Analgesics
Antiandrogens
Antihistamines
Budesonide
Colchicine
Conv. Plasma
Curcumin
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Monoclonals
Mpro inhibitors
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Quercetin
RdRp inhibitors
TMPRSS2 inh.
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchSelect treatment..Select..
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta
Ivermectin Meta
Thermotherapy Meta
Melatonin Meta
Metformin Meta

 

A rational roadmap for SARS‐CoV‐2/COVID‐19 pharmacotherapeutic research and development: IUPHAR Review 29

Alexander et al., British Journal of Pharmacology, doi:10.1111/bph.15094, NCT04335136, Jul 2020
https://c19early.org/alexander3.html
Review of approaches for COVID-19 pharmacotherapeutic research and development. Authors identify key viral and host targets for drug discovery.
Alexander et al., 19 Jul 2020, United Kingdom, peer-reviewed, 11 authors, trial NCT04335136 (history). Contact: steve.alexander@nottingham.ac.uk.
A rational roadmap for SARS‐CoV‐2/COVID‐19 pharmacotherapeutic research and development: IUPHAR Review 29
Steve P H Alexander, Jane F Armstrong, Anthony P Davenport, Jamie A Davies, Elena Faccenda, Simon D Harding, Francesca Levi‐schaffer, Janet J Maguire, Adam J Pawson, Christopher Southan, Michael Spedding
British Journal of Pharmacology, doi:10.1111/bph.15094
In this review, we identify opportunities for drug discovery in the treatment of COVID-19 and, in so doing, provide a rational roadmap whereby pharmacology and pharmacologists can mitigate against the global pandemic. We assess the scope for targeting key host and viral targets in the mid-term, by first screening these targets against drugs already licensed, an agenda for drug repurposing, which should allow rapid translation to clinical trials. A simultaneous, multi-pronged approach using conventional drug discovery methods aimed at discovering novel chemical and biological means of targeting a short list of host and viral entities which should extend the arsenal of anti-SARS-
AUTHOR CONTRIBUTIONS The document was conceived in discussions among S.P.H.A., J.A., J.D., E.F., S.D.H., F.L.S., A.J.P., C.S., and M.S.; it was initially drafted by S.P.H.A., and all the co-authors contributed text and checked the manuscript; all the authors read and agree to submission of the manuscript. CONFLICT OF INTERESTS The authors declare no conflicts of interest.
References
Afar, Vivanco, Hubert, Kuo, Chen et al., Catalytic cleavage of the androgen-regulated TMPRSS2 protease results in its secretion by prostate and prostate cancer epithelia, Cancer Research
Alexander, Kelly, Mathie, Peters, Veale et al., The Concise Guide to PHARMACOLOGY 2019/20: Introduction and Other Protein Targets, British Journal of Pharmacology, doi:10.1111/bph.14747
Amanat, Krammer, SARS-CoV-2 vaccines: Status report, Immunity
Anand, Ziebuhr, Wadhwani, Mesters, Hilgenfeld, Coronavirus main proteinase (3CL pro ) structure: Basis for design of anti-SARS drugs, Science
Angeletti, Benvenuto, Bianchi, Giovanetti, Pascarella et al., COVID-2019: The role of the nsp2 and nsp3 in its pathogenesis, Journal of Medical Virology, doi:10.1002/jmv.25719
Angelini, Akhlaghpour, Neuman, Buchmeier, Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles, MBio, doi:10.1128/mBio.00524-13
Arabi, Asiri, Assiri, Aziz Jokhdar, Alothman et al., Treatment of Middle East respiratory syndrome with a combination of lopinavir/ritonavir and interferon-β1b (MIRACLE trial): Statistical analysis plan for a recursive two-stage group sequential randomized controlled trial, Trials, doi:10.1186/s13063-019-3846-x
Baez-Santos, Mielech, Deng, Baker, Mesecar, Catalytic function and substrate specificity of the papain-like protease domain of nsp3 from the Middle East respiratory syndrome coronavirus, Journal of Virology
Baez-Santos, St John, Mesecar, The SARScoronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds, Antiviral Research
Barretto, Jukneliene, Ratia, Chen, Mesecar et al., The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity, Journal of Virology, doi:10.1128/JVI.79.24.15189-15198.2005
Batlle, Wysocki, Satchell, Soluble angiotensinconverting enzyme 2: A potential approach for coronavirus infection therapy?, Clinical Science
Belouzard, Chu, Whittaker, Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites, Proceedings of the National Academy of Sciences of the United States of America
Belouzard, Millet, Licitra, Whittaker, Mechanisms of coronavirus cell entry mediated by the viral spike protein, Viruses
Benjafield, Wang, Morris, No association of angiotensin-converting enzyme 2 gene (ACE2) polymorphisms with essential hypertension, American Journal of Hypertension
Bennion, Rosado, Haltigan, Regenhardt, Sumners et al., Serum activity of angiotensin converting enzyme 2 is decreased in patients with acute ischemic stroke, Journal of the Renin-Angiotensin-Aldosterone System, doi:10.1177/1470320316661060
Bertram, Heurich, Lavender, Gierer, Danisch et al., Influenza and SARS-coronavirus activating proteases TMPRSS2 and HAT are expressed at multiple sites in human respiratory and gastrointestinal tracts, PLoS ONE, doi:10.1371/journal.pone.0035876
Bloch, Shoham, Casadevall, Sachais, Shaz et al., Deployment of convalescent plasma for the prevention and treatment of COVID-19, The Journal of Clinical Investigation, doi:10.1172/JCI138745
Bradley, Gill, Bertelli, Letafat, Corbau et al., Development and automation of a 384-well cell fusion assay to identify inhibitors of CCR5/CD4-mediated HIV virus entry, Journal of Biomolecular Screening, doi:10.1177/1087057104264577
Bradner, West, Grachan, Greenberg, Haggarty et al., Chemical phylogenetics of histone deacetylases, Nature Chemical Biology, doi:10.1038/nchembio.313
Broer, Gether, The solute carrier 6 family of transporters, British Journal of Pharmacology
Bryant, Orr, Ferguson, Symmons, Boyle et al., International Union of Basic and Clinical Pharmacology. XCVI. Pattern recognition receptors in health and disease, Pharmacological Reviews, doi:10.1124/pr.114.009928
Cagliani, Forni, Clerici, Sironi, Computational inference of selection underlying the evolution of the novel coronavirus, SARS-CoV-2, Journal of Virology, doi:10.1128/JVI.00411-20
Cai, Sex difference and smoking predisposition in patients with COVID-19, The Lancet Respiratory Medicine
Caly, Druce, Catton, Jans, Wagstaff, The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro, Antiviral Research
Camargo, Singer, Makrides, Huggel, Pos et al., Tissue-specific amino acid transporter partners ACE2 and collectrin differentially interact with hartnup mutations, Gastroenterology, doi:10.1053/j.gastro.2008.10.055
Chakraborti, Prabakaran, Xiao, Dimitrov, The SARS coronavirus S glycoprotein receptor binding domain: Fine mapping and functional characterization, Virology Journal
Chan, Kok, Zhu, Chu, To et al., Genomic characterization of the 2019 novel humanpathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan, Emerging Microbes & Infections
Chan, Tsoi, Chan, Zhai, Wong et al., The ion channel activity of the SARScoronavirus 3a protein is linked to its pro-apoptotic function, The International Journal of Biochemistry & Cell Biology, doi:10.1016/j.biocel.2009.04.019
Chan, Yao, Yeung, Deng, Bao et al., Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset, The Journal of Infectious Diseases, doi:10.1093/infdis/jiv392
Chen, Kruger, Sramala, Hsu, Henklein et al., ORF8a of SARS-CoV forms an ion channel: Experiments and molecular dynamics simulations, Biochimica et Biophysica Acta, doi:10.1016/j.bbamem.2010.08.004
Chen, Lee, Lucht, Chou, Huang et al., TMPRSS2, a serine protease expressed in the prostate on the apical surface of luminal epithelial cells and released into semen in prostasomes, is misregulated in prostate cancer cells, The American Journal of Pathology, doi:10.2353/ajpath.2010.090665
Chen, Savinov, Mielech, Cao, Baker et al., X-ray structural and functional studies of the three tandemly linked domains of non-structural protein 3 (nsp3) from murine hepatitis virus reveal conserved functions, The Journal of Biological Chemistry, doi:10.1074/jbc.M115.662130
Chen, Song, Li, Xie, Guo et al., Androgen receptor-activated enhancers simultaneously regulate oncogene TMPRSS2 and lncRNA PRCAT38 in prostate cancer, Cell, doi:10.3390/cells8080864
Chen, Yiu, Wong, Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CL pro ) structure: Virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates, F1000Res, doi:10.12688/f1000research.22457.2
Cheng, Fiez-Vandal, Schlenker, Edman, Aggeler et al., Structural insight into allosteric modulation of protease-activated receptor 2, Nature, doi:10.1038/nature22309
Chiu, Tang, Hui, Chung, Chim et al., ACE2 gene polymorphisms do not affect outcome of severe acute respiratory syndrome, Clinical Chemistry, doi:10.1373/clinchem.2004.035436
Cooper, Lawrie, Liggins, Collins, Hatton et al., Identification and characterization of peripheral T-cell lymphoma-associated SEREX antigens, PLoS ONE, doi:10.1371/journal.pone.0023916
Corman, Muth, Niemeyer, Drosten, Hosts and sources of endemic human coronaviruses, Advances in Virus Research
Crackower, Sarao, Oudit, Yagil, Kozieradzki et al., Angiotensin-converting enzyme 2 is an essential regulator of heart function, Nature, doi:10.1038/nature00786
Cui, Li, Shi, Origin and evolution of pathogenic coronaviruses, Nature Reviews. Microbiology
Danthi, Liang, Smicker, Coupland, Gregory et al., Identification and characterization of inhibitors of a neutral amino acid transporter, SLC6A19, using two functional cell-based assays, SLAS Discovery, doi:10.1177/2472555218794627
