COVID-19 treatment: therapeutic targets and mechanisms of action

COVID-19 involves the interplay of 400+ viral and host proteins and factors, providing many therapeutic targets. In addition to direct antiviral activity, many treatments may be beneficial by supporting immune system function or by minimizing secondary complications. Here is a partial list of mechanisms of action and therapeutic targets for COVID-19 treatments.
Viral Entry Inhibition
Mechanisms that prevent SARS-CoV-2 from entering host cells.
Targeting Viral Proteins
Entry inhibition mechanisms targeting viral proteins.
1. Spike/ACE2 blockade via RBD-targeting antibodies
Monoclonal antibodies or recombinant decoys that specifically bind the receptor-binding domain (RBD) of the spike protein, preventing attachment to ACE2 receptors on host cells1,2.
Possible treatments: bamlanivimab, casirivimab/imdevimab, tixagevimab/cilgavimab, regdanvimab, etesevimab, APN01, STI-4398, griffithsin, cyanovirin-N, RBD-binding antiviral peptides
2. S2-targeting monoclonal antibodies (fusion domain inhibitors)
Monoclonal antibodies binding conserved epitopes within the spike protein's S2 domain, inhibiting viral fusion and preventing the virus from entering host cells after initial ACE2 binding.
Possible treatments: sotrovimab, VIR-7832
3. Spike glycoprotein cleavage inhibition
Targeting the proteolytic cleavage sites (S1/S2 and S2') of the spike protein to prevent the conformational changes required for membrane fusion2-4.
Possible treatments: camostat mesylate, nafamostat, aprotinin
4. NTD (N-terminal domain) targeting antibodies
Monoclonal antibodies that bind to the N-terminal domain of the spike protein, which can disrupt viral attachment and entry5.
Possible treatments: 4A8, 4-8, DH1050, S2X333
5. Spike protein conformational stabilizers
Compounds that lock the spike protein in its pre-fusion conformation, preventing the structural changes required for membrane fusion2,5,6.
Possible treatments: designed peptides mimicking stabilizing mutations, fingolimod, toremifene, cholecalciferol, calcifediol, famprofazone, flupentixol, oxyphenonium, trazodone, linoleic acid
6. Spike protein glycan shield disruptors
Targeting the extensive glycan shield on the spike protein that protects key epitopes from immune recognition and may play a role in host cell binding.
Possible treatments: glycosidase inhibitors, lectins, mannose-binding compounds
7. Fusion peptide inhibitors
Blocking the fusion process of SARS-CoV-2 with host cells by targeting HR1/HR2 domains2,5.
Possible treatments: EK1, IPB02, EK1C4, HR2P
8. Small molecule membrane fusion inhibitors
Small molecules that inhibit the fusion of the SARS-CoV-2 viral envelope with host cell membranes by directly targeting viral spike protein interactions or altering membrane properties critical for fusion5,7,8.
Possible treatments: umifenovir, arbidol, nelfinavir, glycyrrhizin, ZINC000014930714, soyasaponin I (oleanane-type triterpenoid HR1 binders)
9. Phenothiazines
Compounds that have shown potential in inhibiting SARS-CoV-2 entry by binding to the spike protein, preventing its proteolytic cleavage necessary for viral entry3.
Possible treatments: chlorpromazine, thioridazine, haloperidol
10. Spike protein disorder-to-order transition targeting
Stabilization of disordered states in the spike protein, particularly in the S2 subunit, preventing the conformational changes required for membrane fusion and viral entry9.
Possible treatments: disorder stabilizers, conformation-selective binders, fusion-incompetent state stabilizers
11. RBD pocket-2 allosteric binders (α1/α2 cleft near Asn343)
Small molecules that bind the hydrophobic cleft between RBD helices α1-α2 (site 2). Binding (Phe338/Phe342/Phe374/Trp436) can be partially occluded by the Asn343 glycan but nevertheless allosterically perturbs RBD dynamics, reduces ACE2 interaction, and disfavors the open state6.
Possible treatments: fingolimod, calcifediol, cholecalciferol, salmeterol, betaxolol, hesperetin, catechin
12. RBD free-fatty-acid (FFA) pocket stabilizers (site 4)
Ligands of the linoleic-acid pocket (Tyr365/Tyr369/Phe374/Phe377/Tyr380) that stabilize the closed Spike trimer and indirectly reduce ACE2 binding; behaves as an allosteric “lock” on the RBD6.
Possible treatments: toremifene, cholecalciferol, famprofazone, flupentixol, oxyphenonium, trazodone, linoleic acid
13. Spike S-palmitoylation (ZDHHC5) dependence
ZDHHC5-mediated palmitoylation of the S cytosolic tail is needed for S-mediated fusion and efficient virion production; lowering palmitate supply or palmitoylation blocks infectivity10.
Possible treatments: 2-bromopalmitate, TVB-2640 (FASN inhibitor)
14. Spike NTD conserved triad (Q134-F135-N137)
A strictly conserved triad of amino acids (Q134-F135-N137) in the Spike N-terminal domain (NTD) acts as a "conformational transducer." Upon binding to host gangliosides, this triad initiates an allosteric "conformational wave" that propagates through the NTD to unmask the RBD on the neighboring protomer5.
Possible treatments: peptidomimetics, macrocycles, triad-competitive binders
15. Trivalent/multivalent miniprotein inhibitors
Computationally designed homotrimeric proteins (minibinders) that simultaneously engage all three receptor-binding domains (RBDs) of the SARS-CoV-2 spike trimer. This trivalent binding mode generates picomolar avidity, locking the trimer to prevent ACE2 interaction, and may confer resilience against viral escape mutations that defeat monomeric binders or monoclonal antibodies11.
Possible treatments: TRI2-2, AHB2 (monomer precursor)
16. S2 Stem-helix conformational locking
Antibodies targeting the hydrophobic stem-helix region prevent the S2 subunit from refolding and pulling viral/host membranes together, effectively freezing the virus in a pre-fusion intermediate2.
Possible treatments: CV3-25, CC25.106, CC99.103, S2P6
17. Multivalent Spike cross-linking (AMETA)
Engineered IgM scaffolds or multivalent nanobodies (AMETA) that cross-link Spike trimers (in cis on the same virion or in trans between virions) to aggregate viral particles and prevent membrane fusion2.
Possible treatments: AMETA (adaptive multi-epitope targeting with enhanced avidity), IgM-scaffolded nanobodies
18. Spike premature triggering (postfusion inactivation)
Antibodies or compounds that induce premature shedding of S1 and triggering of Spike into the postfusion state in the absence of target membranes, effectively inactivating the virus before it can engage host cells2.
Possible treatments: CV3-1, receptor-mimetic antibodies
Targeting Host Proteins/Factors
Entry inhibition mechanisms targeting host proteins/factors.
19. TMPRSS2 inhibition
Block host protease TMPRSS2 to prevent spike priming for membrane fusion1,4,8,10,12-17.
Possible treatments: camostat, nafamostat, bromhexine, gabexate mesylate, N-0385, Scutellaria barbata, linolenic acid
20. ACE2 modulation
Modulate ACE2 receptor expression, shedding, or availability to reduce viral docking1,3,7,14,15,18.
Possible treatments: lisinopril, losartan, valsartan, enalapril, telmisartan, resveratrol, berberine, estradiol, melatonin, artefenomel, quercetin, fosinopril, aliskiren
21. Soluble ACE2 decoys
Engineered soluble forms of human ACE2 that act as decoys, competitively binding to the SARS-CoV-2 spike protein. This prevents viral particles from interacting with membrane-bound ACE2 on host cells, effectively blocking viral entry18,19.
Possible treatments: recombinant human ACE2 (rhACE2), ACE2-Fc fusion proteins, ACE2(M)-Fc
22. Heparan sulfate mimicry
Compete with heparan sulfate proteoglycans (HSPGs) to disrupt initial viral attachment5,10,14,20.
Possible treatments: heparin, heparan sulfate mimetics, carrageenan, fucoidan, pentosan polysulfate, necuparanib, PG545
23. Cathepsin L inhibition
Inhibit endosomal protease cathepsin L (alternative pathway for spike activation)1,3,4,8,10,14-18,21.
Possible treatments: teicoplanin, MDL-28170, E-64d (aloxistatin), hydroxychloroquine, chloroquine, clofazimine, rifampicin, saquinavir, astaxanthin, dexamethasone, clenbuterol, linolenic acid
24. Integrin targeting
Block integrin receptors - especially α2β1 (ITGA2) and α5β1, αvβ3 - involved in ACE2-independent entry14,15,22,23.
Possible treatments: cilengitide, SB273005, RGD peptide inhibitors, anti-ITGA2 antibodies, obtustatin, dioscin, natalizumab
25. Neuropilin-1 targeting (blockade & expression suppression)
Blocking or down-regulating cell-surface Neuropilin-1 (NRP1) cuts off an auxiliary SARS-CoV-2 entry route and dampens downstream IL-6-mediated neuroinflammation10,14,15,24,25.
Possible treatments: EG00229, soluble VEGF-A165b, VEGF-A inhibitors, meclizine, siRNA-NRP1
26. Lipid raft disruption
Deplete membrane cholesterol to destabilize lipid raft-dependent entry mechanisms3,5,15,16,26.
Possible treatments: simvastatin, fluvastatin, methyl-β-cyclodextrin, 25-hydroxycholesterol
27. Surfactant inactivation
Disrupt viral envelopes or spike-receptor interactions via surfactant activity.
Possible treatments: poloxamers, chlorhexidine
28. Inhibition of clathrin-mediated endocytosis or endosomal acidification
Inhibit clathrin-mediated endocytosis or endosomal acidification to prevent viral internalization3,8,15,16.
Possible treatments: chloroquine, hydroxychloroquine, dynasore, mitmab, bafilomycin A1, umifenovir
29. Furin inhibition
Block furin-mediated cleavage of the spike protein to impair viral entry1,4,10,14,15.
Possible treatments: decanoyl-RVKR-chloromethylketone, MI-1851, naphthofluorescein
30. HER2 (ErbB2) signaling inhibition
Blocking host receptor-tyrosine-kinase HER2 prevents spike-triggered signaling and clathrin-mediated uptake, reducing early SARS-CoV-2 entry and downstream replication27,28.
Possible treatments: lapatinib, AG879, CP-724714
31. AXL receptor blockade
AXL tyrosine-kinase binds the spike N-terminal domain and mediates ACE2-independent entry; knockout or pharmacologic inhibition sharply reduces SARS-CoV-2 infection in pulmonary and bronchial cells10,14,15,23,29.
Possible treatments: bemcentinib (BGB-324), gilteritinib, cabozantinib, soluble AXL protein, recombinant NTD protein
32. CD147 (Basigin) antagonism
Monoclonal antibodies or peptides block CD147/Basigin (a glycoprotein exploited for viral docking in some epithelia) thereby hindering spike-driven attachment and internalisation8,10,14,15,23,25,29.
Possible treatments: meplazumab, anti-CD147 peptide decoys
33. KREMEN1 & ASGR1 inhibition
Receptome profiling identifies KREMEN1 (Wnt co-receptor) and ASGR1 (asialoglycoprotein receptor) as functional alternate receptors that enable ACE2-independent entry; antibodies, soluble ectodomains or siRNA can block this route10,14,15,23,29.
Possible treatments: anti-KREMEN1 mAb, anti-ASGR1 mAb, ASGR1-Fc decoys, siRNA-KREMEN1/ASGR1, cocktail antibodies targeting ASK receptors
34. DC-SIGN / L-SIGN (CLR) blockade & soluble lectins
C-type lectin receptors DC-SIGN and L-SIGN capture spike glycans to promote attachment; anti-CLR antibodies, glycodendrimers or soluble lectins (griffithsin, cyanovirin-N) competitively block this step10,14,29,30.
Possible treatments: polyman-26, glycodendrimers, anti-DC-SIGN mAb, griffithsin, cyanovirin-N, mannan, fucoidans, lectin inhibitors
35. SR-B1 (SCARB1) blockade
HDL-scavenger receptor B type 1 binds spike-HDL complexes and facilitates ACE2-dependent entry; small-molecule SR-B1 antagonists or neutralizing antibodies reduce infection10,14,31.
Possible treatments: BLT-1, ITX5061, anti-SR-B1 mAb
36. KIM-1 / TIM receptor family antagonism
Targeting members of the T-cell immunoglobulin and mucin domain (TIM) family. In the kidney, Kidney Injury Molecule-1 (KIM-1/TIM-1) acts as an attachment factor for SARS-CoV-2. TIM-1 and TIM-4 can enhance viral infection by binding to phosphatidylserine (PS) on the viral envelope, promoting ACE2-dependent endocytosis14.
Possible treatments: anti-KIM-1 mAb, KIM-1-competitive peptides, siRNA-KIM1
37. PIKfyve & PIP5K1C inhibition
Endosomal lipid-kinase PIKfyve generates PI(3,5)P₂ required for late-endosome fusion; inhibitors (apilimod, UNI418) block cathepsin-dependent entry across variants10,32,33.
Possible treatments: apilimod, UNI418, YM-201636, WX8-125
38. Epigenetic suppression of cathepsin-L maturation
EHMT2 inhibitors diminish lysosomal maturation of cathepsin-L, preventing spike S2' cleavage and endosomal fusion, thereby blocking SARS-CoV-2 entry across ancestral and variant strains34.
Possible treatments: UNC0642, UNC0638, BIX01294
39. MET (c-Met/HGFR) receptor inhibition
Blocking MET tyrosine-kinase disrupts coronavirus internalization and early replication steps, capmatinib shows broad anti-CoV activity in vitro28.
Possible treatments: capmatinib, tepotinib, crizotinib
40. Nrf2-mediated suppression of ACE2 and TMPRSS2
Activation of Nrf2 (e.g., by PB125 or DMF) downregulates ACE2 and TMPRSS2 mRNA, reducing viral docking and spike priming in host cells35.
Possible treatments: PB125, dimethyl fumarate, sulforaphane
41. Calcium-activated TMEM16 scramblase inhibition
Blockade of Ca2+-activated TMEM16F lipid-scramblase/ion-channel suppresses spike-driven membrane fusion and triggers antiviral autophagy, yielding multi-log viral reduction in cell and animal models3,10,13,15.
Possible treatments: niclosamide, clofazimine, fluoxetine
42. Transferrin receptor (TfR) blockade
TfR serves as an ACE2-independent entry receptor that can transport SARS-CoV-2 from cell membrane to cytoplasm. Anti-TfR antibodies or competitive peptides can prevent viral entry and reduce pathological lung injury10,14,23.
Possible treatments: anti-TfR antibodies, TfR-competitive peptides, transferrin-derived blocking agents
43. DPP4 (dipeptidyl peptidase-4) inhibition
DPP4 serves as a cell surface binding target for the spike protein RBD and can enhance SARS-CoV-2 infection by promoting ACE2 receptor-dependent endocytosis. DPP4 inhibitors may provide dual benefits for COVID-19 patients with diabetes and reduce cytokine storm14,36.
Possible treatments: sitagliptin, saxagliptin, vildagliptin, linagliptin, alogliptin
44. Myosin heavy chain 9 (MYH9) inhibition
MYH9 acts as a coreceptor that enhances SARS-CoV-2 infection by promoting endocytosis dependent on ACE2, particularly in cells with low ACE2 expression. Inhibition can significantly reduce viral infection14.
Possible treatments: myosin inhibitors, blebbistatin, 2, 3-butanedione monoxime
45. GRP78 (glucose regulated protein 78) targeting
Cell surface GRP78 serves as an attachment factor that promotes viral endocytosis by interacting with spike protein and endogenous ACE2. GRP78 also acts as a viral protein chaperone. Small molecule inhibitors show antiviral efficacy14,23,37.
Possible treatments: HA15, kifunensine, GRP78 antagonists, hMAb159, YUM70
46. TTYH2 (tweety family member 2) inhibition
TTYH2 binds to the RBD domain of spike protein similar to ACE2 and contributes to myeloid cell inflammatory responses. Blocking TTYH2 may reduce excessive inflammatory reactions14.
Possible treatments: TTYH2 antagonists, chloride channel blockers
47. TIM/TAM family receptor enhancement
TIM-1 and TIM-4 phosphatidylserine receptors directly interact with PS on SARS-CoV-2 outer leaflet, enhancing viral infection by promoting ACE2-dependent endocytosis. These represent druggable targets for intervention14.
Possible treatments: PS receptor antagonists, TIM-1/TIM-4 blocking antibodies
48. ADAM17 protease inhibition
ADAM17 is triggered by spike protein to cleave ACE2, leading to extracellular ACE2 detachment and enhanced host protease activity that promotes viral cytoplasmic fusion1,14.
Possible treatments: ADAM17 inhibitors, metalloprotease inhibitors, TAPI-0, TAPI-1
49. Ezrin activation
The Ezrin protein can inhibit viral infection by reducing the expression of key entry receptors like ACE2 and TLRs. Peptides derived from Ezrin have shown potential in inhibiting viral pneumonia14.
Possible treatments: Ezrin peptides
50. LY6E activation
The host cell surface receptor LY6E inhibits SARS-CoV-2 infection by interfering with spike protein-mediated membrane fusion and the necessary cytoskeletal rearrangement. Augmenting LY6E function could serve as a defensive therapeutic approach14.
Possible treatments: LY6E agonists
51. IFITM3 activation
The host protein IFITM3 is an interferon-induced restriction factor that prevents SARS-CoV-2 invasion by regulating host cell membrane fluidity to block the fusion of the viral envelope with the plasma membrane. Enhancing IFITM3 activity is a potential host-directed antiviral strategy14.
Possible treatments: IFITM3 activators
52. CD209 and CLEC4L targeting
C-type lectin receptors that facilitate viral attachment through interaction with spike glycans. Blocking these receptors can reduce viral entry particularly in dendritic cells and macrophages8.
