by using molecular dynamics and cross-docking. Front. Mol. Biosci., 11."
},
{
"DOI": "10.1177/17475198241298547",
"article-title": "Discovery of potential FDA-approved SARS-CoV-2 Papain-like protease inhibitors: A multi-phase in silico approach",
"author": "Metwaly",
"doi-asserted-by": "crossref",
"first-page": "17475198241298547",
"journal-title": "J. Chem. Res.",
"key": "ref_94",
"volume": "48",
"year": "2024"
},
{
"DOI": "10.1038/s41467-025-57905-4",
"article-title": "A novel PLpro inhibitor improves outcomes in a pre-clinical model of long COVID",
"author": "Bader",
"doi-asserted-by": "crossref",
"first-page": "2900",
"journal-title": "Nat. Commun.",
"key": "ref_95",
"volume": "16",
"year": "2025"
},
{
"DOI": "10.1186/1758-2946-4-17",
"article-title": "Avogadro: An advanced semantic chemical editor, visualization, and analysis platform",
"author": "Hanwell",
"doi-asserted-by": "crossref",
"first-page": "17",
"journal-title": "J. Cheminform.",
"key": "ref_96",
"volume": "4",
"year": "2012"
},
{
"DOI": "10.1038/srep42717",
"doi-asserted-by": "crossref",
"key": "ref_97",
"unstructured": "Daina, A., Michielin, O., and Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 7."
},
{
"DOI": "10.1021/acs.jmedchem.5b00104",
"article-title": "pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures",
"author": "Pires",
"doi-asserted-by": "crossref",
"first-page": "4066",
"journal-title": "J. Med. Chem.",
"key": "ref_98",
"volume": "58",
"year": "2015"
},
{
"DOI": "10.1093/nar/gkab255",
"article-title": "ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties",
"author": "Xiong",
"doi-asserted-by": "crossref",
"first-page": "w5",
"journal-title": "Nucleic Acids Res.",
"key": "ref_99",
"volume": "49",
"year": "2021"
},
{
"DOI": "10.1002/minf.201500040",
"article-title": "Pred-hERG: A Novel web-Accessible Computational Tool for Predicting Cardiac Toxicity",
"author": "Braga",
"doi-asserted-by": "crossref",
"first-page": "698",
"journal-title": "Mol. Inform.",
"key": "ref_100",
"volume": "34",
"year": "2015"
},
{
"DOI": "10.1021/cb500917m",
"article-title": "Inhibitor Recognition Specificity of MERS-CoV Papain-like Protease May Differ from That of SARS-CoV",
"author": "Lee",
"doi-asserted-by": "crossref",
"first-page": "1456",
"journal-title": "ACS Chem. Biol.",
"key": "ref_101",
"volume": "10",
"year": "2015"
},
{
"DOI": "10.1002/jcc.21334",
"article-title": "AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading",
"author": "Trott",
"doi-asserted-by": "crossref",
"first-page": "455",
"journal-title": "J. Comput. Chem.",
"key": "ref_102",
"volume": "31",
"year": "2010"
},
{
"DOI": "10.1002/jcc.21256",
"article-title": "AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility",
"author": "Morris",
"doi-asserted-by": "crossref",
"first-page": "2785",
"journal-title": "J. Comput. Chem.",
"key": "ref_103",
"volume": "30",
"year": "2009"
},
{
"DOI": "10.1186/1758-2946-3-33",
"article-title": "Open Babel: An open chemical toolbox",
"author": "Banck",
"doi-asserted-by": "crossref",
"first-page": "33",
"journal-title": "J. Cheminform.",
"key": "ref_104",
"volume": "3",
"year": "2011"
},
{
"DOI": "10.3390/ijms25126715",
"doi-asserted-by": "crossref",
"key": "ref_105",
"unstructured": "Bastos, R.S., de Aguiar, C.P.O., Cruz, J.N., Ramos, R.S., Kimani, N.M., de Souza, J.S.N., Chaves, M.H., de Freitas, H.F., Pita, S.S.R., and Santos, C.B.R.d. (2024). Rational Approach toward COVID-19′s Main Protease Inhibitors: A Hierarchical Biochemoinformatics Analysis. Int. J. Mol. Sci., 25."
},
{
"DOI": "10.1016/j.softx.2015.06.001",
"article-title": "GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers",
"author": "Abraham",
"doi-asserted-by": "crossref",
"first-page": "19",
"journal-title": "SoftwareX",
"key": "ref_106",
"volume": "1–2",
"year": "2015"
},
{
"DOI": "10.1038/nmeth.4067",
"article-title": "CHARMM36m: An improved force field for folded and intrinsically disordered proteins",
"author": "Huang",
"doi-asserted-by": "crossref",
"first-page": "71",
"journal-title": "Nat. Methods",
"key": "ref_107",
"volume": "14",
"year": "2017"
},
{
"DOI": "10.1002/jcc.21367",
"article-title": "CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields",
"author": "Vanommeslaeghe",
"doi-asserted-by": "crossref",
"first-page": "671",
"journal-title": "J. Comput. Chem.",
"key": "ref_108",
"volume": "31",
"year": "2010"
},
{
"DOI": "10.1021/ci300363c",
"article-title": "Automation of the CHARMM General Force Field (CGenFF) I: Bond Perception and Atom Typing",
"author": "Vanommeslaeghe",
"doi-asserted-by": "crossref",
"first-page": "3144",
"journal-title": "J. Chem. Inf. Model.",
"key": "ref_109",
"volume": "52",
"year": "2012"
},
{
"DOI": "10.1063/1.464397",
"article-title": "Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems",
"author": "Darden",
"doi-asserted-by": "crossref",
"first-page": "10089",
"journal-title": "J. Chem. Phys.",
"key": "ref_110",
"volume": "98",
"year": "1993"
},
{
"DOI": "10.1016/0021-9991(83)90014-1",
"article-title": "Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations",
"author": "Andersen",
"doi-asserted-by": "crossref",
"first-page": "24",
"journal-title": "J. Comput. Phys.",
"key": "ref_111",
"volume": "52",
"year": "1983"
},
{
"DOI": "10.1063/1.2408420",
"article-title": "Canonical sampling through velocity rescaling",
"author": "Bussi",
"doi-asserted-by": "crossref",
"first-page": "014101",
"journal-title": "J. Chem. Phys.",
"key": "ref_112",
"volume": "126",
"year": "2007"
},
{
"DOI": "10.1063/1.328693",
"article-title": "Polymorphic transitions in single crystals: A new molecular dynamics method",
"author": "Parrinello",
"doi-asserted-by": "crossref",
"first-page": "7182",
"journal-title": "J. Appl. Phys.",
"key": "ref_113",
"volume": "52",
"year": "1981"
},
{
"DOI": "10.1021/ci500020m",
"article-title": "g_mmpbsa—A GROMACS Tool for High-Throughput MM-PBSA Calculations",
"author": "Kumari",
"doi-asserted-by": "crossref",
"first-page": "1951",
"journal-title": "J. Chem. Inf. Model.",
"key": "ref_114",
"volume": "54",
"year": "2014"
}
],
"reference-count": 114,
"references-count": 114,
"relation": {},
"resource": {
"primary": {
"URL": "https://www.mdpi.com/1424-8247/18/6/798"
}
},
"score": 1,
"short-title": [],
"source": "Crossref",
"subject": [],
"subtitle": [],
"title": "Structure-Based Design and In-Silico Evaluation of Computationally Proposed Curcumin Derivatives as Potential Inhibitors of the Coronaviral PLpro Enzymes",
"type": "journal-article",
"volume": "18"
}