Davenport, Scully, De Graaf, Brown, Maguire, Advances in therapeutic peptides targeting G protein-coupled receptors, Nature Reviews Drug Discovery, doi:10.1038/s41573-020-0062-z
De Castro-Miro, Tonda, Escudero-Ferruz, Andres, Mayor-Lorenzo et al., Novel candidate genes and a wide spectrum of structural and point mutations responsible for inherited retinal dystrophies revealed by exome sequencing, PLoS ONE, doi:10.1371/journal.pone.0168966
De Haan, Rottier, Molecular interactions in the assembly of coronaviruses, Advances in Virus Research
De Wit, Feldmann, Cronin, Jordan, Okumura et al., Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection, Proceedings of the National Academy of Sciences of the United States of America, doi:10.1073/pnas.1922083117
De Wit, Prescott, Baseler, Bushmaker, Thomas et al., The Middle East respiratory syndrome coronavirus (MERS-CoV) does not replicate in Syrian hamsters, PLoS ONE, doi:10.1371/journal.pone.0069127
De Wit, Van Doremalen, Falzarano, Munster, SARS and MERS: Recent insights into emerging coronaviruses, Nature Reviews. Microbiology
Decroly, Imbert, Coutard, Bouvet, Selisko et al., Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2 0 O)-methyltransferase activity, Journal of Virology, doi:10.1128/JVI.00407-08
Delanghe, Speeckaert, De Buyzere, The host's angiotensin-converting enzyme polymorphism may explain epidemiological findings in COVID-19 infections, Clinica Chimica Acta
Desforges, Le Coupanec, Dubeau, Bourgouin, Lajoie et al., Human coronaviruses and other respiratory viruses: Underestimated opportunistic pathogens of the central nervous system?, Viruses, doi:10.3390/v12010014
Dixit, Boulant, Zhang, Lee, Odendall et al., Peroxisomes are signaling platforms for antiviral innate immunity, Cell, doi:10.1016/j.cell.2010.04.018
Dong, Sun, Mao, Wang, Lu et al., A guideline for homology modeling of the proteins from newly discovered betacoronavirus, 2019 novel coronavirus (2019-nCoV), Journal of Medical Virology, doi:10.1002/jmv.25768
Donoghue, Hsieh, Baronas, Godbout, Gosselin et al., A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9, Circulation Research, doi:10.1161/01.res.87
Doyle, Vaidya, O'connell, Dadgostar, Dempsey et al., IRF3 mediates a TLR3/TLR4-specific antiviral gene program, Immunity, doi:10.1016/S1074-7613(02)00390-4
Eckerle, Becker, Halpin, Li, Venter et al., Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing, PLoS Pathogens, doi:10.1371/journal.ppat.1000896
Elfiky, Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study, Life Sciences
Esler, Esler, Can angiotensin receptor-blocking drugs perhaps be harmful in the COVID-19 pandemic, Journal of Hypertension
Ewart, Mills, Cox, Gage, Amiloride derivatives block ion channel activity and enhancement of virus-like particle budding caused by HIV-1 protein Vpu, European Biophysics Journal
Ewart, Nasr, Naif, Cox, Cunningham et al., Potential new anti-human immunodeficiency virus type 1 compounds depress virus replication in cultured human macrophages, Antimicrobial Agents and Chemotherapy, doi:10.1128/AAC.48.6.2325-2330.2004
Fairweather, Broer, O'mara, Broer, Intestinal peptidases form functional complexes with the neutral amino acid transporter B 0 AT1, Biochemical Journal
Fan, Ooi, Tan, Wang, Fang et al., The nucleocapsid protein of coronavirus infectious bronchitis virus: crystal structure of its N-terminal domain and multimerization properties, Structure, doi:10.1016/j.str.2005.08.021
Fehr, Perlman, Coronaviruses: An overview of their replication and pathogenesis, Methods in Molecular Biology
Ferrario, Jessup, Chappell, Averill, Brosnihan et al., Effect of angiotensinconverting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2, Circulation, doi:10.1161/CIRCULATIONAHA.104.510461
Fitzgerald, Mcwhirter, Faia, Rowe, Latz et al., IKKε and TBK1 are essential components of the IRF3 signaling pathway, Nature Immunology, doi:10.1038/ni921
Fonseca, Zakaria, Jia, Graber, Svitkin et al., La-related protein 1 (LARP1) represses terminal oligopyrimidine (TOP) mRNA translation downstream of mTOR complex 1 (mTORC1), The Journal of Biological Chemistry, doi:10.1074/jbc.M114.621730
Fung, Yuen, Ye, Chan, Jin, A tug-ofwar between severe acute respiratory syndrome coronavirus 2 and host antiviral defence: Lessons from other pathogenic viruses, Emerg Microbes Infect
Gerl, Sampaio, Urban, Kalvodova, Verbavatz et al., Quantitative analysis of the lipidomes of the influenza virus envelope and MDCK cell apical membrane, The Journal of Cell Biology, doi:10.1083/jcb.201108175
Glende, Schwegmann-Wessels, Al-Falah, Pfefferle, Qu et al., Importance of cholesterol-rich membrane microdomains in the interaction of the S protein of SARScoronavirus with the cellular receptor angiotensin-converting enzyme 2, Virology, doi:10.1016/j.virol.2008.08.026
Goetz, Choe, Hansell, Chen, Mcdowell et al., Substrate specificity profiling and identification of a new class of inhibitor for the major protease of the SARS coronavirus, Biochemistry, doi:10.1021/bi0621415
Gordon, Tchesnokov, Feng, Porter, Gotte, The antiviral compound remdesivir potently inhibits RNAdependent RNA polymerase from Middle East respiratory syndrome coronavirus, The Journal of Biological Chemistry
Gordond, Jang, Bouhaddou, Xu, Obernier et al., A SARS-CoV-2 protein interaction map reveals targets for drug repurposing, Nature, doi:10.1038/s41586-020-2286-9
Gotz, Montenarh, Protein kinase CK2 in development and differentiation, Biomedical Reports, doi:10.3892/br.2016.829
Goubau, Deddouche, Sousa, Cytosolic sensing of viruses, Immunity
Goubau, Schlee, Deddouche, Pruijssers, Zillinger et al., Antiviral immunity via RIG-Imediated recognition of RNA bearing 5 0 -diphosphates, Nature, doi:10.1038/nature13590
Guo, Fare, Shorter, Therapeutic dissolution of aberrant phases by nuclear-import receptors, Trends in Cell Biology
Hackbart, Deng, Baker, Coronavirus endoribonuclease targets viral polyuridine sequences to evade activating host sensors, Proceedings of the National Academy of Sciences of the United States of America
Haga, Yamamoto, Nakai-Murakami, Osawa, Tokunaga et al., Modulation of TNF-α-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-α production and facilitates viral entry, Proceedings of the National Academy of Sciences of the United States of America, doi:10.1073/pnas.0711241105
Harcourt, Jukneliene, Kanjanahaluethai, Bechill, Severson et al., Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity, Journal of Virology, doi:10.1128/JVI.78.24.13600-13612.2004
Hatesuer, Bertram, Mehnert, Bahgat, Nelson et al., Tmprss2 is essential for influenza H1N1 virus pathogenesis in mice, PLoS Pathogens, doi:10.1371/journal.ppat.1003774
Heaton, Randall, Multifaceted roles for lipids in viral infection, Trends in Microbiology, doi:10.1016/j.tim.2011.03.007
Herath, Warner, Lubel, Dean, Jia et al., Upregulation of hepatic angiotensin-converting enzyme 2 (ACE2) and angiotensin-(1-7) levels in experimental biliary fibrosis, Journal of Hepatology, doi:10.1016/j.jhep.2007.03.008
Hernandez Prada, Ferreira, Katovich, Shenoy, Qi et al., Structure-based identification of small-molecule angiotensin-converting enzyme 2 activators as novel antihypertensive agents, Hypertension, doi:10.1161/HYPERTENSIONAHA.107.108944
Hoffmann, Kleine-Weber, Schroeder, Kruger, Herrler et al., SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell
Hogan, Chen, Nardone, Rao, Transcriptional regulation by calcium, calcineurin, and NFAT, Genes & Development
Holsinger, Nichani, Pinto, Lamb, Influenza A virus M2 ion channel protein: A structure-function analysis, Journal of Virology, doi:10.1128/JVI.68.3.1551-1563.1994
Hong, Freeberg, Han, Kamath, Yao et al., LARP1 functions as a molecular switch for mTORC1-mediated translation of an essential class of mRNAs, eLife, doi:10.7554/eLife.25237
Huang, Sexton, Skogerson, Devlin, Smith et al., Novel peptide inhibitors of angiotensinconverting enzyme 2, The Journal of Biological Chemistry, doi:10.1074/jbc.M212934200
Imai, Kuba, Rao, Huan, Guo et al., Angiotensin-converting enzyme 2 protects from severe acute lung failure, Nature, doi:10.1038/nature03712
Inoue, Tanaka, Tanaka, Inoue, Morita et al., Clathrin-dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic tail deleted, Journal of Virology, doi:10.1128/JVI.00253-07
Janeczko, Orzeszko, Kazimierczuk, Szyszka, Baier, CK2α and CK2α' subunits differ in their sensitivity to 4,5,6,7-tetrabromo-and 4,5,6,7-tetraiodo-1H-benzimidazole derivatives, European Journal of Medicinal Chemistry
Japp, Cruden, Barnes, Van Gemeren, Mathews et al., Acute cardiovascular effects of apelin in humans: Potential role in patients with chronic heart failure, Circulation, doi:10.1161/CIRCULATIONAHA.109.911339
Jeons, Ko, Lee, Choi, Byun et al., Identification of Antiviral Drug Candidates against SARS-CoV-2 from FDA-Approved Drugs, Antimicrobial Agents and Chemotherapy, doi:10.1128/aac.00819-20
Jin, Du, Xu, Deng, Liu et al., Structure of M pro from COVID-19 virus and discovery of its inhibitors, Nature, doi:10.1038/s41586-020-2223-y
Kato, Takeuchi, Sato, Yoneyama, Yamamoto et al., Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses, Nature, doi:10.1038/nature04734
Kawase, Shirato, Van Der Hoek, Taguchi, Matsuyama, Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry, Journal of Virology
Khan, Benthin, Zeno, Albertson, Boyd et al., A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome, Critical Care, doi:10.1186/s13054-017-1823-x
Kim, Heinlein, Hackman, Nelson, Phenotypic analysis of mice lacking the Tmprss2-encoded protease, Molecular Cell. Biology
Kim, Sze, Liu, Lam, The stress granule protein G3BP1 binds viral dsRNA and RIG-I to enhance interferon-β response, The Journal of Biological Chemistry
Kindler, Thiel, Weber, Interaction of SARS and MERS coronaviruses with the antiviral interferon response, Advances in Virus Research