Possible treatments: anti-CD209 antibodies, mannose analogs, glycodendrimers
53. AAK1 (AP2-associated protein kinase-1) inhibition
Blocking AAK1-dependent clathrin-mediated endocytosis can reduce viral internalization; baricitinib is a dual JAK/AAK1 inhibitor proposed to impede SARS-CoV-2 entry8,16.
Possible treatments: baricitinib
54. TMEM106B-dependent lysosomal entry
Endo-lysosomal membrane protein TMEM106B regulates lysosome function and cooperates with V-ATPase; required for SARS-CoV-2 infection (facilitates cathepsin/LAMP1+ compartment entry)10,23,32.
Possible treatments: TMEM106B modulators (experimental)
55. V-ATPase-driven vesicle acidification
ATP6AP1/ATP6V1A subunits acidify endosomes/lysosomes enabling cathepsin-dependent S2' activation and late entry; nsp6 and M interact with these subunits10,30,32.
Possible treatments: etidronate, alendronate
56. Rab7-Mon1/CCZ1-HOPS late endosome maturation
RAB7A with its GEF (Mon1-Ccz1: CCZ1/CCZ1B/C18orf8) and HOPS (VPS39) traffic incoming virions to fusion sites and influence ACE2 surface levels10.
Possible treatments: Rab7 inhibitors (CID-1067700), vacuolin-1
57. Retromer/retriever/CCC-mediated ACE2 recycling
VPS29/VPS35/VPS35L, SNX27 and CCC (CCDC22/CCDC93/COMMDs) drive retrograde recycling; knockout lowers ACE2 surface and blocks entry10,32,38.
Possible treatments: retromer stabilizer R55, WASH/Arp2/3 inhibitors (CK-666)
58. Arp2/3-WASH actin branching for endosomal scission
ACTR2/ACTR3/ARPC3/ARPC4 and WASHC4 support retromer budding and receptor recycling required for efficient entry10.
Possible treatments: CK-666, CK-869
59. AP-1 adaptor complex-dependent trafficking
AP1B1/AP1G1 support early (TMPRSS2-biased) entry in airway cells by positioning proviral cargos and routes10.
Possible treatments: brefeldin A, AP-1 inhibitors
60. AHR-ACE2 transcriptional axis modulation
Activated AHR binds ACE2 promoter regions and regulates ACE2, influencing viral attachment/entry; modulating AHR can downshift entry competency in airway epithelium39,40.
Possible treatments: CH-223191, GNF351, pelargonidin-class AHR modulators
61. Heparan-sulfate (HS) clusters as primary attachment receptor
Direct nanoscopy shows SARS-CoV-2 binds tall HS nanoclusters that mediate cell-surface attachment and subsequent endocytic uptake; ACE2 is engaged downstream post-endocytosis20.
Possible treatments: pixantrone, heparinase I/II/III, heparin/HS mimetics (e.g., fucoidan, pentosan polysulfate, PG545, necuparanib)
62. Macropinocytosis/dynamin-dependent endocytosis blockade
Internalized virions reside in vesicles that can contain multiple particles; dynamin inhibition or dominant-negative DNM2 reduces uptake and gene expression; pattern and vesicle size are consistent with macropinocytosis as a major entry route3,15,20,22.
Possible treatments: EIPA (amiloride derivative), dynasore, DNM2-K44A, amiloride, DYN101
63. Phosphatidylinositol 4-kinase III beta (PI4KIIIβ) inhibition
PI4KIIIβ is a host kinase involved in viral entry and replication. It generates phosphatidylinositol 4-phosphate (PI4P), which is essential for regulating lipid membrane composition and trafficking events hijacked by coronaviruses for entry and the formation of replication organelles33.
Possible treatments: PIK-93, enviroxime, bithiazole derivatives, CUR-N399
64. Histamine H1 receptor (HRH1) antagonism
Blockade of the histamine H1 receptor, a potential alternative receptor for SARS-CoV-2 entry. Antihistamines may also offer immunomodulatory benefits3,18.
Possible treatments: acrivastine, azelastine, bilastine, desloratadine, diphenhydramine, fexofenadine, loratadine, promethazine, rupatadine, triprolidine
65. Bile acid receptor modulation (FXR/TGR5)
Activation of bile acid receptors like FXR and TGR5, which can downregulate ACE2 expression and exert anti-inflammatory effects, thereby reducing both viral entry and immunopathology3.
Possible treatments: chenodeoxycholic acid, ursodeoxycholic acid
66. Variant-specific transmembrane serine protease (TTSP) inhibition (Hepsin, KLK13, etc.)
SARS-CoV-2 variants evolved to use a diverse range of host transmembrane serine proteases (TTSPs) beyond TMPRSS2 for spike protein activation. For example, Alpha and Delta show enhanced binding to Hepsin, while Beta can utilize Kallikrein 13 (KLK13)4,15.
Possible treatments: camostat, broad-spectrum TTSP inhibitors
67. Extracellular vimentin (eVIM) attachment factor blockade
Extracellular vimentin (eVIM) acts as a host attachment factor or co-receptor for SARS-CoV-2, bridging the virus to its primary receptor on the host cell surface. Blocking eVIM with monoclonal antibodies prevents this interaction, thereby inhibiting viral entry41.
Possible treatments: hzVSF-v13, anti-eVIM monoclonal antibodies
68. ITGB3 (Integrin beta 3) blockade
Blocking ITGB3, an integrin receptor involved in platelet aggregation and immune cell signaling. ITGB3 plays a role in coagulation abnormalities and immune dysregulation in COVID-19. Inhibition of ITGB3 could mitigate microthrombosis and inflammatory responses22.
Possible treatments: Xemilofiban, integrin inhibitors
69. Bmal1 inhibition / REV-ERB agonism
Modulating the host circadian clock pathway to reduce ACE2 expression and limit cell-cell fusion. This can be achieved by inhibiting the transcription activator Bmal1 or by using REV-ERB agonists, which repress Bmal1 and downregulate ACE215.
Possible treatments: REV-ERB agonists, Bmal1 inhibitors
70. TULP3-mediated ciliary trafficking inhibition
Tubby Like Protein-3 (TULP3) acts as a pivotal adaptor protein that governs the trafficking of ACE2 to the primary cilium axoneme, partially through interaction with the IFT-A complex. TULP3 depletion significantly reduces ciliary ACE2 enrichment and impairs the entry of SARS-CoV-2 variants42.
Possible treatments: TULP3-ACE2 interface inhibitors, ciliary trafficking blockers, TULP3-IFT-A interaction disruptors, tubby-domain peptidomimetics
71. Primary cilium biogenesis disruption (IFT88 / ARL13B)
The presence of ACE2-enriched primary cilia is a determinant of host cell tropism and viral invasio. Genetic perturbation of key ciliogenesis genes, such as IFT88 or ARL13B, leads to deciliation or structural defects that significantly diminish SARS-CoV-2 infectivity in lung and retinal epithelial cells42.
Possible treatments: ciliogenesis inhibitors, intraflagellar transport modulators
72. CD169 (Siglec-1) mediated trans-infection
CD169 is a sialic-acid-binding I-type lectin on macrophages and dendritic cells that captures SARS-CoV-2 via the Spike NTD. While macrophage infection is often abortive (leading to RIG-I/MDA-5 inflammation), CD169 facilitates efficient trans-infection to ACE2-expressing cells23.
Possible treatments: anti-CD169 mAbs
73. CLEC4G (LSECtin) attachment factor blockade
CLEC4G is a C-type lectin expressed in liver and lymph nodes that binds SARS-CoV-2 Spike NTD and RBD. Soluble CLEC4G or knockdown significantly inhibits viral entry in ACE2-independent pathways23.
Possible treatments: soluble CLEC4G, anti-CLEC4G antibodies
74. LDLRAD3 N-terminal domain interaction inhibition
LDLRAD3 is a membrane-associated protein and E3 ubiquitin ligase regulator that binds the SARS-CoV-2 Spike NTD with high affinity, and mediates viral entry in neurons and myeloid cells lacking ACE2; soluble LDLRAD3 blocks this pathway23.
Possible treatments: soluble LDLRAD3, anti-LDLRAD3 antibodies
75. TMEM30A (CDC50A) flippase subunit targeting
TMEM30A, the beta-subunit of the P4-ATPase phospholipid flippase, binds the Spike NTD and facilitates ACE2-independent entry. Loss-of-function studies confirm its necessity for infection in specific ACE2-deficient cell types23.
Possible treatments: anti-TMEM30A antibodies
76. LFA-1 mediated T-cell entry blockade
Lymphocyte Function-Associated Antigen 1 (LFA-1) acts as an alternative receptor mediating SARS-CoV-2 infection in T cells (Jurkat lines and primary CD4+ T cells), contributing to T-cell death and lymphopenia23.
Possible treatments: LFA-1 antagonists
77. CD4 receptor blockade
SARS-CoV-2 Spike (RBD and full-length) binds the N-terminal domain of CD4 with high affinity, enabling infection of T-helper cells. Soluble CD4 or neutralizing anti-CD4 antibodies suppress this infection route, which is linked to IL-10 dysregulation23.
Possible treatments: soluble CD4, ibalizumab, anti-CD4 antibodies
78. Ganglioside-mediated viral attachment blockade
Lipid raft-associated gangliosides (e.g., GM1) serve as the primary attachment receptors for the Spike NTD, acting as "electrostatic attractors." This interaction is essential to trigger the conformational change that exposes the RBD for ACE2 binding5.
Possible treatments: hydroxychloroquine, chloroquine, ganglioside mimetics, sialic acid analogs, tetravalent sialo-glycoclusters, anti-GBD peptides, neuraminidase inhibitors
79. HDAC6-mediated uncoating and signaling
HDAC6 binds unanchored ubiquitin chains on viral capsids to facilitate physical uncoating through cytoskeletal shear forces. It also regulates innate immune responses16.
Possible treatments: HDAC6 inhibitors (targeting ZnF domain)
80. p38 MAPK pathway inhibition (viral entry)
Blocking p38 MAPK signaling disrupts virus-induced membrane invagination and endocytosis initiation. The activated p38 signal acts as a trigger for viral internalization, representing a broad-spectrum antiviral target16.
Possible treatments: SB203580, losmapimod, doramapimod, ralimetinib
81. EGFR (Epidermal Growth Factor Receptor) inhibition
SARS-CoV-2 spike protein activates EGFR to enhance downstream signaling (ERK1/2, AKT) and upregulate survivin; inhibition reduces infection and inflammation17.
Possible treatments: apigenin-7-glucoside, quercetin, pistagremic acid, linolenic acid
82. Endosomal Calcium modulation
SARS-CoV-2 S2 refolding and membrane fusion are calcium-dependent; depleting calcium or blocking calcium interaction promotes reversible conformational changes that inhibit fusion2.
Possible treatments: calcium chelators, calcium channel blockers
83. NAE1 (Neddylation) pathway inhibition
The Nedd8-activating enzyme 1 (NAE1) pathway is required to maintain cellular levels of the host protease TMPRSS2. Inhibition of neddylation triggers the loss of TMPRSS2, preventing spike protein priming, syncytia formation, and viral entry43.
Possible treatments: pevonedistat (MLN4924), TAS4464
84. MUC1 (Mucin 1) ferroptosis inhibition
Membrane-bound MUC1 is a hub gene that inhibits ferroptosis and sensitizes cells to Vitamin E alleviation of oxidative injury via the GSK3B pathway. It also provides steric hindrance to pathogen entry44.
Possible treatments: surfactant modulators
Viral Replication & Assembly Inhibition
Mechanisms that disrupt the replication or assembly of SARS-CoV-2 within host cells.
Targeting Viral Proteins
Replication inhibition mechanisms targeting viral proteins.
85. RNA-dependent RNA polymerase (RdRp) inhibition
Nucleoside analogs interfere with viral RNA synthesis1,3,8,13,14,32.
Possible treatments: remdesivir, molnupiravir, azvudine, bemnifosbuvir, deuremidevir, favipiravir, ribavirin, galidesivir, rifampicin, zidovudine, tenofovir, dolutegravir, raltegravir
86. Non-nucleoside RdRp inhibition
Bind to allosteric sites on RdRp to disrupt RNA synthesis45.
Possible treatments: suramin, dasabuvir, PPI-383
87. Main (M) protease (3CLpro) inhibition
Blocking Mpro prevents viral polyprotein cleavage and can minimize Mpro-driven mitochondrial dysfunction1,3,8,12-14,18,32,46-49.
Possible treatments: paxlovid, lopinavir/ritonavir, atilotrelvir, ensitrelvir, ibuzatrelvir, leritrelvir, lufotrelvir, pomotrelvir, xiannuoxin, GC376, rupintrivir, masitinib, narlaprevir, Scutellaria barbata, disulfiram, grazoprevir, ofloxacin, oseltamivir, zanamivir, cobicistat, darunavir, atazanavir, dolutegravir, raltegravir
88. Papain-like protease (PLpro) inhibition
Blocking PLpro activity, which processes viral polyproteins and disrupts host immune response1,3,12,50,51.
Possible treatments: GRL-0617, thiopurine analogs, diiodohydroxyquinoline, Scutellaria barbata, disulfiram
89. Nsp13 helicase inhibition
Inhibiting the viral helicase enzyme needed to unwind RNA for replication3,52.
Possible treatments: myricetin, scutellarein, SSYA10-001, bananin, ivermectin
90. Methyltransferase inhibition
Inhibit viral RNA capping by targeting nsp10/nsp16 complex.
Possible treatments: sinefungin, SAM analogs
91. Envelope (E) protein ion channel inhibition
Targeting the viroporin activity of the small envelope protein that forms pentameric ion channels and is involved in viral assembly and pathogenesis1,3.
Possible treatments: amantadine, rimantadine, hexamethylene amiloride
92. Nucleocapsid (N) protein inhibition
Disrupt N protein's RNA binding and oligomerization, preventing genome packaging. N is heavily sialylated in patients and infected cells; NEU1-regulated desialylation enhances N-RNA affinity, so preserving N sialylation further reduces replication3,53-56.
Possible treatments: ebselen, PJ34, hesperetin, riluzole, CT05, CT10
93. Nucleocapsid protein intrinsically disordered region (IDR) targeting
Compounds targeting the disordered N-terminal domain (1-68), central linker region (181-248), or C-terminal domain (370-419) to disrupt RNA binding, liquid-liquid phase separation, and viral genome packaging9,53.
Possible treatments: RNA-binding inhibitors, LLPS disruptors, phase separation modulators, condensate destabilizers
94. Virion assembly disruption
Inhibit assembly of viral structural proteins and RNA into new virions3,57.
Possible treatments: nitazoxanide, temoporfin, JNJ-9676, CIM-834, verteporfin
95. Nonstructural protein 1 (Nsp1) inhibition
Targeting Nsp1, which suppresses host gene expression by blocking mRNA entry into ribosomes and causing host mRNA degradation32.
Possible treatments: Nsp1-ribosome interaction inhibitors, compounds preventing Nsp1 C-terminal domain activity
96. Nsp1 flexible linker (129-147) targeting
Small molecules that stabilize or destabilize specific conformations of the disordered linker region between Nsp1 N-terminal and C-terminal domains, modulating its interaction with the ribosome and limiting viral translation inhibition9.
Possible treatments: designed peptidomimetics, small molecules stabilizing disorder-to-order transitions
97. Nsp1 Cu(II) binding region (163-167) targeting
Compounds that mimic or disrupt Cu(II) binding to the disordered region containing key residues W161 and H165, altering Nsp1 structural dynamics and function9.
Possible treatments: metal chelators, Cu(II) mimetics, W161/H165-targeting compounds
98. Nsp2 function inhibition
Blocking the activity of Nsp2, which may play roles in host cell environment modulation and interacts with prohibitin proteins.
Possible treatments: prohibitin-targeting compounds, small molecules disrupting Nsp2-host protein interactions
99. Nsp3 (multifunctional domains) inhibition
Targeting the large multi-domain non-structural protein 3, particularly its macrodomain (Mac1) that suppresses host immune response by removing ADP-ribose modifications, and the ubiquitin-like domain 1 (Ubl1) that mediates important interactions with other viral proteins for replication complex formation16,58.
Possible treatments: F2124-0890, ADP-ribose analogs, macrodomain inhibitors, thiopurine analogs, GRL-0617 derivatives, VE-112, VE-157, disulfiram, PLP_CoV2_3k, ebselen, AVI-4206, AVI-4636, AVI-92
100. Nsp4 membrane reorganization inhibition
Disrupting Nsp4's critical role in double-membrane vesicle (DMV) formation and organization of viral replication complexes, which are essential for creating protected environments for viral RNA synthesis16.
Possible treatments: K22, AM580, memantine, enoxacin, cetylpyridinium chloride, hexachlorophene
101. Nsp5-Nsp8 interaction disruption
Preventing essential protein-protein interactions between components of the viral replication machinery, particularly the interaction between Mpro (Nsp5) and the primase Nsp8, which is critical for the function of the replication-transcription complex.
Possible treatments: peptide-based inhibitors targeting interaction interfaces, α-ketoamides, small molecule PPI inhibitors, cyclic peptides
102. Nsp6 autophagy modulation inhibition
Counteracting Nsp6's ability to limit autophagosome expansion, which may help the virus evade autophagy-mediated viral clearance.
Possible treatments: autophagy enhancers specifically targeting Nsp6 mechanisms, compounds restoring normal autophagosome formation
103. Nsp7-Nsp8 primase complex disruption
Targeting the Nsp7-Nsp8 complex that functions as a primase for RdRp, essential for initiating RNA synthesis32.
Possible treatments: small molecules disrupting Nsp7-Nsp8 protein-protein interactions, compounds preventing primase activity
104. Nsp9 RNA-binding inhibition
Targeting Nsp9, an essential RNA-binding protein required for viral RNA synthesis and replication that functions through both RNA and DNA binding capabilities and potential dimerization. Nsp9 also sequesters let-7b, suppressing TLR7-mediated immunity32,59.
Possible treatments: suramin derivatives, nucleic acid analogs, small molecules targeting the dimerization interface, DNA-binding inhibitors, quinoline derivatives
105. Nsp10 cofactor inhibition
Blocking Nsp10, which serves as an essential cofactor for both Nsp14 (ExoN/N7-MTase) and Nsp16 (2'-O-MTase), thereby disrupting viral RNA processing and immune evasion32,60.
Possible treatments: compounds targeting Nsp10-Nsp14/Nsp16 interfaces, Nsp10 zinc finger inhibitors
106. Nsp13 helicase/triphosphatase inhibition
Blocking the multiple enzymatic functions of Nsp13, which possesses RNA helicase, NTPase, and RNA 5'-triphosphatase activities essential for viral replication and mRNA capping32,61.
Possible treatments: myricetin, scutellarein, SSYA10-001, triazole derivatives, bismuth salts, vapreotide, 1, 2, 3-triazole derivatives, HE602
107. Nsp14 dual-function inhibition
Targeting the bifunctional nonstructural protein 14 (Nsp14), which contains both N7-methyltransferase (N7-MTase) activity crucial for viral mRNA cap formation and 3'-5' exoribonuclease (ExoN) activity that provides proofreading during RNA replication, reducing mutation rates and maintaining viral genetic fidelity1,32,60,62.
Possible treatments: ribavirin, sinefungin, aurintricarboxylic acid, GRL-0617-like compounds, Y3, suramin, ZINC09432058, tanshinone derivatives, thymoquinone, gossypol, SAM analogs
108. Nsp15 endoribonuclease inhibition
Mechanisms that target the viral endoribonuclease Nsp15, which helps SARS-CoV-2 evade host immune detection32,63.
Possible treatments: acrylamide-based covalent inhibitors
109. Nsp16 2'-O-methyltransferase inhibition
Nsp16 functions as a 2'-O-methyltransferase that methylates the 5' cap of viral RNA, preventing degradation by host cells. Inhibiting this activity can impair viral RNA stability and replication1,14,32,64.
Possible treatments: sinefungin, SAM analogs, 2'-O-methyltransferase inhibitors
110. Spike protein RNA packaging signal inhibition
Targeting the RNA packaging signal in the spike protein gene that may facilitate incorporation of genomic RNA into virions.
Possible treatments: oligonucleotides, small molecules specifically binding to RNA packaging signals
111. ORF3a viroporin blockade
Inhibiting the ion channel activity of ORF3a, which forms viroporins, induces apoptosis, and activates the NLRP3 inflammasome, contributing to viral pathogenesis and release3,65.
Possible treatments: emodin, 5-hydroxymethyl-2-furaldehyde, adamantane derivatives, hexamethylene amiloride, potassium channel blockers, calcium channel blockers, diltiazem, austocystin D, N-acetyl-D-glucosamine
112. ORF3a N-terminal IDR (1-41) targeting
Disruption of the disordered N-terminal region of ORF3a that controls protein localization and retention at the plasma membrane, essential for viral assembly and immune evasion9.
Possible treatments: small molecules disrupting membrane localization, peptidomimetics, subcellular targeting disruptors
113. ORF3a TRAF-binding motif (36-40) targeting
Inhibition of the disordered TRAF-binding region that activates NF-κB and NLRP3 inflammasome pathways, reducing hyperinflammation and cytokine storms9.
Possible treatments: TRAF interaction inhibitors, selective NF-κB modulators, NLRP3 pathway disruptors
114. ORF6 nuclear transport disruption inhibition
Counteracting ORF6's antagonism of interferon signaling and disruption of nuclear transport, which prevents antiviral gene expression through sequestration of import factors.
Possible treatments: nuclear transport enhancers, karyopherin activators, importin-targeting compounds, selinexor derivatives
115. ORF7a/7b immunomodulation inhibition
Blocking ORF7a and ORF7b activities that modulate host immune response and potentially participate in viral assembly through interactions with host proteins and other viral components.
Possible treatments: small molecule inhibitors targeting protein-protein interactions, BST-2/tetherin-enhancing compounds, cyclophilin inhibitors
116. ORF8 immune evasion inhibition
Countering ORF8's interference with MHC-I-dependent antigen presentation and downregulation of interferon responses, which help the virus evade immune detection18.
Possible treatments: proteasome activators, ER stress modulators, MHC-I stabilizing compounds, IRE1α-targeting drugs, ATF6 pathway modulators
117. ORF9b mitochondrial targeting inhibition
Preventing ORF9b from suppressing host innate immunity through targeting mitochondria and disrupting MAVS signalosome formation, which impairs interferon responses.
Possible treatments: mitochondrial function enhancers, TOM70 interaction inhibitors, DRP1 activators, MAVS pathway stimulators, mitochondrial antiviral compounds
118. ORF10 function inhibition
Blocking the potential roles of ORF10 in viral pathogenesis and replication66.
Possible treatments: compounds disrupting ORF10-host protein interactions, CUL2 ubiquitin ligase complex inhibitors
119. Nsp10-Nsp14 ExoN interface PPI inhibition
Small molecules that occupy pockets at the nsp10-nsp14 interface to prevent nsp10-mediated activation of the ExoN proofreading enzyme. Blocking this PPI lowers proofreading and can sensitize SARS-CoV-2 to nucleoside analogs60,62.
Possible treatments: VT00180, VT00249, VT00123-R, VT00421, VT00218, bismuth(III) compounds
120. Nsp14 ExoN-hinge allosteric inhibition
Ligands that bind the hinge connecting ExoN and the N7-methyltransferase domain to perturb ExoN conformation/communication and reduce proofreading activity60.
Possible treatments: VT00079, VT00123-S, VT00218
121. Nsp14 ExoN His268 rotamer-state stabilization
Allosteric or proximal binders that bias the catalytic general base His268 toward the inactive orientation observed crystallographically, suppressing DEDDh ExoN activity and enhancing NA efficacy60.
Possible treatments: His268-rotamer stabilizers, metal-site-adjacent allosteric binders
122. Nsp10 allosteric ligands / targeted degradation
Ligands for two non-interface allosteric pockets on nsp10 (sites III & IV) that could lead to allosteric inhibitors of nsp10 function or serve as handles for nsp10-directed PROTACs to disable ExoN/MTase cofactor activity60.
Possible treatments: VT00258, VT00259, nsp10-directed PROTAC warheads
123. Membrane (M) protein assembly inhibition
Small molecules that bind the conserved coronavirus membrane (M) protein and trap it in non-productive conformations (e.g., stabilize the TM-domain dimer or the Mshort state), preventing Mlong conversion, multimerization, membrane curvature, and virion assembly. Resistance clusters at pocket residues (e.g., Y95, S99, N117, P132), yet conservation across sarbecoviruses suggests broad coverage32,57.
Possible treatments: JNJ-9676, CIM-834
124. Mpro targeted degradation (host E3 ligase recruitment)
Host E3 ligases FBXO22, ZBTB25 and Parkin can ubiquitinate Mpro/3CLpro and drive its proteasomal degradation; pharmacologic recruitment may lower viral fitness and complement catalytic-site inhibitors47-49.
Possible treatments: Mpro-PROTACs recruiting FBXO22/ZBTB25/Parkin, VHL/CRBN-based degraders
125. Mpro (3CLpro) proteolysis by host MMP14 or PLpro-activated MMP14
Membrane-type matrix metalloproteinase-14 (MMP14) selectively binds and cleaves SARS-CoV-2 3CLpro at loop-2 (G170|V171), eliminating protease activity and suppressing viral replication. An engineered zymogen (pro-PL-MMP14) carries a viral PLpro cleavage motif (LxGG) between the pro- and catalytic domains, enabling activation specifically in infected cells48.
Possible treatments: cat-MMP14 (soluble catalytic domain), pro-PL-MMP14 (PLpro-activated MMP14 proenzyme)
126. RdRp catalytic-site non-nucleoside inhibitors (NTP-entry blockers)
Small molecules that occupy the nsp12 catalytic pocket/NTP entry channel and modulate RNA/NTP binding, yielding mixed or competitive inhibition and blocking replication in cells45.
Possible treatments: rose bengal, 3-O-acetyl-11-keto-β-boswellic acid (AKBA), theaflavin-3-gallate, dryocrassin ABBA, meclinertant, omaveloxolone
127. RdRp Palm-site allosteric inhibitors (nsp12 Palm subdomain)
Ligands that bind an allosteric pocket in the Palm subdomain adjacent to the NTP entry channel, inducing noncompetitive inhibition and slowing polymerase catalysis45.
Possible treatments: venetoclax, omaveloxolone, meclinertant, dryocrassin ABBA, BMS-986142
128. RdRp Thumb-domain allosteric inhibitors
Compounds that dock to an allosteric pocket in the Thumb domain and reduce RdRp processivity; several repurposed/natural products show micromolar inhibition in biochemical assays45.
Possible treatments: lenrispodun, paritaprevir, saikosaponin B2, fenretinide
129. Mpro cleavage inside DMV lumen & pore-proximal processing
Super-resolution mapping places nsp5 (Mpro) predominantly inside double-membrane vesicles (DMVs), implying that polyprotein processing proceeds after DMV closure within the DMV lumen. Therapeutic concepts: inhibitors optimized for DMV access; agents that disrupt the Mpro-pore microenvironment32.
Possible treatments: nirmatrelvir, optimized Mpro macrocycles, pore-tethered Mpro inhibitors
130. HCV NS3/4A, NS5A, and NS5B polymerase/protein inhibition
Inhibitors developed for Hepatitis C, such as NS5A inhibitors and NS5B polymerase inhibitors, have potential cross-reactivity against SARS-CoV-2 replication machinery3.
Possible treatments: elbasvir, ledipasvir, sofosbuvir, velpatasvir
131. PLpro allosteric modulation
Targeting regulatory sites on the papain-like protease (PLpro) outside of the catalytic active site, the interface of the N-terminal ubiquitin-like (Ubl) domain50.
Possible treatments: engineered ubiquitin variants (UbVs), Ubl-catalytic domain interface disruptors
132. Spike-M protein interaction stabilization (ER retention)
Stabilizing the interaction between the Spike (S) protein cytoplasmic tail and the Membrane (M) protein to enhance S protein retention in the ERGIC. This prevents S protein trafficking to the cell surface, thereby reducing its availability to mediate cell-cell fusion (syncytia formation)15.
Possible treatments: S-M interaction stabilizers, small molecules enhancing M-mediated ER retrieval
133. ORF3a-VPS39 interaction inhibition (HOPS complex blockade)
The SARS-CoV-2 ORF3a protein binds the host VPS39 subunit of the HOPS complex, blocking autophagosome-lysosome fusion and preventing viral degradation. Small molecules binding the ORF3a cytosolic surface can disrupt this interface to restore autophagic flux and promote lysosomal degradation of viral components65.
Possible treatments: bictegravir, 4-(benzoylamino)benzoic acid
134. PLpro Zinc-finger disruption
Compounds that disrupt the structural zinc-finger motif of PLpro (essential for structural integrity) via metal ejection, intercalation, or coordination, thereby destabilizing the enzyme and inhibiting function51.
Possible treatments: zinc pyrithione, ebselen, Au-34, Ag-4b, disulfiram, Fragment 11
Targeting Host Proteins/Factors
Replication inhibition mechanisms targeting host proteins/factors.
135. Nucleotide depletion
Inducing viral mutagenesis or depleting nucleotide pools.
Possible treatments: molnupiravir
136. GTP depletion
Inhibition of IMP dehydrogenase depleting guanosine nucleotides3.
Possible treatments: ribavirin, mycophenolate mofetil, azathioprine
137. Pyrimidine depletion
Inhibition of dihydroorotate dehydrogenase depleting pyrimidine nucleotides.
Possible treatments: leflunomide, teriflunomide
138. Deoxyribonucleotide depletion
Inhibition of ribonucleotide reductase reducing deoxyribonucleotide pools.
Possible treatments: hydroxyurea
139. Glucose deprivation
Competitive inhibition of glucose metabolism to limit viral energy sources16,67.
Possible treatments: 2-deoxy-D-glucose, KAN0438757, 3PO
140. Amino acid depletion
Depletion of asparagine to inhibit viral protein synthesis.
Possible treatments: asparaginase
141. Iron chelation
Sequestration of iron to limit availability for viral replication.
Possible treatments: deferoxamine
142. Methyl donor depletion
Inhibition of S-adenosylmethionine synthesis impairing viral RNA methylation.
Possible treatments: cycloleucine
143. Glutamine antagonism
Inhibition of glutamine metabolism to reduce nucleotide precursors67.
Possible treatments: 6-diazo-5-oxo-L-norleucine
144. Cholesterol depletion
Reducing cellular cholesterol destabilises lipid rafts, impairs membrane fusion, and disrupts replication-organelle formation, limiting viral entry and assembly. Strategies include HMG-CoA-reductase inhibition and direct extraction of membrane cholesterol10,15,16,26,68.
Possible treatments: simvastatin, atorvastatin, fluvastatin, hydroxypropyl-β-cyclodextrin, 25-hydroxycholesterol, imipramine, ceftanorine
145. Fatty acid-binding protein 4 (FABP4) inhibition
Disruption of FABP4, a host metabolic protein critical for the formation and function of SARS-CoV-2 replication organelles (double-membrane vesicles)16,69.
Possible treatments: BMS309403, CRE-14
146. TrkA signaling inhibition
Suppressing the neurotrophin receptor TrkA interferes with SARS-CoV-2 RNA replication/assembly, producing multi-log viral reduction even when added hours after infection27.
Possible treatments: GW441756, AG879
147. CDK1-Cyclin B1 complex inhibition
SARS-CoV-2 depends on the host CDK1-Cyclin B1 complex to complete crucial steps of its replication cycle. Small-molecule CDK inhibitors force a G2/M cell-cycle arrest, sharply reducing viral RNA synthesis and protein production in vitro. Because CDK1 and Cyclin B1 are over-expressed in COVID-19 blood samples, they represent druggable host factors for broad-spectrum antiviral intervention70,71.
Possible treatments: roscovitine (seliciclib), flavopiridol, dinaciclib, SNS-032
148. Rho-GTPase / ROCK signaling inhibition
Viruses hijack Rho-family GTPases (RhoA, Rac1, Cdc42) and downstream ROCK/PAK/mDia kinases for actin- and microtubule-based trafficking. Inhibitors that block ROCK activity or prevent GTPase prenylation impair endocytosis, replication-organelle formation, and virion egress, and can potentiate innate antiviral signaling26,72.
Possible treatments: fasudil, GSK269962A, atorvastatin, Y-27632, NSC23766, ZCL278, simvastatin
149. Epigenetic chromatin-remodelling modulation
SARS-CoV-2 reprograms airway-epithelial transcription by activating host chromatin regulators - HDAC1/2/7, NCOR1, KAT2B (GCN5), cohesin (SMC3) and SWI/SNF components (PBRM1, SMARCA4). The resulting histone-acetylation and 3-D chromatin changes suppress interferon genes and create a replication-permissive state. Inhibiting these regulators with HDAC, EZH2 or SWI/SNF modulators restores antiviral transcription and sharply reduces viral yield in vitro3,39,47,49,73.
Possible treatments: romidepsin, vorinostat, entinostat, tazemetostat, BRM/BRG1 inhibitors, valproic acid
150. G9a / EHMT2 lysine-methyltransferase inhibition
Blocking the histone H3K9 dimethyltransferase G9a (EHMT2) reverses SARS-CoV-2-driven chromatin silencing and m6A translational re-wiring, while secondarily impairing cathepsin-L maturation; the combined epigenetic effects suppress both viral entry and intracellular replication34,74.
Possible treatments: UNC0642, UNC0638, BIX01294, MS1262, UNC1999, tazemetostat, YX59-126
151. ER stress / UPR modulation
Pharmacologic tuning of the unfolded-protein response (BiP/HSPA5 induction, PERK-eIF2α signaling) restores ER homeostasis, curtails viral protein translation and blocks DMV biogenesis across coronaviruses22.
Possible treatments: thapsigargin, sephin1, TUDCA, 4-phenylbutyrate
152. AMPK activation & mTOR inhibition
Shifting cellular metabolism toward catabolism (AMPK) and dampening cap-dependent translation (mTOR blockade) depletes biosynthetic resources, suppressing SARS-CoV-2 RNA and protein output in vitro and in vivo3,16.
Possible treatments: metformin, AICAR, berberine, rapamycin, everolimus, sirolimus
153. SLBP-mediated -1 programmed ribosomal frameshifting (-1 PRF) enhancement
Stem-loop-binding protein (SLBP) binds the SARS-CoV-2 -1 PRF pseudoknot through its R46/S94 RNA-binding pocket, boosts frameshifting and pp1ab synthesis; CRISPR or small-molecule disruption of SLBP-RNA interaction curtails replication75.
Possible treatments: siRNA-SLBP, antisense-gapmers, SLBP-RBD inhibitors
154. FUBP3-driven -1 PRF enhancement
Far-upstream element-binding protein 3 forms RNP complexes with SLBP and ribosomal proteins at the -1 PRF site to raise frameshifting; silencing restricts viral growth75.
Possible treatments: siRNA-FUBP3, RNA-interface disruptors
155. RPL10A/RPS3A/RPS14 ribosomal facilitation of -1 PRF
These ribosomal proteins co-localise with -1 PRF RNA and, when over-expressed, significantly increase frameshifting; their depletion suppresses replication, identifying them as host translation cofactors commandeered by SARS-CoV-275.