Knoops, Kikkert, Worm, Zevenhoven-Dobbe, Van Der Meer et al., SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum, PLoS Biology, doi:10.1371/journal.pbio.0060226
Kopecky-Bromberg, Martinez-Sobrido, Frieman, Baric, Palese, Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists, Journal of Virology
Kosyna, Depping, Controlling the gatekeeper: Therapeutic targeting of nuclear transport, Cell, doi:10.3390/cells7110221
Kowalczuk, Broer, Tietze, Vanslambrouck, Rasko et al., A protein complex in the brush-border membrane explains a Hartnup disorder allele, The FASEB Journal, doi:10.1096/fj.08-107300
Krzystyniak, Dupuy, Entry of mouse hepatitis virus 3 into cells, The Journal of General Virology, doi:10.1099/0022-1317-65-1-227
Kuba, Imai, Ohto-Nakanishi, Penninger, Trilogy of ACE2: A peptidase in the renin-angiotensin system, a SARS receptor, and a partner for amino acid transporters, Pharmacology & Therapeutics
Kuba, Imai, Rao, Gao, Guo et al., A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury, Nature Medicine, doi:10.1038/nm1267
Kulemina, Ostrov, Prediction of off-target effects on angiotensin-converting enzyme 2, Journal of Biomolecular Screening
Lambert, Yarski, Warner, Thornhill, Parkin et al., Tumor necrosis factor-α convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2), The Journal of Biological Chemistry, doi:10.1074/jbc.M505111200
Lang, Yang, Deng, Liu, Yang et al., Inhibition of SARS pseudovirus cell entry by lactoferrin binding to heparan sulfate proteoglycans, PLoS ONE, doi:10.1371/journal.pone.0023710
Lei, Kusov, Hilgenfeld, Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein, Antiviral Research
Lei, Qian, Li, Zhang, Fu et al., Neutralization of SARS-CoV-2 spike pseudotyped virus by recombinant ACE2-Ig, Nature Communications, doi:10.1038/s41467-020-16048-4
Lemmon, Membrane recognition by phospholipid-binding domains, Molecular Cell Biology
Letko, Marzi, Munster, Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses, Nature Microbiology
Lew, Warner, Hanchapola, Yarski, Ramchand et al., Angiotensin-converting enzyme 2 catalytic activity in human plasma is masked by an endogenous inhibitor, Experimental Physiology, doi:10.1113/expphysiol.2007.040352
Li, Chan, Lee, Clinical implications of antiviral resistance in influenza, Viruses
Li, De Clercq, Therapeutic options for the 2019 novel coronavirus (2019-nCoV), Nature Reviews. Drug Discovery
Li, Li, Farzan, Harrison, Structure of SARS coronavirus spike receptor-binding domain complexed with receptor, Science
Li, Moore, Vasilieva, Sui, Wong et al., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus, Nature, doi:10.1038/nature02145
Li, Qiao, Zhang, Analysis of angiotensin-converting enzyme 2 (ACE2) from different species sheds some light on crossspecies receptor usage of a novel coronavirus 2019-nCoV, The Journal of Infection
Li, Yang, Zhao, Zhi, Wang et al., Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China, Clinical Research in Cardiology, doi:10.1007/s00392-020-01626-9
Lin, Ferguson, White, Wang, Vessella et al., Prostate-localized and androgen-regulated expression of the membrane-bound serine protease TMPRSS2, Cancer Research
Lindner, Fotouhi-Ardakani, Lytvyn, Lachance, Sulea et al., The papain-like protease from the severe acute respiratory syndrome coronavirus is a deubiquitinating enzyme, Journal of Virology, doi:10.1128/JVI.79.24.15199-15208.2005
Lindner, Lytvyn, Qi, Lachance, Ziomek et al., Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus papain-like protease, Archives of Biochemistry and Biophysics, doi:10.1016/j.abb.2007.07.006
Lippi, Lavie, Sanchis-Gomar, Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): Evidence from a meta-analysis, Progress in Cardiovascular Diseases, doi:10.1016/j.pcad.2020.03.001
Liu, Cai, Xue, Wang, Xia et al., G3BP1 promotes DNA binding and activation of cGAS, Nature Immunology, doi:10.1038/s41590-018-0262-4
Liu, Wei, Shi, Shan, Wang, Tom70 mediates activation of interferon regulatory factor 3 on mitochondria, Cell Research
Lopez, Riffle, Pike, Gardner, Hogue, Importance of conserved cysteine residues in the coronavirus envelope protein, Journal of Virology
Lu, Wang, Gao, Bat-to-human: spike features determining 'host jump' of coronaviruses SARS-CoV, MERS-CoV, and beyond, Trends in Microbiology
Lu, Zhao, Li, Niu, Yang et al., Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding, Lancet, doi:10.1016/S0140-6736(20)30251-8
Lu, Zheng, Xu, Schwarz, Du et al., Severe acute respiratory syndrome-associated coronavirus 3a protein forms an ion channel and modulates virus release, Proceedings of the National Academy of Sciences of the United States of America, doi:10.1073/pnas.0605402103
Luan, Lu, Jin, Zhang, Spike protein recognition of mammalian ACE2 predicts the host range and an optimized ACE2 for SARS-CoV-2 infection, Biochemical and Biophysical Research Communications, doi:10.1016/j.bbrc.2020.03.047
Lucas, Heinlein, Kim, Hernandez, Malik et al., The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis, Cancer Discovery, doi:10.1158/2159-8290.CD-13-1010
Lucas, True, Hawley, Matsumura, Morrissey et al., The androgen-regulated type II serine protease TMPRSS2 is differentially expressed and mislocalized in prostate adenocarcinoma, The Journal of Pathology, doi:10.1002/path.2330
Lukassen, Chua, Trefzer, Kahn, Schneider et al., SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells, The EMBO Journal
Mangan, Olhava, Roush, Seidel, Glick et al., Targeting the NLRP3 inflammasome in inflammatory diseases, Nature Reviews. Drug Discovery, doi:10.1038/nrd.2018.149
Masters, The molecular biology of coronaviruses, Advances in Virus Research, doi:10.1016/S0065-3527(06)66005-3
Matsuyama, Nao, Shirato, Kawase, Saito et al., Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells, Proceedings of the National Academy of Sciences of the United States of America, doi:10.1073/pnas.2002589117
Mazzon, Mercer, Lipid interactions during virus entry and infection, Cellular Microbiology
Mcbride, Van Zyl, Fielding, The coronavirus nucleocapsid is a multifunctional protein, Viruses
Mehta, Mcauley, Brown, Sanchez, Tattersall et al., COVID-19: Consider cytokine storm syndromes and immunosuppression, Lancet, doi:10.1016/S0140-6736(20)30628-0
Mesel-Lemoine, Millet, Vidalain, Law, Vabret et al., A human coronavirus responsible for the common cold massively kills dendritic cells but not monocytes, Journal of Virology, doi:10.1128/JVI.00269-12
Meyer, Sielaff, Hammami, Bottcher-Friebertshauser, Garten et al., Identification of the first synthetic inhibitors of the type II transmembrane serine protease TMPRSS2 suitable for inhibition of influenza virus activation, Biochemical Journal, doi:10.1042/BJ20130101
Millet, Whittaker, Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis, Virus Research
Minakshi, Padhan, Rehman, Hassan, Ahmad, The SARS Coronavirus 3a protein binds calcium in its cytoplasmic domain, Virus Research
Minato, Nirasawa, Sato, Yamaguchi, Hoshizaki et al., B38-CAP is a bacteria-derived ACE2-like enzyme that suppresses hypertension and cardiac dysfunction, Nature Communications, doi:10.1038/s41467-020-14867-z
Mizzen, Hilton, Cheley, Anderson, Attenuation of murine coronavirus infection by ammonium chloride, Virology
Mores, Matziari, Beau, Cuniasse, Yiotakis et al., Development of potent and selective phosphinic peptide inhibitors of angiotensin-converting enzyme 2, Journal of Medicinal Chemistry, doi:10.1021/jm701275z
Muller, Hardt, Schwudke, Neuman, Pleschka et al., Inhibition of cytosolic phospholipase A2α impairs an early step of coronavirus replication in cell culture, Journal of Virology
Mycroft-West, Su, Elli, Guimond, Miller et al., The 2019 coronavirus (SARS-CoV-2) surface protein (Spike) S1 receptor binding domain undergoes conformational change upon heparin binding, bioRxiv, doi:10.1101/2020.02.29
Najjar, Suebsuwong, Ray, Thapa, Maki et al., Structure guided design of potent and selective ponatinib-based hybrid inhibitors for RIPK1, Cell Reports, doi:10.1016/j.celrep.2015.02.052
Nakagawa, Narayanan, Wada, Popov, Cajimat et al., The endonucleolytic RNA cleavage function of nsp1 of Middle East respiratory syndrome coronavirus promotes the production of infectious virus particles in specific human cell lines, Journal of Virology, doi:10.1128/JVI.01157-18
Nelson, Eugui, Wang, Allison, Synthesis and immunosuppressive activity of some side-chain variants of mycophenolic acid, Journal of Medicinal Chemistry
Nieto-Torres, Dediego, Verdia-Baguena, Jimenez-Guardeno, Regla-Nava et al., Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis, PLoS Pathogens, doi:10.1371/journal.ppat.1004077
Nieto-Torres, Verdia-Baguena, Jimenez-Guardeno, Regla-Nava, Castano-Rodriguez et al., Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome, Virology, doi:10.1016/j.virol.2015.08.010
Ocaranza, Godoy, Jalil, Varas, Collantes et al., Enalapril attenuates downregulation of angiotensinconverting enzyme 2 in the late phase of ventricular dysfunction in myocardial infarcted rat, Hypertension, doi:10.1161/01.HYP.0000237862.94083
Olds, Kabbani, Is nicotine exposure linked to cardiopulmonary vulnerability to COVID-19 in the general population?, FEBS Journal
Oostra, De Haan, Rottier, The 29-nucleotide deletion present in human but not in animal severe acute respiratory syndrome coronaviruses disrupts the functional expression of open reading frame 8, Journal of Virology
Oudit, Liu, Zhong, Basu, Chow et al., Human recombinant ACE2 reduces the progresof diabetic nephropathy, Diabetes, doi:10.2337/db09-1218
Paoloni-Giacobino, Chen, Peitsch, Rossier, Antonarakis, Cloning of the TMPRSS2 gene, which encodes a novel serine protease with transmembrane, LDLRA, and SRCR domains and maps to 21q22.3, Genomics