Possible treatments: siRNA-RPL10A/RPS3A/RPS14, ribosomal-PPI modulators
156. Shiftless (SFL) inhibition of -1 PRF
Interferon-induced protein Shiftless competes at the -1 PRF site and lowers frameshifting, acting as an intrinsic restriction factor; boosting SFL or mimicking its mechanism can counter SLBP/FUBP3-mediated enhancement75.
Possible treatments: recombinant SFL, SFL-mRNA therapeutics
157. Mitochondrial bioenergetic preservation
Active SARS-CoV-2 main protease (Mpro) collapses oxidative phosphorylation, depolarizes or hyper-polarizes mitochondria and fragments their network; stabilizing the respiratory chain or blocking Mpro-mediated cleavage of mitochondrial proteins can maintain ATP production and limit virus-induced cell damage8,16,46,66,67,76,77.
Possible treatments: SS-31 peptide, MitoQ, CoQ10, nicotinamide riboside, metformin, resveratrol, TOM70-agonist peptides, macrocyclic ORF9b-TOM70 blockers, VBIT-4, VBIT-12, VDAC1-neutralizing antibody, Mdivi-1
158. MAP2K1/2 (MEK1/2) inhibition
Suppressing the MAPK/ERK cascade by blocking MAP2K1/2 prevents phosphorylation of N, ORF9b and multiple NSPs, trimming viral RNA synthesis and dampening excess cytokine signaling3,22,28.
Possible treatments: selumetinib, trametinib, cobimetinib, ATR-002, zapnometinib
159. DYRK1A depletion / degradation
Knocking out or destabilizing DYRK1A lowers ACE2/DPP4/ANPEP transcription and blocks double-membrane-vesicle formation, jointly impairing coronavirus entry and early RNA-replication steps28,78.
Possible treatments: DYRK1A-targeting PROTACs, CRISPR/siRNA-DYRK1A, nuclear-export mutants, harmalogs
160. TOM70 functional restoration
Stabilize or up-regulate TOM70 to counteract ORF9b-induced MAVS suppression, prevent lactate over-production and maintain antiviral oxidative phosphorylation76.
Possible treatments: 17-AAG analogues, celastrol derivatives, TOM70-agonist small molecules
161. VDAC1 inhibition & mitochondrial pore stabilisation
SARS-CoV-2 infection and pro-inflammatory cytokines drive VDAC1 over-expression, oligomerisation and plasma-membrane mis-targeting. The resulting ATP loss and mtDNA release fuel NLRP3/STING activation and macrophage dysfunction. Small-molecule or biologic VDAC1 blockers restore cellular bioenergetics, dampen chemokine release and correlate with reduced clinical severity77.
Possible treatments: VBIT-4, VBIT-12, VDAC1-neutralizing antibody, metformin, sulindac, hexokinase-mimetic peptides
162. PFKFB3 glycolytic flux inhibition
SARS-CoV-2 creates a high-flux glycolytic state; blocking the rate-limiting kinase PFKFB3 lowers fructose-2,6-bis-phosphate, curbs viral RNA synthesis, and dampens cytokine release67,71.
Possible treatments: KAN0438757, 3PO
163. Drp1-mediated mitochondrial fission inhibition
Excessive Drp1-driven fission fragments mitochondria, fuels ROS and cytokine surges in COVID-19; Mdivi-1 blocks Drp1 GTPase, restores Δψm and limits inflammation67.
Possible treatments: Mdivi-1
164. G3BP1/2 stress-granule potentiation
Boost the antiviral stress-granule pathway by up-regulating or mimicking Ras-GAP-SH3-domain-binding proteins-1/2 (G3BP1/2). Reinforced SGs sequester translation factors and viral RNAs, throttling SARS-CoV-2 protein synthesis. Double G3BP1/2 knockout increases viral titres, underscoring their overlapping antiviral role16,47,49,79.
Possible treatments: imatinib, decitabine, SG-inducing eIF2α modulators, halofuginone, pateamine-A analogs, G3BP-stabilizing stapled peptides, small-molecule N-G3BP PPI disruptors
165. Host matrix-metalloproteinase (MMP) chelation
Chelation of the Zn²⁺ catalytic site on host MMPs limits MMP-assisted steps of SARS-CoV-2 replication and dampens downstream tissue damage3,48,80.
Possible treatments: minocycline, doxycycline, tetracycline
166. Microtubule polymerisation inhibition
Disrupting α/β-tubulin dynamics impairs intracellular trafficking of viral components and lowers lung viral load; orally bio-available agents show potent protection in hamsters3,13,81.
Possible treatments: sabizabulin, colchicine, vinblastine, vincristine
167. B0AT1 (SLC6A19) modulation
B0AT1 enhances ACE2 stability by assembling it into high-quality heterodimer structures. The ACE2-B0AT1 complex can simultaneously bind two spike proteins, significantly promoting viral recognition and infection1,14.
Possible treatments: SLC6A19 inhibitors, amino acid transport blockers
168. Calcineurin/NFAT pathway inhibition
Blocking the calcineurin-NFAT signaling pathway that is activated by viral Nsp1 through peptidyl-prolyl cis-trans-isomerases, contributing to immune activation1,30.
Possible treatments: cyclosporine A, tacrolimus
169. RNF2 (Ring Finger Protein 2) enhancement
Enhancing RNF2 expression or function to inhibit coronavirus replication. RNF2 is an E3 ubiquitin ligase that interacts with SARS-CoV-2 nucleocapsid protein and acts as an antiviral host factor. Overexpression reduces viral loads while knockdown increases viral replication53.
Possible treatments: RNF2 activators, ubiquitin ligase enhancers, RNF2-N protein interaction stabilizers
170. ARL15 (ADP ribosylation factor like GTPase 15) enhancement
Enhancing ARL15 expression or function to inhibit coronavirus replication. ARL15 is a small GTP-binding protein that interacts with SARS-CoV-2 nucleocapsid protein and acts as an antiviral host factor. Overexpression reduces viral loads while knockdown increases viral replication53.
Possible treatments: ARL15 activators, GTPase enhancers, ARL15-N protein interaction stabilizers
171. NEU1 sialidase inhibition
Host sialidase NEU1 removes terminal sialic acids from the coronavirus nucleocapsid (N) protein. Maintaining N sialylation lowers N-RNA binding and curbs replication; cell-permeable NEU1 inhibitors acting in the cytoplasm/lysosome (β-CoVs egress via lysosomes) suppress HCoV-OC43 and SARS-CoV-2 replication in vitro and in vivo54.
Possible treatments: Neu5Ac2en-OAcOMe (cell-permeable DANA analog), DANA/Neu5Ac2en derivatives with NEU1 selectivity
172. Class III PI3K (PIK3C3)-PI3P signaling
PIK3C3/PIK3R4 with VAC14 and WDR81/91 initiate endosomal maturation and early autophagy exploited by SARS-CoV-2 and seasonal HCoVs10.
Possible treatments: SAR405, PIK-III
173. TMEM41B-dependent autophagosome initiation
Conserved coronavirus dependency; early autophagy membrane remodeling supports replication organelle formation10,16.
Possible treatments: TMEM41B inhibitors
174. SREBP/SCAP/MBTPS1/2 lipid program
Master regulators of fatty acid/cholesterol synthesis required for coronavirus replication; disruption limits entry/replication10,31,47.
Possible treatments: fatostatin, betulin, PF-429242
175. Lysosomal cholesterol export (NPC1/NPC2)
NPC1/NPC2 move cholesterol from lumen to membrane; required for CoV entry/fusion and trafficking10.
Possible treatments: U18666A, imipramine, 25-hydroxycholesterol
176. Sigma-1 receptor (SIGMAR1)-ER lipid microdomain support
SIGMAR1 interacts with nsp6 and organizes ER lipid microdomains used by positive-strand RNA viruses; modulators impact replication/host responses3,10.
Possible treatments: fluvoxamine, naltrexone, PB28
177. eEF1A1 translation elongation factor
Host translation factor leveraged by SARS-CoV-2; inhibition shows potent antiviral activity in vitro and in vivo10,71.
Possible treatments: plitidepsin
178. Caspase-6 inhibition / blockade of N-protein cleavage
Caspase-6 facilitates coronavirus replication by cleaving nucleocapsid (N) into IFN-antagonist fragments. Genetic knockdown/KO of CASP6 or pharmacologic inhibition reduces N cleavage, restores type-I IFN signaling, and suppresses replication; activity is post-entry and requires an intact IFN pathway55.
Possible treatments: dibenzoylmethane, Z-VEID-FMK, caspase-6 inhibitors
179. Aryl hydrocarbon receptor (AHR) antagonism
SARS-CoV-2 activates AHR, a proviral host factor that suppresses type-I IFN, promotes mucin hypersecretion, and drives inflammatory/metabolic dysregulation; antagonism restores antiviral signaling and may limit fibrosis39,40.
Possible treatments: CH-223191, GNF351, BAY2416964
180. TiPARP/PARP7 inhibition (AHR effector)
AHR up-regulates TiPARP (PARP7), which supports coronavirus replication; dampening AHR-TiPARP signaling could reduce viral RNA output and restore IFN responses39.
Possible treatments: PARP7 inhibitors
181. TRMT1 (tRNA m2G/m22G) inhibition
3CLpro cleaves TRMT1 (Q530), and TRMT1 deficiency reduces intracellular viral RNA levels; pharmacologic TRMT1 inhibition may limit replication by depriving the virus of pro-replicative tRNA modifications47.
Possible treatments: TRMT1 inhibitors, RNA-binding aptamers that block TRMT1-tRNA interaction
182. Proteasome core (PSMB) inhibition
Predicted host factor PSMB2 (20S proteasome beta subunit) co-clusters with SARS-CoV-2-interacting proteins; inhibiting proteasome activity can impede viral protein turnover/replication and modulate downstream inflammation3,22,30.
Possible treatments: carfilzomib
183. Replication-organelle dsRNA connector disruption
Thin dsRNA strands physically link DMVs and can tether DMV clusters to larger bodies; likely acting as conduits for spreading replication sites. Targeting their formation/trafficking could limit RO expansion32.
184. Membraneless dsRNA granule (viroplasm-like) dissolution
Large, rounded dsRNA granules lacking nsp3/nsp4 pores but decorated with nsp5/nsp8/nsp10/nsp12/nsp13 suggest phase-separated viral factories. Small-molecule condensate modulators or RNA-protein interface blockers may suppress replication32.
Possible treatments: 1, 6-hexanediol-class probes, condensate-modulating chemotypes, nsp-RNA interface inhibitors
185. Multi-layered body (MLB) clearance
Mpro inhibition induces persistent, multi-layered membrane stacks composed of uncleaved pp1a/pp1ab with nsp3 flanking each layer; MLBs can persist after drug washout and coincide with reinfection. Enhancing selective ER-phagy/MLB turnover or blocking nsp3/4 zippering may improve outcomes32.
Possible treatments: rapamycin, spermidine, ER-phagy activators, nsp3/4 ectodomain interaction blockers
186. Inositol monophosphatase (IMPase) inhibition
IMPase is a key enzyme for both de novo biosynthesis and recycling of cellular inositol. Inhibiting IMPase creates a chokepoint, limiting the availability of inositol and its derivatives (PtdIns, PPIns), which are essential for viral replication organelle formation and other processes hijacked by SARS-CoV-233,82.
Possible treatments: ivermectin, lithium, ebselen
187. Dihydrofolate reductase (DHFR) inhibition
Inhibition of dihydrofolate reductase, an enzyme essential for the synthesis of nucleotides, thereby depleting the building blocks required for viral RNA replication3.
Possible treatments: pyrimethamine
188. BRAF kinase inhibition
Targeting the host BRAF kinase, part of the MAPK/ERK signaling pathway, which can be hijacked by the virus to support its replication cycle. Inhibition may disrupt viral proliferation and modulate host inflammatory responses3.
Possible treatments: vemurafenib
189. Farnesyltransferase inhibition
Blocking the farnesylation (a type of prenylation) of host and potentially viral proteins, which is a critical post-translational modification for their membrane localization and function, thereby disrupting viral replication and assembly3.
Possible treatments: lonafarnib
190. Glucosylceramide synthase inhibition
Disruption of glycosphingolipid metabolism by inhibiting glucosylceramide synthase, which can alter the composition of lipid rafts and membranes of replication organelles, thereby impairing viral entry and replication3.
Possible treatments: miglustat
191. Glycogen synthase kinase 3 (GSK-3) inhibition
Inhibition of GSK-3, a key regulator of numerous cellular processes including inflammation, apoptosis, and metabolism, which can be hijacked by SARS-CoV-2 for replication3,44,83,84.
Possible treatments: lithium
192. Phosphoinositide 3-kinase (PI3K) / PIK3CA inhibition
Blocking the PI3K/AKT/mTOR signaling pathway (specifically targeting PIK3CA), which is crucial for cell survival and autophagy regulation, and may be hijacked by SARS-CoV-2 to promote inflammation3,17.
Possible treatments: duvelisib, linolenic acid, pistagremic acid
193. Poly (ADP-ribose) polymerase (PARP) inhibition
Inhibition of PARP enzymes, which are involved in DNA repair and inflammatory signaling. PARP inhibitors may exert antiviral effects by modulating the host response and limiting virus-induced cellular stress3.
Possible treatments: rucaraparib
194. Broad tyrosine kinase inhibition
Inhibition of multiple host cell tyrosine kinases that regulate signaling pathways essential for viral entry, replication, and the induction of pro-inflammatory cytokines3.
Possible treatments: entrectinib, nilotinib, vandetanib
195. Pro-viral host protein domains (COMM, PX, RRM)
Specific host protein domains have been identified as critical for SARS-CoV-2 pro-viral activity, including the COMM (Copper metabolism MURR1) domain, Phox homology (PX) domains, and RNA recognition motifs (RRM). Targeting these domains may disrupt host factor support for viral replication38.
Possible treatments: COMM domain inhibitors, PX domain antagonists, RRM-targeting small molecules
196. TRMT1 (tRNA m2G/m22G) inhibition
The viral main protease (3CLpro/Mpro) cleaves the host tRNA methyltransferase 1 (TRMT1), which disrupts proper tRNA folding and global protein synthesis. Since viral replication is dependent on the host's translational machinery, pharmacologic inhibition of TRMT1 may limit the resources available for viral protein production49.
Possible treatments: TRMT1 inhibitors, RNA-binding aptamers that block TRMT1-tRNA interaction
197. HSF1 inhibition to reduce replication & stress-adaptive transcription
Human coronaviruses activate HSF1; HSF1 phosphorylation (e.g., Ser326) drives a stress program that can aid replication and intersect with NF-κB/STAT3; inhibiting HSF1 may blunt viral fitness and inflammatory stress40.
Possible treatments: HSF1 inhibitors (e.g., KRIBB11-class)
198. CRL2ZYG11B (Cullin-2 E3 ligase) inhibition
ORF10 hijacks the ZYG11B substrate adaptor to engage the CRL2 E3 ligase complex, increasing its activity to degrade IFT46, which results in ciliary dysfunction66.
Possible treatments: pevonedistat (MLN4924), other NEDD8-activating-enzyme inhibitors, ZYG11B-substrate PPI disruptors
199. CFL1/cofilin-1-driven actin remodeling
Cofilin-1 regulates actin turnover that viruses co-opt for entry, trafficking, and egress; elevated/diagnostic CFL1 supports targeting cofilin-LIMK signaling or actin-endocytosis dynamics to curb replication and temper dysregulated immune-cell motility68.
Possible treatments: LIMK inhibitors (e.g., LIMKi3), actin-cofilin modulators (experimental)
200. 5' isomiR miR-4485-3p|+1 - repression of cell-cycle/translation/metabolism
A host microRNA variant (miR-4485-3p+1) that SARS-CoV-2 induces at 24 hours post-infection. The virus appears to use this isomiR to shut down key host pathways, including the cell cycle, protein translation, and metabolism, helping the virus replicate more effectively. A therapeutic antagomir (inhibitor) could block this isomiR, preventing the virus from hijacking these essential host processes71.
Possible treatments: miR-4485-3p|+1 mimic, miR-4485-3p|+1 antagomir, chemically stabilized oligos
201. Drosha (RNase-III) non-canonical function inhibition
Blocking the host protein Drosha, which is required for efficient SARS-CoV-2 replication. Infection by SARS-CoV-2 induces proteolytic cleavage of full-length Drosha into P140 and P25 isoforms and causes its translocation from the nucleus to the cytoplasm. Ablation of Drosha significantly reduces viral genomic and sub-genomic RNA levels, suggesting a non-canonical, pro-viral role84.
Possible treatments: small-molecule Drosha activity/processing inhibitors
202. COPI-Spike binding enhancement (ER retrieval)
Enhancing the binding of the host COPI complex to the ER retrieval motif in the Spike protein cytoplasmic tail. Increased COPI binding promotes intracellular retention of Spike, reducing its trafficking to the cell surface and subsequent cell-cell fusion (syncytia formation)15.
Possible treatments: COPI binding agonists, Spike-COPI interaction stabilizers
203. VMP1-mediated DMV formation
Vacuole Membrane Protein 1 (VMP1) works in concert with TMEM41B to facilitate the "zippering" of ER membranes, converting them into closed spherical double-membrane vesicles (DMVs) essential for the viral replication organelle16.
204. HDAC1-mediated viral protein acetylation
HDAC1 is recruited to regulate the acetylation state of viral proteins, which influences nuclear retention and enhances viral replication efficiency16.
Possible treatments: valproic acid
205. Ribosome biogenesis factors (SBDS & SPATA5)
Host factors SBDS and SPATA5, involved in ribosome biogenesis, are identified as broad-spectrum host dependency factors required for efficient viral protein synthesis and replication16.
206. TMEM41B/VMP1-mediated DMV formation inhibition
TMEM41B mediates nsp3-nsp4 binding to initiate ER membrane zippering for double-membrane vesicle (DMV) formation. VMP1 is subsequently required to convert these membranes into closed spherical DMVs that serve as viral replication organelles for coronaviruses16.
Possible treatments: TMEM41B inhibitors, VMP1 inhibitors
207. Liquid-liquid phase separation (LLPS) condensate disruption
Disrupting the multivalent interactions, ionic environment, or post-translational modifications (e.g., phosphorylation) that drive the formation of viral replication organelles and inclusion bodies via LLPS. Targeting these "reaction crucibles" can destabilize viral factories16.
Possible treatments: 1, 6-hexanediol-class probes, condensate-disrupting small molecules, kinase inhibitors affecting condensate phosphorylation
208. HSP90AA1 inhibition
HSP90AA1 is a molecular chaperone that ensures proteostasis; its inhibition disrupts SARS-CoV-2 virion assembly, suppresses viral replication, and mitigates virus-induced pyroptosis17,61.
Possible treatments: pistagremic acid, linolenic acid, 1-dehydro-6-gingerol
209. ACE2 phosphorylation and exosomal propagation inhibition
Spike protein enhances viral susceptibility by activating ACE2 phosphorylation, inhibiting its degradation, and promoting exosomal ACE2 propagation, thereby increasing host susceptibility to infection18.
Possible treatments: ACE2 phosphorylation inhibitors, exosome biogenesis inhibitors
210. ZO-1 (TJP1) PDZ2 interaction blockade
Inhibition of the protein-protein interaction (PPI) between the SARS-CoV-2 Envelope (E) protein's C-terminal PDZ-binding motif (PBM) and the host ZO-1 PDZ2 domain. This interaction disrupts tight junctions, compromises epithelial barriers, and fuels cytokine storms85.
Possible treatments: C19 (quinoline derivative), C6, C20, C35, C29, C32
211. DGAT1 (diacylglycerol O-acyltransferase 1) inhibition
SARS-CoV-2 upregulates DGAT1 expression via SCAP/SREBP-1 signaling to drive de novo lipogenesis in the smooth endoplasmic reticulum. The resulting lipid droplets serve as viral replication platforms and assembly sites. DGAT1 inhibition reduces lipid droplet accumulation and may limit viral replication organelle formation31.
Possible treatments: pradigastat, AZD7687, PF-04620110, T863
212. SF-1 (NR5A1) steroidogenic pathway preservation
SARS-CoV-2 infection downregulates steroidogenic factor-1 (SF-1/NR5A1) expression. Preserving SF-1 function may protect steroidogenic capacity and reduce virus-induced hypogonadism31.
Possible treatments: SF-1 agonists, AMPK modulators
213. Lipid droplet replication platform disruption
SARS-CoV-2 triggers host lipid metabolism, inducing the accumulation of lipid droplets and "spirally arranged cisternae" (SAC) derived from the ER. The virus upregulates Srebp1, Dgat-1, and Scarb1 to drive cholesterol uptake and lipogenesis, creating a platform for viral replication. Targeting these pathways disrupts the replication organelle biogenesis31.
Possible treatments: fatostatin, betulin, DGAT-1 inhibitors (pradigastat), SR-B1 antagonists (BLT-1)
214. SIRT3 mitochondrial deacetylation restoration
SIRT3 is significantly downregulated in SARS-CoV-2 infected cardiomyocytes. As a key mitochondrial NAD+-dependent deacetylase, it regulates oxidative stress and inhibits ferroptosis; restoring SIRT3 activity preserves mitochondrial function and prevents cell death44.
Possible treatments: honokiol, resveratrol, SIRT3 activators
215. DDX3X RNA helicase inhibition
The host DEAD-box RNA helicase DDX3X physically interacts with the SARS-CoV-2 Nucleocapsid to enhance viral dsRNA binding and RNP packaging. DDX3X is also exploited to suppress innate immune signaling. Inhibiting DDX3X helicase activity blocks these pro-viral functions56.
Possible treatments: RK-33
216. HSP70-NSP13 interaction inhibition
Computational modeling indicates that host HSP70 forms a remarkably rigid and compact complex with the SARS-CoV-2 helicase (NSP13), stabilizing the viral protein. Disrupting this chaperone-client interaction could impair viral replication61.
Possible treatments: HSP70 inhibitors, protein-protein interaction disruptors
217. HSP40 (DNAJ)-NSP13 interaction inhibition
HSP40 functions as a co-chaperone that binds SARS-CoV-2 NSP13 via specific polar contacts. Targeting this interface may prevent the delivery of the viral helicase to the HSP70 folding machinery61.
Possible treatments: HSP40 inhibitors, J-domain blockers
218. Fibronectin Receptor alpha (FNRA/ITGA5) modulation
FNRA (Integrin alpha-5) is induced by SARS-CoV structural proteins. FNRA localizes to lipid rafts and contributes to the cytoskeletal anchoring and membrane dynamics necessary for efficient viral assembly26.
Possible treatments: ATN-161, volociximab, peptide inhibitors
219. Intracellular Vimentin (VIM) cytoskeletal disruption
Distinct from extracellular vimentin involved in entry, intracellular vimentin is upregulated by viral structural proteins and associates with lipid rafts. It facilitates the cytoskeletal remodeling required to support virion morphogenesis and budding at the ERGIC26.
Possible treatments: withaferin A, fiVe1
220. CDKN1A (p21) modulation
SARS-CoV structural proteins upregulate CDKN1A (p21). p21 regulates the cell cycle; its manipulation arrests cell growth, potentially creating a favorable metabolic environment for viral protein synthesis and assembly26.
Possible treatments: UC2288, sorafenib
221. Kif11 (Eg5) kinesin inhibition
Kinesin Family Member 11 (Kif11/Eg5) is a top hub gene in the lung transcriptomic network of SARS-CoV-2 infection and is involved in spindle formation and cell cycle regulation. Dysregulation contributes to pathogenesis, and inhibitors may limit viral propagation or associated tissue damage86.
Possible treatments: filanesib, ispinesib, monastrol, dimethylenastron
222. Aurora Kinase B (Aurkb) inhibition
Aurkb is a key mitotic kinase identified as a central hub gene in infected lung tissue and regulates chromosomal segregation and cytokinesis. High expression correlates with severe COVID-19, suggesting potential for kinase inhibitors to modulate virus-induced cell cycle dysregulation86.
Possible treatments: barasertib, AZD1152, hesperidin, ZM447439
223. Ube2c (Ubiquitin Conjugating Enzyme E2 C) inhibition
Identified as a top 10 hub gene in SARS-CoV-2 infection, Ube2c is essential for the destruction of mitotic cyclins. Upregulation in severe infection links the ubiquitin-proteasome system to viral manipulation of the host cell cycle86.
Possible treatments: TZ9, gliotoxin
Viral Egress & Budding Inhibition
Mechanisms that prevent or delay release of newly-formed virions from infected cells.
224. BST2/tetherin potentiation & viral-antagonist inhibition
Host restriction factor BST2 tethers nascent virions; priming BST2 expression or blocking viral antagonists (ORF7a, ORF3a, Omicron spike) traps particles on the cell surface, curbing spread16,29,32.
Possible treatments: IFN-β priming, BST2 agonist peptides, small-molecule ORF7a-BST2 interface blockers
225. Lysosome-mediated egress blockade & large virus-containing vesicle traffic
M and S1 accumulate in lysosomes and LAMP1-negative vesicles; clustered, hollow rings indicate high virion load pre-egress. Inhibiting lysosomal exocytosis/vesicle traffic could curb release16,32.
Possible treatments: TRPML1 inhibitors, lysosomal exocytosis blockers, PIKfyve-pathway modulators
226. CRM1 (XPO1) nuclear export inhibition
Viruses exploit the host CRM1 (Exportin-1) pathway to transport viral ribonucleoprotein (vRNP) complexes or RNA genomes from the nucleus to the cytoplasm for assembly16.
Possible treatments: selinexor, verdinexor
227. NXF1-mediated mRNA export inhibition
The NXF1 host system is hijacked for the nuclear export of viral mRNAs; targeting this pathway prevents viral transcripts from reaching the cytoplasm for translation16.
Possible treatments: tapinarof
228. Acid Sphingomyelinase (ASM) inhibition
ASM activity leads to the clustering of phosphatidylserine (PS) on the plasma membrane inner leaflet, creating a specific lipid microenvironment or "launching pad" required for efficient viral budding16,81.
Possible treatments: fendiline, imipramine
229. Neutral Sphingomyelinase 2 (nSMase2) inhibition
nSMase2 regulates membrane lipid composition and curvature. Inhibiting this enzyme disrupts the formation of lipid rafts/microdomains necessary for viral assembly and egress16.
Possible treatments: nSMase2 inhibitors
230. Calcium-dependent EV release inhibition
Calcium influx is a critical upstream regulator of extracellular vesicle (EV) release. Blocking this pathway prevents the egress of EVs containing viral RNA/replicons, thereby limiting virion-independent transmission81.
Possible treatments: calpeptin
Host Immune Modulation
Mechanisms that modulate the host immune response to enhance antiviral activity or reduce immunopathology.
231. Cytokine storm suppression
Anti-inflammatory agents target cytokine pathways (IL-1/IL-6/JAK-STAT/TNF-α/complement) or inflammasomes to mitigate excessive inflammation3,7,8,12,19,22,25,30,41,64,77,83,86-90.
Possible treatments: dexamethasone, methylprednisolone, tocilizumab, sarilumab, baricitinib, ruxolitinib, anakinra, canakinumab, infliximab, adalimumab, colchicine, lenzilumab, eculizumab, NE-52-QQ57, collagen-PVP, pirfenidone, MSC therapy, MSC-derived exosomes, budesonide, hydrocortisone, ciclesonide, artesunate
232. Interferon (type I/II) signaling enhancement
Boosting type I/II interferons or upstream sensors (e.g., STING, RIG-I) to stimulate antiviral gene expression8,15,16,40,47,64,83.
Possible treatments: interferon-beta, interferon-alpha, interferon-gamma, nitazoxanide
233. Pegylated interferon-λ receptor agonists
Peg-IFN-λ engages IFNLR1 on respiratory epithelium, amplifies local ISGs with minimal systemic inflammation8,40,91.
Possible treatments: peginterferon λ-1a, peg-IFN-β-1a
234. Adaptive immune enhancement
Promoting T-cell/B-cell activity or passive antibody transfer to target infected cells8,22.
Possible treatments: convalescent plasma, monoclonal antibodies, intravenous immunoglobulin (IVIG), thymosin alpha 1, interleukin-7, interleukin-2, nivolumab
235. Innate immune stimulation
Activating innate immunity via PRRs (TLRs, RIG-I, STING) or antiviral effector mechanisms3,18,64,79,92.
Possible treatments: imiquimod, resiquimod, polyinosinic-polycytidylic acid (poly I:C), monophosphoryl lipid A, CpG oligonucleotides, NOD1/2 agonists
236. Zinc supplementation
Potentially interfering with viral replication.
Possible treatments: zinc sulfate, zinc gluconate
237. Selenium supplementation
Enhancing antioxidant defenses and potentially inhibiting viral replication.
Possible treatments: sodium selenite, selenomethionine
238. Micronutrient supplementation for immune system support
Additional vitamins, minerals, and cofactors essential for immune cell function and signaling93.
Possible treatments: vitamin A, vitamin C, vitamin D, vitamin E, vitamin B6, vitamin B12, zinc, selenium, iron, copper, magnesium, vitamin K
239. Immune regulation
Modulating regulatory immune cells (e.g., Tregs) or checkpoint pathways to balance inflammation.
Possible treatments: low-dose interleukin-2, abatacept, sirolimus
240. NPY-Y1 receptor antagonism
Inhibition of the neuropeptide Y sub-receptor 1 (NPY-Y1) to modulate inflammatory responses. NPY-Y1 receptor antagonists disrupt the NPY-NPY-Y1 receptor cascade, which shows strong correlations with inflammatory cytokines and VEGF expression, which may help regulate cytokine balance and reduce pulmonary edema associated with severe COVID-1994.
Possible treatments: BIBO3304, BIBP3226
241. cGAS-STING agonists
Activating STING to enhance interferon production40,92.
Possible treatments: DMXAA, 2'3'-cGAMP, ADU-S100, diABZI
242. GM-CSF pathway inhibition
Neutralizing granulocyte-macrophage colony-stimulating factor (GM-CSF) or its receptor blunts monocyte/macrophage-driven cytokine storm and lung injury in severe COVID-1992,95.
Possible treatments: mavrilimumab, lenzilumab, otilimab, sargramostim
243. IL-17 axis blockade
Blocking interleukin-17 signaling counters ORF8-mediated IL-17 mimicry and downstream NF-κB activation, reducing neutrophil recruitment and pulmonary damage39,40,64,92.
Possible treatments: secukinumab, ixekizumab, brodalumab
244. Mast-cell stabilisation & IgE-axis inhibition
Stabilizing mast cells or neutralizing free IgE to quell IL-4/IL-13-mediated “IgE storm” that accompanies severe COVID-19 in some variants7.
Possible treatments: omalizumab, cromolyn sodium, ketotifen, rupatadine
245. Short-chain fatty-acid supplementation
Exogenous butyrate / propionate / acetate activate GPR43/GPR109A, damp NLRP3 inflammasome, expand T-regs and boost type I IFN signaling, thereby curbing lung injury and viral load93.
Possible treatments: sodium butyrate, tributyrin, propionate pro-drugs
246. GPR183 (EBI-2) antagonism
Blocking the oxysterol-sensing GPCR GPR183 curbs chemotactic recruitment of inflammatory monocytes/macrophages into the airways while sparing early IFN signaling, easing lung inflammation95.
Possible treatments: NIBR-189, GSK 682753A
247. GM-CSF for alveolar-macrophage function
Nebulized rh-GM-CSF re-educates dysregulated lung macrophages, improves gas exchange and promotes viral clearance without provoking cytokine-release syndrome95.
Possible treatments: sargramostim, rh-GM-CSF
248. SYK inhibition
Inhibiting spleen-tyrosine-kinase lowers platelet/neutrophil NET formation and IL-1β/TNF-α surges linked to severe COVID-19, while indirectly easing micro-vascular thrombosis3,22,28,40,96.
Possible treatments: fostamatinib, entospletinib, GS-9973, R406
249. LAIR-1 engagement & STAT1/JAK-STAT suppression
Engaging the inhibitory receptor LAIR-1 with polymerized type I collagen down-regulates STAT-1 phosphorylation, curbs JAK/STAT-driven cytokine output and thereby dampens COVID-19 hyper-inflammation88.
Possible treatments: collagen-PVP (polymerized type I collagen), LAIR-1-agonist peptides, collagen-mimetic hydrogels
250. IDO1 / kynurenine-pathway blockade
Viral IFN responses up-regulate IDO1, driving tryptophan catabolism and immunosuppression; selective IDO1 inhibitors cut kynurenine production and may restore antiviral T-cell function67.
Possible treatments: epacadostat, navoximod
251. Bruton's tyrosine-kinase (BTK) inhibition
BTK amplifies myeloid NF-κB / NLRP3 signaling; covalent BTK inhibitors curb IL-6 / IL-1β surges and improve survival in SARS-CoV-2-infected mice13,22,40.
Possible treatments: ibrutinib, zanubrutinib, acalabrutinib, spebrutinib
252. Neurokinin-1 receptor (NK₁R) antagonism
Substance-P / NK₁R signaling drives pulmonary oedema and cytokine release; NK₁R antagonists restore fluid balance and damp inflammation in infected hamsters3,13.
Possible treatments: tradipitant, aprepitant, orvepitant
253. TLR4-spike protein interaction blockade
Spike protein directly binds TLR4 to enhance viral attachment, increase membrane surface virus concentration, and activate downstream inflammatory signaling, inducing antibacterial-like immune responses. Persistent TLR4 stimulation leads to NK cell exhaustion and long-COVID sequelae14,36,97.
Possible treatments: paridiprubart (EB05), ApTOLL, eritoran (E5564), naltrexone, naloxone, tramadol, resatorvid (TAK-242), FP7, jacareubin, cajastelebenic acid, andrographolide, berberine, cannabidiol, disulfiram, dimethyl fumarate
254. NEU1/TLR-Siglec axis modulation
Inhibiting cell-surface NEU1 increases sialylation of innate-immune receptors, dampening TLR activation and cytokine surges; sialidase inhibition has rescued mice from infection-induced cytokine storm, suggesting a route to limit hyper-inflammation in COVID-1954.
Possible treatments: Neu5Ac2en-OAcOMe, other small-molecule NEU1 inhibitors
255. Mesenchymal stem cells (MSC)
MSCs possess potent immunomodulatory and regenerative properties, controlling cytokine storms by enhancing endogenous tissue repair and inhibiting immune system overactivation. They increase lymphocytes and regulatory DCs while lowering IL-6, CRP, IL-8, and TNF levels8.
Possible treatments: umbilical cord-derived MSCs, bone marrow-derived MSCs, adipose-derived MSCs, menstrual blood-derived MSCs
256. MSC-derived exosome therapy
Acellular therapeutic approach using MSC-derived exosomes that retain immune-modulatory, anti-inflammatory, and regenerative capabilities. They reduce cytokine storms, improve alveolar epithelium permeability, transport mitochondria to alveolar cells, and directly inhibit viral replication8.
Possible treatments: MSC-derived exosomes, engineered exosomes with specific miRNAs
257. Tollip C2-LC3 axis modulation to temper NF-κB and rebalance IFN signaling
Nsp14 binds Tollip (C2 domain), and Tollip over-expression or C2-containing fragments suppress Nsp14-mediated NF-κB activation. Tollip knockdown blunts IFNAR1/IFNGR1 loss during infection, implicating Tollip-guided lysosomal routing. Therapeutic concepts include boosting Tollip's NF-κB-restraining C2-LC3 function while selectively limiting receptor-degradative trafficking62.