Paszti-Gere, Czimmermann, Ujhelyi, Balla, Maiwald et al., In vitro characterization of TMPRSS2 inhibition in IPEC-J2 cells, Journal of Enzyme Inhibition and Medicinal Chemistry, doi:10.1080/14756366.2016.1193732
Perlman, Netland, Coronaviruses post-SARS: update on replication and pathogenesis, Coronaviruses post-SARS: update on replication and pathogenesis
Pervushin, Tan, Parthasarathy, Lin, Jiang et al., Structure and inhibition of the SARS coronavirus envelope protein ion channel, PLoS Pathogens, doi:10.1371/journal.ppat.1000511
Petit, Chouljenko, Iyer, Colgrove, Farzan et al., Palmitoylation of the cysteine-rich endodomain of the SARS-coronavirus spike glycoprotein is important for spike-mediated cell fusion, Virology, doi:10.1016/j.virol.2006.10.034
Petit, Melancon, Chouljenko, Colgrove, Farzan et al., Genetic analysis of the SARScoronavirus spike glycoprotein functional domains involved in cellsurface expression and cell-to-cell fusion, Virology, doi:10.1016/j.virol.2005.06.046
Pfefferle, Schopf, Kogl, Friedel, Muller et al., The SARS-coronavirus-host interactome: identification of cyclophilins as target for pan-coronavirus inhibitors, PLoS Pathogens, doi:10.1371/journal.ppat.1002331
Philippe, Van Den Elzen, Watson, Thoreen, Global analysis of LARP1 translation targets reveals tunable and dynamic features of 5' TOP motifs, Proceedings of the National Academy of Sciences of the United States of America
Pierre, Chua, O'brien, Siddiqui-Jain, Bourbon et al., Discovery and SAR of 5-(3-chlorophenylamino)benzo
Pillaiyar, Meenakshisundaram, Manickam, Recent discovery and development of inhibitors targeting coronaviruses, Drug Discovery Today, doi:10.1016/j.drudis.2020.01.015
Pinto, Holsinger, Lamb, Influenza virus M 2 protein has ion channel activity, Cell
Putics, Filipowicz, Hall, Gorbalenya, Ziebuhr, ADP-ribose-1 00 -monophosphatase: A conserved coronavirus enzyme that is dispensable for viral replication in tissue culture, Journal of Virology
Raj, Mou, Smits, Dekkers, Muller et al., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC, Nature, doi:10.1038/nature12005
Ratia, Kilianski, Baez-Santos, Baker, Mesecar, Structural basis for the ubiquitin-linkage specificity and deISGylating activity of SARS-CoV papain-like protease, PLoS Pathogens
Ratia, Saikatendu, Santarsiero, Barretto, Baker et al., Severe acute respiratory syndrome coronavirus papain-like protease: Structure of a viral deubiquitinating enzyme, Proceedings of the National Academy of Sciences of the United States of America, doi:10.1073/pnas.0510851103
Roberts, Thomas, Guarner, Lamirande, Babcock et al., Therapy with a severe acute respiratory syndrome-associated coronavirus-neutralizing human monoclonal antibody reduces disease severity and viral burden in golden Syrian hamsters, The Journal of Infectious Diseases, doi:10.1086/500143
Roberts, Vogel, Guarner, Hayes, Murphy et al., Severe acute respiratory syndrome coronavirus infection of golden Syrian hamsters, Journal of Virology, doi:10.1128/JVI.79.1.503-511.2005
Ruch, Machamer, The coronavirus E protein: Assembly and beyond, Viruses
Schafer, Marg, Gschwind, Ullrich, Distinct ADAM metalloproteinases regulate G protein-coupled receptorinduced cell proliferation and survival, The Journal of Biological Chemistry
Schlee, Master sensors of pathogenic RNA-RIG-I like receptors, Immunobiology
Sevajol, Subissi, Decroly, Canard, Imbert, Insights into RNA synthesis, capping, and proofreading mechanisms of SARScoronavirus, Virus Research
Sharma, Tenoever, Grandvaux, Zhou, Lin et al., Triggering the interferon antiviral response through an IKK-related pathway, Science, doi:10.1126/science.1081315
Shi, Qi, Boularan, Huang, Abu-Asab et al., SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome, Journal of Immunology, doi:10.4049/jimmunol.1303196
Shi, Wang, Shao, Huang, Gan et al., COVID-19 infection: The perspectives on immune responses, Cell and Differentiation, doi:10.1038/s41418-020-0530-3
Shij, Wen, Zhong, Yang, Wang et al., Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2, Science, doi:10.1126/science.abb7015
Shiy, Wang, Shao, Huang, Gan et al., COVID-19 infection: The perspectives on immune responses, Cell Death & Differentiation, doi:10.1038/s41418-020-0530-3
Simmons, Gosalia, Rennekamp, Reeves, Diamond et al., Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry, Proceedings of the National Academy of Sciences of the United States of America, doi:10.1073/pnas.0505577102
Sims, Tilton, Menachery, Gralinski, Schafer et al., Release of severe acute respiratory syndrome coronavirus nuclear import block enhances host transcription in human lung cells, Journal of Virology, doi:10.1128/JVI.02520-12
Siu, Yuen, Castano-Rodriguez, Ye, Yeung et al., Severe acute respiratory syndrome coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC, The FASEB Journal, doi:10.1096/fj.201802418R
Snijder, Bredenbeek, Dobbe, Thiel, Ziebuhr et al., Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage, Journal of Molecular Biology, doi:10.1016/S0022-2836(03)00865-9
Song, Xu, Bao, Zhang, Yu et al., From SARS to MERS, thrusting coronaviruses into the spotlight, Viruses
Srinivasan, Cui, Gao, Liu, Lu et al., Structural genomics of SARS-CoV-2 indicates evolutionary conserved functional regions of viral proteins, Viruses, doi:10.3390/v12040360
Sriramula, Pedersen, Xia, Lazartigues, Determining the enzymatic activity of angiotensin-converting enzyme 2 (ACE2) in brain tissue and cerebrospinal fluid using a quenched fluorescent substrate, Methods in Molecular Biology
Surya, Li, Verdia-Baguena, Aguilella, Torres, MERS coronavirus envelope protein has a single transmembrane domain that forms pentameric ion channels, Virus Research
Swarthout, Lobo, Farh, Croke, Greentree et al., DHHC9 and GCP16 constitute a human protein fatty acyltransferase with specificity for H-and N-Ras, The Journal of Biological Chemistry, doi:10.1074/jbc.M504113200
Tanabe, List, The role of type II transmembrane serine protease-mediated signaling in cancer, The FEBS Journal
Tarnow, Engels, Arendt, Schwalm, Sediri et al., TMPRSS2 is a host factor that is essential for pneumotropism and pathogenicity of H7N9 influenza A virus in mice, Journal of Virology, doi:10.1128/JVI.03799-13
Thiel, Ivanov, Putics, Hertzig, Schelle et al., Mechanisms and enzymes involved in SARS coronavirus genome expression, The Journal of General Virology, doi:10.1099/vir.0.19424-0
Tipnis, Hooper, Hyde, Karran, Christie et al., A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase, The Journal of Biological Chemistry, doi:10.1074/jbc.M002615200
Tomlins, Rhodes, Perner, Dhanasekaran, Mehra et al., Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer, Science, doi:10.1126/science.1117679
Torres, Maheswari, Parthasarathy, Ng, Liu et al., Conductance and amantadine binding of a pore formed by a lysine-flanked transmembrane domain of SARS coronavirus envelope protein, Protein Science, doi:10.1110/ps.062730007
Uhlen, Fagerberg, Hallstrom, Lindskog, Oksvold et al., Proteomics. Tissue-based map of the human proteome, Science, doi:10.1126/science.1260419
Vanle, Olcott, Jimenez, Bashmi, Danovitch et al., NMDA antagonists for treating the non-motor symptoms in Parkinson's disease, Translational Psychiatry, doi:10.1038/s41398-018-0162-2
Vardavas, Nikitara, COVID-19 and smoking: A systematic review of the evidence, Tobacco Induced Diseases
Vickers, Hales, Kaushik, Dick, Gavin et al., The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2, The Journal of Biological Chemistry, doi:10.1074/jbc.M200581200CoronaviridaeStudyGroup
Walls, Park, Tortorici, Wall, Mcguire et al., Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein, Cell
Wang, Chen, Zhang, Yang, Li et al., The E3 ubiquitin ligase Nrdp1 'preferentially' promotes TLR-mediated production of type I interferon, Nature Immunology, doi:10.1038/ni.1742
Wang, Takeuchi, Pinto, Lamb, Ion channel activity of influenza A virus M2 protein: Characterization of the amantadine block, Journal of Virology
Wilson, Greer, Hooper, Zijlstra, Walker et al., The membrane-anchored serine protease, TMPRSS2, activates PAR-2 in prostate cancer cells, Biochemical Journal, doi:10.1042/BJ20041066
Wilson, Mckinlay, Gage, Ewart, SARS coronavirus E protein forms cation-selective ion channels, Virology
Wiser, Kim, Ascano, G3BP1 enhances cytoplasmic DNA pattern recognition, Nature Immunology
Wittine, Stipkovic Babic, Makuc, Plavec, Kraljevic Pavelic et al., Novel 1,2,4-triazole and imidazole derivatives of L-ascorbic and imino-ascorbic acid: Synthesis, anti-HCV and antitumor activity evaluations, Bioorganic & Medicinal Chemistry, doi:10.1016/j.bmc.2012.01.054
Wong, Lui, Jin, A molecular arms race between host innate antiviral response and emerging human coronaviruses, Virologica Sinica, doi:10.1007/s12250-015-3683-3
Wrapp, Wang, Corbett, Goldsmith, Hsieh et al., Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation, doi:10.1126/science.abb2507
Wu, Zhao, Yu, Chen, Wang et al., A new coronavirus associated with human respiratory disease in China, Nature, doi:10.1038/s41586-020-2008-3
Xia, Liu, Wang, Xu, Lan et al., Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion, Cell Research, doi:10.1038/s41422-020-0305-x
Xiao, Burns, Measurement of angiotensin converting enzyme 2 activity in biological fluid (ACE2), Methods in Molecular Biology
Xu, Shi, Wang, Zhang, Huang et al., Pathological findings of COVID-19 associated with acute respiratory distress syndrome, The Lancet Respiratory Medicine, doi:10.1016/S2213-2600(20)30076-X
Xu, Sriramula, Xia, Moreno-Walton, Culicchia et al., Clinical relevance and role of neuronal AT1 receptors in ADAM17-mediated ACE2 shedding in neurogenic hypertension, Circulation Research, doi:10.1161/CIRCRESAHA.116.310509
Yager, Konan, Sphingolipids as potential therapeutic targets against enveloped human RNA viruses, Viruses
Yan, Zhang, Li, Xia, Guo et al., Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2, Science, doi:10.1126/science.abb2762
Yang, Chen, Bian, Tu, Xing et al., Proteolytic processing, deubiquitinase and interferon antagonist activities of Middle East respiratory syndrome coronavirus papainlike protease, The Journal of General Virology, doi:10.1099/vir.0.059014-0
Yang, Chen, Hsu, Wu, Tseng et al., Synthesis, crystal structure, structure-activity relationships, and antiviral activity of a potent SARS coronavirus 3CL protease inhibitor, Journal of Medicinal Chemistry, doi:10.1021/jm0603926
Yang, Kuc, Brame, Dyson, Singer et al., Pyr 1 ]Apelin-13 1-12 is a biologically active ACE2 metabolite of the endogenous cardiovascular peptide [Pyr 1 ]Apelin-13, Frontiers in Neuroscience
Yang, Ru, Ren, Bai, Wei et al., G3BP1 inhibits RNA virus replication by positively regulating RIG-Imediated cellular antiviral response, Cell Death & Disease, doi:10.1038/s41419-019-2178-9
Yeager, Ashmun, Williams, Cardellichio, Shapiro et al., Human aminopeptidase N is a receptor for human coronavirus 229E, Nature, doi:10.1038/357420a0
Yeo, Kaushal, Yeo, Enteric involvement of coronaviruses: Is faecal-oral transmission of SARS-CoV-2 possible, The Lancet Gastroenterology & Hepatology
Yu, Qi, Xu, Li, Liu et al., Age-related rhesus macaque models of COVID-19, Animal Model and Experimental Medicine, doi:10.1002/ame2.12108
Zhang, Lin, Kusov, Nian, Ma et al., α-Ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: Structure-based design, synthesis, and activity assessment, Journal of Medicinal Chemistry, doi:10.1021/acs.jmedchem.9b01828
Zhang, Wang, Lv, Yu, Xie et al., The ORF4a protein of human coronavirus 229E functions as a viroporin that regulates viral production, Biochimica et Biophysica Acta, doi:10.1016/j.bbamem.2013.07.025
Zhao, Li, Xue, Zou, Chen et al., Structure of the main protease from a global infectious human coronavirus, HCoV-HKU1, Journal of Virology, doi:10.1128/JVI.00298-08
Zhao, Yang, Huang, Li, Gu et al., Relationship between the ABO Blood Group and the COVID-19 Susceptibility, medRxiv, doi:10.1101/2020.03.11
Zhao, Zhu, Qin, Tao, Li et al., Fenofibrate down-regulates the expressions of androgen receptor (AR) and AR target genes and induces oxidative stress in the prostate cancer cell line LNCaP, Biochemical and Biophysical Research Communications, doi:10.1016/j.bbrc.2013.01.105
Zhong, Basu, Guo, Chow, Byrns et al., Angiotensin-converting enzyme 2 suppresses pathological hypertrophy, myocardial fibrosis, and cardiac dysfunction, Circulation
Zhou, Fan, Lan, Yang, Shi et al., Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin, Nature, doi:10.1038/s41586-018-0010-9
Zhou, Sun, Yan, Tang, Li et al., Swine acute diarrhea syndrome coronavirus (SADS-CoV) antagonizes interferon-β production via blocking IPS-1 and RIG-I, Virus Research, doi:10.1016/j.virusres.2019.197843
Zhu, Zhang, Wang, Li, Yang et al., A novel coronavirus from patients with pneumonia in China, 2019, The New England Journal of Medicine, doi:10.1056/NEJMoa2001017
Ziebuhr, Schelle, Karl, Minskaia, Bayer et al., Human coronavirus 229E papain-like proteases have overlapping specificities but distinct functions in viral replication, Journal of Virology, doi:10.1128/JVI.02091-06
Ziegler, Allon, Nyquist, Mbano, Miao et al., SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues, Cell, doi:10.1016/j.cell.2020.04.035
Zisman, Keller, Weaver, Lin, Speth et al., Increased angiotensin-(1-7)-forming activity in failing human heart ventricles: evidence for upregulation of the angiotensin-converting enzyme Homologue ACE2, Circulation, doi:10.1161/01.CIR.0000094734.67990
Zumla, Chan, Azhar, Hui, Yuen, Coronaviruses-Drug discovery and therapeutic options, Nature Reviews. Drug Discovery, doi:10.1038/nrd.2015
DOI record: { "DOI": "10.1111/bph.15094", "ISSN": [ "0007-1188", "1476-5381" ], "URL": "http://dx.doi.org/10.1111/bph.15094", "abstract": "<jats:sec><jats:label/><jats:p>In this review, we identify opportunities for drug discovery in the treatment of COVID‐19 and, in so doing, provide a rational roadmap whereby pharmacology and pharmacologists can mitigate against the global pandemic. We assess the scope for targeting key host and viral targets in the mid‐term, by first screening these targets against drugs already licensed, an agenda for drug repurposing, which should allow rapid translation to clinical trials. A simultaneous, multi‐pronged approach using conventional drug discovery methods aimed at discovering novel chemical and biological means of targeting a short list of host and viral entities which should extend the arsenal of anti‐SARS‐CoV‐2 agents. This longer term strategy would provide a deeper pool of drug choices for future‐proofing against acquired drug resistance. Second, there will be further viral threats, which will inevitably evade existing vaccines. This will require a coherent therapeutic strategy which pharmacology and pharmacologists are best placed to provide.</jats:p></jats:sec><jats:sec><jats:title>LINKED ARTICLES</jats:title><jats:p>This article is part of a themed issue on The Pharmacology of COVID‐19. To view the other articles in this section visit <jats:ext-link xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc\">http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc</jats:ext-link></jats:p></jats:sec>", "alternative-id": [ "10.1111/bph.15094" ], "assertion": [ { "group": { "label": "Publication History", "name": "publication_history" }, "label": "Received", "name": "received", "order": 0, "value": "2020-04-11" }, { "group": { "label": "Publication History", "name": "publication_history" }, "label": "Accepted", "name": "accepted", "order": 1, "value": "2020-04-28" }, { "group": { "label": "Publication History", "name": "publication_history" }, "label": "Published", "name": "published", "order": 2, "value": "2020-07-19" } ], "author": [ { "ORCID": "https://orcid.org/0000-0003-4417-497X", "affiliation": [ { "name": "Chair, Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC‐IUPHAR), School of Life Sciences University of Nottingham Nottingham UK" } ], "authenticated-orcid": false, "family": "Alexander", "given": "Steve P.H.", "sequence": "first" }, { "ORCID": "https://orcid.org/0000-0002-0524-0260", "affiliation": [ { "name": "Curator, Guide to PHARMACOLOGY (GtoPdb), Deanery of Biomedical Sciences University of Edinburgh Edinburgh UK" } ], "authenticated-orcid": false, "family": "Armstrong", "given": "Jane F.", "sequence": "additional" }, { "ORCID": "https://orcid.org/0000-0002-2096-3117", "affiliation": [ { "name": "Executive Committee, NC‐IUPHAR University of Cambridge Cambridge UK" } ], "authenticated-orcid": false, "family": "Davenport", "given": "Anthony P.", "sequence": "additional" }, { "ORCID": "https://orcid.org/0000-0001-6660-4032", "affiliation": [ { "name": "Principal Investigator, Guide to PHARMACOLOGY (GtoPdb), Executive Committee, NC‐IUPHAR, Deanery of Biomedical Sciences University of Edinburgh Edinburgh UK" } ], "authenticated-orcid": false, "family": "Davies", "given": "Jamie A.", "sequence": "additional" }, { "ORCID": "https://orcid.org/0000-0001-9855-7103", "affiliation": [ { "name": "Curator, Guide to PHARMACOLOGY (GtoPdb), Deanery of Biomedical Sciences University of Edinburgh Edinburgh UK" } ], "authenticated-orcid": false, "family": "Faccenda", "given": "Elena", "sequence": "additional" }, { "ORCID": "https://orcid.org/0000-0002-9262-8318", "affiliation": [ { "name": "Database Developer, Guide to PHARMACOLOGY (GtoPdb), Deanery of Biomedical Sciences University of Edinburgh Edinburgh UK" } ], "authenticated-orcid": false, "family": "Harding", "given": "Simon D.", "sequence": "additional" }, { "ORCID": "https://orcid.org/0000-0003-0620-2810", "affiliation": [ { "name": "First Vice‐President and Chair of Immunopharmacology Section, International Union of Basic and Clinical Pharmacology (IUPHAR) Hebrew University of Jerusalem Jerusalem Israel" } ], "authenticated-orcid": false, "family": "Levi‐Schaffer", "given": "Francesca", "sequence": "additional" }, { "ORCID": "https://orcid.org/0000-0002-9254-7040", "affiliation": [ { "name": "University of Cambridge Cambridge UK" } ], "authenticated-orcid": false, "family": "Maguire", "given": "Janet J.", "sequence": "additional" }, { "ORCID": "https://orcid.org/0000-0003-2280-845X", "affiliation": [ { "name": "Senior Curator, Guide to PHARMACOLOGY (GtoPdb), Executive Committee, NC‐IUPHAR, Deanery of Biomedical Sciences University of Edinburgh Edinburgh UK" } ], "authenticated-orcid": false, "family": "Pawson", "given": "Adam J.", "sequence": "additional" }, { "ORCID": "https://orcid.org/0000-0001-9580-0446", "affiliation": [ { "name": "Deanery of Biomedical Sciences University of Edinburgh Edinburgh UK" }, { "name": "TW2Informatics Ltd Gothenburg Sweden" } ], "authenticated-orcid": false, "family": "Southan", "given": "Christopher", "sequence": "additional" }, { "ORCID": "https://orcid.org/0000-0002-1248-8221", "affiliation": [ { "name": "Secretary‐General, International Union of Basic and Clinical Pharmacology (IUPHAR) and Spedding Research Solutions SAS Le Vesinet France" } ], "authenticated-orcid": false, "family": "Spedding", "given": "Michael", "sequence": "additional" } ], "container-title": "British Journal of Pharmacology", "container-title-short": "British J Pharmacology", "content-domain": { "crossmark-restriction": true, "domain": [ "bpspubs.onlinelibrary.wiley.com" ] }, "created": { "date-parts": [ [ 2020, 5, 2 ] ], "date-time": "2020-05-02T05:27:45Z", "timestamp": 