Possible treatments: Tollip C2-domain peptides/mini-proteins, LC3-interaction enhancers, selective Tollip-trafficking modulators
258. AHR-driven Th17/Treg/Tr1 axis modulation
AHR skews CD4+ T-cell polarisation (Th17↑, Treg/Tr1 shifts) and dampens antiviral IFN signaling; phase-appropriate AHR modulation can rebalance immunity - antagonism earlier (proviral phase), cautious agonism in hyperinflammation39.
Possible treatments: CH-223191, GNF351, tapinarof, indole-3-carbinol, diindolylmethane
259. TonEBP preservation to sustain IFN-β transcription
3CLpro cleaves the transcription factor TonEBP, generating fragments that enhance viral replication and suppress IFN-β; preserving TonEBP function can support innate responses47.
Possible treatments: protease-resistant TonEBP fragments, small-molecule TonEBP activators
260. CSF1R (M-CSF receptor) inhibition
Predicted host factor CSF1R maps to marketed kinase inhibitors; dampening CSF1R signaling can reprogram inflammatory monocytes/macrophages and reduce lung inflammation in COVID-193,30.
Possible treatments: imatinib
261. CX3CR1 (fractalkine) signaling modulation
Fractalkine-CX3CR1 drives neuron-microglia crosstalk and pro-inflammatory recruitment; down-modulation reduces microgliosis and cytokine output in neuroinflammation97.
Possible treatments: gabapentin, anti-CX3CR1 monoclonal antibodies, fractalkine-neutralizing biologics, small-molecule CX3CR1 antagonists
262. Acetylcholinesterase inhibition
Inhibition of acetylcholinesterase to increase acetylcholine levels, which can modulate the cholinergic anti-inflammatory pathway, potentially reducing cytokine storm and improving respiratory muscle function3.
Possible treatments: pyridostigmine bromide
263. Alpha-2 adrenergic receptor agonism
Activation of alpha-2 adrenergic receptors, which can produce sedative and anti-inflammatory effects, potentially mitigating hyperinflammation in severe COVID-193.
Possible treatments: dexmedetomidine
264. Macrolide immunomodulation
Utilizing macrolide antibiotics for their secondary immunomodulatory properties, which can dampen excessive inflammatory responses3.
Possible treatments: azithromycin, fidaxomicin
265. Beta-adrenergic blockade
Modulation of the adrenergic system to produce anti-inflammatory effects and potentially alter ACE2 expression or function, thereby reducing the host inflammatory response to infection3.
Possible treatments: timolol maleate
266. TonEBP (NFAT5) preservation to sustain IFN-β transcription
The viral main protease (3CLpro/Mpro) cleaves the transcription factor TonEBP. The resulting N-terminal fragment translocates to the nucleus and competitively inhibits p65 binding on the IFN-β promoter, suppressing the interferon response. Protecting TonEBP from cleavage may help maintain innate immune signaling49.
Possible treatments: protease-resistant TonEBP-derived peptides, small-molecule TonEBP activators
267. ATF3 modulation for immune homeostasis
Modulating the transcription factor ATF3 to restore immune balance. ATF3 is a stress-responsive transcription factor that enhances STAT1-ISG antiviral programs and reduces NF-κB/TNF-α/IL-6 overexpression40.
Possible treatments: integrated-stress-response activators (e.g., 4-octyl-itaconate/itaconate esters), naringin, ATF3-inducing small molecules
268. STAT3 pathway inhibition (anti-inflammatory / anti-fibrotic axis)
Hyperactivated STAT3 amplifies IL-6 signaling, promotes fibrosis, and sustains cytokine storm; dampening STAT3 (or upstream JAKs) reduces inflammatory drive and ACE2 upregulation40,98.
Possible treatments: baricitinib, ruxolitinib, 6-O-angeloylplenolin (phospho-STAT3 inhibitor candidates), , KVX-053
269. SGK3-tuned STING/IRF7 axis modulation
DNA/RNA-sensing (cGAS-STING) and IRF3/7 responses are partly SGK-kinase-dependent; SGK3 inhibition can recalibrate STING-IRF signaling to restore antiviral balance without overshooting inflammation40.
Possible treatments: AGC-kinase/SGK3 inhibitors
270. CD44-mediated neutrophil infiltration inhibition
Blocking CD44, the primary receptor for hyaluronan (HA), reduces neutrophil infiltration into the lungs, thereby preventing excessive inflammatory responses and lung tissue damage in COVID-1990.
Possible treatments: KM201, IM7
271. Hyaluronan-mediated immune cell retention
HA deposition in the lungs interacts with CD44, promoting neutrophil retention and exacerbating inflammation. Targeting HA-CD44 interactions may prevent the formation of a pathogenic HA matrix and reduce lung damage90.
Possible treatments: hyaluronidase, HA-binding domain inhibitors
272. PIGR/secretory IgA transport enhancement
PIGR mediates transcytosis of dimeric IgA/M to mucosa; strong diagnostic performance motivates strategies that boost PIGR or deliver sIgA to reinforce mucosal neutralization at the airway entry portal68.
Possible treatments: recombinant dimeric IgA (sIgA), PIGR expression agonists (experimental)
273. SERPINA5 (Protein C inhibitor) normalization for barrier + antiviral signaling
Downregulated in COVID-19; SERPINA5 regulates serine-protease activity and supports STAT1 phosphorylation/nuclear translocation. Normalizing levels may curb protease-driven tissue damage and improve antiviral responses99.
Possible treatments: SERPINA5 replacement/induction (research-stage), STAT1-pathway supportive agents
274. HSPA8 inhibition
Inhibition of HSPA8, a key hub protein involved in protein homeostasis and immune response regulation. Dysregulation of HSPA8 in COVID-19 patients contributes to immune dysregulation and viral pathogenesis22.
Possible treatments: MKT-077, HSPA8 inhibitors
275. HSPA9 inhibition
Inhibition of HSPA9, a protein involved in immune regulation and cell stress responses. HSPA9 is implicated in the regulation of apoptotic pathways and immune modulation during SARS-CoV-2 infection. Targeting HSPA9 could help restore immune homeostasis and reduce viral persistence22.
Possible treatments: MKT-077, HSPA9 inhibitors
276. SRC inhibition
Inhibition of SRC, a protein involved in immune response regulation, inflammation, and coagulation. SRC plays a central role in immune dysregulation in COVID-1922.
Possible treatments: dasatinib, bosutinib
277. STAT1 restoration
Restoring STAT1 activity to enhance immune responses and inhibit viral replication. Despite transcriptional upregulation, STAT1 is often downregulated in COVID-19, suggesting viral interference in interferon responses22.
Possible treatments: AVT-02 (acitretin), JAK inhibitors
278. TNF-α decoy receptors
Soluble decoy receptors, such as the extracellular domain of TNFR2, that bind to and neutralize tumor necrosis factor (TNF-α). This blocks pro-inflammatory signaling pathways, helping to mitigate the cytokine storm associated with severe COVID-1919.
Possible treatments: etanercept, ACE2(M)-Fc-TNFR2, Fc-TNFR2
279. IL-6 trans-signaling inhibition (GP130 decoy)
Soluble forms of the GP130 receptor that specifically bind the IL-6/IL-6R complex. This selectively blocks the pro-inflammatory IL-6 trans-signaling pathway while sparing the anti-inflammatory classical signaling, offering a more targeted approach to dampening IL-6-mediated cytokine storm19.
Possible treatments: Olamkicept (sGP130-Fc), ACE2(M)-Fc-GP130
280. PARP14 antiviral ADP-ribosylation preservation
PARP14 is an interferon-stimulated mono-ADP-ribosyltransferase that modifies host and viral proteins to inhibit replication. SARS-CoV-2 Mac1 reverses this activity to evade immunity, preserving PARP14-mediated MARylation enhances viral clearance58.
Possible treatments: Mac1 inhibitors (indirect preservation)
281. BCL2 restoration for lymphocyte survival
Upregulating or maintaining BCL2 expression to counter the lymphopenia and immune cell depletion observed in severe infection (distinct from BCL2 inhibition used to induce apoptosis in infected cells)100.
Possible treatments: Jinhong decoction, dandelion flavonoids
282. TLR1 antagonism (E protein mediated)
The SARS-CoV-2 Envelope (E) protein binds and activates Toll-like Receptor 1 (TLR1) on myeloid cells, inducing robust pro-inflammatory cytokine production independent of viral entry. Note that M protein binds but does not activate TLR123.
Possible treatments: TLR1 antagonists
283. GFPT2/hexosamine biosynthesis pathway (HBP) enhancement
GFPT2, the rate-limiting enzyme of the hexosamine biosynthesis pathway, interacts with MAVS at mitochondria-associated membranes (MAMs) to couple metabolic status with sustained type-I IFN responses. Enhancing GFPT2 activity can boost MAVS-mediated antiviral immunity16.
Possible treatments: GFPT2 activators, O-GlcNAc enhancers, glucosamine
284. JAK2 signaling inhibition
JAK2 acts as an intermediary in cytokine regulation and STAT phosphorylation; JAK2 deficiency reduces neutrophil infiltration and pro-inflammatory cytokine expression in ARDS17.
Possible treatments: apigenin-7-glucoside, quercetin, pistagremic acid, linolenic acid
285. Type I interferon-stimulated gene (ISG) hub modulation
Targeting hub genes (OAS2, MX1, IRF7, RSAD2, OASL, IFIT1, IFIT3, ISG15) that are upregulated. These genes show strong diagnostic performance (AUC>0.7 for COVID-19) and correlate with neutrophil and Th17 cell infiltration64.
Possible treatments: JAK inhibitors, type I IFN modulators, ISG-targeted therapies
286. OAS/OASL (2'-5'-oligoadenylate synthetase) pathway modulation
The OAS family genes (OAS1, OAS2, OAS3, OASL) are key ISGs that activate RNase L to degrade viral RNA. Dysregulated OAS activity contributes to both antiviral defense and autoimmune pathology64.
Possible treatments: RNase L modulators, OAS pathway inhibitors
287. MX protein (MX1/MX2) dynamin-like GTPase modulation
MX1 is a hub ISG with strong antiviral activity against multiple RNA viruses including SARS-CoV-2. Elevated in COVID-19 nasopharyngeal epithelium, MX1 upregulation correlates with disease severity and immune cell infiltration64.
Possible treatments: IFN-β (indirect), MX1 modulators
288. IRF7 (Interferon Regulatory Factor 7) modulation
IRF7 is a master transcriptional regulator of type I interferon responses and a validated hub gene in COVID-19. IRF7 upregulation drives ISG expression cascades; its dysregulation contributes to both inadequate early antiviral responses and later immunopathology64.
Possible treatments: IRF7 modulators, upstream kinase inhibitors
289. RSAD2 (Viperin) antiviral effector modulation
RSAD2/Viperin is an ISG that inhibits viral replication by disrupting lipid rafts and viral budding. Identified as a hub gene upregulated in COVID-19 epithelial cells, RSAD2 represents both an antiviral defense mechanism and a marker of interferon pathway activation64.
Possible treatments: IFN pathway modulators
290. IFIT family (IFIT1/IFIT3) translation inhibitor modulation
IFIT1 and IFIT3 are ISGs that inhibit viral protein translation by binding viral RNA lacking 2'-O-methylation. Both are hub genes showing high diagnostic accuracy. Their expression correlates with neutrophil and Th17 infiltration64.
Possible treatments: IFN modulators, translation regulation therapies
291. Lysine demethylase 1 (LSD1/KDM1A) inhibition
LSD1 inhibitors specifically suppress inflammation while preserving IFN-mediated antiviral activity. DDP38003 blocked viral release via the lysosomal acidification pathway and enhanced IFN-independent antiviral mechanisms, balancing inflammation control with antiviral effects in K18-hACE2 mice18.
Possible treatments: DDP38003, iadademstat, tranylcypromine, ORY-1001
292. Galectin-9 (Gal-9) immunomodulatory therapy
Circulating galectin-9 has immunomodulatory properties and binds specifically to the host ACE2 receptor. Recombinant humanized gal-9 significantly alleviated acute-phase lethal infection in K18-hACE2 mice18.
Possible treatments: recombinant humanized galectin-9
293. Pulmonary surfactant-mediated TLR4 suppression
Alveolar Type II (ATII) cells produce surfactant lipids, specifically palmitoyl-oleoyl-phosphatidylglycerol (POPG), which normally antagonize TLR4. SARS-CoV-2 induces ATII apoptosis, depleting POPG and releasing the brake on TLR4-driven hyperinflammation. Surfactant replacement restores this inhibition36.
Possible treatments: Lung Surfactant-BL, calfactant, poractant alfa, POPG
294. PTP4A3 (PRL-3) phosphatase inhibition
PTP4A3 is a dual-specificity phosphatase upregulated in the lungs during lethal COVID-19. It acts as a critical upstream regulator of the inflammatory response by modulating STAT3 phosphorylation, NF-κB activation, and NLRP3 inflammasome assembly. Inhibition mitigates cytokine storm, reduces macrophage infiltration, and preserves lung parenchymal integrity98.
Possible treatments: KVX-053 (JMS-053), PRL3-zumab
295. Fc domain engineering (Afucosylation/Mutations)
Modulating antibody Fc domains to enhance effector functions (ADCC/ADCP). Afucosylation increases FcγRIIIa affinity, while specific mutations boost Fc receptor binding to improve clearance of infected cells2.
Possible treatments: afucosylated antibodies, GASDALIE variants, GAALIE variants, S239D/I332E mutants
296. FGFR1 signaling inhibition
Fibroblast Growth Factor Receptor 1 (FGFR1) signaling activates the downstream MEK/ERK pathway to suppress the host innate immune response (type I interferon). Inhibiting FGFR1 relieves this suppression, enhancing the expression of IFN-β and interferon-stimulated genes to restrict viral replication43.
Possible treatments: infigratinib (BGJ398), pemigatinib, erdafitinib
297. CD59 (Protectin) blockade
CD59 is a lipid-raft associated GPI-anchored protein upregulated by viral structural proteins. It inhibits the complement membrane attack complex (MAC). The virus may exploit CD59 to prevent complement-mediated lysis of infected cells; blocking may enhance immune clearance26.
Possible treatments: recombinant intermedilysin (ILY), blocking antibodies
298. ZBP1 (Z-DNA Binding Protein 1) modulation
ZBP1 is a robustly upregulated innate immune sensor that detects viral Z-RNA, and drives inflammatory cell death (PANoptosis) and lung inflammation. Modulating ZBP1 sensing can influence viral clearance and the severity of immunopathology86.
Possible treatments: necroptosis inhibitors (indirect)
Microbiome Modulation
Mechanisms that modulate the microbiome to enhance antiviral activity or reduce immunopathology.
299. Upper-respiratory probiotic / synbiotic therapy
Re-establish eubiotic taxa (e.g. Dolosigranulum sp., Lachnospiraceae, Propionibacteriaceae) to enhance local SCFA and vitamin B12/K output, reinforce mucin glycosylation and prime MAIT-cell / dendritic-cell antiviral responses39,93.
Possible treatments: Intranasal Lactobacillus casei spray, Streptococcus salivarius K12 lozenges, Dolosigranulum pigrum lysate drops
300. Probiotic TLR4/NLRP3 modulation
Specific probiotic strains (e.g., Lactobacillus paracasei F19) produce bioactive lipids (like palmitoylethanolamide) or peptides that block TLR4 signaling and downstream NLRP3 inflammasome activation, reducing lung injury and cytokine release36.
Possible treatments: Lactobacillus paracasei F19, Bacillus-fermented soybean peptide
Hemostasis & Thrombosis Management
Mechanisms that address coagulopathy and prevent thrombosis, common in severe COVID-19.
301. Anticoagulant therapy
Preventing microthrombi formation in severe cases3,22,99.
Possible treatments: heparin, enoxaparin, dalteparin, tinzaparin
302. Antiplatelet therapy
Reducing platelet aggregation to prevent clots3,22,68,101.
Possible treatments: aspirin, clopidogrel, caplacizumab
303. Direct thrombin inhibitors
Inhibit thrombin activity to prevent fibrin formation99.
Possible treatments: dabigatran, argatroban, bivalirudin, lepirudin
304. Direct factor Xa inhibitors
Directly inhibit factor Xa to reduce thrombin generation.
Possible treatments: rivaroxaban, apixaban, edoxaban
305. Indirect factor Xa inhibitors
Enhance antithrombin-mediated inhibition of factor Xa.
Possible treatments: fondaparinux
306. Vitamin K antagonists
Inhibit synthesis of vitamin K-dependent clotting factors.
Possible treatments: warfarin
307. P2Y12 receptor inhibitors
Block ADP-induced platelet activation and aggregation.
Possible treatments: clopidogrel, prasugrel, ticagrelor, ticlopidine
308. Glycoprotein IIb/IIIa inhibitors
Prevent fibrinogen binding and platelet cross-linking.
Possible treatments: abciximab, eptifibatide, tirofiban
309. Phosphodiesterase inhibitors
Increase cAMP levels, reducing platelet activation.
Possible treatments: dipyridamole, cilostazol
310. Protease-activated receptor-1 antagonists
Inhibit thrombin-induced platelet aggregation.
Possible treatments: vorapaxar
311. Fibrinolytic agents
Lyse existing thrombi by converting plasminogen to plasmin99.
Possible treatments: alteplase, tenecteplase, reteplase, streptokinase
312. Antithrombin III supplementation
Supplement antithrombin to enhance anticoagulation.
Possible treatments: antithrombin III concentrate
313. Heparin-like agents
Exert anticoagulant effects similar to heparin.
Possible treatments: danaparoid
314. NSP3-fibrinogen interaction blockade
Agents that obstruct extracellular NSP3 binding to fibrinogen, normalizing fibrin formation and mitigating virus-driven hyper-coagulation101,102.