1588397265000 }, "deposited": { "date-parts": [ [ 2023, 9, 4 ] ], "date-time": "2023-09-04T08:47:31Z", "timestamp": 1693817251000 }, "funder": [ { "DOI": "10.13039/100010269", "award": [ "107715/Z/15/Z" ], "doi-asserted-by": "publisher", "id": [ { "asserted-by": "publisher", "id": "10.13039/100010269", "id-type": "DOI" } ], "name": "Wellcome Trust" } ], "indexed": { "date-parts": [ [ 2025, 6, 1 ] ], "date-time": "2025-06-01T22:29:33Z", "timestamp": 1748816973372, "version": "3.40.5" }, "is-referenced-by-count": 61, "issue": "21", "issued": { "date-parts": [ [ 2020, 7, 19 ] ] }, "journal-issue": { "issue": "21", "published-print": { "date-parts": [ [ 2020, 11 ] ] } }, "language": "en", "license": [ { "URL": "http://creativecommons.org/licenses/by/4.0/", "content-version": "vor", "delay-in-days": 0, "start": { "date-parts": [ [ 2020, 7, 19 ] ], "date-time": "2020-07-19T00:00:00Z", "timestamp": 1595116800000 } } ], "link": [ { "URL": "https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1111%2Fbph.15094", "content-type": "application/pdf", "content-version": "vor", "intended-application": "text-mining" }, { "URL": "https://onlinelibrary.wiley.com/doi/pdf/10.1111/bph.15094", "content-type": "application/pdf", "content-version": "vor", "intended-application": "text-mining" }, { "URL": "https://onlinelibrary.wiley.com/doi/full-xml/10.1111/bph.15094", "content-type": "application/xml", "content-version": "vor", "intended-application": "text-mining" }, { "URL": "https://bpspubs.onlinelibrary.wiley.com/doi/pdf/10.1111/bph.15094", "content-type": "unspecified", "content-version": "vor", "intended-application": "similarity-checking" } ], "member": "311", "original-title": [], "page": "4942-4966", "prefix": "10.1111", "published": { "date-parts": [ [ 2020, 7, 19 ] ] }, "published-online": { "date-parts": [ [ 2020, 7, 19 ] ] }, "published-print": { "date-parts": [ [ 2020, 11 ] ] }, "publisher": "Wiley", "reference": [ { "article-title": "Catalytic cleavage of the androgen‐regulated TMPRSS2 protease results in its secretion by prostate and prostate cancer epithelia", "author": "Afar D. E.", "first-page": "1686", "journal-title": "Cancer Research", "key": "e_1_2_10_2_1", "volume": "61", "year": "2001" }, { "article-title": "The Concise Guide to PHARMACOLOGY 2019/20: Introduction and Other Protein Targets", "author": "Alexander S. P. H.", "issue": "1", "journal-title": "British Journal of Pharmacology", "key": "e_1_2_10_3_1", "volume": "176", "year": "2019" }, { "DOI": "10.1016/j.immuni.2020.03.007", "doi-asserted-by": "publisher", "key": "e_1_2_10_4_1" }, { "DOI": "10.1126/science.1085658", "doi-asserted-by": "publisher", "key": "e_1_2_10_5_1" }, { "DOI": "10.1002/jmv.25719", "doi-asserted-by": "publisher", "key": "e_1_2_10_6_1" }, { "DOI": "10.1128/mBio.00524-13", "doi-asserted-by": "publisher", "key": "e_1_2_10_7_1" }, { "DOI": "10.1186/s13063-019-3846-x", "doi-asserted-by": "publisher", "key": "e_1_2_10_8_1" }, { "DOI": "10.1128/JVI.01294-14", "doi-asserted-by": "publisher", "key": "e_1_2_10_9_1" }, { "DOI": "10.1016/j.antiviral.2014.12.015", "doi-asserted-by": "publisher", "key": "e_1_2_10_10_1" }, { "DOI": "10.1128/JVI.79.24.15189-15198.2005", "doi-asserted-by": "publisher", "key": "e_1_2_10_11_1" }, { "DOI": "10.1042/CS20200163", "doi-asserted-by": "publisher", "key": "e_1_2_10_12_1" }, { "DOI": "10.1073/pnas.0809524106", "doi-asserted-by": "publisher", "key": "e_1_2_10_13_1" }, { "DOI": "10.3390/v4061011", "doi-asserted-by": "publisher", "key": "e_1_2_10_14_1" }, { "DOI": "10.1016/j.amjhyper.2004.02.022", "doi-asserted-by": "publisher", "key": "e_1_2_10_15_1" }, { "DOI": "10.1177/1470320316661060", "doi-asserted-by": "publisher", "key": "e_1_2_10_16_1" }, { "DOI": "10.1371/journal.pone.0035876", "doi-asserted-by": "publisher", "key": "e_1_2_10_17_1" }, { "DOI": "10.1172/JCI138745", "doi-asserted-by": "publisher", "key": "e_1_2_10_18_1" }, { "DOI": "10.1177/1087057104264577", "doi-asserted-by": "publisher", "key": "e_1_2_10_19_1" }, { "DOI": "10.1038/nchembio.313", "doi-asserted-by": "publisher", "key": "e_1_2_10_20_1" }, { "DOI": "10.1111/j.1476-5381.2012.01975.x", "doi-asserted-by": "publisher", "key": "e_1_2_10_21_1" }, { "DOI": "10.1124/pr.114.009928", "doi-asserted-by": "publisher", "key": "e_1_2_10_22_1" }, { "DOI": "10.1128/JVI.00411-20", "doi-asserted-by": "publisher", "key": "e_1_2_10_23_1" }, { "DOI": "10.1016/S2213-2600(20)30117-X", "doi-asserted-by": "publisher", "key": "e_1_2_10_24_1" }, { "DOI": "10.1016/j.antiviral.2020.104787", "doi-asserted-by": "publisher", "key": "e_1_2_10_25_1" }, { "DOI": "10.1053/j.gastro.2008.10.055", "doi-asserted-by": "publisher", "key": "e_1_2_10_26_1" }, { "DOI": "10.1186/1743-422X-2-73", "doi-asserted-by": "publisher", "key": "e_1_2_10_27_1" }, { "DOI": "10.1016/j.biocel.2009.04.019", "doi-asserted-by": "publisher", "key": "e_1_2_10_28_1" }, { "DOI": "10.1093/infdis/jiv392", "doi-asserted-by": "publisher", "key": "e_1_2_10_29_1" }, { "DOI": "10.1080/22221751.2020.1719902", "doi-asserted-by": "publisher", "key": "e_1_2_10_30_1" }, { "DOI": "10.1016/j.bbamem.2010.08.004", "doi-asserted-by": "publisher", "key": "e_1_2_10_31_1" }, { "DOI": "10.1074/jbc.M115.662130", "doi-asserted-by": "publisher", "key": "e_1_2_10_32_1" }, { "DOI": "10.2353/ajpath.2010.090665", "doi-asserted-by": "publisher", "key": "e_1_2_10_33_1" }, { "DOI": "10.12688/f1000research.22457.2", "doi-asserted-by": "publisher", "key": "e_1_2_10_34_1" }, { "DOI": "10.3390/cells8080864", "doi-asserted-by": "publisher", "key": "e_1_2_10_35_1" }, { "DOI": "10.1038/nature22309", "doi-asserted-by": "publisher", "key": "e_1_2_10_36_1" }, { "DOI": "10.1373/clinchem.2004.035436", "doi-asserted-by": "publisher", "key": "e_1_2_10_37_1" }, { "DOI": "10.1126/science.1092002", "doi-asserted-by": "publisher", "key": "e_1_2_10_38_1" }, { "DOI": "10.1371/journal.pone.0023916", "doi-asserted-by": "publisher", "key": "e_1_2_10_39_1" }, { "DOI": "10.1016/bs.aivir.2018.01.001", "doi-asserted-by": "publisher", "key": "e_1_2_10_40_1" }, { "DOI": "10.1038/nature00786", "doi-asserted-by": "publisher", "key": "e_1_2_10_41_1" }, { "DOI": "10.1038/s41579-018-0118-9", "doi-asserted-by": "publisher", "key": "e_1_2_10_42_1" }, { "DOI": "10.1177/2472555218794627", "doi-asserted-by": "publisher", "key": "e_1_2_10_43_1" }, { "DOI": "10.1038/s41573-020-0062-z", "doi-asserted-by": "publisher", "key": "e_1_2_10_44_1" }, { "DOI": "10.1371/journal.pone.0168966", "article-title": "Novel candidate genes and a wide spectrum of structural and point mutations responsible for inherited retinal dystrophies revealed by exome sequencing", "author": "Castro‐Miro M.", "doi-asserted-by": "crossref", "first-page": "e0168966", "journal-title": "PLoS ONE", "key": "e_1_2_10_45_1", "volume": "11", "year": "2016" }, { "DOI": "10.1016/S0065-3527(05)64006-7", "doi-asserted-by": "publisher", "key": "e_1_2_10_46_1" }, { "DOI": "10.1371/journal.pone.0069127", "doi-asserted-by": "publisher", "key": "e_1_2_10_47_1" }, { "DOI": "10.1038/nrmicro.2016.81", "doi-asserted-by": "publisher", "key": "e_1_2_10_48_1" }, { "DOI": "10.1073/pnas.1922083117", "doi-asserted-by": "publisher", "key": "e_1_2_10_49_1" }, { "DOI": "10.1128/JVI.00407-08", "doi-asserted-by": "publisher", "key": "e_1_2_10_50_1" }, { "DOI": "10.1016/j.cca.2020.03.031", "doi-asserted-by": "publisher", "key": "e_1_2_10_51_1" }, { "DOI": "10.3390/v12010014", "doi-asserted-by": "publisher", "key": "e_1_2_10_52_1" }, { "DOI": "10.1016/j.cell.2010.04.018", "doi-asserted-by": "publisher", "key": "e_1_2_10_53_1" }, { "DOI": "10.1002/jmv.25768", "doi-asserted-by": "publisher", "key": "e_1_2_10_54_1" }, { "DOI": "10.1161/01.RES.87.5.e1", "doi-asserted-by": "publisher", "key": "e_1_2_10_55_1" }, { "DOI": "10.1016/S1074-7613(02)00390-4", "doi-asserted-by": "publisher", "key": "e_1_2_10_56_1" }, { "DOI": "10.1371/journal.ppat.1000896", "doi-asserted-by": "publisher", "key": "e_1_2_10_57_1" }, { "article-title": "Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS‐CoV‐2 RNA dependent RNA polymerase (RdRp): A molecular docking study", "author": "Elfiky A. A.", "first-page": "592", "journal-title": "Life Sciences", "key": "e_1_2_10_58_1", "volume": "117", "year": "2020" }, { "DOI": "10.1097/HJH.0000000000002450", "doi-asserted-by": "publisher", "key": "e_1_2_10_59_1" }, { "DOI": "10.1007/s002490100177", "doi-asserted-by": "publisher", "key": "e_1_2_10_60_1" }, { "DOI": "10.1128/AAC.48.6.2325-2330.2004", "doi-asserted-by": "publisher", "key": "e_1_2_10_61_1" }, { "DOI": "10.1042/BJ20120307", "doi-asserted-by": "publisher", "key": "e_1_2_10_62_1" }, { "DOI": "10.1016/j.str.2005.08.021", "doi-asserted-by": "publisher", "key": "e_1_2_10_63_1" }, { "article-title": "Coronaviruses: An overview of their replication and pathogenesis", "author": "Fehr A. R.", "first-page": "1", "issue": "282", "journal-title": "Methods in Molecular Biology", "key": "e_1_2_10_64_1", "volume": "1", "year": "2015" }, { "DOI": "10.1161/CIRCULATIONAHA.104.510461", "doi-asserted-by": "publisher", "key": "e_1_2_10_65_1" }, { "DOI": "10.1038/ni921", "doi-asserted-by": "publisher", "key": "e_1_2_10_66_1" }, { "DOI": "10.1074/jbc.M114.621730", "doi-asserted-by": "publisher", "key": "e_1_2_10_67_1" }, { "DOI": "10.1080/22221751.2020.1736644", "doi-asserted-by": "publisher", "key": "e_1_2_10_68_1" }, { "DOI": "10.1083/jcb.201108175", "doi-asserted-by": "publisher", "key": "e_1_2_10_69_1" }, { "DOI": "10.1016/j.virol.2008.08.026", "doi-asserted-by": "publisher", "key": "e_1_2_10_70_1" }, { "DOI": "10.1021/bi0621415", "doi-asserted-by": "publisher", "key": "e_1_2_10_71_1" }, { "article-title": "The antiviral compound remdesivir potently inhibits RNA‐dependent RNA polymerase from Middle East respiratory syndrome coronavirus", "author": "Gordon