Possible treatments: anti-fibrinogen-site peptides, NSP3 protease inhibitors
315. Platelet FcγRIIa blockade
Monoclonal antibodies or engineered Fc fragments that block IgG engagement of platelet FcγRIIa, preventing afucosylated IgG-driven platelet activation and thrombus formation96.
Possible treatments: anti-FcγRIIa mAb (IV.10), FcγRIIa-Fc chimera, Syk-decoy peptides
316. Serotonin transporter / 5-HT receptor inhibition
SSRIs decrease intraplatelet serotonin; 5-HT₂/5-HT₃ antagonists blunt serotonin-amplified aggregation, collectively reducing COVID-19-associated thrombosis3,96.
Possible treatments: fluvoxamine, sertraline, fluoxetine, vortioxetine, ketanserin, granisetron
317. ORF7a-triggered endothelial VWF release blockade
SARS-CoV-2 ORF7a activates Weibel-Palade body exocytosis, unleashing ultralarge VWF multimers that enhance platelet adhesion and accelerate thrombus formation. Therapeutic focus: restore ADAMTS-13/VWF balance or block VWF-platelet binding32,99,101,103.
Possible treatments: recombinant ADAMTS-13, caplacizumab, VWF-neutralizing antibodies
318. Tissue Factor Pathway Inhibitor (TFPI) augmentation (extrinsic-pathway brake)
Boost the endogenous inhibitor of the TF-FVIIa complex to damp extrinsic coagulation drive implicated in COVID-19 CCC dysregulation99.
Possible treatments: recombinant TFPI (tifacogin-class), TFPI-mimetics
319. Thrombomodulin (THBD) activation / recombinant thrombomodulin
Enhance the thrombin-thrombomodulin-protein C axis to neutralize prothrombotic signaling while preserving anticoagulant and anti-inflammatory effects99.
Possible treatments: recombinant thrombomodulin (ART-123/thrombomodulin alfa)
320. Protein C pathway restoration (PROC/SERPINC1 axis)
Restore impaired natural anticoagulant circuits noted among CCC hubs (PROC, SERPINC1), aiming to reduce microthrombi and immunothrombosis99.
Possible treatments: protein C concentrate, antithrombin concentrate
321. Fibrinogen β/γ (FGB/FGG)-driven fibrin deposition moderation
Upregulated FGB/FGG associate with excessive fibrin formation and possible profibrotic TGF-β crosstalk; moderating polymerization may reduce microvascular obstruction and downstream fibrosis99.
Possible treatments: GPRP-analogue fibrin-polymerization blockers, adjunct antifibrotics
322. Prothrombin (F2) level/function normalization
Meta-analysis shows F2 downregulation; careful, context-specific normalization may restore hemostatic balance while avoiding prothrombotic overshoot99.
Possible treatments: prothrombin complex concentrates
323. α2-Antiplasmin (SERPINF2) tuning
As a CCC hub, SERPINF2 (plasmin inhibitor) modulation could re-balance fibrinolysis vs. thrombosis in COVID-associated coagulopathy99.
Possible treatments: plasmin/α2-antiplasmin interface modulators
324. CD36-mediated platelet activation (E protein)
The membrane protein CD36 acts as a specific receptor for the SARS-CoV-2 Envelope (E) protein on platelets. This interaction triggers p38 MAPK and NF-κB signaling, leading to platelet activation and thrombosis23.
Possible treatments: CD36 inhibitors
325. Platelet TLR4 signaling inhibition
Spike protein activates platelets via TLR4 (and ACE2/TMPRSS2), triggering granule release, thrombin generation, and NET formation. Thrombin creates a feedback loop by enhancing TLR4 surface expression on platelets via PAR1/PAR4-mediated calcium mobilization and calpain activation36.
Possible treatments: tramadol, thrombin inhibitors, TLR4 antagonists
Inflammation & Oxidative Stress Reduction
Mechanisms that reduce tissue damage caused by inflammation and oxidative stress.
326. Nrf2 activation
Enhancing host antioxidant, anti-inflammatory and antiviral defences by activating transcription-factor Nrf2. Upregulates phase-II enzymes (HO-1, NQO1, TRXR), suppresses NF-κB, tempers STING-driven IFN-I output, and downregulates entry factors ACE2/TMPRSS235,40.
Possible treatments: sulforaphane, bardoxolone methyl, dimethyl fumarate, resveratrol, curcumin, oltipraz, PB125, epigallocatechin gallate
327. Matrix metalloproteinase (MMP) inhibition
Reducing inflammation and vascular leakage. Excess MMP-9 promotes lung barrier breakdown and cytokine storm; selective or broad-spectrum MMP inhibitors blunt this damage70,100.
Possible treatments: doxycycline, minocycline, marimastat, batimastat, quercetin, EGCG, SB-3CT, Jinhong decoction, rhubarbic acid
328. COX-2 inhibition
Suppressing prostaglandin-mediated inflammation3,39,87.
Possible treatments: celecoxib, etoricoxib, meloxicam, boswellic acids, curcumin, GPR4 antagonists, NE-52-QQ57
329. NF-κB / RELA (p65) inhibition
Inhibition of pro-inflammatory transcription factor NF-κB (specifically the RELA/p65 subunit) to reduce cytokine production and viral replication17,40,68,86,97,98,103,104.
Possible treatments: parthenolide, curcumin, quercetin, celastrol, sulforaphane, apigenin-7-glucoside, swertanone, pistagremic acid, KVX-053
330. ROS scavenging
Neutralizing reactive oxygen species to prevent oxidative damage.
Possible treatments: vitamin C, vitamin E, melatonin, CoQ10, N-acetylcysteine, alpha-lipoic acid
331. Glutathione enhancement
Boosting endogenous glutathione synthesis or regeneration18.
Possible treatments: N-acetylcysteine, alpha-lipoic acid, glutathione, sulforaphane
332. NLRP1/NLRP10 inflammasome inhibition
Selective blockade of caspase-1 activation downstream of NLRP1/10 mitigates IL-1β release and pyroptotic damage in infected airway cells, complementing NLRP3-directed approaches47,49.
Possible treatments: VX-765, belnacasan (VX-740)
333. NLRP3 inflammasome inhibition
Blocking NLRP3 activation to reduce inflammatory cytokine release64,77,98,104,105.
Possible treatments: MCC950, glyburide, resveratrol, parthenolide, quercetin, luteolin, Harrisonia perforata, KVX-053
334. SOD mimetics
Mimicking superoxide dismutase to neutralize superoxide radicals.
Possible treatments: tempol, MnTBAP
335. Heme oxygenase-1 (HO-1) induction
Inducing the Nrf2-dependent enzyme HO-1 yields CO, biliverdin and bilirubin, providing antioxidant, cytoprotective and broad antiviral effects that limit viral replication and lung injury35,40.
Possible treatments: hemin, cobalt protoporphyrin, sulforaphane, dimethyl fumarate, resveratrol, curcumin
336. SIRT1 activation
SIRT1 deacetylates the NF-κB p65 subunit to suppress cytokine storms (IL-6, TNF-α), stabilizes Nrf2 to combat oxidative stress, and regulates ACE2 expression. In the acute phase, SIRT1 activation dampens hyperinflammation and endothelial dysfunction, while in recovery it promotes mitochondrial homeostasis and tissue repair106.
Possible treatments: resveratrol, quercetin, curcumin, hesperetin, berberine, fisetin, silibinin, luteolin, NAD+ precursors, nicotinamide riboside, metformin
337. PPAR-γ activation
Activating PPAR-γ to suppress pro-inflammatory signaling68.
Possible treatments: pioglitazone, rosiglitazone, curcumin
338. Ferroptosis inhibition
Blocking iron-dependent lipid peroxidation cell death pathways activated during SARS-CoV-2 infection, which may contribute to tissue damage particularly in the lungs. This approach targets the GPX4/GSH antioxidant system, iron metabolism regulation, and lipid peroxidation processes44,107.
Possible treatments: ferrostatin-1, liproxstatin-1, deferoxamine, N-acetylcysteine, vitamin E, ebselen, baicalein, pyrvinium, pyridoxal 5'-phosphate, famotidine, astemizol
339. Vinculin/ICAM-1 pathway modulation
Targeting the host cytoskeletal adaptor protein vinculin (VCL) and its interaction with ICAM-1 to reinforce VE-cadherin-actin junctions, suppress excessive leukocyte adhesion, and seal gaps in the alveolo-vascular barrier, thereby diminishing inflammatory exudation and lung edema seen in COVID-19108.
Possible treatments: anti-VCL monoclonal antibodies, vinculin-peptide competitors, small-molecule VCL-actin interface disruptors
340. TLR4 antagonism
Small-molecule or lipid-A analogues that prevent spike-S1 engagement of toll-like receptor-4, dampening early MyD88→NF-κB cytokine release and subsequent hyper-inflammation14,92,97,100,104.
Possible treatments: eritoran, resatorvid, Jinhong decoction, rhubarbic acid
341. Gasdermin-D pore inhibition (anti-pyroptosis)
Small molecules or peptides that prevent GSDMD cleavage/oligomerisation may stop pyroptotic pore formation, lowering IL-1β release and the downstream cytokine-storm cascade47,49,95,104.
Possible treatments: disulfiram, necrosulfonamide, dimethyl fumarate
342. Gasdermin-E (GSDME) inhibition (anti-pyroptosis)
Inhibition of Gasdermin-E (GSDME) activation to prevent the pyroptotic cell death of multinucleated syncytia. Blocking this pathway may reduce the release of inflammatory mediators from fused cells and limit subsequent tissue damage15.
Possible treatments: GSDME inhibitors, pan-caspase inhibitors (to block GSDME cleavage)
343. HIF-1α inhibition
Block hypoxia-driven metabolic re-programming that fuels NET formation and cytokine surges in severe COVID-193,40,76,100.
Possible treatments: PX-478, digoxin, acriflavine, Jinhong decoction
344. RAGE antagonism
Interrupt AGE/RAGE signaling linked to TNF-α amplification and endothelial dysfunction in advanced disease76.
Possible treatments: azeliragon, FPS-ZM1, alagebrium
345. GPR4 (proton-sensing GPCR) antagonism
Antagonists of endothelial GPR4 blunt leukocyte adhesion, chemokine/cytokine release and COX-2 induction, thereby mitigating cytokine-storm-driven lung injury87.
Possible treatments: NE-52-QQ57, imidazopyridine GPR4 antagonist series
346. CXCL10 (IP-10) / CXCR3 axis blockade
Neutralizing the chemokine CXCL10 (also called IP-10) or inhibiting its receptor CXCR3 limits the chemo-attraction of activated T cells and monocytes into lung tissue, tempering the hyper-inflammation and tissue damage seen in severe COVID-1986,89,98.
Possible treatments: AMG 487, BMS-936557, ipiliximab, NI-0801, elipovimab, KVX-053
347. Omega-3 / SPM
Eicosapentaenoic and docosahexaenoic acids give rise to resolvins/protectins that improve resolution of post-viral lung inflammation and may lessen long-COVID pathology67.
Possible treatments: EPA, DHA, protectin D1, resolvin D1
348. ERK/JNK/p38 MAPK pathway inhibition
Inhibiting the MAPK cascade downstream of spike-TLR signaling suppresses NLRP3 activation and cytokine release in lung epithelium, minimizing post-COVID inflammatory damage13,40,62,68,105.
Possible treatments: luteolin, SB203580, selumetinib, Harrisonia perforata, losmapimod, SB203580, doramapimod
349. Extracorporeal cytokine adsorption
Physical removal of excessive cytokines from blood using adsorption columns to rapidly reduce cytokine storm severity in critically ill patients8.
Possible treatments: CytoSorb, oXiris, Toraymyxin
350. AHR-mucin (MUC5AC/MUC5B) suppression
AHR activation in airway epithelium drives goblet-cell differentiation and MUC5AC/MUC5B expression with mucus hypersecretion; AHR modulation can normalise mucus output and airflow39,40.
Possible treatments: CH-223191, GNF351, tapinarof
351. NLRP12 cleavage suppression
3CLpro cleaves NLRP12, a negative regulator of NLRP3, thereby amplifying cytokine production; preserving NLRP12 function may temper hyperinflammation49.
Possible treatments: NLRP12-stabilizing peptides, cleavage-site blockers, small-molecule NLRP12 agonists
352. P-selectin-PSGL-1 (SELPLG) leukocyte adhesion blockade
Blocking endothelial/platelet P-selectin binding to SELPLG (PSGL-1) limits rolling/adhesion and immune-cell influx into inflamed tissues97.
Possible treatments: crizanlizumab (anti-P-selectin), rivikizumab/anti-PSGL-1 candidates, rivipansel (GMI-1070; selectin antagonist)
353. Leukotriene receptor antagonism
Blocking the action of leukotrienes, which are inflammatory mediators involved in the pathogenesis of ARDS. This may help reduce lung inflammation and tissue damage3.
Possible treatments: montelukast
354. Vascular Endothelial Growth Factor (VEGF) inhibition
Blocking VEGF signaling to reduce virus-induced angiogenesis, vascular permeability, and pulmonary edema associated with severe ARDS3.
Possible treatments: bevacizumab, tivozanib
355. NLRP12 cleavage suppression
The main protease (3CLpro/Mpro) cleaves NLRP12, a negative regulator of the NLRP3 inflammasome and NF-κB signaling. By disabling this immune checkpoint, the virus can dysregulate the inflammatory response. Preserving NLRP12 function may help temper hyperinflammation49.
Possible treatments: NLRP12-stabilizing peptides, cleavage-site blockers, small-molecule NLRP12 agonists
356. IL-18 pathway blockade
Neutralize IL-18 or block IL-18R to minimize inflammasome-driven lung inflammation and pyroptosis104.
Possible treatments: tadekinig alfa (IL-18BP), GSK1070806, anti-IL-18R agents
357. NOX4 (NADPH oxidase-4) inhibition
Reduce ROS that prime/activate NLRP3 and amplify IL-18104.
Possible treatments: setanaxib (GKT137831), apocynin, DPI
358. Caspase-1 → IL-18 maturation blockade
Block caspase-1 to curb processing of pro-IL-18/pro-IL-1β and downstream pyroptosis104.
Possible treatments: belnacasan (VX-765), Z-YVAD-FMK
359. SERPINA3 (α1-antichymotrypsin) augmentation
SERPINA3 is an acute-phase serine-protease inhibitor. Augmenting SERPINA3 activity could help restrain neutrophil/chymase proteolysis and downstream inflammation68.
Possible treatments: recombinant SERPINA3, serpin mimetics (experimental)
360. TP53 stabilization inhibition in syncytia
Inhibiting the stabilization of TP53 (p53) that occurs following spike-mediated cell-cell fusion. This stabilization is linked to pro-inflammatory cytokine release and cellular senescence, so its blockade may reduce syncytia-driven pathology15.
Possible treatments: TP53 stabilization inhibitors
361. Caspase-3 inhibition for neuroprotection
Blocking the activation of cleaved caspase-3 in infected astrocytes. This pathological apoptosis is driven by a pro-inflammatory response and contributes to cell death and neuroinflammation25.
Possible treatments: pan-caspase inhibitors, Z-DEVD-FMK
362. Astrocytic EAAT1/EAAT2 upregulation
SARS-CoV-2 lowers astrocyte EAAT1 (GLAST) and EAAT2 (GLT-1), impairing glutamate uptake and creating neuroinflammation/headache/brain fog. Boosting EAAT1/2 restores synaptic glutamate clearance and dampens downstream cytokines25.
Possible treatments: ceftriaxone, β-lactam class, riluzole, N-acetylcysteine, propentofylline
363. AKT1 signaling restoration
Restoring AKT1 signaling, which is significantly downregulated in severe COVID-19, to reduce neutrophil recruitment, prevent acute lung injury, and support BCL2-mediated lymphocyte survival100.
Possible treatments: Jinhong decoction, AKT1 activators
364. ICAM-1 expression suppression
Downregulating Intercellular Adhesion Molecule 1 (ICAM-1), which is overexpressed during cytokine storms, to reduce endothelial damage and leukocyte infiltration into lung tissue100.
Possible treatments: Jinhong decoction, rhubarbic acid
365. Histamine H2 receptor antagonism
The H2 blocker famotidine is identified as a top compound interacting with ferroptosis-related genes in COVID-19 cardiac tissue. Beyond acid suppression, it may reduce oxidative stress, maintain cardiac stem cell populations, and decrease cytokine release44.
Possible treatments: famotidine
366. PPAR-α activation
Peroxisome Proliferator Activated Receptor Alpha (PPARA) is identified as a central hub gene in COVID-19 heart tissue involved in lipid metabolism. Its downregulation correlates with ferroptosis and cardiac injury; agonists may restore metabolic homeostasis and inhibit inflammation44.
Possible treatments: fenofibrate, gemfibrozil, pemafibrate
367. PRC1 (Protein Regulator of Cytokinesis 1) targeting
PRC1 is a microtubule-associated protein and hub gene dysregulated in COVID-19. Transcriptomic analysis links its expression to lung fibrosis disorders (e.g., silicosis), suggesting it contributes to the fibrotic sequelae of severe SARS-CoV-2 infection86.
368. Cellular senescence pathway (CDKN2A/p16) modulation
Transcriptomic enrichment shows significant upregulation of the cellular senescence pathway, specifically the marker CDKN2A (p16), in infected lungs. Senescent cells secrete pro-inflammatory factors (SASP); senolytics could mitigate this chronic inflammatory drive86.
Possible treatments: navitoclax, fisetin, quercetin, dasatinib
Complement System Regulation
Mechanisms that control excessive complement activation, which contributes to inflammation.
369. Complement pathway inhibition
Blocking complement components to reduce inflammation68.