C. J.", "journal-title": "The Journal of Biological Chemistry", "key": "e_1_2_10_72_1", "volume": "295", "year": "2020" }, { "DOI": "10.1038/s41586-020-2286-9", "doi-asserted-by": "publisher", "key": "e_1_2_10_73_1" }, { "DOI": "10.3892/br.2016.829", "doi-asserted-by": "publisher", "key": "e_1_2_10_74_1" }, { "DOI": "10.1016/j.immuni.2013.05.007", "doi-asserted-by": "publisher", "key": "e_1_2_10_75_1" }, { "DOI": "10.1038/nature13590", "doi-asserted-by": "publisher", "key": "e_1_2_10_76_1" }, { "DOI": "10.1016/j.tcb.2018.12.004", "doi-asserted-by": "publisher", "key": "e_1_2_10_77_1" }, { "article-title": "Coronavirus endoribonuclease targets viral polyuridine sequences to evade activating host sensors", "author": "Hackbart M.", "journal-title": "Proceedings of the National Academy of Sciences of the United States of America", "key": "e_1_2_10_78_1", "volume": "117", "year": "2020" }, { "DOI": "10.1073/pnas.0711241105", "doi-asserted-by": "publisher", "key": "e_1_2_10_79_1" }, { "DOI": "10.1128/JVI.78.24.13600-13612.2004", "doi-asserted-by": "publisher", "key": "e_1_2_10_80_1" }, { "DOI": "10.1371/journal.ppat.1003774", "doi-asserted-by": "publisher", "key": "e_1_2_10_81_1" }, { "DOI": "10.1016/j.tim.2011.03.007", "doi-asserted-by": "publisher", "key": "e_1_2_10_82_1" }, { "DOI": "10.1016/j.jhep.2007.03.008", "doi-asserted-by": "publisher", "key": "e_1_2_10_83_1" }, { "DOI": "10.1161/HYPERTENSIONAHA.107.108944", "doi-asserted-by": "publisher", "key": "e_1_2_10_84_1" }, { "article-title": "SARS‐CoV‐2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor", "author": "Hoffmann M.", "first-page": "e8", "issue": "271", "journal-title": "Cell", "key": "e_1_2_10_85_1", "volume": "181", "year": "2020" }, { "DOI": "10.1101/gad.1102703", "doi-asserted-by": "publisher", "key": "e_1_2_10_86_1" }, { "DOI": "10.1128/JVI.68.3.1551-1563.1994", "doi-asserted-by": "publisher", "key": "e_1_2_10_87_1" }, { "DOI": "10.7554/eLife.25237", "doi-asserted-by": "publisher", "key": "e_1_2_10_88_1" }, { "DOI": "10.1074/jbc.M212934200", "doi-asserted-by": "publisher", "key": "e_1_2_10_89_1" }, { "DOI": "10.1038/nature03712", "doi-asserted-by": "publisher", "key": "e_1_2_10_90_1" }, { "DOI": "10.1128/JVI.00253-07", "doi-asserted-by": "publisher", "key": "e_1_2_10_91_1" }, { "DOI": "10.1016/j.ejmech.2011.11.002", "doi-asserted-by": "publisher", "key": "e_1_2_10_92_1" }, { "DOI": "10.1161/CIRCULATIONAHA.109.911339", "doi-asserted-by": "publisher", "key": "e_1_2_10_93_1" }, { "DOI": "10.1128/AAC.00819-20", "doi-asserted-by": "publisher", "key": "e_1_2_10_94_1" }, { "DOI": "10.1038/s41586-020-2223-y", "doi-asserted-by": "publisher", "key": "e_1_2_10_95_1" }, { "DOI": "10.1038/nature04734", "doi-asserted-by": "publisher", "key": "e_1_2_10_96_1" }, { "DOI": "10.1128/JVI.00094-12", "doi-asserted-by": "publisher", "key": "e_1_2_10_97_1" }, { "DOI": "10.1186/s13054-017-1823-x", "doi-asserted-by": "publisher", "key": "e_1_2_10_98_1" }, { "DOI": "10.1074/jbc.RA118.005868", "doi-asserted-by": "publisher", "key": "e_1_2_10_99_1" }, { "DOI": "10.1128/MCB.26.3.965-975.2006", "doi-asserted-by": "publisher", "key": "e_1_2_10_100_1" }, { "DOI": "10.1016/bs.aivir.2016.08.006", "doi-asserted-by": "publisher", "key": "e_1_2_10_101_1" }, { "DOI": "10.1371/journal.pbio.0060226", "doi-asserted-by": "publisher", "key": "e_1_2_10_102_1" }, { "DOI": "10.1128/JVI.01782-06", "doi-asserted-by": "publisher", "key": "e_1_2_10_103_1" }, { "DOI": "10.3390/cells7110221", "doi-asserted-by": "publisher", "key": "e_1_2_10_104_1" }, { "DOI": "10.1096/fj.08-107300", "doi-asserted-by": "publisher", "key": "e_1_2_10_105_1" }, { "DOI": "10.1099/0022-1317-65-1-227", "doi-asserted-by": "publisher", "key": "e_1_2_10_106_1" }, { "DOI": "10.1038/nm1267", "doi-asserted-by": "publisher", "key": "e_1_2_10_107_1" }, { "DOI": "10.1016/j.pharmthera.2010.06.003", "doi-asserted-by": "publisher", "key": "e_1_2_10_108_1" }, { "DOI": "10.1177/1087057111413919", "doi-asserted-by": "publisher", "key": "e_1_2_10_109_1" }, { "DOI": "10.1074/jbc.M505111200", "doi-asserted-by": "publisher", "key": "e_1_2_10_110_1" }, { "DOI": "10.1371/journal.pone.0023710", "doi-asserted-by": "publisher", "key": "e_1_2_10_111_1" }, { "DOI": "10.1038/s41467-020-16048-4", "doi-asserted-by": "publisher", "key": "e_1_2_10_112_1" }, { "DOI": "10.1016/j.antiviral.2017.11.001", "doi-asserted-by": "publisher", "key": "e_1_2_10_113_1" }, { "DOI": "10.1038/nrm2328", "doi-asserted-by": "publisher", "key": "e_1_2_10_114_1" }, { "DOI": "10.1038/s41564-020-0688-y", "doi-asserted-by": "publisher", "key": "e_1_2_10_115_1" }, { "DOI": "10.1113/expphysiol.2007.040352", "doi-asserted-by": "publisher", "key": "e_1_2_10_116_1" }, { "DOI": "10.1007/s00392-020-01626-9", "doi-asserted-by": "publisher", "key": "e_1_2_10_117_1" }, { "DOI": "10.1126/science.1116480", "doi-asserted-by": "publisher", "key": "e_1_2_10_118_1" }, { "DOI": "10.1038/d41573-020-00016-0", "doi-asserted-by": "publisher", "key": "e_1_2_10_119_1" }, { "DOI": "10.1016/j.jinf.2020.02.013", "article-title": "Analysis of angiotensin‐converting enzyme 2 (ACE2) from different species sheds some light on cross‐species receptor usage of a novel coronavirus 2019‐nCoV", "author": "Li R.", "doi-asserted-by": "crossref", "first-page": "469", "journal-title": "The Journal of Infection", "key": "e_1_2_10_120_1", "volume": "80", "year": "2020" }, { "DOI": "10.3390/v7092850", "doi-asserted-by": "publisher", "key": "e_1_2_10_121_1" }, { "DOI": "10.1038/nature02145", "doi-asserted-by": "publisher", "key": "e_1_2_10_122_1" }, { "article-title": "Prostate‐localized and androgen‐regulated expression of the membrane‐bound serine protease TMPRSS2", "author": "Lin B.", "first-page": "4180", "journal-title": "Cancer Research", "key": "e_1_2_10_123_1", "volume": "59", "year": "1999" }, { "DOI": "10.1128/JVI.79.24.15199-15208.2005", "doi-asserted-by": "publisher", "key": "e_1_2_10_124_1" }, { "DOI": "10.1016/j.abb.2007.07.006", "doi-asserted-by": "publisher", "key": "e_1_2_10_125_1" }, { "DOI": "10.1016/j.pcad.2020.03.001", "doi-asserted-by": "publisher", "key": "e_1_2_10_126_1" }, { "DOI": "10.1038/cr.2010.103", "doi-asserted-by": "publisher", "key": "e_1_2_10_127_1" }, { "DOI": "10.1038/s41590-018-0262-4", "doi-asserted-by": "publisher", "key": "e_1_2_10_128_1" }, { "DOI": "10.1128/JVI.01914-07", "doi-asserted-by": "publisher", "key": "e_1_2_10_129_1" }, { "DOI": "10.1016/j.tim.2015.06.003", "doi-asserted-by": "publisher", "key": "e_1_2_10_130_1" }, { "DOI": "10.1016/S0140-6736(20)30251-8", "doi-asserted-by": "publisher", "key": "e_1_2_10_131_1" }, { "DOI": "10.1073/pnas.0605402103", "doi-asserted-by": "publisher", "key": "e_1_2_10_132_1" }, { "DOI": "10.1016/j.bbrc.2020.03.047", "doi-asserted-by": "publisher", "key": "e_1_2_10_133_1" }, { "DOI": "10.1002/path.2330", "doi-asserted-by": "publisher", "key": "e_1_2_10_134_1" }, { "DOI": "10.1158/2159-8290.CD-13-1010", "doi-asserted-by": "publisher", "key": "e_1_2_10_135_1" }, { "article-title": "SARS‐CoV‐2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells", "author": "Lukassen S.", "first-page": "e105114", "journal-title": "The EMBO Journal", "key": "e_1_2_10_136_1", "year": "2020" }, { "DOI": "10.1038/nrd.2018.149", "doi-asserted-by": "publisher", "key": "e_1_2_10_137_1" }, { "DOI": "10.1016/S0065-3527(06)66005-3", "doi-asserted-by": "publisher", "key": "e_1_2_10_138_1" }, { "article-title": "Enhanced isolation of SARS‐CoV‐2 by TMPRSS2‐expressing cells", "author": "Matsuyama S.", "journal-title": "Proceedings of the National Academy of Sciences of the United States of America", "key": "e_1_2_10_139_1", "volume": "117", "year": "2020" }, { "DOI": "10.1111/cmi.12340", "doi-asserted-by": "publisher", "key": "e_1_2_10_140_1" }, { "DOI": "10.3390/v6082991", "doi-asserted-by": "publisher", "key": "e_1_2_10_141_1" }, { "DOI": "10.1016/S0140-6736(20)30628-0", "doi-asserted-by": "publisher", "key": "e_1_2_10_142_1" }, { "DOI": "10.1128/JVI.00269-12", "doi-asserted-by": "publisher", "key": "e_1_2_10_143_1" }, { "DOI": "10.1042/BJ20130101", "doi-asserted-by": "publisher", "key": "e_1_2_10_144_1" }, { "DOI": "10.1016/j.virusres.2014.11.021", "doi-asserted-by": "publisher", "key": "e_1_2_10_145_1" }, { "DOI": "10.1016/j.virusres.2014.08.001", "doi-asserted-by": "publisher", "key": "e_1_2_10_146_1" }, { "DOI": "10.1038/s41467-020-14867-z", "doi-asserted-by": "publisher", "key": "e_1_2_10_147_1" }, { "DOI": "10.1016/0042-6822(85)90345-9", "doi-asserted-by": "publisher", "key": "e_1_2_10_148_1" }, { "DOI": "10.1021/jm701275z", "doi-asserted-by": "publisher", "key": "e_1_2_10_149_1" }, { "DOI": "10.1128/JVI.01463-17", "article-title": "Inhibition of cytosolic phospholipase A2α impairs an early step of coronavirus replication in cell culture", "author": "Muller C.", "doi-asserted-by": "crossref", "journal-title": "Journal of Virology", "key": "e_1_2_10_150_1", "volume": "92", "year": "2018" }, { "article-title": "The 2019 coronavirus (SARS‐CoV‐2) surface protein (Spike) S1 receptor binding domain undergoes conformational change upon heparin binding", "author": "Mycroft‐West C.", "journal-title": "bioRxiv", "key": "e_1_2_10_151_1", "year": "2020" }, { "DOI": "10.1016/j.celrep.2015.02.052", "doi-asserted-by": "publisher", "key": "e_1_2_10_152_1" }, { "DOI": "10.1128/JVI.01157-18", "doi-asserted-by": "publisher", "key": "e_1_2_10_153_1" }, { "DOI": "10.1021/jm00164a057", "doi-asserted-by": "publisher", "key": "e_1_2_10_154_1" }, { "DOI": "10.1371/journal.ppat.1004077", "doi-asserted-by": "publisher", "key": "e_1_2_10_155_1" }, { "DOI": "10.1016/j.virol.2015.08.010", "doi-asserted-by": "publisher", "key": "e_1_2_10_156_1" }, { "DOI": "10.1161/01.HYP.0000237862.94083.45", "doi-asserted-by": "publisher", "key": "e_1_2_10_157_1" }, { "DOI": "10.1111/febs.15303", "doi-asserted-by": "publisher", "key": "e_1_2_10_158_1" }, { "DOI": "10.1128/JVI.01631-07", "doi-asserted-by": "publisher", "key": "e_1_2_10_159_1" }, { "DOI": "10.2337/db09-1218", "doi-asserted-by": "publisher", "key": "e_1_2_10_160_1" }, { "DOI": "10.1006/geno.1997.4845", "doi-asserted-by": "publisher", "key": "e_1_2_10_161_1" }, { "DOI": "10.1080/14756366.2016.1193732", "doi-asserted-by": "publisher", "key": "e_1_2_10_162_1" }, { "article-title": "Coronaviruses