Possible treatments: eculizumab, ravulizumab, coversin, zilucoplan, cemdisiran, tesidolumab
370. C3 inhibition
Inhibition of C3 to prevent downstream complement activation68,99.
Possible treatments: pegcetacoplan, AMY-101
371. C2 inhibition (classical / lectin pathway)
Monoclonal antibodies that bind complement factor C2 prevent C3 pro-convertase assembly, selectively shutting down classical and lectin amplification while sparing the alternative pathway.
Possible treatments: empasiprubart (ARGX-117)
372. Classical pathway inhibition
Blocking C1 esterase or C1s to suppress classical pathway activation30.
Possible treatments: cinryze, sutimlimab, ruconest
373. C5a signaling blockade
Targeting C5a or its receptor to reduce inflammatory anaphylatoxin effects96.
Possible treatments: vilobelimab, avdoralimab, IFX-1, NOX-D21
374. Alternative pathway inhibition
Inhibiting Factor B to disrupt alternative pathway amplification.
Possible treatments: iptacopan, LNP023
375. Alternative pathway suppression
Blocking Factor D to halt alternative pathway activation.
Possible treatments: danicopan, ACH-4471
376. Lectin pathway inhibition
Targeting MASP-2 to inhibit lectin pathway initiation.
Possible treatments: narsoplimab, OMS721
377. Targeted complement regulation
Fusion protein to inhibit complement at sites of activation.
Possible treatments: TT30
378. Broad-spectrum inhibition
Recombinant soluble complement receptor 1 (sCR1) for multi-pathway suppression.
Possible treatments: TP10
379. C3a signaling blockade
Neutralizing C3a or antagonizing C3aR diminishes complement-induced platelet activation and microvascular thrombosis96.
Possible treatments: anti-C3a mAb, SB-290157, PMX-53
Apoptosis & Viral Clearance
Mechanisms that promote the elimination of infected cells or viral components.
380. Apoptosis induction
Triggering programmed cell death in infected cells via Bcl-2 inhibition3,25,86.
Possible treatments: venetoclax, navitoclax, obatoclax, gossypol, busulfan, carboplatin, cisplatin, ifosfamide, etopophos
381. Extrinsic apoptosis activation
Activating TRAIL death receptors to induce apoptosis in infected cells.
Possible treatments: conatumumab, dulanermin
382. Fas-mediated apoptosis
Stimulating Fas receptors to trigger caspase-dependent cell death.
Possible treatments: APG101, fas_antibody
383. IAP inhibition
Promoting apoptosis by antagonizing inhibitor of apoptosis proteins (IAPs).
Possible treatments: birinapant, LCL161
384. p53 activation
Restoring p53 activity to induce apoptosis in infected cells15,47,49.
Possible treatments: nutlin-3a, PRIMA-1MET
385. Autophagy stimulation
Enhancing mTOR-independent/AMPK-mediated degradation of viral components.
Possible treatments: rapamycin, everolimus, spermidine, resveratrol, metformin, trehalose
386. Efferocytosis enhancement
Promoting phagocytic clearance of apoptotic cells containing viral material.
Possible treatments: annexin_A1, resolvin_E1, meritastat
387. Immunogenic cell death
Inducing apoptosis with enhanced antigen presentation for immune clearance.
Possible treatments: oxaliplatin, doxorubicin
388. PINK1/Parkin-mediated mitophagy enhancement
Boost clearance of damaged mitochondria via PINK1/Parkin to lower mtROS and downstream inflammatory signaling76.
Possible treatments: urolithin A, nicotinamide riboside, CNX-074
389. Selective virophagy receptor protection (p62/SQSTM1-NBR1-Galectin-8/NDP52 axis)
3CLpro cleaves p62/SQSTM1 (Q354), NBR1 (Q353, in PEDV) and Galectin-8 (Q158), blocking selective autophagic clearance of viral proteins. Preserving these receptors or enhancing their cargo-linking restores virophagy47.
Possible treatments: Tat-LIR mimetic peptides that stabilize LC3-receptor binding, Galectin-8-NDP52 interface enhancers
390. Selective virophagy receptor protection (p62/SQSTM1)
The viral main protease (3CLpro/Mpro) cleaves the autophagy receptor p62/SQSTM1 at Q354. This disables p62's ability to traffic viral proteins (like the M protein) to autophagosomes for degradation, thus protecting virion components and ensuring successful assembly. Protecting p62 from cleavage could restore this host defense mechanism49.
Possible treatments: p62 cleavage-site blockers, Tat-LIR mimetic peptides that stabilize LC3-receptor binding
391. MCL1 (Myeloid Cell Leukemia 1) inhibition
MCL1 is an anti-apoptotic protein found to be upregulated and raft-associated during viral protein expression. Induction of MCL1 likely delays host cell apoptosis to prolong the window for viral replication and assembly. Inhibition could restore apoptotic clearance of infected cells26.
Possible treatments: S63845, AMG-176, AZD5991, mimetics
Host Nutrient & Factor Modulation
Mechanisms aimed at manipulating the availability or metabolism of host-derived nutrients and factors essential for viral replication or survival.
392. Angiotensin-(1-7) / Mas-receptor agonism
Exogenous Ang(1-7) or small-molecule Mas agonists restore the protective ACE2-Ang(1-7)-Mas arm of RAAS that is lost after spike-induced ACE2 internalisation, delivering vasodilatory, anti-thrombotic, anti-fibrotic and anti-inflammatory effects that can mitigate ARDS, endothelial dysfunction and long-COVID sequelae103.
Possible treatments: Angiotensin-(1-7) peptide, TXA-127, AVE0991, CGEN-856, CGEN-856S
393. Arginine depletion therapy
Pegylated arginase I lowers extracellular arginine, reducing NO-driven hyper-inflammation and starving viral polyamine synthesis pathways implicated in severe COVID-1967.
Possible treatments: PEG-Arg1 (pegylated arginase I)
394. Polyamine synthesis inhibition
Blocking polyamine synthesis pathways that viruses exploit for replication. SARS-CoV-2 requires polyamines for RNA synthesis and protein translation8,61.
Possible treatments: difluoromethylornithine (DFMO), SAM486A
395. MTR (methionine synthase)/vitamin B12 axis modulation
Predicted host factor MTR links one-carbon metabolism to SAM availability for viral RNA capping/methylation; modulating the B12-MTR cycle may perturb pro-viral methyl flux30.
Possible treatments: cyanocobalamin
396. Biotinidase (BTD) / biotin-metabolism modulation
BTD is a plasma enzyme that recycles biotin; research identifies BTD as a top diagnostic biomarker and shows pathway enrichment in biotin metabolism, suggesting a nutrient-immune axis worth targeting68.
Possible treatments: biotin (clinical formulations), BTD inducers/replacement (experimental)
397. APOE modulation
Targeting APOE, which is involved in lipid metabolism and immune regulation. APOE modulates blood coagulation and immune response22.
Possible treatments: AEM-28, statins
398. APP inhibition
Inhibition of APP, which interacts with APOE and plays a role in neuroinflammation and immune dysregulation in COVID-19 patients. APP-targeting strategies could help mitigate immune and systemic disturbances in both acute and long COVID22.
Possible treatments: lecanemab, anti-APP antibodies
399. Pyridoxal 5'-phosphate supplementation
PLP (the active form of Vitamin B6) is a top metabolite linked to ferroptosis-related genes. It alleviates myocardial injury by inhibiting ferroptosis and apoptosis, specifically through the activation of the Nrf2 antioxidant pathway44.
Possible treatments: pyridoxal 5'-phosphate, vitamin B6
Immune Evasion Countermeasures
Mechanisms that counteract SARS-CoV-2's ability to suppress host immunity.
400. Viral immune modulation inhibition
Blocking viral proteins that suppress host immunity.
401. ORF9b-TOM70 interface blockade
Disrupt ORF9b binding to the C-terminus of TOM70 to restore HSP90-mediated MAVS signaling, type-I interferon output and balanced mitochondrial metabolism22,76.
Possible treatments: peptidomimetic C-tail competitors, macrocyclic PPI inhibitors, HSP90-TOM70 stapled-peptides
402. Restoring interferon signaling
Countering viral antagonism of STAT1/IRF pathways to reinstate endogenous interferon responses22,39,40,47,49,55,62,64,66,76.
Possible treatments: interferon-beta
403. NSP3 deubiquitinase inhibitors
Blocking NSP3's immune evasion via deubiquitinase activity51.
Possible treatments: acriflavine, YM155, GRL0617, XR-8-24
404. NSP3-IFIT5/ISG15 axis disruption
Small molecules or peptides that block NSP3-mediated de-ISGylation of IFIT5, restoring ISG15-dependent IRF3/NF-κB signaling and type I-IFN output102.
Possible treatments: IFIT5-interface mimetics, NSP3 macrodomain blockers
405. ORF6 protein inhibitors
Neutralizing ORF6-mediated interferon suppression76.
406. NSP1 translation inhibition
Preventing NSP1 from blocking host translation.
407. Wnt / β-catenin pathway inhibition & peroxisome restoration
SARS-CoV-2 activates Wnt / β-catenin signaling to deplete peroxisomes and blunt MAVS-mediated type I/III IFN production. Small-molecule Wnt/β-catenin antagonists reverse this immune-evasion tactic by restoring peroxisome biogenesis, amplifying innate IFN responses and sharply lowering viral replication in airway cells and mouse lungs109.
Possible treatments: KYA1797K, IWP-O1, LGK-974, Wnt-C59, NCB-0846, ETC-1922159, Pyrvinium, E7449, iCRT-14, SM04690
408. Nsp9-mediated suppression of extracellular let-7b & TLR7 signaling
SARS-CoV-2 Nsp9 binds let-7b, loads it into AGO2, and blocks its packaging into exosomes, sharply lowering extracellular let-7b that would otherwise activate TLR7 and drive type-I interferon/cytokine induction. Countermeasures aim to disrupt the Nsp9-let-7b interface or supply exogenous let-7b to restore TLR7 antiviral signaling59.
Possible treatments: let-7b mimics, exosome-loaded let-7b, inhibitors of Nsp9-let-7b binding, TLR7 agonists
409. Nucleocapsid-G3BP interface blockade
Small molecules or peptides that occupy the NTF2-groove of G3BP1/2 or mask N residues I15-G18, preventing N-mediated stress-granule dissolution and restoring PKR/IFN signaling79.
Possible treatments: macrocyclic PPI inhibitors, N-terminal decoy peptides, groove-filling hetero-bicycles
410. Nsp14-mediated lysosomal downregulation of IFNAR1/IFNGR1
SARS-CoV-2 Nsp14 reduces surface IFNAR1 and IFNGR1 through a lysosomal pathway, blunting IFN-α/β and IFN-γ signaling. Effects are evident in infected cells and with Nsp14 expression; IFNAR2 is spared. Countermeasures aim to preserve receptor abundance or block lysosomal routing62.
Possible treatments: bafilomycin A1, lysosome-trafficking inhibitors, siRNA-TOLLIP, IFNAR1/IFNGR1 endocytosis-blockers
411. Nsp14-driven NF-κB/ERK/JNK/p38 activation (N7-MTase-dependent)
Nsp14 augments NF-κB and activates ERK, JNK and p38 MAPKs, promoting cytokine output (IL-1β, IL-6, IL-10, CXCL10/CCL4/CCL5). ExoN-dead mutants largely retain activity, whereas N7-MTase-dead mutants lose it. Targeting Nsp14's MTase function or downstream kinases can curb this pro-inflammatory signaling62.
Possible treatments: MEK inhibitors (selumetinib, trametinib), p38 inhibitors (losmapimod), IKK/NF-κB pathway inhibitors, N7-MTase inhibitors (sinefungin-class/analogs)
412. N-protein cleavage by caspase-6 (IFN suppression) - countermeasure
During infection, activated caspase-6 cleaves N; resulting fragments dampen IRF3/IFN-I signaling and aid replication. Lowering CASP6 abundance (mRNA destabilisation) or inhibiting its activity reduces cleaved-N, reverses IFN suppression, and limits viral growth55.
Possible treatments: dibenzoylmethane, Z-VEID-FMK, caspase-6 inhibitors
413. RLR/NEMO axis preservation from 3CLpro antagonism
The SARS-CoV-2 main protease (3CLpro/Mpro) dismantles the RIG-I-like receptor (RLR) pathway by cleaving RIG-I, promoting MAVS degradation, and cleaving the essential adaptor NEMO. This collective antagonism suppresses type I interferon production. Therapeutics may protect these components or otherwise restore the pathway's function47,49.
Possible treatments: 5'ppp-dsRNA RIG-I agonists, cell-permeable NEMO-derived decoy peptides, protein-protein interface stabilizers
414. Hippo signaling pathway activation
Activation of the evolutionarily conserved Hippo signaling pathway, which contributes to the host's intrinsic antiviral response during SARS-CoV-2 infection83.
415. Blockade of Nsp5-driven MAVS SUMOylation → NF-κB hyperactivation
SARS-CoV-2 Nsp5 increases SUMOylation of MAVS, boosting NF-κB signaling; disrupting SUMOylation or enhancing de-SUMOylation can restore balanced IFN/NF-κB responses40.
Possible treatments: subasumstat (TAK-981; SUMO-E1 inhibitor), SENP modulators
416. ORF10-driven innate-immune attenuation
ORF10 remodels host transcription with reduced oxidative phosphorylation and suppression of interferon/stress-response genes, weakening antiviral signaling. Therapeutic approaches aim to restore IFN/MAVS activity and mitochondrial tone alongside direct ORF10 blockade66.
Possible treatments: interferon-β/interferon-λ, STING or RIG-I agonists, SS-31, CoQ10, nicotinamide riboside
417. Nsp3 Mac1 (ADP-ribosylhydrolase) inhibition
The Nsp3 macrodomain (Mac1) removes mono-ADP-ribose (MAR) modifications from host proteins (catalyzed largely by PARP14), thereby reversing the host interferon-induced antiviral response. Small-molecule inhibition of Mac1 restores these immune marks, potentiates the innate immune response, and limits viral replication in vivo58.
Possible treatments: AVI-4206, AVI-4636, AVI-4051, AVI-219, AVI-92, GE-112, ADP-ribose analogs
Viral Fusion Inhibition
Mechanisms that prevent viral membrane fusion with host cells.
418. FcγRI-mediated fusion blockade
Blocking the Fc-gamma receptor I (FcγRI) to prevent antibody-mediated, ACE2-independent cell-cell fusion (syncytia formation). This pathway can be triggered by certain anti-RBD antibodies and is implicated in antibody-dependent enhancement (ADE) and the formation of macrophage syncytia15.
Possible treatments: anti-FcγRI antibodies, Fc decoy proteins
419. IFITM1 activation
Enhancing the activity of interferon-induced transmembrane protein 1 (IFITM1), which is localized at the plasma membrane and exhibits a strong inhibitory effect on spike-mediated cell-cell fusion (syncytia formation), likely by modifying membrane rigidity15.
Possible treatments: IFITM1 activators
Antiviral Peptides
Mechanisms involving peptides that directly inhibit viral activity.
420. Defensins
Antimicrobial peptides with potential antiviral effects.
Possible treatments: Human neutrophil peptide-1 (HNP-1)
421. Fusion inhibitor peptides
Peptides blocking viral fusion with host membranes.
Possible treatments: EK1C4
422. Lactoferrin
Iron-binding protein with antiviral properties.
Possible treatments: bovine lactoferrin
423. Cathelicidin peptides
Antimicrobial peptide disrupting viral envelopes.
Possible treatments: LL-37
424. Hepcidin
Liver-produced peptide with immunomodulatory effects.
Possible treatments: hepcidin-25
425. TAT-based peptides
Cell-penetrating peptides disrupting viral assembly.
Possible treatments: TAT-SARS2
426. RBD-targeting antiviral peptides (InSiPS AVPs)
Synthetic 15-25-aa peptides designed in silico that bind conserved spike-RBD or S1/S2 motifs, out-compete ACE2, curb multivariant infection, and blunt pro-inflammatory cytokines102.
Possible treatments: InSiPS-AVP1, InSiPS-AVP2, InSiPS-AVP3
RNA Interference
Mechanisms that silence viral genes to inhibit replication.
427. siRNA therapy
Small interfering RNAs targeting viral genes.
Possible treatments: siRNA against RdRp
428. siRNA targeting spike
Silencing spike gene to prevent viral entry.
Possible treatments: siRNA-Spike
429. siRNA targeting nucleocapsid
Inhibiting nucleocapsid gene to disrupt virion formation.
Possible treatments: siRNA-N
430. shRNA therapies
Sustained gene silencing via short hairpin RNA.
Possible treatments: shRNA-ORF1ab
431. miRNA mimics
Using microRNAs to target viral RNA degradation.
Possible treatments: miR-23b
432. MicroRNA modulation of antiviral immunity
Use of miRNA mimics or inhibitors to regulate host gene expression and immune pathways, enhancing antiviral responses or suppressing viral replication. Specific miRNAs (e.g., miR-181, miR-874, miR-155, miR-27a) can amplify innate immune signaling or induce apoptosis in infected cells, while inhibition of others (e.g., miR-1290, miR-576) reduces viral replication or virus-induced damage59,71,110.
Possible treatments: miR-181 mimic, miR-874 mimic, miR-155 mimic, miR-27a mimic, miR-1290 antagonist, miR-576 inhibitor, let-7b mimic
433. siRNA/ASO targeting ORF10 transcript
Silencing the ORF10 gene, whose transcript is highly structured and conserved. A synonymous change that perturbs ORF10 RNA structural dynamics is associated with milder COVID-19, implicating a functional RNA role independent of the protein; targeting the RNA should attenuate ORF10-linked virulence programs66.
Possible treatments: siRNA-ORF10, antisense oligonucleotides (ASOs)
References