post‐SARS: update on replication and pathogenesis", "author": "Perlman S.", "first-page": "439", "journal-title": "Coronaviruses post‐SARS: update on replication and pathogenesis", "key": "e_1_2_10_163_1", "volume": "7", "year": "2009" }, { "DOI": "10.1371/journal.ppat.1000511", "doi-asserted-by": "publisher", "key": "e_1_2_10_164_1" }, { "DOI": "10.1016/j.virol.2005.06.046", "doi-asserted-by": "publisher", "key": "e_1_2_10_165_1" }, { "DOI": "10.1016/j.virol.2006.10.034", "doi-asserted-by": "publisher", "key": "e_1_2_10_166_1" }, { "DOI": "10.1371/journal.ppat.1002331", "doi-asserted-by": "publisher", "key": "e_1_2_10_167_1" }, { "article-title": "Global analysis of LARP1 translation targets reveals tunable and dynamic features of 5' TOP motifs", "author": "Philippe L.", "journal-title": "Proceedings of the National Academy of Sciences of the United States of America", "key": "e_1_2_10_168_1", "volume": "117", "year": "2020" }, { "DOI": "10.1021/jm101251q", "doi-asserted-by": "publisher", "key": "e_1_2_10_169_1" }, { "DOI": "10.1016/j.drudis.2020.01.015", "doi-asserted-by": "publisher", "key": "e_1_2_10_170_1" }, { "DOI": "10.1016/0092-8674(92)90452-I", "doi-asserted-by": "publisher", "key": "e_1_2_10_171_1" }, { "DOI": "10.1128/JVI.79.20.12721-12731.2005", "doi-asserted-by": "publisher", "key": "e_1_2_10_172_1" }, { "DOI": "10.1038/nature12005", "doi-asserted-by": "publisher", "key": "e_1_2_10_173_1" }, { "DOI": "10.1073/pnas.0510851103", "doi-asserted-by": "publisher", "key": "e_1_2_10_174_1" }, { "DOI": "10.1371/journal.ppat.1004113", "doi-asserted-by": "publisher", "key": "e_1_2_10_175_1" }, { "DOI": "10.1128/JVI.79.1.503-511.2005", "doi-asserted-by": "publisher", "key": "e_1_2_10_176_1" }, { "DOI": "10.1086/500143", "doi-asserted-by": "publisher", "key": "e_1_2_10_177_1" }, { "DOI": "10.3390/v4030363", "doi-asserted-by": "publisher", "key": "e_1_2_10_178_1" }, { "DOI": "10.1074/jbc.M400129200", "doi-asserted-by": "publisher", "key": "e_1_2_10_179_1" }, { "DOI": "10.1016/j.imbio.2013.06.007", "doi-asserted-by": "publisher", "key": "e_1_2_10_180_1" }, { "DOI": "10.1016/j.virusres.2014.10.008", "doi-asserted-by": "publisher", "key": "e_1_2_10_181_1" }, { "DOI": "10.1126/science.1081315", "doi-asserted-by": "publisher", "key": "e_1_2_10_182_1" }, { "DOI": "10.4049/jimmunol.1303196", "doi-asserted-by": "publisher", "key": "e_1_2_10_183_1" }, { "DOI": "10.1038/s41418-020-0530-3", "doi-asserted-by": "publisher", "key": "e_1_2_10_184_1" }, { "DOI": "10.1126/science.abb7015", "doi-asserted-by": "publisher", "key": "e_1_2_10_185_1" }, { "DOI": "10.1038/s41418-020-0530-3", "doi-asserted-by": "publisher", "key": "e_1_2_10_186_1" }, { "DOI": "10.1073/pnas.0505577102", "doi-asserted-by": "publisher", "key": "e_1_2_10_187_1" }, { "DOI": "10.1128/JVI.02520-12", "doi-asserted-by": "publisher", "key": "e_1_2_10_188_1" }, { "DOI": "10.1096/fj.201802418R", "doi-asserted-by": "publisher", "key": "e_1_2_10_189_1" }, { "DOI": "10.1016/S0022-2836(03)00865-9", "doi-asserted-by": "publisher", "key": "e_1_2_10_190_1" }, { "DOI": "10.3390/v11010059", "doi-asserted-by": "publisher", "key": "e_1_2_10_191_1" }, { "DOI": "10.3390/v12040360", "doi-asserted-by": "publisher", "key": "e_1_2_10_192_1" }, { "DOI": "10.1007/978-1-4939-6625-7_9", "doi-asserted-by": "publisher", "key": "e_1_2_10_193_1" }, { "DOI": "10.1016/j.virusres.2015.02.023", "doi-asserted-by": "publisher", "key": "e_1_2_10_194_1" }, { "DOI": "10.1074/jbc.M504113200", "doi-asserted-by": "publisher", "key": "e_1_2_10_195_1" }, { "DOI": "10.1111/febs.13971", "doi-asserted-by": "publisher", "key": "e_1_2_10_196_1" }, { "DOI": "10.1128/JVI.03799-13", "doi-asserted-by": "publisher", "key": "e_1_2_10_197_1" }, { "DOI": "10.1099/vir.0.19424-0", "doi-asserted-by": "publisher", "key": "e_1_2_10_198_1" }, { "DOI": "10.1074/jbc.M002615200", "doi-asserted-by": "publisher", "key": "e_1_2_10_199_1" }, { "DOI": "10.1126/science.1117679", "doi-asserted-by": "publisher", "key": "e_1_2_10_200_1" }, { "DOI": "10.1110/ps.062730007", "doi-asserted-by": "publisher", "key": "e_1_2_10_201_1" }, { "DOI": "10.1126/science.1260419", "doi-asserted-by": "publisher", "key": "e_1_2_10_202_1" }, { "DOI": "10.1038/s41398-018-0162-2", "doi-asserted-by": "publisher", "key": "e_1_2_10_203_1" }, { "DOI": "10.18332/tid/119324", "doi-asserted-by": "publisher", "key": "e_1_2_10_204_1" }, { "DOI": "10.1074/jbc.M200581200", "doi-asserted-by": "publisher", "key": "e_1_2_10_205_1" }, { "DOI": "10.1038/s41564-020-0695-z", "doi-asserted-by": "publisher", "key": "e_1_2_10_206_1" }, { "article-title": "Structure, function, and antigenicity of the SARS‐CoV‐2 spike glycoprotein", "author": "Walls A. C.", "first-page": "e6", "issue": "281", "journal-title": "Cell", "key": "e_1_2_10_207_1", "volume": "181", "year": "2020" }, { "DOI": "10.1128/JVI.67.9.5585-5594.1993", "doi-asserted-by": "publisher", "key": "e_1_2_10_208_1" }, { "DOI": "10.1038/ni.1742", "doi-asserted-by": "publisher", "key": "e_1_2_10_209_1" }, { "DOI": "10.1016/j.virol.2004.09.033", "doi-asserted-by": "publisher", "key": "e_1_2_10_210_1" }, { "DOI": "10.1042/BJ20041066", "doi-asserted-by": "publisher", "key": "e_1_2_10_211_1" }, { "DOI": "10.1038/s41590-018-0279-8", "doi-asserted-by": "publisher", "key": "e_1_2_10_212_1" }, { "DOI": "10.1016/j.bmc.2012.01.054", "doi-asserted-by": "publisher", "key": "e_1_2_10_213_1" }, { "DOI": "10.1007/s12250-015-3683-3", "doi-asserted-by": "publisher", "key": "e_1_2_10_214_1" }, { "key": "e_1_2_10_215_1", "unstructured": "World Health Organization. (2020).WHO Technical Guidance.https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it" }, { "DOI": "10.1126/science.abb2507", "doi-asserted-by": "publisher", "key": "e_1_2_10_216_1" }, { "DOI": "10.1038/s41586-020-2008-3", "doi-asserted-by": "publisher", "key": "e_1_2_10_217_1" }, { "DOI": "10.1038/s41422-020-0305-x", "doi-asserted-by": "publisher", "key": "e_1_2_10_218_1" }, { "DOI": "10.1007/978-1-4939-6625-7_8", "doi-asserted-by": "publisher", "key": "e_1_2_10_219_1" }, { "DOI": "10.1161/CIRCRESAHA.116.310509", "doi-asserted-by": "publisher", "key": "e_1_2_10_220_1" }, { "DOI": "10.1016/S2213-2600(20)30076-X", "doi-asserted-by": "publisher", "key": "e_1_2_10_221_1" }, { "article-title": "Sphingolipids as potential therapeutic targets against enveloped human RNA viruses", "author": "Yager E. J.", "first-page": "11", "journal-title": "Viruses", "key": "e_1_2_10_222_1", "year": "2019" }, { "DOI": "10.1126/science.abb2762", "doi-asserted-by": "publisher", "key": "e_1_2_10_223_1" }, { "DOI": "10.3389/fnins.2017.00092", "doi-asserted-by": "publisher", "key": "e_1_2_10_224_1" }, { "DOI": "10.1021/jm0603926", "doi-asserted-by": "publisher", "key": "e_1_2_10_225_1" }, { "DOI": "10.1038/s41419-019-2178-9", "doi-asserted-by": "publisher", "key": "e_1_2_10_226_1" }, { "DOI": "10.1099/vir.0.059014-0", "doi-asserted-by": "publisher", "key": "e_1_2_10_227_1" }, { "DOI": "10.1038/357420a0", "doi-asserted-by": "publisher", "key": "e_1_2_10_228_1" }, { "DOI": "10.1016/S2468-1253(20)30048-0", "doi-asserted-by": "publisher", "key": "e_1_2_10_229_1" }, { "DOI": "10.1002/ame2.12108", "doi-asserted-by": "publisher", "key": "e_1_2_10_230_1" }, { "DOI": "10.1021/acs.jmedchem.9b01828", "doi-asserted-by": "publisher", "key": "e_1_2_10_231_1" }, { "DOI": "10.1016/j.bbamem.2013.07.025", "doi-asserted-by": "publisher", "key": "e_1_2_10_232_1" }, { "DOI": "10.1016/j.bbrc.2013.01.105", "doi-asserted-by": "publisher", "key": "e_1_2_10_233_1" }, { "article-title": "Relationship between the ABO Blood Group and the COVID‐19 Susceptibility", "author": "Zhao J.", "journal-title": "medRxiv", "key": "e_1_2_10_234_1", "year": "2020" }, { "DOI": "10.1128/JVI.00298-08", "doi-asserted-by": "publisher", "key": "e_1_2_10_235_1" }, { "DOI": "10.1161/CIRCULATIONAHA.110.955369", "doi-asserted-by": "publisher", "key": "e_1_2_10_236_1" }, { "DOI": "10.1038/s41586-018-0010-9", "doi-asserted-by": "publisher", "key": "e_1_2_10_237_1" }, { "DOI": "10.1016/j.virusres.2019.197843", "doi-asserted-by": "publisher", "key": "e_1_2_10_238_1" }, { "DOI": "10.1056/NEJMoa2001017", "doi-asserted-by": "publisher", "key": "e_1_2_10_239_1" }, { "DOI": "10.1128/JVI.02091-06", "doi-asserted-by": "publisher", "key": "e_1_2_10_240_1" }, { "DOI": "10.1016/j.cell.2020.04.035", "doi-asserted-by": "publisher", "key": "e_1_2_10_241_1" }, { "DOI": "10.1161/01.CIR.0000094734.67990.99", "doi-asserted-by": "publisher", "key": "e_1_2_10_242_1" }, { "DOI": "10.1038/nrd.2015.37", "doi-asserted-by": "publisher", "key": "e_1_2_10_243_1" } ], "reference-count": 242, "references-count": 242, "relation": {}, "resource": { "primary": { "URL": "https://bpspubs.onlinelibrary.wiley.com/doi/10.1111/bph.15094" } }, "score": 1, "short-title": [], "source": "Crossref", "subject": [], "subtitle": [], "title": "A rational roadmap for SARS‐CoV‐2/COVID‐19 pharmacotherapeutic research and development: IUPHAR Review 29", "type": "journal-article", "update-policy": "https://doi.org/10.1002/crossmark_policy", "volume": "177" }
Please send us corrections, updates, or comments. c19early involves the extraction of 200,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. IMA and WCH provide treatment protocols.
  or use drag and drop   
Submit